Reviewer #1:

This is a promising methodological contribution to the colocalization problem in GWAS. The
central idea is intruiging, and the key results support the idea, but the way the results are
presented is confusing, and the ideas and results raise a few questions.

Here are my main comments:

My colleagues (who helped me with parts of this review) and | had trouble following Fig. 3.
Our confusion may be in part due to several typos. In the second row should there be an
arrow from A to 2 rather than B to 17 In the third row should there be an arrow from A to 2
and no arrow from B to 1?7 And the sentence toward the end of Results should instead read,
“susie seems to resolve this issue, with AB-like comparisons clearly having strongest
posterior support for H3” (not H4)? Some explanations are missing, such as the bars in the
plots (AA, BB, AB, etc), and how the key statistical quantities computed in coloc (the Bayes
factors and posterior odds) relate to the plots (in particular, the heights of the different
coloured bars). Also, the total height of the bars seems important, perhaps relating to power
in some way, which is alluded to in the caption, but isn’t clearly explained.

| apologise for the typographical errors in Fig 3. The arrows in the second and third
rows were indeed switched. This has now been corrected, as shown below.
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The legend of the figure has been revised to better explain the heights of the different
coloured bars and the total height, and also reduced to show only simulations of
regions with 1000 SNPs, with the full set of simulations shown in Supp Fig 2 as
suggested below.



Fig 3. Average posterior probability distributions in simulated data. The four classes
of simulated datasets are shown in four rows, with the scenario indicated in the left
hand column. For example, the top row shows a scenario where traits 1 and 2 have
distinct causal variants A and B. Columns indicate the different analysis methods,
with susie_x indicating that SuSIE was run with data trimmed at |Z|< x, cond_it
indicating that conditioning was run in iterative mode, and cond_abo indicating it was
run in “all but one” mode. For each simulation, the number of tests performed is
at most 1 for “single", or equal to the product of the number of signals detected for
the other methods. For each test, we estimated which pair of variants were being
tested according to the LD between the variant with highest fine-mapping posterior
probability of causality for each trait and the true causal variants A and B. If r’2>0.5
between the fine-mapped variant and true causal variant A, and r’2 with A was
higher than r’2 with B, we labeled the test variant A, and vice versa for B. Where at
least one test variant could not be unambigously assigned, we labelled the pair " ?".
The total height of each bar represents the proportion of comparisons that were run,
out of the number of simulations run, and typically does not reach 1 because there is
not always power to perform all possible tests. Note that because we do not limit the
number of tests, the height of the bar has the potential to exceed 1, but did not do so
in practice. The shaded proportion of each bar corresponds to the average posterior
for the indicated hypothesis, defined as the ratio of the sum of posterior probabilities
for that hypothesis to the number of simulations performed. Each simulated region
contains 1000 SNPs.

If we are interpreting the bars correctly, | was confused by the AB / BA signals. | think the
key is when you assume one causal per region then AB / BA will inevitably capture some H4
because AB / BA are simply wrong models. In short, some of the bars may be more
important than others to “get right”, and the way it is presented it may be hard for the reader
(and reviewer!) to focus on the differences across methods that are important—by
“important,” differences that would matter in practice when applying coloc to real data sets.
For example, in the 4th scenario (4th row of Fig. 3), the results for “cond”, “mask” and
“susie_0” are pretty much the same, except for the case of AB and BA. The question is
whether these differences among the methods matter in this case? The level of detail in Fig.
3 may be useful for getting a better understand for the behaviour of the different approaches,
but is there a way to summarize these results in an evocative way, say, using ROC or
precision-recall curves?

The legend now also, hopefully, better explains the process of arriving at AB and BA
signals. For each simulation, method “single” performs at most one test. The number
of tests for all other methods is determined by the number of signals they each
detected for each trait, and all pairs of detected signals are compared. A test is
assigned to the “AB” category if the SNP with the highest posterior probability of
causality for trait 1 has r2>0.5 with the true “A” causal variant, and the SNP with the
highest posterior probability of causality for trait 2 has r2>0.5 with the true “B” causal
variant.

