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Supplementary Figure 1: Relationship between pairwise metrics, loading similarity of each

latent dimension, and the relative strengths of each dimension. Related to Figure 4.

In Fig. 3e and Math Note A, we considered the relationship between loading similarity and pairwise metrics
when population activity was one dimensional. Here, we asked about the informativeness of loading simi-
larity when population activity varies along multiple dimensions, and the impact of the relative strengths
of each dimension (i.e., the shape of the eigenspectrum of ⌃shared, which specifies the amount of shared
variance explained by each dimension).

We considered two cases. First, we considered an eigenspectrum that decays quickly, as has been widely
reported in population recordings (Sadtler et al., 2014; Williamson et al., 2016; Mazzucato et al., 2016; Gal-
lego et al., 2018; Huang et al., 2019; Stringer et al., 2019a; Ru↵ et al., 2020). In this case, we found that the
loading similarity of the strongest dimension (i.e., dimension with largest eigenvalue) was most informative
about pairwise metrics, while the loading similarities of the other dimensions were less informative. Second,
we considered a flat eigenspectrum. In this case, the loading similarities of each dimension were equally
informative.

a. Loading similarity for a decaying eigenspectrum of the shared covariance matrix (⌃shared in Supplemen-
tary Fig. 5a). We reproduced the simulation in Fig. 3 for a latent dimensionality of 3 and %sv=50%. For
each 3-d model, we evaluated the rsc mean and s.d., and then plotted the same point in 3 separate panels
colored by loading similarity of each of the 3 di↵erent dimensions. The loading similarity of strongest di-
mension (‘Dim 1’) is very informative–high loading similarity implies high rsc mean and low rsc s.d. (green
dots), whereas low loading similarity implies low rsc mean and high rsc s.d. (blue dots). This is the same
relationship as shown in Fig. 3e for the case of one dimension. The loading similarities of ‘Dim 2’ and ‘Dim
3’ are less informative–in both cases, low loading similarity points (blue dots) are scattered throughout the
arc. The only case when the loading similarity of ‘Dim 2’ or ‘Dim 3’ is informative is when either of them
have a high loading similarity (green dots). This is informative because it implies that ‘Dim 1’ must have
low loading similarity (‘Dim 1’ is blue for dots where ‘Dim 3’ is green; see Math Note E), implying low rsc
mean and high rsc s.d. (continued on next page...)
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Supplementary Figure 1: (continued from previous page...)

b. Same as panel a but for flat eigenspectrum across the three dimensions. In this case, rsc mean will tend
to be small and rsc s.d. will tend to be large because: 1) all three dimensions contribute equally, and 2) it is
not possible for all three dimensions to have high loading similarity, while multiple dimensions can have low
loading similarity (Math Note E). However, knowing whether any of the three dimensions have high loading
similarity can provide more specific information about rsc mean and s.d. within this limited range (green
dots tend to have high rsc mean and lower rsc s.d. in each panel).

Because most studies of population neuronal recordings have shown quickly decaying eigenspectra as in
panel a (Sadtler et al., 2014; Williamson et al., 2016; Mazzucato et al., 2016; Gallego et al., 2018; Huang
et al., 2019; Stringer et al., 2019a; Ru↵ et al., 2020), we recommend considering the loading similarity of the
strongest dimension for concision and simplicity (as we do in Fig. 6c; and see eigenspectra in Supplementary
Fig. 2). However, if it happens that the data have an eigenspectrum that decays slowly or has multiple
dimensions that are very strong, then one may benefit by considering the loading similarities of additional
dimensions as well.

This analysis also highlights how the shape of the eigenspectrum influences pairwise metrics. First, an
exponentially-decaying eigenspectrum tended to have a higher rsc mean and s.d. compared to its corre-
sponding flat eigenspectrum (dots in panel a are farther from origin here than in panel a). This occurs
because, for an exponentially-decaying eigenspectrum, an added dimension explains relatively little shared
variance. Thus, the added dimension tends to result in only a small decrease in rsc mean and s.d. On
the other hand, adding a dimension to the flat eigenspectrum a↵ects rsc mean and s.d. as much as any
other dimension, leading to larger changes (i.e., decreases) in rsc mean and s.d. than in the case of an
exponentially-decaying eigenspectrum.

