

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Invasive pneumococcal disease, pneumococcal pneumonia and all-cause pneumonia during COVID-19 in Hong Kong – a retrospective observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055575
Article Type:	Original research
Date Submitted by the Author:	19-Jul-2021
Complete List of Authors:	Chan, King-Pui Florence; Queen Mary Hospital, Department of Medicine Ma, Ting-Fung; University of Wisconsin-Madison, Department of Statistics Ip, Mary; University of Hong Kong Ho, Pak-leung; Queen Mary Hospital, Microbiology; University of Hong Kong, Carol Yu Centre for Infection
Keywords:	COVID-19, Respiratory infections < THORACIC MEDICINE, Thoracic medicine < INTERNAL MEDICINE, Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

SCH	OL	ARC)NE"	
M	anı	uscr	ipts	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 3 4	1	Title: Invasive pneumococcal disease, pneumococcal pneumonia and all-cause
5	2	pneumonia during COVID-19 in Hong Kong – a retrospective observational
6 7 8	3	study
9 10	4	
11 12 13	5	King-Pui Florence Chan, MBBS ¹ , Ting-Fung Ma, MPhil ² , Mary Sau-Man Ip ¹ , MD,
14	6	Pak-Leung Ho, MD ³
15 16 17	7	
18 19	8	Authors' affiliations:
20 21 22	9	1. Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong
23	10	Kong SAR, China
24 25	11	2. Department of Statistics, University of Wisconsin - Madison, United States of
26 27	12	America
28	13	3. Department of Microbiology, and Carol Yu Centre for Infection, University of Hong
29 30 31	14	Kong, Hong Kong SAR, China
32 33	15	ORCID: 0000-0003-2094-1206 (King-Pui Florence Chan); 0000-0001-6028-5640
33 34	16	(Ting-Fung Ma); 0000-0002-8692-6933 (Mary Sau-Man Ip); 0000-0002-8811-1308
35 36	17	(Pak-Leung Ho)
37 38	18	
39 40 41	19	Correspondence to:
42 43 44	20	Pak-Leung Ho
45	21	Department of Microbiology and Carol Yu Centre for Infection, Queen Mary Hospital,
46 47 48	22	University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
49 50	23	Email: plho@hku.hk
51 52 53 54 55 56 57 58 59 60	24	Tel: 852-2255-2579

1 2		2
3	26	Abstract
4 5	27	Objectives: To compare the incidence and severity of invasive pneumococcal
6 7	28	diseases (IPD), pneumococcal pneumonia and pneumonia during COVID-19 period
8 9	29	with widely practiced of universal masking and social distancing to that of previous 5
10 11	30	years.
12 13	31	Design: Retrospective observational study on incidence of invasive pneumococcal
14 15	32	diseases (IPD), pneumococcal pneumonia and all-cause pneumonia between Period
16 17	33	1 (January 2015-December 2019) and period 3 (March 2020-March 2021).
18 19	34	Setting: Episode-based data by retrieval of hospitalization records from the Hospital
20 21 22	35	Authority's territory-wide electronic medical record database.
23 24	36	Participants: Hospitalized patients with invasive pneumococcal diseases (IPD)
25	37	(n=742), pneumococcal pneumonia (n=2163) and all-cause pneumonia (n=453,999)
26 27	38	at age 18 or above. Control diagnoses were included to assess confounding from
28 29 30	39	health-seeking behaviors
31 32	40	Interventions: Period 3 with widely practiced of universal masking
33 34	41	Primary and secondary outcome: Primary outcome is the incidence of diseases
35 36	42	between two periods. Secondary outcomes include disease severity surrogated by
37 38	43	length of stay and mortality.
39 40	44	Results: Monthly average number of IPD, pneumococcal pneumonia and all-cause
41 42	45	pneumonia hospitalization significantly decreased by 88.9%, 72.5% and 17.5%
43	46	(p<0.0005). Change in trend from period 1 to period 3 was -70% (p=0.0025), -43%
44 45	47	(p=0.0014) and -11% (p<0.0005). LOS for IPD and pneumococcal pneumonia
46 47	48	episodes were insignificantly different in the two periods while that for all-cause
48	49	pneumonia had a slight decrease from 11.7 days to 10.8 days (p<0.005). No
49 50 51	50	reductions in control diagnoses were observed.
52 53	51	Conclusions: Incidence of IPD, pneumococcal pneumonia, and all-cause pneumonia
54	52	decreased during COVID-19 pandemic. This was observed with universal masking
55 56	53	and social distancing. We proposed this is related to reduce transmission of respiratory
57 58 59 60	54	viruses and bacteria.

2 3		
4	56	Strength and limitations of this study:
5 6	57	 A territory-wide study with near 100% practice of universal masking
7	58	 Other factors including temperature and air quality were also included in
8 9	59	our analysis
10 11	60	 Disease severity of IPD, pneumococcal pneumonia, and all-cause
12 13	61	pneumonia were compared between the two periods
14	62	 Data from private sector (<10%) were not included in our study
15 16	63	The causal relationship cannot be ascertained from this retrospective
17 18	64	study
19	65	
20 21	66	This research received no specific grant from any funding agency in the public,
22 23	67	commercial or not-for-profit sectors.
24 25	68	
26	69	There are no competing interests.
27 28	70	
29 30	71	Authors' contributions:
31	72	King-Pui Florence Chan and Ting-Fung Ma were involved in study concept and
32 33	73	design; acquisition, analysis and interpretation of data; drafting the work and final
34 35	74	approval of the manuscript. Mary Sau-Man Ip were involved in critical revision of
36 37	75	manuscript for important intellectual content and final approval of the manuscript. Pak-
38	76	Leung Ho was involved in study concept and design; analysis and interpretation of
39 40	77	data; drafting of manuscript; critical revision of the manuscript for important intellectual
41 42	78	content; study supervision; and approval of the final version of the manuscript.
43 44	79	
45 46		
47	80	Word count: 3572
48 49 50	81	Keywords: pneumococcal, COVID-19, masking, regression analysis
51 52 53 54 55 56	82	
57 58		
59 60		

83 Text

84 Introduction

Coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections was first reported in late 2019 [1]. It became a global pandemic and was declared as a public health emergency of international concern on 30 January 2020 by the World Health Organization [2]. As of 21st June 2021, more than 178 million people were infected, causing more than 3.8 million deaths globally.

Pneumococcal disease is caused by Streptococcus pneumoniae infection, with at least 100 known serotypes of pneumococci [3]. Pneumococcal disease can be roughly divided into non-invasive disease and invasive disease. Non-invasive disease includes sinusitis, acute otitis media and pneumonia. Invasive pneumococcal disease (IPD) is defined as isolation of Streptococcus pneumoniae from a normally sterile sites, including blood and cerebrospinal fluid [4). IPD is a notifiable disease in Hong Kong since 9th January 2015. Pneumococcal infection is a major cause of morbidity and mortality worldwide [5], with 1.6 million estimated deaths annually in 2005 [6]. Incidence of IPD and mortality of pneumococcal pneumonia are higher in extremes of age [7-8].

The first pneumococcal conjugated vaccine (PCV), Prevnar 7 (PCV7) was introduced to United States in 2000 and incorporated in Hong Kong Childhood Immunisation Programme for children under 2 years old since September 2009. In Hong Kong, PCV7 was replaced by the 10-valent and 13-valent pneumococcal conjugate vaccines (PCV10 and PCV13) in 2010 and 2011 respectively [9-10]. PCV13 was effective in preventing vaccine-type pneumococcal pneumonia, bacteraemia and nonbacteraemic community-acquired pneumonia [11]. Decline in incidences of all-cause pneumonia in children and elderly was reported after implementation of PCV in childhood vaccination program [12-13]. 23-valent polysaccharide vaccine (PPSV23) was effective in preventing pneumococcal pneumonia and reducing mortality from pneumococcal pneumonia in nursing home residents [14]. Pneumonia is a common disease causing hospitalization, accounting for 2.9% of all inpatient discharges and death in Hong Kong [15]. It is the second

114	leading cause of death with age specific death rates increased markedly after age 65
115	[16].

Whether patients with COVID-19 are more susceptible to pneumococcal superinfection is still under debate. Superinfection of pneumococcal in COVID-19 patients was reported [17]. Yet, low frequency of bacterial coinfection in patients with early COVID-19 was also observed [18-19]. There is limited evidence on the incidence and severity of IPD, pneumococcal pneumonia, and all-cause pneumonia during COVID-19 pandemic, especially in area where universal masking and social distancing were widely practiced. Since January 2020, universal masking in public area was voluntarily performed by Hong Kong citizens against infection by COVID-19. Cross sectional telephone self-reported surveys by the Hong Kong Public Opinion Research Institute (HKPORI). Percentage of wearing mask was 74.5% on 20th-23rd January 2020 (n=1,008), 97.6% on 5th-20th February (n=10,405) and 98.9% on 4th-19th March (n=15,739) [20]. On 23rd July 2020, masking was mandatory in public area upon the introduction of Prevention and Control of Disease (Wearing of Mask) Regulation (Cap. 599I). Social distancing measurements were voluntarily practiced by public and implemented by government since 25th January 2020. These public health interventions were shown to associated with relatively low rate of COVID-19 and early termination of influenza season in Hong Kong [21]. Our previous studies suggested universal masking and social distancing were associated with significant reduction in acute exacerbation of chronic obstructive pulmonary disease and asthma in Hong Kong [22,23]. In the current study, we hypothesized that the aforementioned COVID-19 related public health interventions and reduction in respiratory virus activities would be associated with reduction in hospitalization due to pneumococcal infections and pneumonia in general.

Page 7 of 27

			i.	
l	Ľ.			
	Г	٦	۱	

1		0
2 3 4	141	Materials and Methods
5 6 7 8	142	A retrospective study assessing the numbers of IPD, pneumococcal pneumonia, and
	143	all-cause pneumonia which required hospital hospitalization during the period of
9 10	144	COVID-19 in Hong Kong, comparing with that in the preceding five years as
11	145	baseline. The study period was 1st January 2015 to 31st March 2021 with exclusion
12 13	146	of 1st January 2020 to 28th February 2020 from analysis, when universal masking
14 15	147	was not yet completely executed.
 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 28 	148	
	149	Data source
	150	Episode-based data was obtained by retrieval of hospitalization records from the
	151	Hospital Authority's territory-wide electronic medical record database, Clinical Data
	152	Analysis and Reporting System (CDARS), which provides 90% of in-patient hospital
	153	care service in Hong Kong [22,23].
	154	
	155	Diagnosis code of pneumococcal pneumonia (ICD-9 code 481) was searched on
	156	CDARS. IPD is a notifiable disease since January 2015 with monthly number notified
	157	cases and age obtained from the Department of Health, HKSAR. Monthly number of
	158	influenza virus detection was collected from a territory-wide laboratory surveillance
	159	for both in-patients and out-patients in both public and private medical sectors from
	160	the Centre for Health Protection, HKSAR [15].
38 39	161	
39 40 41	162	All-cause pneumonia including the following ICD-9 codes for viral, bacterial,
42 43	163	tuberculous, fungal and unspecified pneumonia, pneumonia due to inhalation of food
44	164	or vomitus and lung abscess were obtained from CDARS (ICD-9 code 003.22,
45 46	165	055.1, 0.1160-1.1166, 112.4, 115, 117.3, 480, 481, 482, 483.1, 483.8, 485, 486,
47 48	166	487, 507.0, 513).
49 50	167	
51	168	Patient and public involvement
52 53	169	This observational study based on the practice of universal masking by Hong Kong
54 55	170	citizens to prevent COVID-19 infections and its relationship with hospital admissions
56	171	of various diseases, particularly on the infectious disease aided in the development
57 58	172	of the research question. Patients who were admitted with the diagnosis of IPD,
59 60	173	pneumococcal pneumonia, pneumonia, acute kidney injury fracture hip and

2		
3 4 5	174	peritonitis due to peritoneal dialysis were included in the study. Demographics data
	175	(including sex, age), clinical data (including hospitalization date, length of stay,
6 7	176	episode death, date of death) were collected. The results including admission
8 9	177	number of various diseases were available in the CHP website and the Hospital
10 11	178	Authority Statistics Report [16].
12	179	
13 14	180	Inclusion/ exclusion criteria
15 16	181	Patients with 1) age 18 or above 2) hospitalization for the listed diseases
17	182	(pneumococcal pneumonia, IPD and pneumonia) were included in the study.
18 19	183	
20 21	184	Children at aged 0 to 17 years old were excluded in this study. Duplicated record of
22 23	185	single patient with different diagnoses in same hospital admission were removed.
24	186	
25 26	187	Other diagnoses
27 28	188	Number of hospitalization for other common medical and surgical conditions including
29 30	189	acute kidney injury (ICD-9 code 580, 584), fracture hip (ICD-9 code 820) and peritonitis
31	190	due to peritoneal dialysis (PD peritonitis) (ICD-9 code 996.68) were collected. These
32 33	191	were included to evaluate the possibility of decrease in hospital attendance due to
34 35	192	various reasons such as fear of COVID-19 infection in hospital.
36	193	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	194	Other variables
	195	Monthly mean ambient temperature was obtained from the Hong Kong Observatory
	196	[24]. Air quality was measured by air quality health index (AQHI), which is calculated
	197	based on the cumulative health risk attributable to a 3-hour moving average
	198	concentrations of ozone, nitrogen dioxide, sulphur dioxide and particulate matter [25].
	199	It was reported in scale of 1 to 10 and 10+ and grouped into five health risk categories,
	200	namely low [1-3], moderate [4-6], high [7], very high [8-10] and serious [10+] with
	201	different precautionary actions were advised. People with respiratory illness were
	202	advised to minimize their outdoor stay when AQHI high to serious. The AQHI was
	203	reported hourly in 13 stations located in different area of Hong Kong. The total number
	204	of hours with AQHI recorded as high to serious grades were expressed as percentage
	205	of total number of hours collected in a month.
	206	
60	207	Statistical method

4

BMJ Open

8

5	209
6 7	210
8 9	211
10	212
11 12	213
13 14	214
15	215
16 17	216
18 19	217
20 21	218
22	219
23 24	220
25 26	221
27 28	222
29	223
30 31	224
32 33	225
34 35	226
36	227
37 38	228
39 40	229
41 42	230
43	231
44 45	232
46 47	233
48	234
49 50	235
51 52	236
53 54	237
55	238
56 57	239
58 59	
60	

Total number of hospitalizations due to IPD, pneumococcal pneumonia and all-cause pneumonia were collected and analysed. Each disease was further divided into three different age groups, including 18 to 49 years, 50 to 64 years, and 65 years or above for analysis.