The issue in the 4th row with apparent AB tests giving some posterior support to H4
for cond and mask relates to a “feature” of coloc which has been considered helpful
before under a single causal variant assumption. If trait 1 has two causal variants A
and B, and trait 2 has only B, then you still expect high posterior support for H4. You
only expect a high posterior for H3 when the two traits share 0 causal variants. |
think this is part of why coloc has continued to be used despite the single causal
variant, because it will detect sharing if it exists, even in the presence of additional
non-shared effects.



However, in the conditional case, this “feature” can itself cause issues, which is a
point | made too subtly before. | have now tried to explain by walking through a
couple of examples in the Results

This feature also presents problems for the conditioning approach, as demonstrated
by the high average posterior probability for H_4 in the “"AB" comparisons, one of
which is examined in detail in Fig 4. In this example, trait 1 has one causal variant,
A, whilst trait 2 has two, A and B, with B having slightly greater significance. In the
first round of analysis by the conditioning method, the original sets of summary
statistics are passed to coloc. Because A is the stronger effect for trait 1, the test is
labelled “AB", but gives a high posterior to H_4 because there is one shared causal
variant (A). Then the stronger effect, B, is conditioned out, and the analysis rerun
with trait 1, and trait 2 conditioned on B. This test again gives a high posterior for
H_4. This situation is confusing, because the same signal in trait 1 appears to
colocalise with different signals in trait 1. SuSiE models both signals simultaneously,
So we can attempt to colocalise trait 1 with each signal independently, finding high
H_3 for one and high H_4 for the other. If we were confident we could infer both the
exact number of independent signals and their identity correctly by conditioning, we
could attempt to emulate this in the conditioning, using the ““all but one" rather than
“iterative" mode. This does result in better average performance than the iterative
mode (Fig \ref{fig:simstrat}). However it is often outperformed by SuSIE.
Supplementary Fig 3 shows an example where the stepwise approach is less able to
correctly identify the separate signals. The A signal is not well identified, and
therefore not be adequately conditioned out, which may results in two apparently
different comparisons with trait 1 which both produce a high H_4. In this example
too, SuSIiE more correctly produces two comparisons, one with high H_3 and one
with high H_4.

Figure 4. Example where the conditional coloc approach, run in iterative mode, finds
misleading results. \textbf{a} and \textbf{b} show the observed data (-log p values) for
traits 1 and 2 respectively. Conditioning identifies a second independent signal for
trait 2, and the results of conditioning on the strongest signal is shown in \textbf{c}.
Coloc comparisons are based on (a,b) and (a,c) and both find the posterior
probability (PP) of H_4 is >0.8. SuSIE analysis of the same data finds one signal in
trait 1, and log Bayes factors (BF) for this signal are shown in \textbf{d}. It finds two
signals for trait 2, and the log BF for these are shown in \textbf{e} and \textbf{f}.
Coloc comparisons are based on (d,e) and (d,f) and find PP of H_{4} of >0.9 and
<10M-4} respectively. Blue and green points are used to highlight SNPs in LD with
(r"2>0.8) the true causal variants A and B respectively.
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A minor point is the results do not seem to differ much across different numbers of SNPs
(1000, 2000, 3000) and | wonder if it would be better to show the results for only one setting,
and move the other two settings to the supplement).

Agreed, this is now done.

There is an early emphasis on addressing the issue that susie is too slow to be run on large
regions. On the surface, it seems reasonable to “trim” SNPs based on some safe cutoff (e.g.,
based on p-values). However, some elaboration is needed to justify having to take this step;
consider that the computational complexity of susie is linear in the number of samples (n),
SNPs (p), and number of “single-effects” (L), so in principle susie should be able to handle
large data sets, with available memory typically being the greatest limitation. (We have run
susie on data sets with as many as 12,000 SNPs.) Also, for data sets with large n, there is a
summary-statistics version of susie (susie_rss). I’'m not arguing against the trimming per se,
but to motivate these steps it would be helpful to explain in more detail the challenges faced
in using susie, for example, whether the high computational expense was due to slow
convergence (which could happen when SNPs are very strongly correlated), or due to
something else. | wonder if this trimming is in fact avoidable.