Second, we observed a greater radial and angular spread for exponentially-decaying eigenspectra (panel a)
compared to flat eigenspectra (panel b). This occurs because, when the eigenspectra are not flat, there is
greater diversity in how the co-fluctuation patterns of di↵erent dimensions can contribute to rsc. In other
words, permuting the eigenvectors of three dimensions with equal eigenvalues (i.e., both dimensions explain
the same amount of shared variance) results in the same model and same covariance matrix—yielding the
same values for rsc mean and s.d. However, permuting the eigenvectors of three dimensions with di↵erent
eigenvalues will likely result in a di↵erent covariance matrix and di↵erent values of rsc mean and s.d. Thus,
for non-flat eigenspectra, the greater diversity by which co-fluctuation patterns can contribute to the shared
covariance matrix leads to greater spread in the rsc mean vs s.d. plots. The mathematical details regarding
this observation are provided in Math Note D.

An implication of this analysis is that it is important to report the eigenspectrum shape whenever one
reports dimensionality. Thus, considering both dimensionality and the eigenspectrum curve, instead of di-
mensionality alone, will lead to a more complete picture of the structure of population activity. Inspecting
the eigenspectrum will also help determine whether assessing loading similarity in the strongest dimension
is su�cient (panel a), or whether one needs to consider the loading similarities of other dimensions as well
(panel b).
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Supplementary Figure 2: Eigenvalues and loading similarity by dimension for V4 population

activity. Related to Figure 6.

Although we observed only a modest change in dimensionality with attention (Fig. 6c), our simulations
showed that the relative strength of each dimension (i.e., shape of the shared eigenspectrum) could alter the
“e↵ective dimensionality” of population activity and have large e↵ects on pairwise metrics (Fig. 4a). Here,
we asked whether the relative strengths of each dimension changed with attention. We also considered the
loading similarities across di↵erent dimensions.

a. We found that the shape of the eigenspectra was qualitatively similar for ‘attend in’ and ‘attend out’
conditions (red and black curves have similar shape). In both conditions, the eigenvalues of the shared
covariance matrix decayed (dot for each subsequent dimension was below dot for the previous dimension),
indicating that a small number of dimensions were needed to explain the population-wide covariability.

When comparing eigenspectra (i.e., the amount of shared variance explained by each dimension), one also
needs to consider the firing rates under each condition. Mean firing rates tend to be higher for attend-
in than attend-out trials. Higher firing rates typically correspond to higher spike count variance due to
the Poisson-like firing of neurons. All else being equal, the higher mean firing rates imply higher levels of
both shared variance and independent variance (Churchland et al., 2010). Thus, a direct comparison of the
eigenspectra should be done with caution. Nonetheless, we plotted attend-in and attend-out together to
relate our results to previous reports (Huang et al., 2019; Ru↵ et al., 2020). Consistent with these studies,
we found that attention decreased the strength of the strongest dimension (red below black dot for dimension
index 1), though the magnitude of the decrease we observed was more consistent with Ru↵ et al. (2020)
than Huang et al. (2019). Had we been able to equalize the mean firing rate across the two conditions, we
likely would have observed an even greater di↵erence between attend-in and attend-out. We note that the
caveat described here for comparison of eigenspectra (i.e., the amount of shared variance) does not apply to
comparisons of %sv (Fig. 6c) because %sv is normalized by the overall spike count variance.

