S1 - MODEL EQUATIONS

EQUATIONS GOVERNING THE CELLULAR ELECTROPHYSIOLOGICAL MODEL

Physical units used: time (t) in ms, membrane potential (V) in mV, transmembrane current densities (I_x) in pA/pF and intracellular and extracellular ionic concentrations (X_i and X_o) in μ M (or μ mol/L).

TRANSMEMBRANE CURRENTS AND MEMBRANE POTENTIAL [1, 2]

The time evolution of the membrane potential is described as follows:

$$\frac{dV}{dt} + I_{ion} + I_{stim} = 0$$

where I_{ion} is the sum of all transmembrane ionic current densities (see equation and figure below) and I_{stim} is the externally applied stimulus current density.

 $I_{ion} = I_{Na} + I_{K1} + I_{to} + I_{Kr} + I_{CaL} + I_{NaCa} + I_{NaK} + I_{pCa} + I_{pK} + I_{bCa} + I_{bNa}$

$$I_{stim} = \begin{cases} -9.5 & \text{if } 100 < t < 106 \\ 0 & \text{otherwise} \end{cases}$$

(a) Schematic representation of the transmembrane ionic currents described in the electrophysiological model.

(b) Stimulus current used to trigger the AP. The stimulation period fixes the heart rate.

Nernst potentials

$$E_X = \frac{RT}{zF} \log \frac{[X]_o}{[X]_i} \quad \text{for } X = Na^+, Ca^{2+}, K^+$$

Fast sodium current: I_{Na}

$$h_{\infty} = \frac{1}{(1 + \exp{(\frac{71.55 + V}{7.43})})^2}$$

$$\label{eq:ah} \alpha_h = \left\{ \begin{array}{ll} 0.057 \exp{(\frac{-80-V}{6.8})} & \mbox{if } V < 40 \\ \\ 0 & \mbox{otherwise} \end{array} \right.$$

$$\beta_{h} = \begin{cases} 2.7 \exp(0.079V) \\ +3.1 \ 10^{5} \exp(0.3485V) & \text{if } V < 40 \\ \\ \frac{0.77}{0.13(1 + \exp(\frac{-V - 10.66}{11.1}))} & \text{otherwise} \end{cases}$$

$$\tau_{h} = \frac{1}{\alpha_{h} + \beta_{h}} \qquad \qquad j_{\infty} = \frac{1}{(1 + \exp(\frac{71.55 + V}{7.43}))^{2}} \\ \frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_{h}} & \qquad \qquad \omega = -2.5428 \ 10^{4} \exp(0.2444V) \\ -6.948 \ 10^{-6} \exp(-0.04391V) \end{cases}$$

$$\alpha_{j} = \begin{cases} \frac{\omega(V+37.78)}{1+\exp(0.311(V+79.23))} & \text{ if } V < 40\\\\ 0 & \text{ otherwise} \end{cases}$$

$$\beta_{j} = \begin{cases} \begin{array}{c} \frac{0.02424 \exp(-0.01052V)}{1 + \exp(-0.1378(V + 40.14))} & \text{if } V < 40 \\ \\ \\ \frac{0.6 \exp(0.057V)}{1 + \exp(-0.1(V + 32))} & \text{otherwise} \end{array} \\ \\ \tau_{j} = \frac{1}{\alpha_{j} + \beta_{j}} & \begin{array}{c} \\ \frac{dj}{dt} = \frac{j_{\infty} - j}{\tau_{j}} \end{array} \end{cases}$$

$$I_{Na} = G_{Na} \mathfrak{m}^3 \mathfrak{hj} (V - \mathsf{E}_{Na})$$

L-type calcium current: I_{CaL}

$$\begin{aligned} d_{\infty} &= \frac{1}{1 + \exp(\frac{-8}{7.5})} \\ \alpha_{d} &= \frac{1.4}{1 + \exp(\frac{-35-V}{13})} + 0.25 \\ \beta_{d} &= \frac{1.4}{1 + \exp(\frac{55-V}{13})} \\ \beta_{d} &= \frac{1.4}{1 + \exp(\frac{5+V}{5})} \\ \gamma_{d} &= \frac{1.4}{1 + \exp(\frac{50-V}{5})} \\ \gamma_{d} &= \frac{1}{1 + \exp(\frac{50-V}{20})} \\ \tau_{d} &= \alpha_{d}\beta_{d} + \gamma_{d} \\ \frac{dd}{dt} &= \frac{d_{\infty} - j}{\tau_{d}} \\ f_{\infty} &= \frac{1}{1 + \exp(\frac{20+V}{7})} \\ \alpha_{f} &= 1102.5 \exp(\frac{-(27+V)^{2}}{225}) \\ \beta_{f} &= \frac{200}{1 + \exp(\frac{13-V}{10})} \\ \gamma_{f} &= \frac{180}{1 + \exp(\frac{30+V}{10})} + 20 \\ \gamma_{f} &= \alpha_{f} + \beta_{f} + \gamma_{f} \end{aligned}$$