This was motivated by my group’s attempts to run this version of coloc (which uses
susie_rss) across multiple pairs of datasets genomewide. We found some regions
with large numbers of snps (p) could take many hours to run, so wanted to
investigate whether there was a workaround to speed this up. Reviewer 2 notes that
the eigen decomposition required for the summary statistics function which we use,



susie_rss, is O(p®) where p is the number of SNPs, and perhaps if you are running on
full genotype data this explains our different experiences? | now have expanded the

discussion to include more information on the computational complexity of susie_rss,
the alternative solutions which could be explored, and an explicit warning that results
about trimming with coloc do not transfer to the fine-mapping setting.

Despite the adoption of a novel iterative procedure to fit the SuSiE model, the
procedure is still slow for large regions with many SNPs, which can be a batrrier to its
adoption for a technique like coloc which has always boasted speed as an
advantage. We note that the package susieR is still being developed. The most
computationally expensive step in susie_rss is the eigen decomposition of the LD
matrix, which is O(p*3) where p is the number of SNPs. In the case where multiple
pairs of traits are being considered for colocalisation, computing this decomposition
once in advance could be used instead to improve speed. Alternatively, it may be
that with standardised datasets covering the same sets of SNPs, such eigen
decompositions could be precomputed and stored. Finally, further development of
susie_rss may lead to avoiding the eigen decomposition step altogether.

In this manuscript, we considered a simple approach, approximating the SuSIE
posterior by using a trimmed set of data, discarding SNPs with |Z| scores below
some small threshold, on the assumption that a causal SNP with detectable
association should produce a Z score of reasonable magnitude. (For reference,
whilst we only consider discarding SNPs with |Z|<1.5 at most, the standard
genome-wide significance threshold of p<5\times10{-8} corresponds to |Z|>5.45).
Thus, this approximation makes the assumption that true causal variants will have at
least some weak marginal evidence of association. We note that it is possible to
construct examples which will violate this assumption, for example if two causal
variants in strong LD but with opposite directions of effects exist. Further, in
simulated data here, we found that trimming can increase false positive signals when
fine-mapping, a phenomenon previously noted (Sesia et al., 2020). Thus we suggest
that trimming is inappropriate when fine-mapping is the end-goal of any study,
especially given that false positives in fine-mapping may result in substantial costs if
followed-up in wet-lab experiments. However, these fine-mapping false positives did
not appear to increase false positives in coloc, perhaps because the occurence of
false positives was relatively rare, such that it did not occur often in both members of
a pair of datasets, and/or perhaps because when false positives did occur, they were
focused on different SNPs in the two datasets so were unlikely to generate support
for H_4, the hypothesis of most interest. Given this, we suggest a threshold of |Z|<1
may be acceptable to allow SuSiE coloc to run at speed in larger regions, but leave
the threshold as a user-set parameter which is 0 by default, and which we
recommend should be reported along with any results. For the most noteworthy
results, we recommend analysis should be repeated without trimming to ensure
inference is robust to the approximation.

A larger question is raised by relaxing the assumption of one causal variant, and it surfaces
as one attempts to define the colocalization problem. Perhaps it can be addressed by more
careful definitions. For example, you state in the introduction, “Colocalisation is a technique
used for assessing whether two traits share a causal variant in a region of the genome,
typically limited by LD.” But when allowing for the possibility of multiple causal variables,
hypotheses HO—H4 no longer cover all possible events. For example, perhaps H4 should be
defined as, “both traits are associated and share at least one causal variant?” In short,
based on the description you have given, there appears to be a mismatch between the coloc
inferences and the susie inferences, which is to compute a posterior distribution over all 2*p
combinations of causal variables (with the constrained that at most L SNPs can be included).



That is—if | am not misunderstanding—coloc makes inferences at the SNP level, and susie
makes inferences at the region level. | don’t see this necessarily as a fundamental issue, but
more an issue of being more precise in definitions (and perhaps reminding us—the readers
and reviewers—what coloc is actually doing).

Thank you - this is a very good point. | have expanded in the Introduction on the
earlier re-framing of the colocalisation problem to the multiple causal variant
situation, by assuming that data can be decomposed into layers corresponding to the
distinct causal variants. The mechanism for doing so, stepwise regression, has
established weaknesses. The central goal of the current paper is to assess whether
the new SuSIE approach to this decomposition is beneficial to colocalisation.