(...continued on next page)
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Supplementary Figure 2: (...continued from previous page)

The eigenspectra were computed in the following way. We decomposed the V4 spike count covariance
matrix into shared and independent components using factor analysis (see Methods). We then computed
the eigendecomposition of the shared covariance matrix (Supplementary Fig. 5, ⌃shared = U⇤U). We found
that eigenvalues (diagonal of ⇤) tended to increase linearly with the number of neurons recorded; therefore,
in order to combine across sessions, we normalized the eigenvalues by dividing by the number of neurons
recorded in each session. After normalizing, we computed the eigenspectrum averaged across sessions and
stimulus orientations. Because the dimensionality identified by cross-validation di↵ered across sessions, there
were a di↵erent number of sessions that contributed to each average. We did not plot mean eigenvalues when
there were fewer than 5 sessions to average (i.e., dimensions � 6 for monkey 1; dimensions � 4 for monkey 2).
Error bars indicate standard error. Data points have been jittered horizontally for visual clarity.

b. Loading similarity for ‘attend-in’ (red) and ‘attend-out’ (black) by dimension. Pooled across monkeys, the
loading similarity for the first (i.e., strongest) dimension was larger for ‘attend-out’ than ‘attend-in’ (same
result as Fig. 6c). We also observed some di↵erences in loading similarity across the other dimensions in
both monkeys. These di↵erences could be important for specific scientific questions (see Fig. 7, for example).
However, as we show in Fig. 4, Supplementary Fig. 1, and Math Note C, the first dimension plays the largest
role in determining the rsc distribution because it explains the greatest amount of shared variance.
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Supplementary Figure 3: Quantifying the extent to which each population metric contributes

to changes in pairwise metrics. Related to Figure 6.

In Fig. 6c, we observed changes in several population metrics with attention in V4 population responses.
However, it was unclear to what degree the change we observed in each population metric contributed to
the overall changes in pairwise metrics (Fig. 6b). In order to quantify this, here we used a population metric
matching procedure to assess how much each individual change in a population metric contributed to the
changes in a pairwise metric. We found that for these V4 data, %sv contributes the most, followed by loading
similarity, and finally dimensionality. We illustrate these results in Fig. 6d (also reproduced here as panel
a for convenience).

a. Reproduction of Fig. 6d to aid the interpretation of panels b and c here. For pairwise metrics, we
observed decreases in both rsc mean and s.d. with attention. For population metrics, we observed decreases
in %sv, loading similarity, and dimensionality with attention.

b. Contribution of population metrics to changes in rsc mean. For each recording session, we assessed how
allowing all population metrics to vary (“all”) or only a single population metric to vary between “attend-
out” (unatt.) and “attend-in” (att.) influenced rsc mean. The procedure for assessing this is detailed at the
end of the caption (“Details of population metric matching procedure”). When only %sv or only loading
similarity were allowed to vary, rsc mean decreased with attention; when only dimensionality was allowed to
vary, rsc mean increased. When all population metrics were allowed to vary, rsc mean decreased, consistent
computations directly from data (Fig. 6b). Results for both monkeys were consistent; means and standard
errors across sessions are shown.

(continued on next page...)
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Supplementary Figure 3:

c. Contribution of population metrics to changes in rsc s.d. Same format as b. When only %sv was
allowed to vary, rsc s.d. decreased with attention. When only loading similarity was allowed to vary, rsc s.d.
slightly increased (not significant). Also, when only dimensionality could vary, rsc s.d. increased. When all
population metrics were allowed to vary, we found that rsc s.d. decreased with attention, consistent with
our computations from data (Fig. 6b).

These results provide a systematic quantification of the illustration that relates pairwise and population
metrics in V4 (panel a). Based on direction and magnitude of contributions, we conclude that for overall
changes in pairwise metrics in these data: 1) %sv is most important, 2) followed by loading similarity, 3)
followed by dimensionality. More generally, the population metric matching procedure (described below)
provides a framework for assessing how changes in population metrics contribute to changes in pairwise
metrics in recorded neuronal population activity.

Details of population metric matching procedure. Given two factor analysis (FA) models (e.g., fitted
to two di↵erent experimental conditions), we first assess the overall change in pairwise metrics by computing
rsc mean and s.d. directly from the two fitted models (see Methods). In this case, all three population
metrics are allowed to change between the two conditions, and contribute to the overall observed change in
pairwise metrics (labeled “all” in the plots above).