$$\begin{aligned} \frac{df}{dt} &= \frac{f_{\infty} - f}{\tau_{f}} \\ \frac{df}{2} &= \frac{f_{2\infty} - f_{2}}{\tau_{f_{2}}} \\ f_{cass\infty} &= \frac{0.6}{1 + (\frac{Cas}{50})^{2}} + 0.4 \\ \tau_{fcass} &= 2 + \frac{80}{1 + (\frac{Cas}{50})^{2}} \\ \frac{df_{Cass}}{dt} &= \frac{f_{cassoc} - f_{Cass}}{\tau_{fcass}} \end{aligned}$$

$$I_{CaL} = G_{CaL} df f_2 f_{Ca_{ss}} 4 \frac{(V-15)F^2}{RT} \times \frac{0.25 Ca_{ss} \exp(\frac{2(V-15)F}{RT}) - Ca_o}{1000(\exp(\frac{2(V-15)F}{RT}) - 1)}$$

Transient outward potassium current: I_{to}

 $I_{to} = G_{to} rs(V - E_K)$

Slow delayed rectifier current: I_{Ks}

$$I_{Ks} = G_{Ks} x_s^2 (V - E_{Ks})$$

Rapid delayed rectifier current: I_{Kr}

$$\beta_{r1} = \frac{6}{1 + \exp(\frac{30 + V}{11.5})} \qquad \qquad \alpha_{r2} = \frac{3}{1 + \exp(\frac{-60 - V}{20})} \\ \tau_{r1} = \alpha_{r1}\beta_{r1} \qquad \qquad \beta_{r2} = \frac{1.12}{1 + \exp(\frac{-60 + V}{20})} \\ \frac{dx_{r1}}{dt} = \frac{x_{r1\infty} - x_{r1}}{\tau_{r1}} \qquad \qquad \tau_{r2} = \alpha_{r2}\beta_{r2} \\ x_{r2\infty} = \frac{1}{1 + \exp(\frac{V + 88}{24})} \qquad \qquad \frac{dx_{r1}}{dt} = \frac{x_{r1\infty} - x_{r1}}{\tau_{r1}}$$

$$I_{Kr} = G_{Kr} \sqrt{\frac{K_o}{5400}} x_{r1} x_{r2} (V - E_K)$$

Inward rectifier potassium current: I_{K1}

$$\alpha_{K1} = \frac{0.1}{1 + exp(0.06(V - E_K - 200))}$$

$$\beta_{K1} = \frac{3 \exp(0.0002(V - E_K + 100)) + \exp(0.1(V - E_K - 10))}{1 + \exp(-0.5(V - E_K))}$$

 $x_{K1\infty} = \frac{\alpha_{K1}}{\alpha_{K1} + \beta_{K1}}$

$$I_{K1} = G_{K1} x_{K1\infty} (V - E_K)$$

Na/Ca exchanger current: I_{NaCa}

$$I_{NaCa} = \frac{k_{NaCa}}{K_{mN}^3 + Na_o^3} \times \frac{exp\left(\frac{\gamma VF}{RT}\right)Na_i^3Ca_o - 2.5exp\left(\frac{(1-\gamma)VF}{RT}\right)Na_o^3Ca_i}{(K_{mCa} + Ca_o)(1 + k_{sat}exp\left(\frac{(\gamma-1)VF}{RT}\right))}$$

NalK pump current: I_{NaK}

$$I_{NaK} = \frac{P_{NaK}K_oNa_i}{(K_o + K_{mK})(Na_i + K_{mNa})} \times \frac{1}{(1 + 0.1245\exp(\frac{-0.1VF}{RT}) + 0.0353\exp(\frac{-VF}{RT}))}$$