This simple summation is enabled by the single causal variant assumption, which
implies that each pair of variants being causal for the two traits are mutually exclusive
events. However, the assumption is unrealistic, as multiple causal variants may exist
in proximity, which also challenges the definition of colocalisation as presented above
as none of the global hypotheses encompass multiple causal variants.

In previous work, (Wallace 2020) we allowed for multiple colocalisation comparisons
to be performed in a region, each labelled by a pair of SNPs tagging each of the
distinct causal variants for each trait. Thus, if trait 1 had two causal variants tagged
by SNPs A and B and trait 2 had one, tagged by SNP C, we would conduct two
colocalisation analyses, to ask whether A and C corresponded to a shared causal
variant, and whether B and C corresponded to a shared causal variant. This allows
the simple combination of Bayes factors through summation, but explicitly assumes
that data can be decomposed into layers corresponding to the causally distinct
signals. The stepwise regression approach upon which conditioning is based is
known generally to produce potentially unreliable results (Miller 1984), a
phenomenon that can be exacerbated by the extensive correlation between genetic
variants caused by linkage disequilibrium (LD) (Asimit et al 2019).

A suite of Bayesian fine-mapping methods have been developed recently which
calculate posterior probabilities of sets of causal variants for a given trait (Benner et
al 2016, Newcombe et al 2016, Hormozdiari et al 2014). However, the marginal
posterior probabilities calculated from these are no longer mutually exclusive events,
so they could not be easily adapted to the colocalisation framework. An alternative
would be to consider all possible combinations of models between two traits, but this
combinatorial problem is computationally expensive (Asimit et al 2019). Recently, the
Sum of Single Effects (SuSIE) regression framework (Wang et al 2020) was
developed which reformulates the multivariate regression and variable selection
problem as the sum of individual regressions each representing one causal variant of
unknown identity. This allows the distinct signals in a region to be estimated
simultaneously, and enables quantification of the strength of evidence for each
variant being responsible for that signal. Conditional on the regression being
considered, the variant-level hypotheses are again mutually exclusive. Here we
describe the adaptation of coloc, allowing for multiple labelled comparisons in a
region, to use the SuSIE framework and demonstrate improved efficacy over the
previously proposed approaches.

Finally, the simulation setup lacks detail, e.g., Which 1kg data set was used? How many
1000 Genomes samples were used, and from which geographic regions? How were the
effects and traits simulated? How were the regions chosen (e.g., are they regions near gene
coding regions)? What are the MAFs of the SNPs?



| have added the following to the “Simulation strategy” section in the Methods

We examined the performance of the approximation described above to decrease
the computational burden, and of using SuSiE for colocalisation by simulation.

We used Iddetect (Berisa et al, 2016) to divide the genome into approximately
LD-independent blocks, and extracted haplotypes from the EUR samples in 1000
Genomes phase 3 data, consisting of 1000 contiguous SNPs with MAF > 0.01. We
simulated case-control GWAS summary statistics for a study with 10,000 cases and
10,000 controls, corresponding to the LD and MAF calculated from these haplotypes
using sSimGWAS (Fortune et al, 2018), with one or two common causal variants (MAF
> 0.05) chosen at random and log odds ratios sampled from N(0,0.2/2). We
discarded any datasets which did not have a minimum p<10"{-6} to match our
expectation that fine-mapping and colocalisation are only conducted when there is at
least a nominal signal of association. We simulated 100 such datasets for each of
100 randomly selected LD blocks, and sampled from these sets of summary data for
all the simulations detailed below.

Reviewer #2:
Summary

This paper introduces an extension of the "coloc" method for colocalization to deal with
multiple causal variants in a region. This extension exploits a recently-introduced method for
fine mapping (SuUSIE). The extension is attractive in its simplicity, and simulations show it to
perform better than some alternative approaches. The paper also suggests a way to speed
up computations by pre-filtering out "non-significant” SNPs.

The key idea of combining SuSIiE and coloc is nice, and | think that with some improvements
to the presentation will make a nice publishable contribution.