Next, we use population metric matching to assess the contribution of each individual population metric
change to the overall change in pairwise metrics. To do so, we choose one of the two fitted FA models (e.g.,
the model fitted to “attend-out”) and systematically change the model such that one of its population metrics
matches that of the other FA model (e.g., “attend-in”), while the other two population metrics remain the
same. We then assessed the change in pairwise metrics between the base FA model (i.e., “attend-out”)
and the “matched” FA model (i.e., modified “attend-out” model). This allowed us to assess the change in
pairwise metrics that would have resulted from a change in a single population metric.

For systematically modifying %sv, we scaled the eigenspectrum (see Methods) of the base FA model in order
to match the %sv of the other FA model. For systematically modifying loading similarity, we replaced the
co-fluctuation patterns (U in Supplementary Fig. 5a) in the base FA model (e.g., “attend-out”) with the
co-fluctuation patterns from the other FA model (e.g., “attend-in”). In cases where the dimensionality of
the two models was di↵erent, we swapped the top k co-fluctuation patterns, where k is equal to the smaller
dimensionality in the two models. For systematically modifying dimensionality, we removed dimensions
from the base FA model if it had higher dimensionality than the other FA model, or added dimensions (after
orthogonalization) from the other model to the base FA model if it had lower dimensionality. Because adding
or removing dimensions changes the %sv, we then scaled the eigenspectrum to match the original %sv of the
base FA model. These procedures allowed us, using two FA models fit to real data, to systematically vary
one of the population metrics while keeping the other two the same and assess the contribution to a change
in pairwise metrics.
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Supplementary Figure 4: Relationship between pairwise and population metrics in V1 popu-

lation responses. Related to Figure 6.

In Fig. 6, we assessed the relationships between pairwise and population metrics in V4 population recordings
where a decrease in rsc mean with spatial attention had been widely reported (Cohen & Maunsell, 2009;
Mitchell et al., 2009; Gregoriou et al., 2014; Luo & Maunsell, 2015; Snyder et al., 2018). To demonstrate the
applicability of the identified relationships to other brain areas, we applied the same analysis to population
recordings in primary visual cortex (V1). Previous studies have shown that the rsc mean is lower after
stimulus onset (i.e., evoked activity) than before stimulus onset (i.e., spontaneous activity) in V1 (Smith &
Kohn, 2008; Churchland et al., 2010). Here, we analyzed population activity recorded using Utah arrays
in V1 (88 to 159 units per session, 112.2 on average) in three macaque monkeys (previously reported in
Zandvakili & Kohn, 2015; Semedo et al., 2019, http://dx.doi.org/10.6080/K0B27SHN). Two monkeys had
two recording sessions each, while the third monkey had a single recording session, for a total of 5 recording
sessions. Animals were presented with 1.28s of oriented gratings (1 of 8 possible orientations) interleaved
with 1.5s of a blank screen.

(continued on next page...)
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Supplementary Figure 4: (...continued from previous page)

In V1, evoked activity had smaller rsc mean and s.d. than spontaneous activity. We also found that evoked
activity had smaller %sv and loading similarity, but larger dimensionality than spontaneous activity. Most
changes in pairwise and population metrics between V1 “spontaneous” and “evoked” activity matched the
direction of the changes in V4 “attend-out” and “attend-in”, except for the change in dimensionality (cf.
panel c and Fig. 6d). Taken together, our analyses of V1 and V4 population activity demonstrate that
similar changes in pairwise metrics need not correspond to precisely the same changes in population metrics.
In this case, measuring population metrics provided insight about the dimensionality of the population-wide
variability that would not have been gleaned from changes in pairwise metrics alone.

a. The rsc mean was smaller in evoked activity than in spontaneous activity (left panel; p < 0.0001) (Smith
& Kohn, 2008; Churchland et al., 2010). We also found that rsc s.d. was smaller in evoked activity than in
spontaneous activity (right panel; p < 0.0001), which has not been previously reported.