Sarcolemmal calcium pump current: I_{pCa}

$$I_{pCa} = G_{pCa} \frac{Ca_i}{K_{pCa} + Ca_i}$$

Sarcolemmal potassium pump current: IpK

$$I_{pK} = G_{pK} \frac{V - E_K}{1 + exp(\frac{25 - V}{5.98})}$$

Background currents: I_{bNa} and I_{bCa}

$$I_{bNa} = G_{bNa}(V - E_{Na})$$
$$I_{bCa} = G_{bCa}(V - E_{Ca})$$

CALCIUM DYNAMICS

Calcium dynamics is described within three subcellular compartments (see figure): cytoplasm (CYTO), sarcoplasmic reticulum (SR) and diadic subspace (SS). In the following equations, $[Ca]_i$ is free cytoplasmic calcium concentration, $[Ca]_{SR}$ is free SR calcium concentration and $[Ca]_{ss}$ is free diadic subspace calcium concentration (all concentrations expressed in μ M). I_{up} , I_{rel} , I_{xfer} and I_{leak} are expressed in μ M/ms.

• SERCA (ten Tusscher and Panfilov [2])

$$I_{up} = \frac{V_{up}}{1 + (\frac{K_{up}}{Ca_i})^2}$$

• CICR (Lascano *et al.* [3])

$$u = \max_{sr} - \frac{\max_{sr} - \min_{sr}}{1 + (\frac{EC_{50}}{Ca_{SR}})^2}$$
$$k_1 = \frac{k'_1}{u}, \ k_2 = k'_2 u$$

• Mechanical feedback (Kosta et al. [4])

$$\begin{split} I_{trop} &= \frac{1}{2} \; 3 \; (\frac{d[TSCa_3]_{LV}}{dt} + \frac{d[TSCa_3^{\sim}]_{LV}}{dt} + \frac{d[TSCa_3^{*}]_{LV}}{dt}) \\ &+ \frac{1}{2} \; 3 \; (\frac{d[TSCa_3]_{RV}}{dt} + \frac{d[TSCa_3^{\sim}]_{RV}}{dt} + \frac{d[TSCa_3^{*}]_{RV}}{dt}) \end{split}$$

The colored concentrations are obtained from the sarcomere contraction model.

• Free calcium concentrations in the CYTO, SR and SS compartments

$$\begin{array}{lll} \displaystyle \frac{d[Ca]_i}{dt} & = & \displaystyle -\frac{1}{1+\frac{K_{buf_i}Buf_i}{([Ca]_i+K_{buf_i})^2}} \left(C_{\mathfrak{m}\mathfrak{0}}\frac{I_{bCa}+I_{pCa}-2I_{NaCa}}{2V_cF} \right. \\ & & \displaystyle +\frac{V_{sr}}{V_c}(I_{leak}-I_{up})+I_{xfer}-I_{trop}\right) \end{array}$$

$$\frac{d[Ca]_{SR}}{dt} = -\frac{1}{1 + \frac{K_{bufSR}Buf_{SR}}{([Ca]_{SR} + K_{bufSR})^2}} \left(I_{up} - I_{leak} - I_{rel}\right)$$

$$\frac{d[Ca]_{SS}}{dt} = -\frac{1}{1 + \frac{K_{bufSS} Buf_{SS}}{([Ca]_{SS} + K_{bufSS})^2}} \left(-C_{m0} \frac{I_{CaL}}{2V_{ss}F} + \frac{V_{sr}}{V_{ss}} I_{rel} - \frac{V_c}{V_{ss}} I_{xfer} \right)$$

SODIUM AND POTASSIUM INTRACELLULAR CONCENTRATIONS

$$\begin{split} \frac{d[K]_i}{dt} &= -C_{\mathfrak{m}0} \frac{-2I_{NaK} + I_{Ks} + I_{K1} + I_{to} + I_{pK} - I_{stim}}{V_c \mathsf{F}} \\ \frac{d[Na]_i}{dt} &= -C_{\mathfrak{m}0} \frac{3I_{NaK} + 3I_{NaCa} + I_{Na} + I_{bNa}}{V_c \mathsf{F}} \end{split}$$