The idea of speeding up SuSIE by pre-filtering SNPs is also attractive from a practical point
of view, but it has some potential downsides that | feel are not sufficiently emphasized and
explored (even though the manuscript does end with a statement that trimming might be not
beneficial in general final mapping). Specifically trimming out non-significant SNPs could
increase the potential for false positive identifications, and indeed such a result has been
previously reported in https://www.biorxiv.org/content/10.1101/631390v3 (their Figure S7).
It's not clear to me how, if at all, this is reflected in the results shown here. Maybe it is simply
the case that, as the paper suggests in the discussion, that "Coloc benefits from comparing
posterior probabilities across... two traits".

But the overall way that the manuscript deals with false positive (or indeed false negative)
identifications is not clear. (Maybe methods are applied with some knowledge of the true
number of causal effects? It isn't clear to me.)

Since there are also other potential ways to speed up computation (see comments below) |
am not really convinced that the pre-filtering approach is really the way to go, and would like
to see at least a stronger assessment of the potential downsides.


https://www.biorxiv.org/content/10.1101/631390v3

Thank you for the detailed review. [ think all the points here are expanded on below,
so please see the responses to your specific points there.

Main Comments

1. The presentation of the method requires more details, including more precise equations
showing how quantities computed by SuSiE are used/combined. For example you could
introduce \alpha_{lj} for the matrix of posterior probabilities output by susie and then give
explicit expressions for the Bayes Factors being computed (BF_{lj}) in terms of \alpha_{lj}.
I'm not sure what P_0O is (is it something output by SuSIiE?)

Is \pi=1/p where p is the number of SNPs in the region, or something else? How do you set
the maximum number of effects in SuSIE (L in the SuSIiE paper)? Do you get SuSiE to
estimate the number of effects by estimating the prior variance, or do fix the prior variance?

If L_g is the number of effects identified by SuSiE in the GWAS and L_e the number
identified by SuSIE in the eQTL study, do you end up running colocL_g * L_e times? (as
suggested by "for every pair of regressions across traits" on p3).

How do you combine/summarise the results from all these different runs of coloc?

| have adjusted coloc to use the Bayes factors that are now returned by susie_rss
(thank you), so the back-calculation is no longer needed and | have removed that
equation. | have also updated the relevant text to give more details on how susie_rss
is called, and the number of colocalisation comparisons returned and how the
pairwise probabilities of colocalisation may be interpreted:

The new coloc.susie function in the coloc package
(https://github.com/chr1swallace/coloc/tree/susie) takes a pair of summary datasets
in the form expected by other coloc functions, runs SuSiE on each and performs
colocalisation as described below. We use the susie_rss() function in the susieR
package to fine-map each summary statistic dataset, run with default options,
although the \texttt{susie.args} argument in coloc.susie() allows arguments to be
supplied to susie_rss(). SuSIE returns a matrix of variant-level Bayes factors for each
modelled signal and a list of signals for which a 95% credible set could be formed,
corresponding to a subset of rows in the matrix of Bayes factors. These rows are
then analysed in the standard coloc approach, for every pair of regressions with a
detectable signal across traits. Explicitly, if L_1 and L_2 signals are detected (have a
credible set returned) for traits 1 and 2 respectively, then the colocalisation algorithm
is run L_1\times L_2 times. Thus, the user is presented with a list of tag SNPs per
signal for each trait, and the matrix of pairwise posterior probabilities of H_4 may be
examined to infer which, if any, pairs of tags represent the same signal.



2. Presentation of colocalization results also needs more details. Can you say explicitly what
is an "AA" or "BB" comparison and an "AB-like signal"? From the description on p3 | thought
the simulations would include settings where there were 2 causal variants in each trait, but
no sharing. But Fig 3 seems to suggest only a small portion of potential configurations of up
to 2 signals in each trait are actually included - is that right? (why?) And in Fig 3, what
happens if SUSIE finds a signal in one trait and not in the other - what comparison do you
make? (Or do you force SuSiE to find the right number of effects in each trait by fixing L to
the true value? If so, is that cheating?) Is the smaller height of the AA bar for susie_0
compared with other methods -- and indeed the slightly smaller height of all bars --
something to be concerned about? Are all methods equally applicable if (as is always the
case) you do not know the true number of causal signals in each trait?

| completely agree it would be cheating to tell any method how many causal variants
were simulated! | have updated the legend to figure 3, which hopefully clarifies what
AA, BB etc signals are.