b. Next, we assessed how population metrics changed between evoked and spontaneous V1 activity. Con-
sistent with (Churchland et al., 2010), we found that %sv was smaller for evoked activity than spontaneous
activity (left panel; p < 0.0001). We also found that loading similarity for the dominant dimension was
smaller for evoked activity than spontaneous activity (middle panel; p < 0.0001). Finally, we found that
dimensionality was higher for evoked activity than spontaneous activity (right panel; p < 0.01). This result
di↵ered from a previous study in which dimensionality was lower for evoked activity than spontaneous in
neural recordings from rat gustatory cortex and in a clustered network model (Mazzucato et al., 2016). This
could be explained by a di↵erence in sensory modality or the way in which dimensionality was measured.

c. Using the framework we developed to understand the relationships between pairwise and population met-
rics (Fig. 5), the decrease in both rsc mean and s.d. with evoked V1 activity corresponds to: 1) a decrease in
%sv, 2) a decrease in loading similarity, and 3) an increase in dimensionality. The direction of the changes
in pairwise metrics between spontaneous and evoked activity are the same as those we observed between
“attend-out” and “attend-in” in V4 (Fig. 6b), as are the changes in %sv and loading similarity population
metrics (Fig. 6c). However, the increase in dimensionality from V1 spontaneous to evoked is in the opposite
of what we observed from “attend-out” to “attend-in” in V4 (Fig. 6c, right panel).

Methods. For evoked activity, we computed spike counts for each trial in the time period 160-260 ms after
stimulus onset. For spontaneous activity, we computed spike counts during the blank screen in the 100 ms
immediately prior to stimulus onset. We chose to use 100 ms bin sizes to match those used in Semedo et al.
(2019). We define spike counts during these two time periods during a trial as a “spont-evoked pair”. Each
recording session consisted of 400 repeats of a spont-evoked pair for each of the 8 oriented stimuli. For each
session, we assessed changes in metrics for each orientation and computed the mean and standard error of
the metric across the 8 orientations (transparent colored data points connected by lines). We also plot the
average across the 5 sessions (thick black line). To compare metrics for spontaneous and evoked activity, we
computed p-values across all 40 datasets (5 sessions, 8 orientations per session) using a paired t-test.
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Supplementary Figure 5: Decomposition of the spike count covariance matrix and defining

population metrics. Related to Figures 1 and 2, and STAR Methods. a. We use factor analysis to
decompose the spike count covariance matrix ⌃ into the sum of a low-rank shared covariance matrix ⌃shared

and a diagonal independent variance matrix  . The ith diagonal entry of ⌃shared (si) corresponds to the
spike count variance that neuron i shares with other neurons in the population (i.e., shared variance), while
the ith diagonal entry of  i corresponds to spike count variance of neuron i that cannot be explained by the
other neurons (i.e., independent to neuron i). We can further decompose ⌃shared via an eigendecomposition
to extract the co-fluctuation patterns (i.e., the eigenvectors) and the strength of each latent co-fluctuation
(i.e., the eigenvalues). b. The population metrics used in this study are loading similarity, percent shared
variance (%sv), and dimensionality.
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Supplementary Figure 6: Characterizing how changes in one population metric can impact

the estimates of another population metric. Related to Figure 6.

(continued on next page...)
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Supplementary Figure 6: (...continued from previous page)

In the main text, we related population metrics to pairwise metrics by systematically changing a single
population metric and measuring the resulting changes in rsc mean and rsc s.d. (Figs. 3 and 5). However, in
real neuronal data, multiple population metrics could change together between experimental conditions (e.g.,
see Fig. 6 and Supplementary Fig. 4). When we measure that multiple population metrics changed, it could
be the case that a change in one population metric impacted the estimates of the other population metrics
(e.g., we could have measured a change in multiple population metrics when only one metric truly changed).
This can a↵ect the precision by which we can distinguish population metric changes in real neuronal data.