Analysis was done on the number of hospitalizations between January 2015 to December 2019, the period prior COVID-19 (period 1) and March 2020 to March 2021 (period 3), while January to February 2020 (period 2) was treated as transition period and excluded from the analysis. Wilcoxon rank sum test was first used to analyse the statistical significance of number of hospitalizations between period 1 and period 3. Generalized linear models were then applied for statistical inference of various types of responses. Log-linear model was used for studying the effect of pandemic as intervention under segmented regression framework in term of the change in trend (i.e. an increase or decrease in the level of the segment) between period 1 (pre-intervention segment) and period 3 (post-intervention segment) on the monthly hospitalization count [26]. Temporal effect was adjusted by covariates, including AQHI, temperature and effect of masking.

Generalized linear model was used for comparing the mortality rate of individuals between the two time periods [27]. Hospitalization length of stay (LOS) was described in days using mean and standard deviation. Statistical inference of the LOS in hospitalization of individuals was done by Wilcoxon rank sum test with odds ratio and relative risks and confidence intervals calculated [26].

Monthly incidence rate for each disease was calculated using the total population followed by age groups stratification (18 to 49 years, 50 to 64 years and \geq 65 years) and expressed as number per 100,000 person-year. Age-specific population data was obtained from the Census and Statistics Department.

237 Ethics Approval

The study was approved by the Institutional Review Board of the University of Hong
 Kong/ Hospital Authority Hong Kong West Cluster (Reference Number UW-21-325).

1		9
2 3	241	Results
4 5	242	Invasive pneumococcal disease
6 7 8 9 10	243	The total number of notified IPD episodes was 742 in the entire study, with 699
	244	reported in period 1 and 17 reported in period 3. Pneumococcal serotypes for 684 of
	245	the 699 episodes in period 1, and 13 of the 17 episodes in period 3m were
11 12	246	successfully determined. The proportions attributed to PCV13 serotypes was 66.5%
13 14 15 16	247	(465/699) and 29.4% (5/17) respectively for period 1 and period 3. Serotype 3 was
	248	the commonest serotype in both periods, accounting for 41.3% (289/699) and 17.6%
16 17	249	(3/17) of total, respectively. From period 1 to period 3, the monthly number of IPD
18 19	250	caused by PCV13 serotypes declined by 95.1% (95%CI 93.4%-96.4%) while those
19 20 21	251	for non-PCV13 serotypes declined by 83.0% (95%CI 78.8%-86.5%).
22	252	
23 24	253	Monthly number of IPD peaked in January-February each year except in 2016, with
25 26	254	the peak in April (Figure 1A). Monthly average number of notified IPD episodes was
27 28	255	11.7 \pm 6.2 in period 1, with significant decrease to 1 \pm 4.3 in period 3 (p<0.0005). By
29	256	log-linear model segmented regression, relative risk of IPD in period 3 was 0.85
30 31	257	(95%CI 0.75-0.96, p=0.0089) (Table S1). Further analysis on the relative risk of
32 33	258	different age groups showed significant decline in relative risk of IPD in aged ≥65
33 34 35	259	years (0.78, 95%CI 0.61-0.99, p=0.041). Estimated change in trend in the mean
36	260	number of cases from period 1 to period 3 was -70% (95%CI -87% to -35%,
37 38	261	p=0.0025) (Figure 1A, Table S1).
39 40	262	
41 42	263	Incidence rate per 100,000 person-years was 2.2 in period 1 and 0.2 in period 3, with
43	264	an interval reduction of 88.9% (95%Cl 79.8%-98.0%, p<0.0005) (Table 1). IPD is
44 45	265	most prevalent in age ≥65. The magnitude of reduction in incidence rate was similar
46 47	266	across different age groups, ranging from 81.3% to 93.5% (p<0.0005 for all age
48 49	267	groups) (Table 1).
50	268	
51 52	269	The overall LOS for IPD was 18.8 \pm 48.4 days in period 1 and 31.6 \pm 79.2 days in
53 54	270	period 3 (Table 2), but the difference was statistically insignificant (p=0.89).
55 56	271	Statistically insignificant variations in LOS of different age groups were observed.
57	272	
58 59	273	
60		

2		
3 4 5 6	274	Pneumococcal pneumonia
	275	In the entire study period, there were 2,163 episodes of hospitalization for
7	276	pneumococcal pneumonia, with 1970 episodes in period 1 and 119 episodes in
8 9	277	period 3 (Table 1). Monthly number of pneumococcal pneumonia was peaked in
10 11	278	January-February each year except in 2016, with the peak in April (Figure 1B). The
12	279	average monthly hospitalizations was 32.8 ± 9.9 episodes in period 1, with significant
13 14	280	drop to 9.2 \pm 3.9 episodes in period 3 (p<0.0005). By log-linear model segmented
15 16 17 18 19	281	regression, relative risk of pneumococcal pneumonia was 0.90 (95%Cl 0.86-0.95,
	282	p<0.005) in period 3. Trend analysis revealed a change of -43% (95%CI -59% to -
	283	19%, p=0.0014, Figure 1B, Table S1) from period 1 to period 3. Age groups analysis
20 21	284	showed similar change in trend for all age groups, with statistically significance in
22 23	285	aged ≥65 years (-41%, 95%Cl -61% to -12%, p=0.010) from period 1 to period 3
24 25	286	(Table S1, Figure S1).
26	287	
27 28 29 30 31 32	288	Overall, the incidence rate of hospitalization for pneumococcal pneumonia
	289	decreased significantly by 72.5% (95%CI_65.9%-79.1%, p<0.0005), from 6.2 per
	290	100,000 person-years in period 1 to 1.7 per 100,000 person-years in period 3 (Table
33	291	1). Incidence rate per 100,000 person year showed statistically significant reduction
34 35 36 37 38 39 40 41 42 43 44	292	in all age groups, ranging from 73.0% to 82.5%.
	293	
	294	The overall LOS for pneumococcal pneumonia in period 1 and period 3 was
	295	17.7 \pm 27.5 days and 19.5 \pm 26.3 days in all age group (p=0.051) (Table 2). Age group
	296	stratification showed insignificant decrease in length of stay in those aged 18-49
	297	years (p=0.8051) and aged ≥65 years (p=0.226). Increase in length of stay from
45	298	18.8 \pm 32.6 days to 31.7 \pm 48.1 days was observed in age group 50-64 years, and was
46 47	299	statistically significant (p=0.019). Mortality rate for all ages was 13.1 (95% CI 11.7%-
48 49	300	14.8%) in period 1 and 22.7 (95%CI 15.5%-31.3%) in period 3 (p=0.0187). Mortality
50 51	301	rate was only statistically significant in aged 50-64 years (p=0.0007) but not in aged
52	302	18-49 years (p=0.9917) and aged ≥65 years (p=0.246)(Table 2).
53 54	303	
55 56	304	
57 58	305	All-cause pneumonia
59		
60		

In the entire study period, total hospitalization episodes for all-cause pneumonia was 453,999, of which 372,660 episodes in period 1 and 67,474 episodes in period 3. Monthly number of all-cause pneumonia peaked in January to March each year (Figure 1C). Mean monthly number of hospitalizations for all-cause pneumonia declined by 16.4% (95%CI 15.7%-17.1%, p<0.0005) from 6211±845.0 episodes in period 1 to 5190.3±593.8 episodes in period 3 (p<0.0005) (Figure 1C). Estimated change in trend in the mean number of cases in period 3 was -11% (95%CI -13% to -10%, p<0.0005). By log-linear model segmented regression, relative risk of all-cause pneumonia in period 3 compared with period 1 was 0.98 (95%CI 0.98-0.99, p<0.0005) (Table S1). Overall, the incidence rate per 100,000 person-years was 1,169.7 in period 1, with 17.5% (95%CI 16.8%-18.2%, p<0.0005) reduction in period 3 to 964.5 per 100,000 person-years in period 3 (Table 1). The incidence rate decrease in period 3 compared to period 1 in all age groups. The overall LOS for all-cause pneumonia episodes was 11.7±31.7 days in period 1 and 10.8±15.0 days in period 3 (p<0.005) (Table 2). Different age groups showed decrease in LOS but were only statistically significant in age 18-49 years and 50-64 years. The mortality rate increased from 20.5% (95% CI 20.4%-20.6%) in period 1 to 24.2% (95%CI 24.9%-25.6%) in period 3 (p<0.005) for all-cause pneumonia. The increase in mortality rate was statistically significant in all age groups (Table 2). Influenza The total number of influenza A or B viruses detected from January 2015 to March 2021 in Hong Kong was 123,732. The monthly number of influenza detections decreased drastically by 99.5% (95%CI 99.4%-99.5%, p<0.0005) from 1,966±2179 in period 1 to 10±18 in period 3 (Figure 1D). The monthly average number of respiratory specimens tested was 4313±1172 in period 1 and 3203±1868 in period 3. By log-linear model segmented regression, relative risk of influenza was 0.92 (95%CI 0.88-0.95, p<0.0005). Estimated change in trend in the mean number of detections in period 3 was -99.0% (95%CI -99.3% to -98.7%, p<0.0005) of that in period 1 (Figure

60 338 1D)

1	
т	

1		1
2 3	339	
4 5	339 340	
6	340 341	Other diagnosis: acute kidney injury, PD peritonitis and fracture hip
7 8	342	The monthly average number of hospitalization episodes for acute kidney injury in
9 10	343	period 1 and period 3 was 807.8±87.5 and 911.7±62.6, respectively (p<0.0005)
11 12	344	(Figure 2) The monthly average number of hospitalization episodes for PD peritonitis
13 14	345	was 246.7 \pm 27.7 in period 1 and 255.9 \pm 31.9 in period 3 (p=0.23). The monthly
15	346	average number of hospitalization episodes for fracture hip was 432.9±53.1 in period
16 17	347	1 and 417.2 ± 51.6 in pariod 2 (n=0.27)
18 19	547	
20 21		
22 23		
24 25		
26		
27 28		
29 30		
31 32		r and 417.3±31.5 in period 3 (p=0.37)
33 34		
35 36		
37		
38 39		
40 41		
42 43		
44 45		
46 47		
48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		
00		

Discussion

Hong Kong is a city with population of 7.5 million where universal masking and social distancing were widely practiced during the COVID-19 pandemic period. This study showed a drastic decrease in numbers of hospitalization for IPD and pneumococcal pneumonia and a lesser but still very significant decrease in all cause pneumonia after anti-COVID-19 measures in March 2020 to March 2021.

During COVID-19 period, decrease in incidence of IPD were observed in Taiwan and Singapore [28-29]. The decrease in IPD in Hong Kong was greater magnitude compare to other countries [30]. Our study added new information on the incidence and severity of IPD, pneumococcal pneumonia and all-cause pneumonia in terms of age-stratification.

Introduction of the current pneumococcal conjugate vaccines has been highly successful in reducing the incidence of pneumococcal diseases worldwide [31, 32]. Vaccine efficacy of PCV13 against vaccine type IPD in children aged ≤5 years was 86%-96% [33]. In adults aged \geq 65 years, the vaccine efficacy against vaccine type IPD was reported as 75% and against vaccine type community-acquired pneumonia were reported as 45.6% and 72.8% respectively [11, 34]. In contrast, PPV23 only has vaccine efficacy of 24% against vaccine type community acquired pneumonia in aged \geq 65 years [35]. In Hong Kong, a marked reduction in vaccine type IPD was observed in children few years after implementation of PCV in 2009. However, the indirect effect on adult IPD was not evident. Annual number of adult IPD hospitalization remains static in period 1 (Figure 1A). Universal masking in Hong Kong was shown to decrease the incidence of SARS-CoV2 [36-37] and influenza [38] during the COVID-19 pandemic. Our study showed 88.9% reduction in incidence of adult IPD. The drastic decrease in incidence of IPD included both vaccine and non-vaccine types and was comparable and greater than the reported figure after introduction of pneumococcal vaccines [11,32]. IPD can lead to significant mortality and morbidity [39]. Our study showed decrease in incidence and trend of IPD and were statistically significant. The decrease in mortality of IPD during the COVID-19 pandemics was statistically insignificant, which can be contributed by the relative small sample size.