Parameter	Units	Value	Parameter	Units	Value
R	J/K/mol	8.314472	K _{mNa}	μM	40 000
F	C/mol	96485.3415	G _{pCa}	nS/pF	0.1238
Т	K	310	K _{pCa}	μΜ	0.5
C _{m0}	μF	1.84 10 ⁻⁴	G _{pK}	nS/pF	0.0146
Vc	mL	1.6404 10 ⁻⁸	V _{up}	µM/ms	6.375
V_{SR}	mL	$1.0941 \ 10^{-9}$	K _{up}	μΜ	0.25
V_{SS}	mL	5.4681 10 ⁻¹¹	EC ₅₀	μΜ	1500
Ko	μM	5400	k'_1	$\mu M^2/ms$	1.5
Na _o	μΜ	140 000	k2	µM/ms	4.5
Ca _o	μΜ	2000	k ₃	ms ⁻¹	0.06
G_{Na}	nS/pF	14.838	k4	ms ⁻¹	0.005
G_{CaL}	cm ³ /ms/µF	3.98 10 ⁻⁵	V _{rel}	ms^{-1}	0.102
G _{to}	nS/pF	0.294	V _{leak(d)}	ms^{-1}	1.8 10 ⁻⁵
G_{Ks}	nS/pF	0.098	V _{leak(c)}	ms^{-1}	$3.42 \ 10^{-4}$
pκna	-	0.03	V _{xfer}	ms^{-1}	0.0038
G_{Kr}	nS/pF	0.153	Bufi	μΜ	130
G_{K^1}	nS/pF	5.405	K _{bufi}	μΜ	1
k _{NaCa}	pA/pF	1000	Buf _{SR}	μΜ	104
K _{mN}	μM	87 500	K _{bufSR}	μΜ	300
γ	-	0.35	Buf _{SS}	μΜ	400
k _{sat}	-	0.1	K _{bufSS}	μΜ	0.25
P _{NaK}	pA/pF	2.724	Period	ms	800
K _{mK}	μΜ	1000			

Table A: Electrophysiological parameters

LEFT VENTRICLE

The "LV" indices below designate the left ventricle.

Calcium kinetics

$$[TS]_{LV} = [TS]_{t,LV} - [TSCa_3]_{LV} - [TSCa_3^{\sim}]_{LV} - [TSCa_3^{\sim}]_{LV} - [TSCa_3^{\circ}]_{LV} - [TS^{\circ}]_{LV}$$

$$\begin{aligned} \frac{d[TSCa_{3}]_{LV}}{dt} &= Y_{b}[TS]_{LV}[Ca]_{i}{}^{3} - Z_{b}[TSCa_{3}]_{LV} + g[TSCa_{3}^{\sim}]_{LV} - f[TSCa_{3}]_{LV} \\ \frac{d[TSCa_{3}^{\sim}]_{LV}}{dt} &= f[TSCa_{3}]_{LV} - g[TSCa_{3}^{\sim}]_{LV} + Z_{p}[TSCa_{3}^{\ast}]_{LV} - Y_{p}[TSCa_{3}^{\sim}]_{LV} \\ \frac{d[TSCa_{3}^{\circ}]_{LV}}{dt} &= Y_{p}[TSCa_{3}^{\sim}]_{LV} - Z_{p}[TSCa_{3}^{\ast}]_{LV} + Z_{r}[TS^{\ast}]_{LV}[Ca]_{i}{}^{3} - Y_{r}[TSCa_{3}^{\ast}]_{LV} \\ \frac{d[TS^{\ast}]_{LV}}{dt} &= Y_{r}[TSCa_{3}^{\ast}]_{LV} - Z_{r}[TS^{\ast}]_{LV} [Ca]_{i}{}^{3} - g_{d}[TS^{\ast}]_{LV} \end{aligned}$$

Intracellular calcium concentration $([Ca]_i)$ is obtained from the electrophysiological model.

$$\begin{split} f &= Y_{\alpha} \exp(-R_{L\alpha}(L_{LV} - L_{\alpha})^2) \\ g &= Z_{\alpha} + Y_{h} \\ Y_{h} &= \begin{cases} Y_{\nu}(1 - \exp(-\gamma(h_{w_{LV}} - h_{wr_{LV}})^2)) & \text{if } h_{w_{LV}} < h_{wr_{LV}} \\ 0.1Y_{\nu}(1 - \exp(-\gamma(h_{w_{LV}} - h_{wr_{LV}})^2)) & \text{otherwise} \\ g_{d} &= Y_{d} \exp(-Y_{c}(L_{LV} - L_{c})) \end{split}$$