Here, we assessed this by systematically changing one population metric while keeping the other two pop-
ulation metrics constant. We then simulated data and fit factor analysis (FA) to the data to obtain the
population metrics. We examined in turn each of the three population metrics under conditions when they
did not actually change (but one of the other metrics did). If there were no dependencies between estimates
of population metrics, then all the vertical values in panels a-c would be 0. We found that this was the case
for estimates of %sv were under conditions in which the true loading similarity changed (a). However, esti-
mates of loading similarity and dimensionality were a↵ected by true changes in %sv. Increasing the number
of simulated trials reduced the estimation error caused by true changes in %sv (b, c). These findings allow
us to better interpret changes in population metrics estimated from neuronal activity.

a. Estimation error in %sv due to changes in loading similarity. “Model 1” and “model 2” had the same
dimensionality (1) and %sv (20%). The only di↵erence between the two models was their loading similarity.
We varied how di↵erent the loading similarity was between the two models (horizontal axis), while assessing
how di↵erent was the estimated %sv across the two models (vertical axis). We found that %sv estimates
remained una↵ected in the presence of true changes in loading similarity (all changes in %sv are near 0).
This was true for both low loading similarities where “model 1” had loading similarity of 0.05 (blue) and
high loading similarities where “model 1” had loading similarity of 0.55 (green). As we simulated more trials,
estimates of %sv became more precise (error bars decrease in size going from left to right panels). Error
bars show means and standard deviations across simulations.

b. Estimation error in loading similarity due to changes in %sv. “Model 1” and “model 2” had the same
dimensionality (1) and loading similarity. The only di↵erence between the two models was their %sv. We
varied how di↵erent the %sv was between the two models (horizontal axis), while assessing how di↵erent
was the estimated loading similarity between the two models (vertical axis). We found little changes in
estimates of loading similarity when the true loading similarity was low (blue points). However, we found
larger changes in estimates of loading similarity when the true loading similarity was high (green points).
The the size of the change increased with larger true changes in %sv. To understand this, recall that there
are relatively few ways to have high loading similarity (e.g., all loadings must be the same to have loading
similarity of 1), while there are many ways to have low loading similarity (Math Note E). Thus, high loading
similarities are more likely to be underestimated than low loading similarities. This underestimate tends
to be larger when %sv is low than when %sv is high. However, increasing the trial counts reduced the
estimation error of loading similarity (vertical values closer to 0 going from left to right panels).

(...continued on next page)
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Supplementary Figure 6: (...continued from previous page)

c. Estimation error in dimensionality due to changes in %sv. “Model 1” and “model 2” had the same
dimensionality (5; with eigenspectrum defined as �k = e�0.75k) and loading similarity. The only di↵erence
between the two models was their %sv. We varied how di↵erent the %sv was between the two models
(horizontal axis), while assessing how di↵erent was the estimated dimensionality (dshared; see Methods)
between the two models (vertical axis). We found changes in the estimates of dimensionality between
“model 1” and “model 2”, and the size of the change increased with larger true changes in %sv. This can
be understood by the fact that dimensions with small eigenvalues can be di�cult to recover when fitting FA
to data, particularly when %sv is low. However, increasing the trial counts reduced the estimation error of
dimensionality (vertical values closer to 0 going from left to right panels).

These results have important implications for interpreting estimated changes in population metrics in real
neuronal data. First, because estimation error depends on trial count, one should equalize the number of
trials across conditions in order to make fair comparisons across conditions using population metrics. Second,
when changes in %sv are large and trial counts are small, one may need to be careful in interpreting estimated
changes in loading similarity and dimensionality. For trial count, the key quantity to consider is the ratio of
observed trials to the number of recorded neurons (Wainwright, 2019). In the simulations above, we used
30 neurons–the left column represented a ratio of 5x trials to neurons, the middle column represented 10x,
and the right column represented 20x.