2		
3 4	383	
5	384	The incidence of all-cause pneumonia showed a much lower magnitude of decrease
6 7	385	with the lesser decrease observed in those aged ≥65 years (supplementary file,
8 9	386	Figure S1C). This can be explained by subgroup of pneumonia due to inhalation of
10 11	387	food or vomitus, i.e. aspiration pneumonia and is more prevalent in age group 65
12	388	years old or above. The population of Hong Kong has been seeing an aging trend
13 14	389	and the population of 65 years old or above was 1,114,600 in 2015, and increased to
15 16	390	1,371,800 in 2020. In our study, the lesser decrease in incidence of all-cause
17	391	pneumonia in 2019 – 2020 was observed in those aged 65 years or above,
18 19	392	suggesting that the magnitude of decrease in all-cause pneumonia may be limited by
20 21	393	any potential increase in aspiration pneumonia in the expanding number of elderly
22 23	394	people. Secondly, the risk of aspiration pneumonia would not be affected by
24	395	measures of universal masking or social distancing, thus reducing their protective
25 26	396	effect on all-cause pneumonia.
27 28	397	
29	398	Pneumococcal pneumonia and IPD are debilitating diseases which have been
30 31	399	shown to require long length of hospital stay and high hospital cost [40-41]. The LOS
32 33	400	in pneumococcal pneumonia was slightly increased from 17.7 to 19.5 days but was
34 35	401	statistically insignificant. Looking into different age groups, only patients with age 50
36	402	to 64 years old showed statistically significant increase in LOS, while patients in age
37 38	403	group 18 to 49 years old and 65 years old or above showed slight decrease. The
39 40	404	severity of pneumococcal pneumonia can be comparable in the two periods.
41 42	405	
43	406	Health seeking behaviour was also evaluated in our study. Admissions of non-
44 45	407	communicable diseases revealed either statistically insignificant decrease in hospital
46 47	408	attendance or statistically significant increase in hospital attendance. Our study
48	409	covered more than one year time for COVID-19 pandemics with a relatively stable
49 50	410	number of hospital attendance. Hence, the decrease in incidence of pneumococcal
51 52	411	pneumonia, IPD and all-cause pneumonia cannot be explained by health seeking
53 54	412	behaviour alone.
55	413	
56 57	414	Collateral damages were observed during the COVID-19 pandemic [42-43], some of
58 59	415	which were contributed by the decrease in general medical services to concentrate
60	416	healthcare resources for the care of SARS-CoV-2 patients and the prevention of

possible viral spread. However, due to the relatively small number of COVID-19 cases in Hong Kong, provision of acute medical services was minimally disrupted. In our study, the data on admissions for fractures, acute kidney injury and PD peritonitis showed no decrease during the Covid pandemic. Hence the observed decrease in hospital admissions for pneumococcal pneumonia, IPD and all-cause pneumonia should not be artefactual. Masking can be an effective yet low-cost preventive measurement for citizens at high risk of pneumococcal infections.

Limitations

This study is a retrospective observational study and the direct effect of universal masking on pneumococcal pneumonia, IPD and all-cause pneumonia cannot be ascertained. However, our study covered a period of more than one year when universal masking was practiced and a consistent observation of decrease in hospitalization for these diseases were seen. Other factors, namely ambient temperature and AQHI, that might have possible effect on the hospitalization numbers were also included in our analysis.

Our study focused on hospital hospitalization numbers to Hospital Authority. For IPD, the incidence was obtained from Central of Health Protection, HKSAR, which included data from both public and private hospitals data. The LOS and mortality data of IPD were retrieved from the database in Hospital Authority. Admissions to private hospital due to pneumococcal pneumonia and all-cause pneumonia were not included in our study. However, Hospital Authority is the largest healthcare provider in Hong Kong which provides 90% of in-patient services in Hong Kong [44]. Data from Hospital Authority is representable for the general epidemiology of Hong Kong.

Conclusions

The incidence of pneumococcal pneumonia, IPD and all-cause pneumonia decreased during COVID-19 pandemics compare to the data in previous five years. This was observed with widely practice of universal masking and social distancing. We propose the decrease is attributed to universal masking and social distancing which reduced the transmission of bacteria or virus and related bacterial superinfection.

Page	2170	BMJ Open
431	Re	ferences
3 4 5 42	1.	Wu Z, McGoogan JM. Characteristics of and Important Lessons drom the Coronavirus Disease
5 4 5 3		2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese
$4\frac{7}{2}4$		Center for Disease Control and Prevention. JAMA. 2020.
8 4 <i>\$</i> 5 10	2.	World Health Organization statement on the second meeting of the International Health
10 4 56		Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-
12 453		nCoV) https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-
458		international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-
459		<u>coronavirus-(2019-ncov)</u>
460	3.	Ganaie F, Saad JS, McGee L, van Tonder AJ, Bentley SD, Lo SW, et al. A New Pneumococcal
461 461		Capsule Type, 10D, is the 100th Serotype and Has a Large <i>cps</i> Fragment from an Oral
4 <u>62</u>		Streptococcus. mBio. 2020 May 19;11(3):e00937-20.
4 @3	4.	Ludwig E, Bonanni P, Rohde G, Sayiner A, Torres A. The remaining challenges of
24 4 64		pneumococcal disease in adults. Eur Respir Rev. 2012 Mar 1;21(123):57-65.
465	5.	Drijkoningen JJ, Rohde GG. Pneumococcal infection in adults: burden of disease. Clin
4 66 29		Microbiol Infect. 2014 May;20 Suppl 5:45-51.
460	6.	World Health Organization Pneumococcal Disease. Available from:
31 468		https://www.who.int/ith/diseases/pneumococcal/en/
469 34	7.	Burgos J, Luján M, Larrosa MN, Pedro-Botet ML, Fontanals D, Quesada MD, et al. The
4 730 36		problem of early mortality in pneumococcal pneumonia: a study of risk factors. Eur Respir J.
36 473⊉		2015 Aug;46(2):561-4.
4 <u>7</u> 38 4 <u>73</u> 9	8.	Chi RC, Jackson LA, Neuzil KM. Characteristics and outcomes of older adults with community-
4 79 41		acquired pneumococcal bacteremia. J Am Geriatr Soc. 2006 Jan;54(1):115-20.
47442	9.	Deloria, K.M., Bennett, J.C., Garcia, Q.M., Kagucia, E.W., Peterson, M.E., Feikin, D.R., et al.
43 475 45		Global Landscape Review of Serotype-Specific Invasive Pneumococcal Disease Surveillance
476 46		among Countries Using PCV10/13: The Pneumococcal Serotype Replacement and Distribution
4 747 48 47489		Estimation (PSERENADE) Project. Microorganisms. 9.
	10	. Ho, P.L., Law, P.Y., and Chiu, S.S., 2019. Increase in incidence of invasive pneumococcal
4739		disease caused by serotype 3 in children eight years after the introduction of the
4 80 53		pneumococcal conjugate vaccine in Hong Kong. Hum. Vaccin. Immunother. 15: 455-458.
4 81 55 4 82	11	. Bonten MJ, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, et al. Polysaccharide
		conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med. 2015 Mar
483		19;372(12):1114-25.

⁴⁸⁴ 12. López EL, Glatstein E, Ezcurra GC, Iacono M, Teplitz E, Garnero AV, et al. Rapid Decrease in 60 485 Rates of Hospitalization Resulting From Invasive Pneumococcal Disease and Community-

1 4g6 Acquired Pneumonia in Children Aged <60 Months After 13-Valent Pneumococcal Conjugate 487 4 Vaccine Introduction in Argentina. J Pediatric Infect Dis Soc. 2018 Feb 19:7(1):30-35. 13. Nieto Guevara J, Daza C, Smith R. Decrease in Hospitalizations for Pneumonia in Children 4**8**8 489 under Five Years of Age in an Indian Reservation in Panama after the Introduction of the 4**%**0 Heptavalent Pneumococcal Conjugate Vaccine (PCV7). Int J Pediatr. 2013;2013:514578. 49**9** 14. Maruyama T, Taguchi O, Niederman MS, Morser J, Kobayashi H, Kobayashi T, et al. Efficacy 11 492 of 23-valent pneumococcal vaccine in preventing pneumonia and improving survival in nursing 493 home residents: double blind, randomised and placebo controlled trial. BMJ. 2010 Mar 4**9**4 16 8;340:c1004. 49**5** 15. Department of Health Public Health Information System (PHIS) 18 49**6** https://www.healthyhk.gov.hk/phisweb/en/chart detail/26/ 497 16. Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region. 4**98** 23 https://www.chp.gov.hk/ 17. Cucchiari D, Pericàs JM, Riera J, Gumucio R, Md EC, Nicolás D; Hospital Clínic 4H Team. 4**9**9 5925 5928 Pneumococcal superinfection in COVID-19 patients: A series of 5 cases. Med Clin (Barc). 2020 507 28 Dec 11:155(11):502-505. 502 18. Karami Z, Knoop BT, Dofferhoff ASM, Blaauw MJT, Janssen NA, van Apeldoorn M, et al. Few 30 bacterial co-infections but frequent empiric antibiotic use in the early phase of hospitalized 503 5Q3 patients with COVID-19: results from a multicentre retrospective cohort study in The 503 Netherlands. Infect Dis (Lond). 2021 Feb;53(2):102-110. 5**36** 19. Hughes S, Troise O, Donaldson H, Mughal N, Moore LSP. Bacterial and fungal coinfection 37 5038 among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-5048 care setting. Clin Microbiol Infect. 2020 Oct;26(10):1395-1399. 5**699** 42 20. Community Health Module Research Reports, Hong Kong Public Opinion Research Institute. 5 140 Available from: https://www.pori.hk/research-reports 5 44 5 45 21. Chan KH, Lee PW, Chan CY, Lam KBH, Ho PL. Monitoring respiratory infections in covid-19 5 **f2** 47 epidemics. BMJ. 2020;369:m1628. 5 **#3** 22. Chan KPF, Ma TF, Kwok WC, Leung JKC, Chiang KY, Ho JCM, et al. Significant reduction in 49 5 **Էֆ** hospital admissions for acute exacerbation of chronic obstructive pulmonary disease in Hong 5 <u>5</u>5 Kong during coronavirus disease 2019 pandemic. Respir Med. 2020 Sep;171:106085. 5 Pð 54 23. Chan KPF, Kwok WC, Ma TF, Hui CH, Tam TC, Wang JK, et al. Territory-wide Study on Hospital 5 53 Admissions for Asthma exacerbation in COVID-19 Pandemic. Ann Am Thorac Soc. 2021 Feb 5 <u>56</u> 5 <u>58</u> 26. 5 [9 59 24. Hong Kong Observatory. https://www.hko.gov.hk/en/wxinfo/pastwx/mws/mws.htm 25. Air Quality Health Index monthly summary. https://www.aghi.gov.hk/en/aghi/statistics-of-5**20** aqhi/aqhi-monthly-summary.html 521

- 1
- 5 $\frac{1}{2}$ 26. Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D. Segmented regression analysis of interrupted time series studies in medication use research. J Clin Pharm Ther. 2002 Aug;27(4):299-309.
- 5⁶/₂₅ 27. A. Agresti (2012). Categorical Data Analysis, 3rd Edition. Wiley
- 52% 28. Lim RH, Chow A, Ho HJ. Decline in pneumococcal disease incidence in the time of COVID-19
 in Singapore. J Infect. 2020;81(6):e19-e21.
- 528 29. Juan HC, Chao CM, Lai CC, Tang HJ. Decline in invasive pneumococcal disease during COVID 19 pandemic in Taiwan. J Infect. 2021 Feb;82(2):282-327.
- 310. Teng JLL, Fok KMN, Lin KPK, Chan E, Ma Y, Lau SKP, Woo PCY. Substantial decline in invasive pneumococcal disease (IPD) during COVID-19 pandemic in Hong Kong. Clin Infect
 Dis. 2021 Apr 27:ciab382.
- 31. Bennett JC, Hetrich MK, Garcia Quesada M, Sinkevitch JN, Deloria Knoll M, Feikin DR, et al.
 Changes in Invasive Pneumococcal Disease Caused by *Streptococcus pneumoniae* Serotype
 1 Following Introduction of PCV10 and PCV13: Findings from the PSERENADE Project.
 Microorganisms. 2021 Mar 27;9(4):696.
- 32. Waight PA, Andrews NJ, Ladhani SN, Sheppard CL, Slack MP, Miller E. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis. 2015
 May;15(5):535-43.
- 33. Berman-Rosa M, O'Donnell S, Barker M, Quach C. Efficacy and Effectiveness of the PCV-10
 and PCV-13 Vaccines Against Invasive Pneumococcal Disease. Pediatrics. 2020
 Apr;145(4):e20190377.
- 34. McLaughlin JM, Jiang Q, Isturiz RE, Sings HL, Swerdlow DL, Gessner BD et al. Effectiveness
 of 13-Valent Pneumococcal Conjugate Vaccine Against Hospitalization for Community Acquired Pneumonia in Older US Adults: A Test-Negative Design. Clin Infect Dis. 2018 Oct
 30;67(10):1498-1506.
- 35. Lawrence H, Pick H, Baskaran V, Daniel P, Rodrigo C, Ashton D et al. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against vaccine serotype pneumococcal pneumonia in adults: A case-control test-negative design study. PLoS Med. 2020 Oct
 23;17(10):e1003326.
- 36. Cheng VC, Wong SC, Chuang VW, So SY, Chen JH, Sridhar S et al. The role of community wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due
 to SARS-CoV-2. J Infect. 2020 Jul;81(1):107-114.
- $5\frac{58}{59}$ 37. Chan JF, Yuan S, Zhang AJ, Poon VK, Chan CC, Lee AC et al. Surgical Mask Partition
- 559 Reduces the Risk of Noncontact Transmission in a Golden Syrian Hamster Model for
- 557 Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2020 Nov 19;71(16):2139-2149.