Half-sarcomere length and force

$$h_{w_{LV}} = L_{LV} - X_{w_{LV}}$$

$$h_{p_{LV}} = L_{LV} - X_{p_{LV}}$$

$$\frac{dX_{w_{LV}}}{dt} = B_w(h_{w_{LV}} - h_{wr_{LV}})$$

$$\frac{dX_{p_{LV}}}{dt} = B_p(h_{p_{LV}} - h_{pr_{LV}})$$

$$\frac{L_{LV}}{L_{m_{LV}}}$$

$$\begin{split} F_{a} &= A_{w} \left[TSCa_{3}^{\sim} \right]_{LV} h_{w_{LV}} + A_{p} \left(\left[TSCa_{3}^{\ast} \right]_{LV} + \left[TS^{\ast} \right]_{LV} \right) h_{p_{LV}} \\ F_{p} &= K_{e} (L_{LV} - L_{0})^{5} + L_{e} (L_{LV} - L_{0}) \\ F &= F_{a} + F_{p} \\ F_{s} &= \alpha (\exp(\beta (L_{m,LV} - L_{LV})) - 1) \end{split}$$

 $L_{m,LV}$ is obtained from the hemodynamic model and L_{LV} is calculated for each iteration step by solving $F - F_s = 0$, using the MatLab *fzero* function.

RIGHT VENTRICLE (RV)

The set of equations for RV sarcometric contraction is the same as for LV, where every "LV" subscript has to be replaced with "RV". The parameters listed below are identical for both ventricles.

Parameter	Units	Value
Ap	$mN/mm^2/\mu m/\mu M$	2850
Aw	mN/mm²/µm/µM	570
α	mN/mm ²	0.15
β	ms ⁻¹	80
Bp	ms ⁻¹	1.75
Bp	ms ⁻¹	1.225
Y _a	ms^{-1}	$2.3 10^{-3}$
Y _b	$\mu M ~^3.ms^{-1}$	0.1816
Y _c	$\mu \mathrm{M}^{-1}$	4
Y _d	ms ⁻¹	0.028
Yp	ms ⁻¹	0.1397
Y _r	ms ⁻¹	0.1397
Y _v	ms^{-1}	0.9
Za	ms ⁻¹	0.0023
Z _b	ms^{-1}	0.1397
Zp	ms^{-1}	0.2095
Zr	μM $^{-3}.ms^{-1}$	7.2626
$[TS]_t$	μΜ	70/3
Lo	μm	0.97
La	μm	1.15
R	μm^{-2}	15
L _c	μm	1.05
h _{pr}	μm	6 10 ⁻³
h _{wr}	μm	10 ⁻⁴
γ	ms ⁻¹	2.8 10 ⁻⁴
Ke	$mN/mm^2/\mu m^{-5}$	3.15 10 ⁴
Le	mN/mm ² /μm	3

Table B: Mechanical parameters

PASSIVE CHAMBERS PRESSURES

$$\begin{aligned} P_{ao} &= E_{ao} \cdot V_{ao} & \text{with } E_{ao} = 1/C_{ao} \\ P_{\nu c} &= E_{\nu c} \cdot V_{\nu c} & \text{with } E_{\nu c} = 1/C_{\nu c} \\ P_{pa} &= E_{pa} \cdot V_{pa} & \text{with } E_{pa} = 1/C_{pa} \\ P_{p\nu} &= E_{p\nu} \cdot V_{p\nu} & \text{with } E_{p\nu} = 1/C_{p\nu} \end{aligned}$$

FLOWS

• Pulmonary and systemic flows:

$$Q_{sys} = \frac{P_{ao} - P_{vc}}{R_{sys}}$$
$$Q_{pul} = \frac{P_{pa} - P_{pv}}{R_{pul}}$$