Fig 3. Average posterior probability distributions in simulated data. The four classes
of simulated datasets are shown in four rows, with the scenario indicated in the left
hand column. For example, the top row shows a scenario where traits 1 and 2 have
distinct causal variants A and B. Columns indicate the different analysis methods,
with susie x indicating that SuSIE was run with data trimmed at |Z|< x, cond_it
indicating that conditioning was run in iterative mode, and cond_abo indicating it was
run in “all but one” mode. For each simulation, the number of tests performed is
at most 1 for ““single", or equal to the product of the number of signals detected for
the other methods. For each test, we estimated which pair of variants were being
tested according to the LD between the variant with highest fine-mapping posterior
probability of causality for each trait and the true causal variants A and B. If r’'2>0.5
between the fine-mapped variant and true causal variant A, and r’2 with A was
higher than r’2 with B, we labeled the test variant A, and vice versa for B. Where at
least one test variant could not be unambigously assigned, we labelled the pair " ?".
The total height of each bar represents the proportion of comparisons that were run,
out of the number of simulations run, and typically does not reach 1 because there is
not always power to perform all possible tests. Note that because we do not limit the
number of tests, the height of the bar has the potential to exceed 1, but did not do so
in practice. The shaded proportion of each bar corresponds to the average posterior
for the indicated hypothesis, defined as the ratio of the sum of posterior probabilities
for that hypothesis to the number of simulations performed. Each simulated region
contains 1000 SNPs.

In the setting where each trait has 2 causal variants A and B, there should ideally be
4 comparisons: AA, AB, BA, BB. Very occasionally there are more (a handful of
times susie_rss reports > 2 signals). Often there are fewer (due to power), and even
when there are 4, they may not all be assignable to labelled groups and some will fall
in “?”. This is why the bar height, which is proportional to the number of comparisons
performed in a given category divided by the number of simulations, doesn’t reach 1.

3. Figure 1 compares only the PIPs at causal variants. Since in practice we don't know the
causal variants, one should also care about PIPs at non-causal variants. Is there a tendency
for SuSIE to inflate PIPs at non-causal variants when trimming?

Figure 1 has now been changed to show both the change in PIP at the causal
variants and at the non-causal variants. Specifically, following the approach of coloc



to consider comparisons between vectors of Bayes factors corresponding to detected
credible sets, | took the colSums of obj$alpha[ obj$sets$cs_index, ] as a measure of
the total PIP after a run of susie_rss(). Thus the total PIP can increase/decrease by 1
if a credible set is “discovered” or “lost” after trimming. This view of the data shows
false positives are indeed introduced after timming. This is now described at the
beginning of the Results section

First we assessed the impact of trimming data on the accuracy and speed of SuSIE.
We found that trimming had a very small effect on PIP estimates at the causal
variants (Fig 1). Interestingly, when estimates did change, they were more likely to
detect a true signal after trimming than lose a true signal (approximately 1-2% of
simulations related led to true causal variants that were discovered only after
trimming, while <= 1% of simulations led to true causal variants being discovered in
the full data but not in the trimmed data). False signals were also more likely to be
detected after trimming, however. This was more extreme with larger |Z| thresholds
and in simulations with two rather than one causal variants, when over 2% of
simulations resulted in signals being detected at non-causal variants after trimming at
|Z]<1.5. One might expect the situation to only worsen as the number of causal
variants increases. Thus, trimming is expected to infroduce false positives at a
higher rate than it might increase detection of true positives, although it did reduce
the median time for a SuSIE run per region more than ten fold (Fig 2).

Figure 1. Difference in the sum of estimated PIP at the causal variant(s) (y-axis)
versus non-causal variants (x-axis) between analysis with the full model and data
trimmed to |Z| above some threshold. The percentage of 2000 simulations falling in
each region is shown to the nearest 1 decimal place (note that **0" indicates
<0.05%). Marginal densities show the concentration of observations in either
direction around (0,0). Datasets all had 1000 SNPs, but differ in the number of causal
variants (1 or 2) and the |Z| threshold used for trimming.