	1'
558	38. Wong SC, Lam GK, AuYeung CH, Chan VW, Wong NL, So SY et al. Absence of nosocomial
5 3 9	influenza and respiratory syncytial virus infection in the coronavirus disease 2019 (COVID-19)
4 5 6 0	era: Implication of universal masking in hospitals. Infect Control Hosp Epidemiol. 2021
5 6 1	Feb;42(2):218-221.
, 582	39. Chan T, Tay MZ, Kyaw WM, Chow A, Ho HJ. Epidemiology, vaccine effectiveness, and risk
9 569	factors for mortality for pneumococcal disease among hospitalised adults in Singapore: a case-
11 56 4	control study. BMC Infect Dis. 2020 Jun 17;20(1):423.
563	40. Darbà J, Marsà A. Hospital incidence, in-hospital mortality and medical costs of pneumococcal
568 16	disease in Spain (2008-2017): a retrospective multicentre study. Curr Med Res Opin. 2021
16 56 7	Mar;37(3):523-530.
18 56 8	41. Brotons P, Gelabert G, Launes C, Sicuri E, Pallares R, Muñoz-Almagro C. Cost of hospitalizing
569	children with invasive pneumococcal pneumonia. Vaccine. 2013 Feb 4;31(7):1117-22.
21 5 70	42. Bersano A, Kraemer M, Touzé E, Weber R, Alamowitch S, Sibon I et al. Stroke care during the
23 5724	COVID-19 pandemic: experience from three large European countries. Eur J Neurol. 2020
25 572	Sep;27(9):1794-1800.
573 28	43. Del Vecchio Blanco G, Calabrese E, Biancone L, Monteleone G, Paoluzi OA. The impact of
28 5724	COVID-19 pandemic in the colorectal cancer prevention. Int J Colorectal Dis. 2020
30 5735	Oct;35(10):1951-1954.
5733	44. Hospital Authority Statistical Report. Available from:
5 71 35	https://www3.ha.org.hk/data/HAStatistics/DownloadReport/2.
35 36	
37	
38 39	
40 41	
42	
43 44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55 56	
57	
58 59	
60	

BMJ Open

	All ages		18-49 years		50-64 years		≥65 years	
	No. of	Incidence rate per	No. of	Incidence rate per	No. of	Incidence rate per	No. of	Incidence rate per
Disease ^a	episodes	100,000 person-years	episodes	100,000 person-years	episodes	100,000 person-years	cases	100,000 person-years
IPD								
Period 1	699	2.2	125	0.7	195	2.2	379	6.2
Period 2	26	2.4	5	0.9	6	2.0	15	6.6
Period 3	17	0.2	3	0.08	8	0.4	6	0.4
% reduction ^b		88.9% (79.8%- 98.0%)***		88.6% (66.8%-110.4%)***		81.3% (62.1%-100.4%)***		93.5% (82,2%-104.8%)**
Pneumococcal								
pneumonia								
Period 1	1,970	6.2	217	1.3	435	4.9	1,318	21.7
Period 2	74	6.9	11	2.0	14	4.7	49	32.4
Period 3	119	1.7	8	0.2	24	1.2	87	5.9
% reduction		72.5% (65.9%-79.1%)***		82.5% (64.5%-100.5%)***		74.8% (61.0%-88.6%)***		73.0% (65.2%-80.8%)***
				NA				
All-cause								
pneumonia								
Period 1	372,660	1169.7	19,502	115.3	38,360	432.4	314,798	5177.1
Period 2	13,865	1288.2	843	153.6	1,448	484.6	11,574	5062.3
Period 3	67,474	964.5	2,473	69.3	6,181	318.3	58,820	3958.0
% reduction		17.5% (16.8%-18.2%)***		39.9% (37.1%-42.7%)***		26.4% (24.3%-28.5%)***		23.5% (22.8%-24.3%)***

Table 1 Incidence and number per 100,000 person year of pneumococcal pneumonia, invasive pneumococcal disease (IPD) and pneumonia

^aPeriod 1, January 2015 to December 2019 (before covid-19); period 2, January 2020 to February 2020 (transition period); period 3 March 2020 to March 2021 (post-COVID-19). ^b Percentage reduction in period 3 relative to period 1 as the baseline

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

*p <0.05 to 0.01, **p <0.01 to 0.005, ***p<0.005

	Mean length of stay (days)				Mortality rate (%)				
	All ages	18-49 years	50-64 years	≥65 years	All ages	18-49 years	50-64 years	≥65 years	
IPD									
Period 1	18.8 ± 48.4	27.9 ± 102.8	17.7 ± 19.1	15.9 ± 18.9	12.1(8.8-16.1)	9.1(3.4-18.7)	8.4(3.7-15.9)	15.3(10.3-21.4)	
Period 3	31.6 ± 79.2	6.3 ± 5.2	76.4 ± 140.3	14.1 ± 9.9	6.3(1.6-30.2)	0.0	0.0	14.3(3.6-57.9)	
Pneumococcal Pneumonia									
Period 1	17.7 ± 27.5	16.9 ± 28.0	18.8 ± 32.6*	17.5 ± 25.6	13.1(11.7-14.8)*	4.2(1.9-7.7)	7.5(5.3-10.5)**	16.3(13.6-18.7)	
Period 3	19.5 ± 26.3	13.6 ± 15.6	31.7 ± 48.1*	16.8 ± 16.6	22.7(15.5-31.3)*	0.0	29.2(12.6-51.1)**	23.0(14.6-33.2)	
All-cause pneumonia				0					
Period 1	11.7 ± 31.7***	10.3 ± 42.5***	13.4 ± 45.1**	11.7 ± 28.9	20.5(20.4-20.6)***	5.3(4.9-5.6)*	13.0(11.4-12.0)***	22.4(22.2-22.4)*	
Period 3	10.8 ± 15.0***	9.4 ± 16.5***	11.9 ± 20.1**	10.7 ± 14.3	24.2(24.9-25.6)***	6.8(5.9-7.9)*	16.1(5.2-17.0)***	27.0(26.6-27.3)*	
	**p <0.01 to 0.005	, p.0.000							

shoir ام ال 1 - 11

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

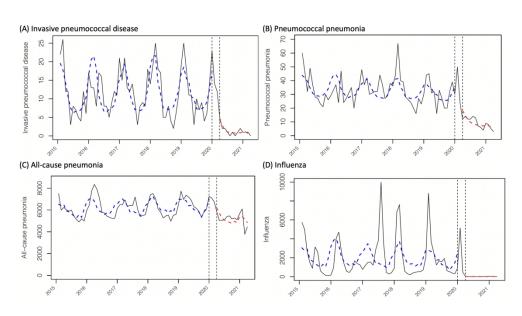


Figure 1. Trend analysis of monthly numbers of invasive pneumococcal disease (IPD), pneumococcal pneumonia, all-cause pneumonia, and influenza in Hong Kong, January 2015 to March 2021. Numbers of IPD were those obtained through mandatory notification. Numbers of pneumococcal pneumonia and all-cause pneumonia were territory-wide hospitalizations by discharge diagnoses. Numbers of influenza viruses were those detected in respiratory specimens in a territory-wide laboratory surveillance.

419x237mm (144 x 144 DPI)

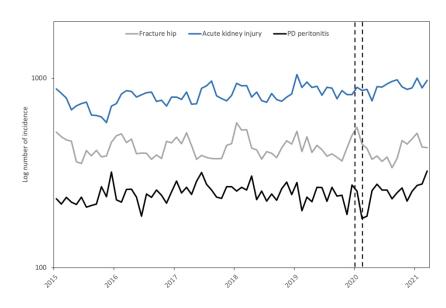
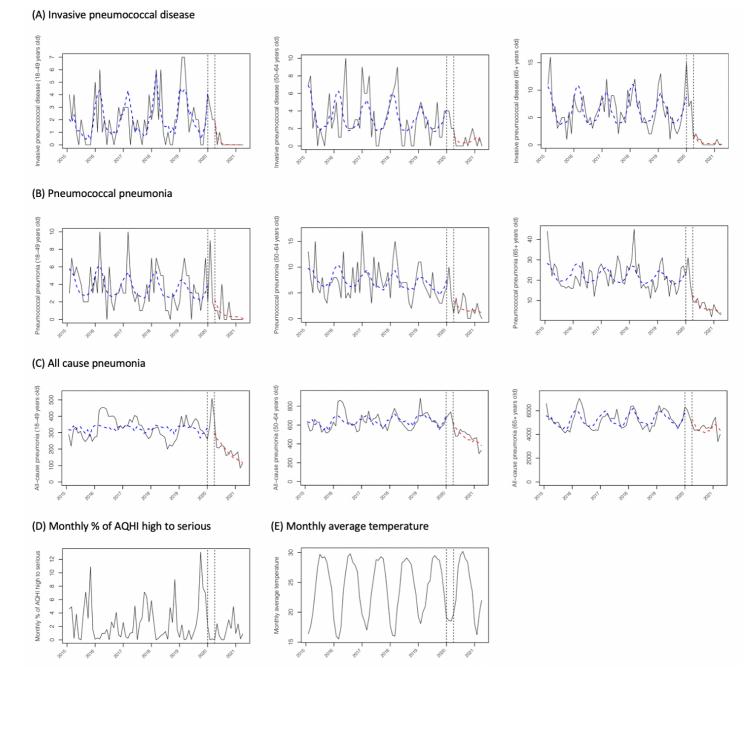



Figure 2. Admission numbers of fracture hip, acute kidney injury and PD peritonitis. 419x237mm (144 x 144 DPI)

Supplementary file.

Figure S1. Trend analysis of monthly number of (A) age-stratified hospitalizations for invasive pneumococcal disease, (B) age-stratified hospitalizations for pneumonococcal pneumonia, (C) age-stratified hospitalizations for and (D) monthly percentage of air quality health index (AQHI) high to serious and (E) monthly average ambient temperature.

Table C1. Transformation of month	ly number of beenitelization by and meyod in	r partiada hafara and aftar the COVID 10 paradamia
Table 51. Trend analysis of month	ly number of nospitalization by age groups if	n periods before and after the COVID-19 pandemic

	Relativ	e risk (95% CI)	Change in trend#
	Period 1 ^	Period 3 [^]	
IPD			
All ages	1.0020 (0.9977-1.064)	0.8484 (0.7501-0.9597)**	-70.39% (-86.55% to -34.73%)**
18-49 years	1.0129 (1.0022-1.0238)	0.5272 (0.2176-1.2772)	-31.27% (-89.72% to 359.72%)
50-64 years	0.9969 (0.9888-1.0051)	0.9585 (0.8087-1.1362)	-70.43% (-92.80% to 21.42%)
65 years or above	1.0012 (0.9953-1.0071)	0.7777 (0.6111-0.9897)*	-70.83% (-91.59% to 1.12%)
Pneumococcal Pneumonia			
All ages	0.9978(0.9953-1.0004)	0.9042(0.8621-0.9483)***	-42.79% (-59.36% to -19.48%)*
18-49 years	0.9964(0.9887-1.0042)	0.6768(0.2171-2.1093)	-32.32% (-78.29% to 110.93%)
50-64 years	0.9962(0.9907-1.0017)	0.9174(0.8260-1.0189)	-50.21% (-76.93% to 7.48%)
65 years or above	0.9986(0.9954-1.0017)	0.9107(0.8612-0.9640)*	-41.19% (-60.82% to -11.73%)*
All-cause pneumonia		- T - b	
All ages	1.0014(1.0012-1.0016)***	0.9835(0.9815-0.9855)***	-11.24% (-12.76% to -9.7%)***
18-49 years	1.0000(0.9992-1.0008)	0.9263(0.9164-0.9364)***	-6.05% (-13.41% to 1.94%)
50-64 years	1.0015(1.0009-1.0021)***	0.9620(0.9556-0.9684)***	-9.32% (-14.14% to -4.22%)***
65 years or above	1.0011(1.0009-1.0013)***	0.9879(0.9858-0.9901)***	-13.30% (-12.94% to -9.64%)***

[^]Trend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the (relative risk expressed the month-to-month change in hospitalization numbers

#Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in period 1

*p <0.05 to 0.01, **p <0.01 to 0.005, ***p<0.005

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6,7
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	6,7
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	6,7
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6,7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6,7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7,8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7,8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	7,8
		(c) Explain how missing data were addressed	N/2
		(d) Cohort study—If applicable, explain how loss to follow-up was	N/.
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	7,8

Continued on next page

2
3
4
5
6
0
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1 2

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	9-12
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	9-12
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	9-12
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	9-12
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	9-12
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	15
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	13-
		multiplicity of analyses, results from similar studies, and other relevant evidence	15
Generalisability	21	Discuss the generalisability (external validity) of the study results	13,14
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	3
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Invasive pneumococcal disease, pneumococcal pneumonia and all-cause pneumonia in Hong Kong during the COVID-19 pandemic compared with the preceding 5 years: a retrospective observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055575.R1
Article Type:	Original research
Date Submitted by the Author:	30-Aug-2021
Complete List of Authors:	Chan, King-Pui Florence; Queen Mary Hospital, Department of Medicine Ma, Ting-Fung; University of Wisconsin-Madison, Department of Statistics Ip, Mary; University of Hong Kong Ho, Pak-leung; Queen Mary Hospital, Microbiology; University of Hong Kong, Carol Yu Centre for Infection
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health, Respiratory medicine
Keywords:	COVID-19, Respiratory infections < THORACIC MEDICINE, Thoracic medicine < INTERNAL MEDICINE, Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Title: Invasive pneumococcal disease, pneumococcal pneumonia and all-cause
2	pneumonia in Hong Kong during the COVID-19 pandemic compared with the
3	preceding 5 years: a retrospective observational study
4	
5	King-Pui Florence Chan, MBBS ¹ , Ting-Fung Ma, MPhil ² , Mary Sau-Man Ip ¹ , MD,
6	Pak-Leung Ho, MD ³
7	
8	Authors' affiliations:
9	1. Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong
10	Kong SAR, China
11	2. Department of Statistics, University of Wisconsin - Madison, United States of
12	America
13	3. Department of Microbiology, and Carol Yu Centre for Infection, University of Hong
14	Kong, Hong Kong SAR, China
15	ORCID: 0000-0003-2094-1206 (King-Pui Florence Chan); 0000-0001-6028-5640
16	(Ting-Fung Ma); 0000-0002-8692-6933 (Mary Sau-Man Ip); 0000-0002-8811-1308
17	(Pak-Leung Ho)
18	
10	Correspondence to:
19	Correspondence to:
20	Pak-Leung Ho
21	Department of Microbiology and Carol Yu Centre for Infection, Queen Mary Hospital,
22	University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
23	Email: plho@hku.hk
24	Tel: 852-2255-2579