• Valves flows:

$$Q_{mt} = \begin{cases} \frac{P_{pv} - P_{lv}}{R_{mt}} & \text{if } P_{PV} > P_{LV} \\ 0 & \text{otherwise} \end{cases}$$

$$Q_{a\nu} = \begin{cases} \frac{P_{l\nu} - P_{ao}}{R_{a\nu}} & \text{if } P_{LV} > P_{AO} \\ 0 & \text{otherwise} \end{cases}$$

$$Q_{tc} = \begin{cases} \frac{P_{\nu c} - P_{r\nu}}{R_{tc}} & \text{if } P_{VC} > P_{RV} \\ 0 & \text{otherwise} \end{cases}$$

$$Q_{p\nu} = \begin{cases} \frac{P_{r\nu} - P_{p\alpha}}{R_{p\nu}} & \text{if } P_{RV} > P_{PA} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{aligned} \frac{dV_{l\nu}}{dt} &= Q_{mt} - Q_{a\nu} \\ \frac{dV_{ao}}{dt} &= Q_{a\nu} - Q_{sys} \\ \frac{dV_{\nu c}}{dt} &= Q_{sys} - Q_{tc} \\ \frac{dV_{r\nu}}{dt} &= Q_{tc} - Q_{p\nu} \\ \frac{dV_{pa}}{dt} &= Q_{p\nu} - Q_{pul} \\ \end{aligned}$$

$$V_{p\nu} &= SBV - V_{l\nu} - V_{ao} - V_{\nu c} - V_{r\nu} - V_{pa} \end{aligned}$$

ACTIVE CHAMBERS PRESSURES

LV (RV) ventricle is assimilated to a thick walled sphere (see figure below) with a wall volume $V_{w_{LV}}$ ($V_{w_{RV}}$). The reference (and variable) radius R_{LV} (R_{RV}) corresponds to the position of the N_{LV} (N_{RV}) sarcomeres of length $L_{m,LV}$ ($L_{m,RV}$) assembled in circle inside the ventricular wall. The volume included between $r_{in_{LV}}$ and R_{LV} ($r_{in_{RV}}$ and R_{RV}) is noted $V_{r_{LV}}$ ($V_{r_{RV}}$).

$$P_{LV} = 7.5 F_{LV} \frac{L_{m,LV}}{L_r} \left(\left(\frac{r_{out_{LV}}}{r_{in_{LV}}} \right)^2 - 1 \right) + \lambda \left(V_{LV} - V_0 \right)$$

Parameter	Units	Value	
SBV	ml	940.86 (identified*)	
R _{sys}	$10^3 \text{ mmHg} \cdot \text{ms/ml}$	1.38 (identified)	
R _{pul}	mmHg · ms/ml	109.57 (identified*)	
R _{mt}	mmHg · ms/ml	22.09 (identified)	
R _{tc}	mmHg · ms/ml	11.56 (identified)	
$R_{a\nu}$	mmHg · ms/ml	47.96 (identified)	
R_{pv}	mmHg · ms/ml	3.51 (identified)	
C _{ao}	mmHg/ml	0.9550 (identified*)	
$C_{\nu c}$	mmHg/ml	79.10 (identified)	
Cpa	mmHg/ml	2.43 (identified*)	
C _{pv}	mmHg/ml	23.34 (identified)	
$V_{l\nu w}$	ml	334.86 (identified*)	
$V_{r\nu w}$	ml	48.31 (identified*)	
λ	mmHg/ml ³	5 10 ⁻⁵ [5]	
Vo	ml	80 [5]	

Table C: Hemodynamic parameters.

* The identified parameter has a different value than reported in [4], because a two-step identification procedure was used (see explanations in text).

 F_{LV} is obtained from the sarcomere contraction model. The same reasoning for the RV gives:

$$P_{RV} = 7.5 F_{RV} \frac{Lm_{RV}}{L_r} \left(\left(\frac{r_{out_{RV}}}{r_{in_{RV}}} \right)^2 - 1 \right) + \lambda \left(V_{RV} - V_0 \right)$$

PARAMETERS OPTIMIZATION

Thirteen hemodynamic parameters from the cardiovascular system have to be identified, and they are listed in Table C: the four valves resistances, the two circulation resistances, the four passive chambers compliances, wall volume of both ventricles, and stressed blood volume. The parameters are identified using the *fminsearch* algorithm from MATLAB (The MathWorks, Natick, MA, USA) in order to minimize an objective function defined as the absolute relative error between a chosen set of reference variables and their corresponding calculated values. The value for the reference data were chosen in order to correspond to standard healthy values [6–8] and are given in Table D and E.

Our optimization procedure consists in the following two-step approach. First note that it is well known that valve resistances are practically difficult to identify, but their precise values do not a play an important role in the final model. For this reason, they are generally excluded from the identification procedure of hemodynamic models [9–11]. To obtain an estimate for the valve resistances, we perform a first identification procedure for the 13 parameters listed in Table C by introducing the data from Table D in our objective function. Then we fix the obtained valve resistance values, and we perform a second identification procedure with the remaining nine parameters and the reference data from Table E.