In our V4 data (Fig. 6), most sessions had 10 times (or more) the number of trials as the number of neurons
(ratio of trials to neurons: 9.90± 0.66 for monkey 1, 27.60± 2.68 for monkey 2). We observed a di↵erence in
%sv of ⇡3% between “attend-out” and “attend-in”. Based on the results in panels a and b, the di↵erences
we measured in %sv and loading similarity in our V4 data are unlikely to be due to estimation error. Based
on panel c, the small di↵erence we measured in dimensionality in our V4 data could potentially be explained
by a change in %sv, if the only true change between conditions was in %sv (and not loading similarity or
any other aspect of the population activity).
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Supplementary Figure 7: Relationships between pairwise and population metrics hold for

metrics estimated from Poisson simulated data. Related to Figure 3.

In our simulations and analytical derivations, we created covariance matrices with specified population
metrics from which we computed pairwise metrics (Fig. 3). However, when assessing population metrics in
neuronal recordings, one needs to fit a factor analysis (FA) model to data. Here, we simulated Poisson data
to assess whether the relationships between pairwise and population metrics were impacted by: 1) needing
to estimate metrics from data, and 2) the mismatch between the linear-Gaussian assumption of FA and the
Poisson-like statistics of neuronal activity. We found that the relationships between pairwise and population
metrics were very similar to those shown in Figs. 3 and 5.

a. Estimating loading similarity and %sv. We simulated data from a model with a single co-fluctuation
pattern and Poisson observations (see details at the end of the caption). In the ground truth models, we
varied loading similarity smoothly between 0 and 1 and chose %sv equal to 30% or 50%. We estimated rsc
mean and s.d. from the simulated data. To estimate population metrics, we fit the FA parameters to the
same simulated data. We then plotted estimates of pairwise metrics and colored or labeled points according
to the estimated population metrics (as opposed to the ground truth population metrics used to generate the
data). We found that as estimated loading similarity increased, rsc mean increased and rsc s.d. decreased
(blue to green). We also found that as estimated %sv increased, rsc mean and s.d. both increased (inner arc
with %sv=32.6±1.0% to outer arc with %sv=55.1±3.2%). These results are consistent with Fig. 3e-f.

b. Same as a, but fixing %sv=50% and varying the dimensionality of the ground truth model, with a
flat eigenspectrum (corresponding to Fig. 3g). We colored points according to estimated dimensionality as
opposed to the ground truth dimensionality. We found that as the estimated dimensionality increased, rsc
mean and s.d. both tended to decrease (purple outer arc with dim=1 to salmon inner arc with dim=5),
consistent with Fig. 3g.

(continued on next page...)
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Supplementary Figure 7: (...continued from previous page)

The results here, based on estimating factor analysis parameters from Poisson simulated data, are qualita-
tively the same as those in the main text (Fig. 3e-g) and analytical derivations (Appendices). This indicates
that the relationships between pairwise and population metrics are robust to: 1) having to estimate these
metrics from data and 2) the Poisson-like variability of neuronal activity.

Simulating from a Poisson observation model. According to FA, the observations x (i.e., spike counts)
have a linear-Gaussian relationship with latent variables z (which represent shared activity among neurons;
see Fig. 2): z ⇠ N(0, I) and x|z ⇠ N(Lz+µ, )). We fit the FA parameters to data simulated from a Poisson
observation model. We generated Poisson spike counts for 30 neurons as follows. For neuron i, we sample
from from xi|z ⇠ Poisson(ReLu(Li,:z + µi)), where ReLu indicates a rectified linear unit, and L 2 R30⇥d

is the loading matrix with Li,: as the ith row. We set µi = 10 for each neuron, a typical average firing rate
(10 Hz) for neurons across many areas of macaque cortex (assuming a 1 second time bin). We consider the
asymptotic case by simulating many trials for each model (corresponding to a single dot in panels a and b;
see Methods for how model parameters are randomly chosen). We consider estimation from limited data in
Supplementary Fig. 6. We drew 6000 samples (i.e., 6000 trials) of x from the Poisson observation model.
Thus, this procedure generated a data matrix X 2 R30⇥6000 of simulated spike counts, which we then used
to estimate pairwise and population metrics.
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