10



single CV, |Z| threshold = 0.5

J

Change in total PP at causal variants

single CV, |Z| threshold =1

Change in total PP at causal variants

single CV, |Z| threshold = 1.5

Change in total PP at causal variants

Change in total PP at non-causal variants

o
1

o
L

two CV, |Z] threshold = 0.5

8'%
g 12 0.1
[ 0.2 0 |03 m.
93.4 0.8
0.4
]
]
| 0 |
1 0 1 2
two CV, |Z| threshold = 1
0.6
1.1
0.4 8'? 0.4 mm
0.7 90.1
0 | 0.8 |
0.1
0
| 0 |
1 0 1 2

two CV, |Z| threshold = 1.5

- 0 1 2
Change in total PP at non-causal variants

Fig 3 shows, however, that despite these false positives coloc with SuSIE
outperforms the alternatives, and appears to do at least as well when trimming as

not. Therefore, | expanded the Discussion on trimming to give a clearer warning that

while trimming is possible for coloc, these results do not support its use in

fine-mapping.

...Iin simulated data here, we found that trimming can increase false positive signals,

a phenomenon previously noted (Sesia et al, 2020). Thus we do not suggest that



trimming is appropriate when fine-mapping is the end-goal of any study, especially
given that false positives in fine mapping may result in substantial costs if followed-up
in wet-lab experiments. However, these fine-mapping false positives did not appear
to increase false positives in coloc, perhaps because the occurence of false positives
was relatively rare, such that it did not occur often in both members of a pair of
datasets, and/or perhaps because when false positives did occur, they were focused
on different SNPs in the two datasets so were unlikely to generate support for H_4,
the hypothesis of most interest. Given this, we suggest a threshold of |Z|<1 may be
acceptable to allow SuSIE coloc to run at speed in larger regions, but leave the
threshold as a user-set parameter which is 0 by default, and which we recommend
should be reported along with any results. For the most noteworthy results, we
recommend analysis should be repeated without trimming to ensure inference is
robust to the approximation.

4. It seems there are many potential ways to improve computation than filtering out
non-significant SNPs, and many of them may ultimately be better choices (although filtering
is obviously very simple to implement!) | don't think the discussion in the paper really
adequately reflects the options available or the many issues involved.

Although | did not see it explicitly said anywhere, | believe the paper is using the susie_rss
function for applying SuSIE to summary data. The details of this function are not included in
the original SuSIE publication, but at time of writing this function works by performing an
initial eigendecomposition of the reference LD matrix R, which makes it possible to convert
the summary data into "transformed data" to which regular SuSiE can be applied. This
approach is appealing from a software engineering point of view, but not necessarily the
most efficient, computationally. The eigendecomposition of R is quite expensive, being
O(p”3) where p is the number of SNPs.

The subsequent application of SUSIE to the transformed data is O(p”"2) per iteration.

Thus if p is sufficiently large the eigendecomposition step will likely dominate the susie rss
computation (and Figure 2 does indeed suggest computation maybe increase something like
pr3?)

One way to reduce computational complexity would therefore be to avoid the
eigendecomposition step, and we are currently actively exploring these in our development
of susie_rss.

However, note that computing R itself is already an O(np”2) operation, where n is the
number of samples in the reference sample used to compute R. So if n is big then this
computation (which is basically considered free in this paper since R is precomputed) could
be the dominant computational cost. Alternatively

if n<in the case n<

SVD of the reference genotypes (O(n*2p)) which will cheaper than forming R (O(np”2))
when n<In the future it seems quite likely that pre-computed R and eigen(R) could be made

available for some large panels, avoiding the need for each user to compute them. Once
these pre-computations are done there may no longer be any need to filter SNPs.
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Thank you for these detailed explanations. | agree it would be preferable to never
trim data. | have extended the discussion to cover these points, and acknowledged
your comments in helping me to do that.

We note that the package susieR is still being developed. The most computationally
expensive step in susie_rss is the eigen decomposition of the LD matrix, which is
O(p"3) where p is the number of SNPs. In the case where multiple pairs of traits are
being considered for colocalisation, computing this decomposition once in advance
could be used instead to improve speed. Alternatively, it may be that with
standardised datasets covering the same sets of SNPs, such eigen decompositions

could be precomputed and stored. Finally, further development of susie_rss may lead
to avoiding the eigen decomposition step altogether.