3 4	26	Abstract
5	27	Objectives: To compare the incidence and severity of invasive pneumococcal
6 7	28	diseases (IPD), pneumococcal pneumonia and all-cause pneumonia during COVID-
8 9	29	19 period with widely practiced of universal masking and social distancing to that of
10 11	30	previous 5 years.
12	21	Design: Detroppetive chargetional study on incidence of investive province
13 14	31	Design: Retrospective observational study on incidence of invasive pneumococcal
15 16	32	diseases (IPD), pneumococcal pneumonia and all-cause pneumonia between January
17	33	2015-December 2019 and March 2020-March 2021. January-February 2020 was
18 19	34	excluded from analysis as it was treated as transitional period between normal time
20 21	35	and pandemic, where universal masking was not completely executed.
22	36	Setting: Episode-based data by retrieval of hospitalization records from the Hospital
23 24 25	37	Authority's territory-wide electronic medical record database in Hong Kong.
26 27	38	Participants: Hospitalized patients with invasive pneumococcal diseases (IPD)
28 29	39	(n=742), pneumococcal pneumonia (n=2163) and all-cause pneumonia (including
30	40	COVID-19 pneumonia, n=453,999) at age 18 or above. Control diagnoses were
31 32 33	41	included to assess confounding from health-seeking behaviors.
34 35	42	Primary and secondary outcome: Primary outcome is the incidence of diseases
36	43	between two periods. Secondary outcomes include disease severity surrogated by
37 38 39	44	length of stay and mortality.
40 41	45	Results: Monthly average number of IPD, pneumococcal pneumonia and all-cause
42	46	pneumonia hospitalization significantly decreased by 88.9% (95%CI 79.8%-98.0%,
43 44	47	p<0.0005), 72.5% (95%CI 65.9%-79.1%, p<0.0005) and 17.5% (95%CI 16.8%-18.2%,
45 46	48	p<0.0005). Change in trend from January 2015-December 2019 to March 2020-March
47	49	2021 was -70% (95%CI -87% to -35%, p=0.0025), -43% (95%CI -59% to -19%,
48 49	50	p=0.0014) and -11% (95%CI -13% to -10%, p<0.0005). LOS for IPD and
50 51	51	pneumococcal pneumonia episodes were insignificantly different in the two periods.
52 53	52	No reductions in control diagnoses were observed.
54	50	
55 56	53	Conclusions: Incidence of IPD, pneumococcal pneumonia, and all-cause pneumonia
57 58	54	decreased during COVID-19 pandemic. This was observed with universal masking
59	55	and social distancing. We proposed this is related to reduce transmission of respiratory
60	56	viruses and bacteria.

2		
3 4	57	Strength and limitations of this study:
5 6	58	 A territory-wide study with near 100% practice of universal masking
7	59	 Other factors including temperature and air quality were also included in
8 9	60	our analysis
10 11	61	 Disease severity of IPD, pneumococcal pneumonia, and all-cause
12 13	62	pneumonia were compared between the two periods
14	63	 Data from private sector (<10%) were not included in our study
15 16	64	The causal relationship cannot be ascertained from this retrospective
17 18	65	study
19	66	
20 21	67	Funding: This research received no specific grant from any funding agency in the
22 23	68	public, commercial or not-for-profit sectors.
24 25	69	
26	70	Competing interests: There are no competing interests.
27 28	71	
29 30	72	Data availability statements: No additional data is available.
31 32	73	
33	74	Authors' contributions:
34 35	75	King-Pui Florence Chan and Ting-Fung Ma were involved in study concept and
36 37	76	design; acquisition, analysis and interpretation of data; drafting the work and final
38 39	77	approval of the manuscript. Mary Sau-Man Ip were involved in critical revision of
40	78	manuscript for important intellectual content and final approval of the manuscript. Pak-
41 42	79	Leung Ho was involved in study concept and design; analysis and interpretation of
43 44	80	data; drafting of manuscript; critical revision of the manuscript for important intellectual
45 46	81	content; study supervision; and approval of the final version of the manuscript.
47 48 49	82	
50 51	83	Word count: 3991
52 53 54	84	Keywords: pneumococcal, COVID-19, masking, regression analysis
55 56 57 58 59 60	85	

Page 5 of 32

	_	
	Λ	
ľ	-	

1		4
2 3	86	Text
4 5	00	
6 7	87	Introduction
8 9	88	Coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome
10	89	coronavirus 2 (SARS-CoV-2) infections was first reported in late 2019 [1]. It became
11 12	90	a global pandemic and was declared as a public health emergency of international
13 14	91	concern on 30 January 2020 by the World Health Organization [2]. As of 21st June
15 16	92	2021, more than 178 million people were infected, causing more than 3.8 million
17 18	93	deaths globally.
19 20	94	Pneumococcal disease is caused by Streptococcus pneumoniae infection, with at
21 22	95	least 100 known serotypes of pneumococci [3]. Pneumococcal disease can be
23	96	roughly divided into non-invasive disease and invasive disease. Non-invasive
24 25	97	disease includes sinusitis, acute otitis media and pneumonia. Invasive
26 27	98	pneumococcal disease (IPD) is defined as isolation of Streptococcus pneumoniae
28 29	99	from a normally sterile sites, including blood and cerebrospinal fluid [4). IPD is a
30	100	notifiable disease in Hong Kong since 9th January 2015. Pneumococcal infection is
31 32	101	a major cause of morbidity and mortality worldwide [5], with 1.6 million estimated
33 34	102	deaths annually in 2005 [6]. Incidence of IPD and mortality of pneumococcal
35 36	103	pneumonia are higher in extremes of age [7-8].
37 38	104	The first pneumococcal conjugated vaccine (PCV), Prevnar 7 (PCV7) was
39	105	introduced to United States in 2000 and incorporated in Hong Kong Childhood
40 41	106	Immunisation Programme for children under 2 years old since September 2009 [9-
42 43	107	10]. In Hong Kong, PCV7 was replaced by the 10-valent and 13-valent
44 45	108	pneumococcal conjugate vaccines (PCV10 and PCV13) in 2010 and 2011
46 47	109	respectively [11-12]. PCV13 was effective in preventing vaccine-type pneumococcal
48	110	pneumonia, bacteraemia and nonbacteraemic community-acquired pneumonia [13].
49 50	111	Decline in incidences of all-cause pneumonia in children and elderly was reported
51 52	112	after implementation of PCV in childhood vaccination program [14-15]. 23-valent
53	113	polysaccharide vaccine (PPSV23) was effective in preventing pneumococcal
54 55	114	pneumonia and reducing mortality from pneumococcal pneumonia in nursing home
56 57 58 59	115	residents [16]. In our locality, elderly at age 65 years and above without high risk
	116	conditions, namely immunodeficiency or chronic cardiac, pulmonary, liver or renal
60	117	disease, or diabetes mellitus were recommended to receive either a single dose of

2		
3 4 5 6 7 8 9	118	PCV13 or a single dose of PPSV23. Number of PPSV23 vaccine recipients at age
	119	65 years or above increased from 35,000 in year 2015/2016 to 81,700 in 2019/2020,
	120	reaching accumulative 45.5% of population in the age group vaccinated in
	121	2019/2020 [17]. Pneumonia is a common disease causing hospitalization,
10	122	accounting for 2.9% of all inpatient discharges and death in Hong Kong [18]. It is the
11 12	123	second leading cause of death with age specific death rates increased markedly
13 14	124	after age 65 [17].
15 16	125	
17	126	Whether patients with COVID-19 are more susceptible to pneumococcal
 18 19 20 21 22 23 24 25 26 27 28 	127	superinfection is still under debate. Superinfection of pneumococcal in COVID-19
	128	patients was reported [19]. Yet, low frequency of bacterial coinfection in patients with
	129	early COVID-19 was also observed [20-21]. There is limited evidence on the
	130	incidence and severity of IPD, pneumococcal pneumonia, and all-cause pneumonia
	131	during COVID-19 pandemic, especially in area where universal masking and social
	132	distancing were widely practiced. Since January 2020, universal masking in public
29	133	area was voluntarily performed by Hong Kong citizens against infection by COVID-
30 31 32 33	134	19. Cross sectional telephone self-reported surveys by the Hong Kong Public
	135	Opinion Research Institute (HKPORI) showed percentage of wearing mask was
34 35	136	74.5% on 20th-23rd January 2020 (n=1,008), 97.6% on 5th-20th February
36	137	(n=10,405) and 98.9% on 4th-19th March (n=15,739) [22]. On 23rd July 2020,
37 38	138	masking was mandatory in public area upon the introduction of Prevention and
39 40	139	Control of Disease (Wearing of Mask) Regulation (Cap. 599I). Social distancing
41	140	measurements were voluntarily practiced by public and implemented by government
42 43	141	since 25th January 2020. These public health interventions were shown to
44 45	142	associated with relatively low rate of COVID-19 and early termination of influenza
46 47	143	season in Hong Kong [23]. Our previous studies suggested universal masking and
48	144	social distancing were associated with significant reduction in acute exacerbation of
49 50	145	chronic obstructive pulmonary disease and asthma in Hong Kong [24,25]. In the
51 52	146	current study, we hypothesized that the aforementioned COVID-19 related public
53 54	147	health interventions and reduction in respiratory virus activities would be associated
55	148	with reduction in hospitalization due to pneumococcal infections and pneumonia in
56 57	149	general.

3 4	151	Materials and Methods
5 6	152	A retrospective study assessing the numbers of IPD, pneumococcal pneumonia, and
7 8	153	all-cause pneumonia which required hospital hospitalization during the period of
9 10	154	COVID-19 in Hong Kong, comparing with that in the preceding five years as
11	155	baseline. The study period was 1st January 2015 to 31st March 2021 with exclusion
12 13	156	of 1st January 2020 to 28th February 2020 from analysis, when universal masking
14 15	157	was not yet completely executed.
16 17	158	
18	159	Data source
19 20	160	Episode-based data was obtained by retrieval of hospitalization records from the
21 22	161	Hospital Authority's territory-wide electronic medical record database, Clinical Data
23 24 25 26 27 28 29 30 31 32	162	Analysis and Reporting System (CDARS), which provides 90% of in-patient hospital
	163	care service in Hong Kong [24,25].
	164	
	165	Diagnosis code of pneumococcal pneumonia (ICD-9 code 481) was searched on
	166	CDARS. IPD is a notifiable disease since January 2015 with monthly number notified
	167	cases and age obtained from the Department of Health, Hong Kong Special
33 34	168	Administrative Region (HKSAR). Monthly number of influenza virus detection was
35 36	169	collected from a territory-wide laboratory surveillance for both in-patients and out-
37	170	patients in both public and private medical sectors from the Centre for Health
38 39	171	Protection (CHP), HKSAR [17].
40 41	172	
42 43	173	All-cause pneumonia including the following ICD-9 codes for viral, bacterial,
44	174	tuberculous, fungal and unspecified pneumonia, pneumonia due to inhalation of food
45 46	175	or vomitus and lung abscess were obtained from CDARS (ICD-9 code 003.22,
47 48	176	055.1, 0.1160-1.1166, 112.4, 115, 117.3, 480, 481, 482, 483.1, 483.8, 485, 486,
49 50	177	487, 507.0, 513). Patient with COVID-19 associated pneumonia was included in the
51	178	all-cause pneumonia dataset. The contribution of COVID-19 within all-cause
52 53	179	pneumonia was queried using ICD codes for COVID-19 disease (ICD-9 code 079.89,
54 55	180	480.8, 519.8). Demographics data (including sex, age), clinical data (including
56	181	hospitalization date, length of stay, episode death, date of death) were collected. The
57 58	182	results including admission number of various diseases were available in the CHP
59 60	183	website and the Hospital Authority Statistics Report [17,26].