	Standard value	Units
Stroke volume	60	ml
Maximal LV pressure	120	mmHg
Maximal RV pressure	21,5	mmHg
Maximal aortic pressure	113	mmHg
Amplitude of aortic pressure	35	mmHg
Maximal pulmonary artery pressure	21	mmHg
Amplitude of pulmonary artery pres-	13	mmHg
sure		
Maximal pulmonary vein pressure	7,5	mmHg
Amplitude of pulmonary vein pres-	2	mmHg
sure		
Maximal vena cava pressure	7	mmHg
Amplitude of vena cava pressure	0,5	mmHg
Minimal LV volume	60	ml
Minimal RV volume	60	ml

Table D: Standard values of hemodynamic quantities corresponding to a healthy subject that are used in the 13-parameter identification procedure (see text).

	Standard value	Units
Stroke volume	60	ml
Mean LV pressure	59	mmHg
Mean RV pressure	12	mmHg
Mean aortic pressure	108	mmHg
Mean pulmonary artery pressure	19	mmHg
Amplitude of pulmonary vein pres-	2	mmHg
sure		
Amplitude of vena cava pressure	0.5	mmHg
Minimal LV volume	60	ml
Minimal RV volume	60	ml

Table E: Standard values of hemodynamic quantities corresponding to a healthy subject that are used in the 9-parameter identification procedure (see text).

- K. H. W. J. ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, "A model for human ventricular tissue," *Am. J. Physiol. Circ. Physiol.*, vol. 286, no. 4, H1573–H1589, 2004, ISSN: 0363-6135.
- [2] K. H. W. J. ten Tusscher and A. V. Panfilov, "Alternans and spiral breakup in a human ventricular tissue model.," *Am. J. Physiol. Heart Circ. Physiol.*, vol. 291, no. 3, H1088–100, 2006, ISSN: 0363-6135.
- [3] E. C. Lascano, M. Said, L. Vittone, A. Mattiazzi, C. Mundiña-Weilenmann, and J. A. Negroni, "Role of CaMKII in post acidosis arrhythmias: a simulation study using a human myocyte model.," *J. Mol. Cell. Cardiol.*, vol. 60, pp. 172–83, 2013, ISSN: 1095-8584.
- [4] S. Kosta, J. Negroni, E. Lascano, and P. Dauby, "Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices," *Math. Biosci.*, vol. 284, pp. 71–79, 2017, ISSN: 0025-5564.
- [5] J. A. Negroni and E. C. Lascano, "Concentration and Elongation of Attached Cross-bridges as Pressure Determinants in a Ventricular Model," *J. Mol. Cell. Cardiol.*, vol. 31, no. 8, pp. 1509–1526, 1999, ISSN: 0022-2828.
- [6] Edwards Lifesciences: Normal Hemodynamic Parameters and Laboratory Values. [Online]. Available: https://edwardsprod.blob. core.windows.net/media/Gb/devices/monitoring/hemodynamic% 20monitoring/normal_hemodynamic_parameters_pocket_card. pdf.
- [7] LiDCO Normal Hemodynamic Parameters. [Online]. Available: http://www.lidco.com/clinical/hemodynamic.php.
- [8] R. E. Klabunde, *Cardiovascular physiology concepts*. Lippincott Williams & Wilkins, 2005, p. 235, ISBN: 078175030X.
- [9] A. Pironet, "Model-Based Prediction of the Response to Vascular Filling Therapy," Ph.D. dissertation, Université de Liège, Liège, Belgique, 2016.
- [10] A. Pironet, P. C. Dauby, J. G. Chase, P. D. Docherty, J. A. Revie, and T. Desaive, "Structural identifiability analysis of a cardiovascular system model," *Med. Eng. Phys.*, vol. 38, no. 5, pp. 433–441, 2016, ISSN: 13504533.

[11] J. A. Revie, D. J. Stevenson, J. G. Chase, C. E. Hann, B. C. Lambermont, A. Ghuysen, P. Kolh, G. M. Shaw, S. Heldmann, and T. Desaive, "Validation of subject-specific cardiovascular system models from porcine measurements," *Comput. Methods Programs Biomed.*, vol. 109, no. 2, pp. 197–210, 2013, ISSN: 01692607.