Other comments/details

- p3 although the number of potential models increases exponentially, SUSIE computation
does not increase exponentially.

Corrected by removing the link between the increased computation with p and the
number of models.

- p4: "We labelled each comparisons considered...." | did not understand this sentence.
| have expanded this section:

In order to assess the accuracy of each coloc analysis, we needed to assess whether
the comparison corresponded to a case of shared or distinct causal variants.

For each signal passed to coloc, we identified the variant with the highest posterior
probability of causality, v_1 and v_2 for traits 1 and 2 respectively (it is possible that
v_1=v_2). We then labelled the variant v_i (i=1,2) according to the rules:

A:r"2(v_i,A) > 0.5 \land r*2(v_i,A) > r"2(v_i,B)
B: r*2(v_i,B) > 0.5 \land r"2(v_i,B) > r*2(v_i,A)
- otherwise

If either of the variants was labelled “*-" then the comparison was labelled
“‘unknown". Otherwise it was labelled by the concatenation of the two labels. We
compared the average posterior probability profiles between methods, stratified
according to this labelling scheme.

- p4: "... having strongest posterior support for H_4" - this should be H_3?
Yes, corrected.
- p8: " this does apply to single trait" - missing *not*?

Yes, though this sentence has now been rephrased.
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- In the second row-set of Figure 3, is the figure on the LHS wrong? (The methods suggest
colocalization but the figure shows no shared variant...)

Yes, corrected
- on p7 the r2 threshold is 0.8 but on p4 it is 0.5. Are there referring to different thresholds?

The 0.8 is a typo, now corrected.

Reviewer #3:

This is an interesting paper. The method is solid and implements M Stephen group's SUSIE
method in the coloc framework with some simulation based comparisons with other methods
(and "trimming" rather than shrinkage to help compute time). Expanding coloc to multiple
variants is a useful advance to the field, and that is what PLoS Genetics Methods section
papers are supposed to do.

| only have minor comments.

The formatting of figure 3 - the scenarios - seems to have gone slightly awry and needs to
be fixed.

Thank you, now fixed
| suggest the discussion could be extended slightly - it is rather brief (although sufficient).

Now extended, partly to describe the choices made in extending coloc to multiple
causal variants, in comparison to choices made by other approaches.

This manuscript presents one approach to colocalisation in the case of multiple
causal variants, that assumes that distinct signals can be decomposed even if
physically proximal, which SuSIE appears to do admirably well. This framing of the
colocalisation problem implicitly assumes there are a finite number of causal variants
for any trait which can be identified, and that traits may be compared in terms of their
causal variants to identify shared variants. However, the concept of regional
colocalisation can be approached in other ways in the multiple causal variant
scenario. One approach reduces the possible hypotheses to two, with the alternative
hypothesis corresponding to the existence of a causal variant in a region shared by
two (or more) traits. (Deng et al 2020) Another focuses on a variant-level definition of
colocalisation, estimating the probability that each variant in turn is causal for two
traits, whilst allowing that other causal variants (shared or non-shared) may exist in
the vicinity (Hormozdiari et al, 2016). In contrast, the approach proposed here allows
the number hypotheses tested to be determined by the data. Whilst it relaxes the
assumption of a single causal variant, one obvious caveat is that we have not yet
reached (nor may we ever reach) sample sizes which enable all causal variants to be
identified. Missed causal variants will provide incomplete comparisons of traits. It is
also established that in lower power situations, even Bayesian fine-mapping methods
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that simultaneously model causal variants may identify a single SNP which tags two
or more causal variants (Asimit 2019) and the interpretation of non-colocalisation at
such false signals is likely to be misleading. On the other hand, it does seem useful
to go beyond asking whether at least one causal variant is shared, and the attempt to
both isolate and count the distinct causal variants per trait may be useful in designing
follow-up experiments. As we better understand the architecture of complex traits,
and design methods that accomodate the multiple causal variants that have been
discovered, it is important to bear in mind that results will continue to be limited by
sample size, and limited ability to detect rarer variants or those in regions of
particular allelic heterogeneity, which even sophisticated methods such as SuSIiE
may find challenging.
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