7

1 2		
3	184	
4 5	185	Inclusion/ exclusion criteria
6 7	186	Patients with 1) age 18 or above 2) hospitalization for the listed diseases
8 9	187	(pneumococcal pneumonia, IPD and pneumonia) were included in the study.
10 11	188	
12	189	Children at aged 0 to 17 years old were excluded in this study. Duplicated record of
13 14	190	single patient with different diagnoses in same hospital admission were removed.
15 16	191	
17	192	Other diagnoses
18 19	193	Number of hospitalization for other common medical and surgical conditions including
20 21	194	acute kidney injury (ICD-9 code 580, 584), fracture hip (ICD-9 code 820) and peritonitis
22 23	195	due to peritoneal dialysis (PD peritonitis) (ICD-9 code 996.68) were collected. These
24	196	were included to evaluate the possibility of decrease in hospital attendance due to
25 26	197	various reasons such as fear of COVID-19 infection in hospital. These diseases were
27 28	198	selected as are non-communicable diseases and have minimal interactions with
29 30	199	environmental factors including mean ambient temperature and air-pollution.
31	200	
32 33	201	Other variables
34 35	202	Monthly mean ambient temperature was obtained from the Hong Kong Observatory
36 37	203	[27]. Air quality was measured by air quality health index (AQHI), which is calculated
38	204	based on the cumulative health risk attributable to a 3-hour moving average
39 40	205	concentrations of ozone, nitrogen dioxide, sulphur dioxide and particulate matter [28].
41 42	206	It was reported in scale of 1 to 10 and 10+ and grouped into five health risk categories,
43 44	207	namely low [1-3], moderate [4-6], high [7], very high [8-10] and serious [10+] with
45	208	different precautionary actions were advised. People with respiratory illness were
46 47	209	advised to minimize their outdoor stay when AQHI high to serious. The AQHI was
48 49	210	reported hourly in 13 stations located in different area of Hong Kong. The total number
50	211	of hours with AQHI recorded as high to serious grades were expressed as percentage
51 52	212	of total number of hours collected in a month.
53 54	213	
55 56	214	Statistical method
57	215	Total number of hospitalizations due to IPD, pneumococcal pneumonia and all-cause
58 59	216	pneumonia were collected and analysed. Each disease was further divided into three

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3		
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	217	different age groups, including 18 to 49 years, 50 to 64 years, and 65 years or above
	218	for analysis.
	219	
	220	Analysis was done on the number of hospitalizations between January 2015 to
	221	December 2019, the period prior COVID-19 (period 1) and March 2020 to March
	222	2021 (period 3), while January to February 2020 (period 2) was treated as transition
	223	period and excluded from the analysis. Wilcoxon rank sum test was first used to
	224	analyse the statistical significance of number of hospitalizations between period 1
	225	and period 3. Generalized linear models were then applied for statistical inference of
	226	various types of responses. Log-linear model was used for studying the effect of
	227	pandemic as intervention under segmented regression framework in term of the
	228	change in trend (i.e. an increase or decrease in the level of the segment) between
23 24	229	period 1 (pre-intervention segment) and period 3 (post-intervention segment) on the
25 26 27 28 29 30 31 32 33 34 35 36	230	monthly hospitalization count. Regression coefficients of log-linear model can be
	231	interpreted as the effect due to pandemic by log-linear model [29]. Temporal effect
	232	was adjusted by covariates, including AQHI, temperature and effect of masking.
	233	
	234	Generalized linear model was used for comparing the mortality rate of individuals
	235	between the two time periods [30]. Hospitalization length of stay (LOS) was
	236	described in days using median and standard deviation. Statistical inference of the
37 38	237	LOS in hospitalization of individuals was done by Wilcoxon rank sum test with odds
39 40	238	ratio and relative risks and confidence intervals calculated [29].
41	239	
42 43	240	Monthly incidence rate for each disease was calculated using the total population
44 45	241	followed by age groups stratification (18 to 49 years, 50 to 64 years and ≥65 years)
43 46 47 48 49 50 51 52 53	242	and expressed as number per 100,000 person-year. Age-specific population data
	243	was obtained from the Census and Statistics Department.
	244	
	245	Ethics Approval
	246	The study was approved by the Institutional Review Board of the University of Hong
54 55	247	Kong/ Hospital Authority Hong Kong West Cluster (Reference Number UW-21-325).

Patient and public involvement

- 250 Patients or the public were not involved in the design, or conduct, or reporting, or
- 251 dissemination plans of our research.

tor beer teries only

1		10
2 3	253	Results
4 5 6 7 8	255 254	Invasive pneumococcal disease
	255	The total number of notified IPD episodes was 742 in the entire study, with 699
	256	reported in period 1 and 17 reported in period 3. Pneumococcal serotypes for 684 of
9 10	257	the 699 episodes in period 1, and 13 of the 17 episodes in period 3 were
11 12	258	successfully determined. The proportions attributed to PCV13 serotypes was 66.5%
13 14	259	(465/699) and 29.4% (5/17) respectively for period 1 and period 3. Serotype 3 was
15	260	the commonest serotype in both periods, accounting for 41.3% (289/699) and 17.6%
16 17	261	(3/17) of total, respectively. From period 1 to period 3, the monthly number of IPD
18 19	262	caused by PCV13 serotypes declined by 95.1% (95%CI 93.4%-96.4%) while those
20 21	263	for non-PCV13 serotypes declined by 83.0% (95%CI 78.8%-86.5%), and those for
22	264	PPSV23 serotypes declined by 94.1% (95% CI 92.3%-95.5%). The small difference
23 24	265	between declines in PCV13 and PPSV23 serotypes was mainly attributed to
25 26	266	serotype 6A which was included in PCV13 but not in PPVS23.
27 28	267	
29	268	Monthly number of IPD peaked in January-February each year except in 2016, with
30 31	269	the peak in April (Figure 1A and Figure S2). Monthly average number of notified IPD
32 33	270	episodes was 11.7 \pm 6.2 in period 1, with significant decrease to 1 \pm 4.3 in period 3
34 35	271	(p<0.0005). By log-linear model segmented regression, relative risk of IPD in period
36	272	3 was 0.85 (95%Cl 0.75-0.96, p=0.0089) (Table S1). Further analysis on the relative
37 38	273	risk of different age groups showed significant decline in relative risk of IPD in aged
39 40	274	≥65 years (0.78, 95%Cl 0.61-0.99, p=0.041). Estimated change in trend in the mean
41 42	275	number of cases from period 1 to period 3 was -70% (95%CI -87% to -35%,
43	276	p=0.0025) (Figure 1A, Table S1).
44 45	277	
46 47	278	Incidence rate per 100,000 person-years was 2.2 in period 1 and 0.2 in period 3, with
48 49	279	an interval reduction of 88.9% (95%Cl 79.8%-98.0%, p<0.0005). Incidence rate ratio
50	280	between period 1 and period 3 was 0.11 (95%Cl 0.07-0.18, p<0.0005) (Table 1). IPD
51 52	281	is most prevalent in age ≥65. The magnitude of reduction in incidence rate was
53 54	282	similar across different age groups, ranging from 81.3% to 93.5% (p<0.0005 for all
55 56	283	age groups) (Table 1).
57	284	
58 59		
60		

The overall median LOS for IPD was 12 (Interquartile range, IQR 16) days in period
1 and 12 (IQR 11) days in period 3 (Table 2), with statistically insignificant difference
(p=0.89). Statistically insignificant variations in LOS of different age groups were
observed. *Pneumococcal pneumonia*In the entire study period, there were 2,163 episodes of hospitalization for

pneumococcal pneumonia, with 1970 episodes in period 1 and 119 episodes in period 3 (Table 1). Monthly number of pneumococcal pneumonia was peaked in January-February each year except in 2016, with the peak in April (Figure 1B and Figure S2). The average monthly hospitalizations was 32.8±9.9 episodes in period 1, with significant drop to 9.2±3.9 episodes in period 3 (p<0.0005). By log-linear model segmented regression, relative risk of pneumococcal pneumonia was 0.90 (95%CI 0.86-0.95, p<0.005) in period 3. Trend analysis revealed a change of -43% (95%CI -59% to -19%, p=0.0014, Figure 1B, Table S1) from period 1 to period 3. Age groups analysis showed similar change in trend for all age groups, with statistically significance in aged ≥65 years (-41%, 95%CI -61% to -12%, p=0.010) from period 1 to period 3 (Table S1, Figure S1).

³⁴ 35 303

Overall, the incidence rate of hospitalization for pneumococcal pneumonia decreased significantly by 72.5% (95%CI 65.9%-79.1%, p<0.0005), from 6.2 per 100,000 person-years in period 1 to 1.7 per 100,000 person-years in period 3. Incidence rate ratio between period 1 and period 3 was 0.28 (95%CI 0.23-0.33, p<0.0005) (Table 1). Incidence rate per 100,000 person year showed statistically significant reduction in all age groups, ranging from 73.0% to 82.5%.

The overall median LOS for pneumococcal pneumonia in period 1 and period 3 was 9 (IQR 14) days and 12 (IQR 17) days in all age group (p=0.051) (Table 2). Age group stratification showed insignificant changes in length of stay in those aged 18-49 years (p=0.8051) and aged \geq 65 years (p=0.226). Increase in length of stay from 9 (IQR 15) days to 13 (IQR 20) days was observed in age group 50-64 years, and was statistically significant (p=0.019). Mortality rate for all ages was 13.1% (95% CI 11.7%-14.8%) in period 1 and 22.7% (95%CI 15.5%-31.3%) in period 3 (p=0.0187).

1		12
2 3 4	318	Mortality rate was only statistically significant in aged 50-64 years (p=0.0007) but not
5 6 7 8 9	319	in aged 18-49 years (p=0.9917) and aged ≥65 years (p=0.246) (Table 2).
	320	
	321	
10	322	All-cause pneumonia
11 12	323	In the entire study period, total hospitalization episodes for all-cause pneumonia was
13 14	324	453,999, of which 372,660 episodes in period 1 and 67,474 episodes in period 3.
15 16	325	Monthly number of all-cause pneumonia peaked in January to March each year
17 18 19 20 21 22 23 24 25	326	(Figure 1C and Figure S2). Mean monthly number of hospitalizations for all-cause
	327	pneumonia declined by 16.4% (95%Cl 15.7%-17.1%, p<0.0005) from 6211±845.0
	328	episodes in period 1 to 5190.3±593.8 episodes in period 3 (p<0.0005) (Figure 1C).
	329	Estimated change in trend in the mean number of cases in period 3 was -11%
	330	(95%CI -13% to -10%, p<0.0005). By log-linear model segmented regression,
26	331	relative risk of all-cause pneumonia in period 3 compared with period 1 was 0.98
27 28	332	(95%Cl_0.98-0.99, p<0.0005) (Table S1).
29 30 31 32 33 34 35	333	
	334	Overall, the incidence rate per 100,000 person-years was 1,169.7 in period 1, with
	335	17.5% (95%CI 16.8%-18.2%, p<0.0005) reduction in period 3 to 964.5 per 100,000
	336	person-years in period 3. Incidence rate ratio between period 1 and period 3 was
36 37	337	0.83 (95%CI 0.82-0.83, p<0.0005) (Table 1). The incidence rate decrease in period
38	338	3 compared to period 1 in all age groups.
39 40	339	
41 42	340	The overall median LOS for all-cause pneumonia episodes was 6 (IQR 9) days in
43 44	341	period 1 and 6 (IQR 10) days in period 3 (p<0.005) (Table 2). Different age groups
45	342	showed decrease in LOS but were only statistically significant in age 18-49 years
46 47	343	and 50-64 years. The mortality rate increased from 20.5% (95% CI 20.4%-20.6%) in
48 49	344	period 1 to 24.2% (95%Cl 24.9%-25.6%) in period 3 (p<0.005) for all-cause
50 51	345	pneumonia. The increase in mortality rate was statistically significant in all age
52	346	groups (Table 2).
53 54	347	
55 56	348	For subgroup of aspiration pneumonia, total number of hospitalization in the entire
56 57 58 59 60	349	study period was 21,183, with 17990 episodes in period 1 and 2684 episodes in

2 3		
4	350	period 3. Mean monthly number of aspiration pneumonia was 299.8±31.3 in period 1
5 6	351	and 206.5±30.5 in period 3 (p<0.0005).
7 8	352	
9	353	
10 11	354	COVID-19
12 13	355	In period 3, the total reported cases of COVID-19 infection at age 18 or above was
14	356	10,348 [15]. Among these patients, 331 were diagnosed with pneumonia. Majority of
15 16	357	them were in the age group 65 years old or above (n=175). 58 of them were in age
17 18	358	group 18-49 while 98 patients in age group 50-64.
19	359	
20 21	360	
22 23	361	Influenza
24 25	362	The total number of influenza A or B viruses detected from January 2015 to March
26	363	2021 in Hong Kong was 123,732. The monthly number of influenza detections
27 28	364	decreased drastically by 99.5% (95%Cl 99.4%-99.5%, p<0.0005) from 1,966±2179 in
29 30	365	period 1 to 10 ± 18 in period 3 (Figure 1D and Figure S2). The monthly average number
31	366	of respiratory specimens tested was 4313 ± 1172 in period 1 and 3203 ± 1868 in period
32 33 34	367	3.
35 36	368	By log-linear model segmented regression, relative risk of influenza was 0.92 (95%CI
37 38	369	0.88-0.95, p<0.0005). Estimated change in trend in the mean number of detections in
39	370	period 3 was -99.0% (95%CI -99.3% to -98.7%, p<0.0005) of that in period 1 (Figure
40 41	371	1D)
42 43	372	
44 45	373	
46 47	374	Other diagnosis: acute kidney injury, PD peritonitis and fracture hip
48 49	375	The monthly average number of hospitalization episodes for acute kidney injury in
50	376	period 1 and period 3 was 807.8 ± 87.5 and 911.7 ± 62.6 , respectively (p<0.0005)
51 52	377	(Figure 2) The monthly average number of hospitalization episodes for PD peritonitis
53 54	378	was 246.7 \pm 27.7 in period 1 and 255.9 \pm 31.9 in period 3 (p=0.23). The monthly
55	379	average number of hospitalization episodes for fracture hip was 432.9±53.1 in period
56 57 58	380	1 and 417.3 \pm 51.6 in period 3 (p=0.37)
59 60		

Discussion

Hong Kong is a city with population of 7.5 million where universal masking and social distancing were widely practiced during the COVID-19 pandemic period. This study showed a drastic decrease in numbers of hospitalization for IPD and pneumococcal pneumonia and a lesser but still very significant decrease in all cause pneumonia after anti-COVID-19 measures in March 2020 to March 2021.

During COVID-19 period, decrease in incidence of IPD were observed in Taiwan and Singapore [31-32]. The decrease in IPD in Hong Kong was greater magnitude compare to other countries [33]. Our study added new information on the incidence and severity of IPD, pneumococcal pneumonia and all-cause pneumonia in terms of age-stratification.

