
S2 Text

Computational considerations and timings of BayesNetty,

including use of the Open Message Passing Interface (MPI)

for parallel processing

Searching through network space can be very computationally expensive since, at each step of
the search algorithm, the network score needs to be evaluated for many potential networks. The
network score requires linear regression for each continuous node based upon which parent nodes
it has, and for a large network this can involve a lot of calculations which may take some time.
As the network score is the sum of each node score, one way to speed up the calculation is to
cache the score for each node with each different set of parent nodes. However, this approach
may be problematic if the cache becomes too large, which is quite possible for large networks. In
BayesNetty a similar idea is used to speed up the computation of the network search. Instead
of caching node scores, the network score difference of adding, deleting or reversing an edge is
recorded. That is, if an edge is modified how does the network score differ, which may be an
increase or decrease. At each step of the search, after an edge is modified, the cache of network
score differences is updated. The number of network scores needed to be calculated at each step
is proportional to the number of nodes in the network. Effectively, when the network is updated,
only nodes affected by this update need further calculations to update the cache and the parts of
the network which are unaffected (which will be most of it for a large network) will not need to
be updated. This approach speeds up calculations considerably and makes it feasible to search
networks with hundreds or even thousands of nodes.

Open Message Passing Interface (MPI) has also been implemented in BayesNetty to offer
parallel processing as well as the standard serial version. The Open MPI version only uses parallel
processing for the search algorithm as this is the most computationally expensive task. In the
search algorithm, at each step the different edge updates are calculated in parallel, and so it is
not advantageous to have more processors than the number of nodes in the network. Open MPI
has extra computational overhead compared to a standard serial program as all of the processors
must be managed and communicate with one another at each step, and so the optimum number
of processors may be lower than the number of nodes; for small networks it may be quicker not
to use Open MPI.

Data were simulated as in Figure 3 (a) using 2000 individuals to compare timings of fitting
a network with the following settings: serial (not parallel), Open MPI with 1, 8, 16, 24 and 32
processors. Simulations were performed for larger networks by adding extra nodes replicating the
network structure of the original network, giving networks with 31, 62, 124, 248 and 496 nodes.
The median time of five different runs was recorded. Varying the number of individuals was also
considered, with the number of nodes set to 31.

Timings were also performed for calculating the average network (with 1000 bootstraps) and
data imputation for the network with 31 nodes. Missing data was added for data imputation as
described previously for this network giving rise to 1796 individuals with missing data. Also, to
compare imputation time with that of the bnlearn R package EM algorithm, SNPs were removed
as the EM algorithm does not handle mixed data. Timings for networks with 11, 22, 44 and 88
nodes were then compared.

Parallel processing to calculate average networks and data imputation can be performed much

1



more quickly by running multiple instances of the serial version of BayesNetty, and then com-
bining results to get the final result. To calculate the average network, the data is bootstrapped
many times and the best fit network fitted; the resultant networks are then combined to get the
average network. With enough processors, these bootstrap iterations can all be done in parallel.
Similarly, for data imputation, as many processors as individuals with missing data can be used.
To investigate the resulting timings, the data imputation and average network were calculated
using 1000 processors running the serial version of BayesNetty. The processes were run on a high
performance computer with 2 Intel Xeon E5-2699 v4 processors (2.2 GHz), 2.9 GB memory per
core.

The timings of BayesNetty to fit a best fit BN are given in the Additional Tables below. The
time to fit a BN with 31 nodes, which could be considered reasonably large, using the non-parallel
version of BayesNetty takes less than one second. For larger networks the timing is also reasonable
taking just over 6 minutes for a network with 496 nodes. Earlier implementations which naively
recomputed the network score for each step took over 6 minutes for a network of size 31, over an
hour for 62 nodes and was not feasible for 496 nodes. The times can be further decreased with the
use of the parallel version of BayesNetty which uses the Open MPI parallel programming system.
There is some computational cost using Open MPI due to setup and processors communicating
with one another. The setup cost is shown by comparing the computing timings in the MPI(1)
column with the serial timings. The parallel timings are much quicker and are around 10 times
quicker for the largest networks, although for the network with 31 nodes the parallel timings are
actually a bit slower due to the extra cost involved. There is little to be gained from using more
than 16 processors and may even be slower for very large networks. The optimum number of
processors in general depends on the data structure, data size and the computing system, so some
experimentation may be needed.

The timings to calculate an average network are also shown in the Additional Tables below,
which shows that by far the quickest approach is to use the simple parallel approach which runs
1000 BayesNetty serial programs and collates the results. Using the parallel version of BayesNetty
does speed up the computation by increasing the network search at each step.

The timings to impute data with BayesNetty are also shown below and show a similar pattern to
the average network timings for the same reasons. Again it can be seen that it is not advantageous
to use more than 16 processors. The imputation timings for the EM algorithm are much quicker
than BayesNetty when comparing with the serial version, but, as imputation in BayesNetty can
be ran in parallel, it is possible to impute data quicker in BayesNetty.

For most data applications, which typically consist of less than 50 nodes, there is probably
no advantage in using the parallel version of BayesNetty to fit a best fit BN. For calculating an
average network or imputing data, use of the simple “serial” parallel approach is recommended
for larger networks. The BayesNetty website provides scripts to help do this. The timings for
larger networks if one uses this approach would be about the same time as it takes to fit one BN
in serial, assuming there are enough separate processors.

2



Best Fit Network Search Timings in Seconds

Nodes Serial (RT) MPI(1) MPI(8) MPI(16) MPI(24) MPI(32)
31 <1 1 1 1 1 1
62 2 3 1 1 1 1
124 13 16 2 2 1 1
248 57 75 13 8 8 7
496 370 402 65 36 39 39

Best Fit Network Search Timings in Seconds

Individuals Serial (RT) MPI(1) MPI(8) MPI(16) MPI(24) MPI(32)
2000 <1 1 1 1 1 1
4000 1 1 1 1 1 1
8000 3 3 2 1 1 1
16000 9 8 3 2 2 2
32000 25 24 7 4 4 4
64000 41 36 13 10 7 7
128000 91 73 23 18 15 14

Average Network Timings in Seconds

Nodes Serial (RT) Parallel 1000 (RT) MPI(1) MPI(8) MPI(16) MPI(24) MPI(32)
31 732 5 870 205 145 140 132

Data Imputation Timings in Seconds

Nodes Serial (RT) Parallel 1000 (RT) MPI(1) MPI(8) MPI(16) MPI(24) MPI(32)
31 631 4 965 223 169 184 232

Data Imputation Timings in Seconds

Nodes Serial (RT) Parallel 1000 (RT) Serial (CT) Parallel 1000 (CT) EM
11 98 3 88 3 12
22 451 5 626 5 22
33 1770 8 697 6 36
44 9096 29 4641 8 76

Additional Tables for Text S2: Time in seconds to perform various calculations with the
BayesNetty software. The standard non-parallel times are given by the serial column. Parallel
processor times using Open MPI are denoted by MPI and the number of processors in brackets
(note MPI(1) uses Open MPI but is not in parallel). The Parallel 1000 column refers to 1000
BayesNetty serial programs running in parallel to calculate either the average network or data
imputation, with the results collated to give the final answer. Imputation with random training
is denoted by RT and for complete training by CT.

3