Introduction of the current pneumococcal conjugate vaccines has been highly successful in reducing the incidence of pneumococcal diseases worldwide [34,35]. Vaccine efficacy of PCV13 against vaccine type IPD in children aged ≤5 years was 86%-96% [36]. In adults aged \geq 65 years, the vaccine efficacy against vaccine type IPD was reported as 75% and against vaccine type community-acquired pneumonia were reported as 45.6% and 72.8% respectively [13,37]. In contrast, PPV23 only has vaccine efficacy of 24% against vaccine type community acquired pneumonia in aged \geq 65 years [38]. In Hong Kong, a marked reduction in vaccine type IPD was observed in children few years after implementation of PCV in 2009 [10,12]. However, the indirect effect on adult IPD was not evident. Annual number of adult IPD hospitalization remains static in period 1 (Figure 1A). Universal masking in Hong Kong was shown to decrease the incidence of SARS-CoV2 [39,40] and influenza [41] during the COVID-19 pandemic. Our study showed 88.9% reduction in incidence of adult IPD. The drastic decrease in incidence of IPD included both vaccine and non-vaccine types and was comparable and greater than the reported figure after introduction of pneumococcal vaccines [13,35]. IPD can lead to significant mortality and morbidity [42]. Our study showed decrease in incidence and trend of IPD and were statistically significant. The decrease in mortality of IPD during the COVID-19 pandemics was statistically insignificant, which can be contributed by the relative small sample size.

1 2		15
3	416	
4 5	417	Incidence of all-cause pneumonia showed a much lower magnitude of decrease with
6 7	418	the lesser decrease observed in those aged ≥65 years (supplementary file, Figure
8 9	419	S1C). In our study, patients with diagnosis of pneumonia during the hospital stay
10 11	420	were included. On review of data, majority of pneumonia patients in age group 65
12	421	years or above had other comorbidities including dementia, diabetes mellitus and
13 14	422	malignancy included in the same admission. The prevalence of chronic disease is
 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	423	higher in elderly. The population of Hong Kong has been seeing an aging trend and
	424	the population of 65 years old or above was 1,114,600 in 2015, and increased to
	425	1,371,800 in 2020. The incidence of chronic disease, for example, malignancy
	426	increased for 38.1% from 2008 to 2018 [17]. Patients with chronic diseases are at
	427	higher risk of acquiring infection including pneumonia. Moreover, chronic disease
	428	can be the cause leading to hospital admission with subsequent development of
	429	hospital acquired pneumonia.
	430	
	431	Pneumococcal pneumonia and IPD are debilitating diseases which have been
	432	shown to require long length of hospital stay and high hospital cost [43-44]. The LOS
	433	in pneumococcal pneumonia was slightly increased from 17.7 to 19.5 days but was
	434	statistically insignificant. Looking into different age groups, only patients with age 50
36 37	435	to 64 years old showed statistically significant increase in LOS, while patients in age
38	436	group 18 to 49 years old and 65 years old or above showed slight decrease. The
39 40	437	severity of pneumococcal pneumonia can be comparable in the two periods.
41 42	438	
43 44	439	Health seeking behaviour was also evaluated in our study. Admissions of non-
45	440	communicable diseases revealed either statistically insignificant decrease in hospital
46 47	441	attendance or statistically significant increase in hospital attendance. The incidence
48 49	442	of AKI increased in our study from 807.8 ± 87.5 in period 1 to 911.7 ± 62.6 in period 3.
50 51	443	Drug induced AKI is an important cause in Asia [45]. Possible explanation can be
52	444	due to the health seeking behaviour of patients with intake of over-the counter
53 54	445	medication for mild diseases prior seeking help from the hospital. Yet the exact
55 56	446	cause of increase in incidence of AKI should be investigated. Our study covered
57	447	more than one year time for COVID-19 pandemics with a relatively stable number of
58 59 60	448	hospital attendance. Hence, the decrease in incidence of pneumococcal pneumonia,

1		10
2 3	449	IPD and all-cause pneumonia cannot be explained by health seeking behaviour
4 5	450	alone.
6 7	451	
8	452	Collateral damages were observed during the COVID-19 pandemic [46-47], some of
9 10	453	which were contributed by the decrease in general medical services to concentrate
11 12	454	healthcare resources for the care of SARS-CoV-2 patients and the prevention of
13 14	455	possible viral spread. However, due to the relatively small number of COVID-19
15 16	456	cases in Hong Kong, provision of acute medical services was minimally disrupted. In
17 18 19 20 21 22 23 24	457	our study, the data on admissions for fractures, acute kidney injury and PD peritonitis
	458	showed no decrease during the Covid pandemic. Hence the observed decrease in
	459	hospital admissions for pneumococcal pneumonia, IPD and all-cause pneumonia
	460	should not be artefactual. Masking can be an effective yet low-cost preventive
	461	measurement for citizens at high risk of pneumococcal infections.
25 26	462	
27 28 29 30 31 32 33 34 35	463	
	464	Limitations
	465	This study is a retrospective observational study and the direct effect of universal
	466	masking on pneumococcal pneumonia, IPD and all-cause pneumonia cannot be
	467	ascertained. However, our study covered a period of more than one year when
36 37	468	universal masking was practiced and a consistent observation of decrease in
38	469	hospitalization for these diseases were seen. Other factors, namely ambient
39 40	470	temperature and AQHI, that might have possible effect on the hospitalization
41 42	471	numbers were also included in our analysis. However, the individual effects of
43 44	472	universal masking, social distancing (e.g. closure of schools, bars and pubs) and
45	473	other strategies cannot be evaluated separately. It is modelled by the effect of
46 47	474	pandemic as a whole in our study.
48 49	475	
50 51	476	Our study focused on hospital hospitalization numbers to Hospital Authority. For IPD,
52	477	the incidence was obtained from Central of Health Protection, HKSAR, which
53 54	478	included data from both public and private hospitals data. The LOS and mortality
55 56	479	data of IPD were retrieved from the database in Hospital Authority. Admissions to
57	480	private hospital or those received out-patient treatment for pneumococcal pneumonia
58 59	481	and all-cause pneumonia were not included in our study. However, Hospital
60	482	Authority is the largest healthcare provider in Hong Kong which provides 90% of in-

patient services in Hong Kong [26]. Data from Hospital Authority is representable for the general epidemiology of Hong Kong.

Conclusions

- The incidence of pneumococcal pneumonia, IPD and all-cause pneumonia
- decreased during COVID-19 pandemics compare to the data in previous five years.
- This was observed with widely practice of universal masking and social distancing.
- We propose the decrease is attributed to universal masking and social distancing

which reduced the transmission of bacteria or virus and related bacterial

superinfection.

494 Figure caption

Figure 1. Trend analysis of monthly numbers of invasive pneumococcal disease (IPD), pneumococcal pneumonia, all-cause pneumonia, and influenza in Hong Kong, January 2015 to March 2021. Numbers of IPD were those obtained through mandatory notification. Numbers of pneumococcal pneumonia and all-cause pneumonia were territory-wide hospitalizations by discharge diagnoses. Numbers of influenza viruses were those detected in respiratory specimens in a territory-wide laboratory surveillance. The two vertical lines delineated the time intervals from January 2015 to December 2019 (period 1, prior to COVID-19), January to February 2020 (period 2, excluded form analysis) and March 2020 to March 2021 (period 3, COVID-19 pandemic).

23 505

506 Figure 2. Admission numbers of fracture hip, acute kidney injury and PD peritonitis.

2 3 4	508	Re	eferences
5 6 7 8	509	1.	Wu Z, McGoogan JM. Characteristics of and Important Lessons drom the
	510		Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report
9 10	511		of 72314 Cases From the Chinese Center for Disease Control and Prevention.
11	512		JAMA. 2020.
12 13	513	2.	World Health Organization statement on the second meeting of the International
14 15	514		Health Regulations (2005) Emergency Committee regarding the outbreak of
16	515		novel coronavirus (2019-nCoV) https://www.who.int/news/item/30-01-2020-
17 18	516		statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-
19 20 21	517		emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
21 22	518	3.	Ganaie F, Saad JS, McGee L, van Tonder AJ, Bentley SD, Lo SW, et al. A New
23 24 25 26 27 28 29 30 31 32 33 34 35	519		Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large <i>cps</i>
	520		Fragment from an Oral Streptococcus. mBio. 2020 May 19;11(3):e00937-20.
	521	4.	Ludwig E, Bonanni P, Rohde G, Sayiner A, Torres A. The remaining challenges
	522		of pneumococcal disease in adults. Eur Respir Rev. 2012 Mar 1;21(123):57-65.
	523	5.	Drijkoningen JJ, Rohde GG. Pneumococcal infection in adults: burden of disease.
	524		Clin Microbiol Infect. 2014 May;20 Suppl 5:45-51.
	525	6.	World Health Organization Pneumococcal Disease. Available from:
	526		https://www.who.int/ith/diseases/pneumococcal/en/
36 37	527	7.	Burgos J, Luján M, Larrosa MN, Pedro-Botet ML, Fontanals D, Quesada MD, et
38 39	528		al. The problem of early mortality in pneumococcal pneumonia: a study of risk
40 41	529		factors. Eur Respir J. 2015 Aug;46(2):561-4.
42	530	8.	Chi RC, Jackson LA, Neuzil KM. Characteristics and outcomes of older adults
43 44	531		with community-acquired pneumococcal bacteremia. J Am Geriatr Soc. 2006
45 46	532		Jan;54(1):115-20.
47 48	533	9.	Ho PL, Chiu SS, Chow FK, Mak GC, Lau YL. Pediatric hospitalization for
49	534		pneumococcal diseases preventable by 7-valent pneumococcal conjugate
50 51	535		vaccine in Hong Kong. Vaccine. 2007 Sep 28;25(39-40):6837-41.
52 53	536	10	. Ho PL, Chiu SS, Ang I, Lau YL. Serotypes and antimicrobial susceptibilities of
54 55	537		invasive Streptococcus pneumoniae before and after introduction of 7-valent
56	538		pneumococcal conjugate vaccine, Hong Kong, 1995-2009. Vaccine. 2011 Apr
57 58	539		12;29(17):3270-5.
59 60			

Page 21 of 32

1

2		
3 4	540	11. Deloria, K.M., Bennett, J.C., Garcia, Q.M., Kagucia, E.W., Peterson, M.E., Feikin,
5 6 7 8 9 10 11 12 13 14 15 16	541	D.R., et al. Global Landscape Review of Serotype-Specific Invasive
	542	Pneumococcal Disease Surveillance among Countries Using PCV10/13: The
	543	Pneumococcal Serotype Replacement and Distribution Estimation
	544	(PSERENADE) Project. Microorganisms. 9.
	545	12. Ho, P.L., Law, P.Y., and Chiu, S.S., 2019. Increase in incidence of invasive
	546	pneumococcal disease caused by serotype 3 in children eight years after the
	547	introduction of the pneumococcal conjugate vaccine in Hong Kong. Hum. Vaccin.
17	548	Immunother. 15: 455-458.
18 19	549	13.Bonten MJ, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, et al.
20 21	550	Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N
22	551	Engl J Med. 2015 Mar 19;372(12):1114-25.
23 24	552	14. López EL, Glatstein E, Ezcurra GC, Iacono M, Teplitz E, Garnero AV, et al. Rapid
25 26	553	Decrease in Rates of Hospitalization Resulting From Invasive Pneumococcal
27 28	554	Disease and Community-Acquired Pneumonia in Children Aged <60 Months
29	555	After 13-Valent Pneumococcal Conjugate Vaccine Introduction in Argentina. J
30 31	556	Pediatric Infect Dis Soc. 2018 Feb 19;7(1):30-35.
32 33	557	15. Nieto Guevara J, Daza C, Smith R. Decrease in Hospitalizations for Pneumonia
34 35	558	in Children under Five Years of Age in an Indian Reservation in Panama after the
36	559	Introduction of the Heptavalent Pneumococcal Conjugate Vaccine (PCV7). Int J
37 38	560	Pediatr. 2013;2013:514578.
39 40	561	16.Maruyama T, Taguchi O, Niederman MS, Morser J, Kobayashi H, Kobayashi T,
41	562	et al. Efficacy of 23-valent pneumococcal vaccine in preventing pneumonia and
42 43	563	improving survival in nursing home residents: double blind, randomised and
44 45	564	placebo controlled trial. BMJ. 2010 Mar 8;340:c1004.
46 47	565	17. Centre for Health Protection, Department of Health, Hong Kong Special
48	566	Administrative Region. https://www.chp.gov.hk/
49 50	567	18. Department of Health Public Health Information System (PHIS)
51 52	568	https://www.healthyhk.gov.hk/phisweb/en/chart_detail/26/
53	569	19. Cucchiari D, Pericàs JM, Riera J, Gumucio R, Md EC, Nicolás D; Hospital Clínic
54 55 56 57 58 59 60	570	4H Team. Pneumococcal superinfection in COVID-19 patients: A series of 5
	571	cases. Med Clin (Barc). 2020 Dec 11;155(11):502-505.
	572	20. Karami Z, Knoop BT, Dofferhoff ASM, Blaauw MJT, Janssen NA, van Apeldoorn
	573	M, et al. Few bacterial co-infections but frequent empiric antibiotic use in the early

2		
3 4	574	phase of hospitalized patients with COVID-19: results from a multicentre
5 6 7 8 9	575	retrospective cohort study in The Netherlands. Infect Dis (Lond). 2021
	576	Feb;53(2):102-110.
	577	21. Hughes S, Troise O, Donaldson H, Mughal N, Moore LSP. Bacterial and fungal
10 11	578	coinfection among hospitalized patients with COVID-19: a retrospective cohort
12	579	study in a UK secondary-care setting. Clin Microbiol Infect. 2020
13 14	580	Oct;26(10):1395-1399.
15 16	581	22. Community Health Module Research Reports, Hong Kong Public Opinion
17 18	582	Research Institute. Available from: https://www.pori.hk/research-reports
19	583	23. Chan KH, Lee PW, Chan CY, Lam KBH, Ho PL. Monitoring respiratory infections
20 21	584	in covid-19 epidemics. BMJ. 2020;369:m1628.
22 23	585	24. Chan KPF, Ma TF, Kwok WC, Leung JKC, Chiang KY, Ho JCM, et al. Significant
23 24 25 26 27 28 29 30 31 32 33	586	reduction in hospital admissions for acute exacerbation of chronic obstructive
	587	pulmonary disease in Hong Kong during coronavirus disease 2019 pandemic.
	588	Respir Med. 2020 Sep;171:106085.
	589	25.Chan KPF, Kwok WC, Ma TF, Hui CH, Tam TC, Wang JK, et al. Territory-wide
	590	Study on Hospital Admissions for Asthma exacerbation in COVID-19 Pandemic.
	591	Ann Am Thorac Soc. 2021 Feb 26.
34 35	592	26. Hospital Authority Statistical Report. Available from:
35 36 37 38	593	https://www3.ha.org.hk/data/HAStatistics/DownloadReport/2
	594	27.Hong Kong Observatory. https://www.hko.gov.hk/en/wxinfo/pastwx/mws/mws.htm
39 40	595	28. Air Quality Health Index monthly summary.
41 42	596	https://www.aqhi.gov.hk/en/aqhi/statistics-of-aqhi/aqhi-monthly-summary.html
43	597	29.Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D. Segmented regression
44 45	598	analysis of interrupted time series studies in medication use research. J Clin Pharm
46 47	599	Ther. 2002 Aug;27(4):299-309.
48	600	30. A. Agresti (2012). Categorical Data Analysis, 3rd Edition. Wiley
49 50	601	31. Lim RH, Chow A, Ho HJ. Decline in pneumococcal disease incidence in the time
51 52	602	of COVID-19 in Singapore. J Infect. 2020;81(6):e19-e21.
53	603	32. Juan HC, Chao CM, Lai CC, Tang HJ. Decline in invasive pneumococcal disease
54 55	604	during COVID-19 pandemic in Taiwan. J Infect. 2021 Feb;82(2):282-327.
56 57	605	33. Teng JLL, Fok KMN, Lin KPK, Chan E, Ma Y, Lau SKP, Woo PCY. Substantial
58 59	606	decline in invasive pneumococcal disease (IPD) during COVID-19 pandemic in
60	607	Hong Kong. Clin Infect Dis. 2021 Apr 27:ciab382.

1		
2 3	608	34. Bennett JC, Hetrich MK, Garcia Quesada M, Sinkevitch JN, Deloria Knoll M,
4 5	609	Feikin DR, et al. Changes in Invasive Pneumococcal Disease Caused by
6 7	610	Streptococcus pneumoniae Serotype 1 Following Introduction of PCV10 and
8 9	611	PCV13: Findings from the PSERENADE Project. Microorganisms. 2021 Mar
10	612	27;9(4):696.
11 12	613	35. Waight PA, Andrews NJ, Ladhani SN, Sheppard CL, Slack MP, Miller E. Effect of
13 14	614	the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal
15 16 17 18	615	disease in England and Wales 4 years after its introduction: an observational
	616	cohort study. Lancet Infect Dis. 2015 May;15(5):535-43.
18 19	617	36. Berman-Rosa M, O'Donnell S, Barker M, Quach C. Efficacy and Effectiveness of
20 21	618	the PCV-10 and PCV-13 Vaccines Against Invasive Pneumococcal Disease.
22 23	619	Pediatrics. 2020 Apr;145(4):e20190377.
24	620	37. McLaughlin JM, Jiang Q, Isturiz RE, Sings HL, Swerdlow DL, Gessner BD et al.
25 26 27 28 29 30 31 32 33 34 35 36 27	621	Effectiveness of 13-Valent Pneumococcal Conjugate Vaccine Against
	622	Hospitalization for Community-Acquired Pneumonia in Older US Adults: A Test-
	623	Negative Design. Clin Infect Dis. 2018 Oct 30;67(10):1498-1506.
	624	38. Lawrence H, Pick H, Baskaran V, Daniel P, Rodrigo C, Ashton D et al.
	625	Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against
	626	vaccine serotype pneumococcal pneumonia in adults: A case-control test-
	627	negative design study. PLoS Med. 2020 Oct 23;17(10):e1003326.
37 38	628	39. Cheng VC, Wong SC, Chuang VW, So SY, Chen JH, Sridhar S et al. The role of
39 40	629	community-wide wearing of face mask for control of coronavirus disease 2019
41 42	630	(COVID-19) epidemic due to SARS-CoV-2. J Infect. 2020 Jul;81(1):107-114.
43	631	40. Chan JF, Yuan S, Zhang AJ, Poon VK, Chan CC, Lee AC et al. Surgical Mask
44 45	632	Partition Reduces the Risk of Noncontact Transmission in a Golden Syrian
46 47	633	Hamster Model for Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2020
48 49	634	Nov 19;71(16):2139-2149.
50	635	41. Wong SC, Lam GK, AuYeung CH, Chan VW, Wong NL, So SY et al. Absence of
51 52	636	nosocomial influenza and respiratory syncytial virus infection in the coronavirus
53 54	637	disease 2019 (COVID-19) era: Implication of universal masking in hospitals.
55 56	638	Infect Control Hosp Epidemiol. 2021 Feb;42(2):218-221.
57	639	42. Chan T, Tay MZ, Kyaw WM, Chow A, Ho HJ. Epidemiology, vaccine
58 59 60	640	effectiveness, and risk factors for mortality for pneumococcal disease among

2		
3 4	641	hospitalised adults in Singapore: a case-control study. BMC Infect Dis. 2020 Jun
5 6	642	17;20(1):423.
7	643	43. Darbà J, Marsà A. Hospital incidence, in-hospital mortality and medical costs of
8 9	644	pneumococcal disease in Spain (2008-2017): a retrospective multicentre study.
10 11	645	Curr Med Res Opin. 2021 Mar;37(3):523-530.
12	646	44. Brotons P, Gelabert G, Launes C, Sicuri E, Pallares R, Muñoz-Almagro C. Cost
13 14	647	of hospitalizing children with invasive pneumococcal pneumonia. Vaccine. 2013
15 16	648	Feb 4;31(7):1117-22.
17	649	45. Yang L. Acute Kidney Injury in Asia. Kidney Dis (Basel). 2016;2(3):95-102.
18 19	650	46.Bersano A, Kraemer M, Touzé E, Weber R, Alamowitch S, Sibon I et al. Stroke
20 21	651	care during the COVID-19 pandemic: experience from three large European
22 23	652	countries. Eur J Neurol. 2020 Sep;27(9):1794-1800.
24	653	47. Del Vecchio Blanco G, Calabrese E, Biancone L, Monteleone G, Paoluzi OA. The
25 26	654	impact of COVID-19 pandemic in the colorectal cancer prevention. Int J
27 28	655	Colorectal Dis. 2020 Oct;35(10):1951-1954.
29 30		
31		
32 33		
34 35		
36 37		
38		
39 40		
41 42		
43		
44 45		
46 47		
48		
49 50		
51 52		
53 54		
55		
56 57		
58 59		
60		

		All ages	18-49 years		50-64 years		≥65 years		
	No. of	Incidence rate per	No. of	Incidence rate per	No. of	Incidence rate per	No. of	Incidence rate per	
Disease ^a	episodes	100,000 person-years	episodes	100,000 person-years	episodes	100,000 person-years	cases	100,000 person-years	
IPD	<u> </u>								
Period 1	699	2.2	125	0.7	195	2.2	379	6.2	
Period 2	26	2.4	5	0.9	6	2.0	15	6.6	
Period 3	17	0.2	3	0.08	8	0.4	6	0.4	
% reduction ^b		88.9% (79.8%-98.0%)***		88.6% (66.8%-110.4%)***		81.3% (62.1%-100.4%)***		93.5% (82,2%-104.8%)***	
IRR⁰		0.11(0.07-0.18)***		0.11(0.04-0.36)***		0.19(0.09-0.38)***		0.07(0.03-0.15)***	
	ļ								
Pneumococcal pneumonia			1						
Period 1	1,970	6.2	217	1.3	435	4.9	1,318	21.7	
Period 2	74	6.9	11	2.0	14	4.7	49	32.4	
Period 3	119	1.7	8	0.2	24	1.2	87	5.9	
% reduction		72.5% (65.9%-79.1%)***		82.5% (64.5%-100.5%)***		74.8% (61.0%-88.6%)***		73.0% (65.2%-80.8%)***	
IRR⁰		0.28(0.23-0.33)***		0.18(0.09-0.35)***		0.25(0.17-0.38)***		0.27(0.22-0.34)***	
A 11									
All-cause pneumonia				- 16					
Period 1	372,660	1169.7	19,502	115.3	38,360	432.4	314,798	5177.1	
Period 2	13,865	1288.2	843	153.6	1,448	484.6	11,574	5062.3	
Period 3	67,474	964.5	2,473	69.3	6,181	318.3	58,820	3958.0	
% reduction		17.5% (16.8%-18.2%)***		39.9% (37.1%-42.7%)***		26.4% (24.3%-28.5%)***		23.5% (22.8%-24.3%)***	
IRR⁰	1	0.83(0.82-0.83)***		0.60(0.58-0.63)***		0.74(0.72-0.76)***		0.77(0.76-0.77)***	

³⁰ ^a Period 1, January 2015 to December 2019 (before covid-19); period 2, January 2020 to February 2020 (transition period); period 3 March 2020 to March 2021 (post-COVID-19).

^b Percentage reduction in period 3 relative to period 1 as the baseline ^c Incidence ratio between period 1 and period 3

*p <0.05 to 0.01, **p <0.01 to 0.005, ***p<0.005

	Median I	ength of stay	; days (IQR) [#]		Mortality rate; % (95%Cl)				
	All ages			≥65 years	All ages	18-49 years	50-64 years	≥65 years	
IPD									
						9.1 (3.4-			
Period 1	12 (16)	13 (19)	13 (17)	12 (13)	12.1 (8.8-16.1)	18.7)	8.4 (3.7-15.9)	15.3 (10.3-21.4)	
Period 3	12 (11)	4 (3)	16 (19)	12 (6)	6.3 (1.6-30.2)	0.0	0.0	14.3 (3.6-57.9)	
Pneumococcal Pneumonia		2							
Period 1	9 (14)	7 (14)	9 (15)*	10 (14)	13.1 (11.7-14.8)*	4.2 (1.9-7.7)	7.5 (5.3-10.5)**	16.3 (13.6-18.7)	
Period 3	12 (17)	7 (13)	13 (20)*	12 (16)	22.7 (15.5-31.3)*	0.0	29.2 (12.6-51.1)**	23.0 (14.6-33.2)	
All-cause pneumonia									
Period 1	6 (9)***	4 (6)***	6 (9)**	6 (10)	20.5 (20.4-20.6)***	5.3 (4.9-5.6)*	13.0 (11.4-12.0)***	22.4 (22.2-22.4)**	
Period 3	6 (10)***	4 (8)***	6 (10)**	6 (10)	24.2 (24.9-25.6)***	6.8 (5.9-7.9)*	16.1 (5.2-17.0)***	27.0 (26.6-27.3)**	
p <0.05 to 0.01, **p <0 IQR= interquartile rang		us, ^^^p<0.00	C						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

т. .е. · · · · · · ·

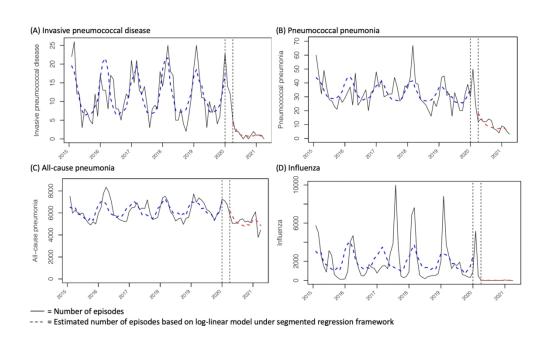


Figure 1. Trend analysis of monthly numbers of invasive pneumococcal disease (IPD), pneumococcal pneumonia, all-cause pneumonia, and influenza in Hong Kong, January 2015 to March 2021. Numbers of IPD were those obtained through mandatory notification. Numbers of pneumococcal pneumonia and all-cause pneumonia were territory-wide hospitalizations by discharge diagnoses. Numbers of influenza viruses were those detected in respiratory specimens in a territory-wide laboratory surveillance. The two vertical lines delineated the time intervals from January 2015 to December 2019 (period 1, prior to COVID-19), January to February 2020 (period 2, excluded form analysis) and March 2020 to March 2021 (period 3, COVID-19 pandemic).

352x218mm (144 x 144 DPI)

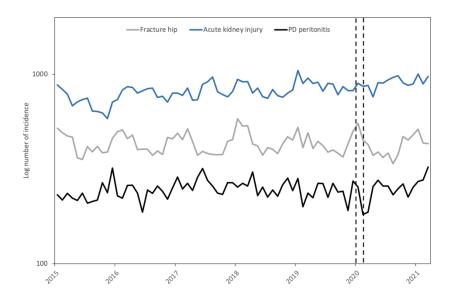
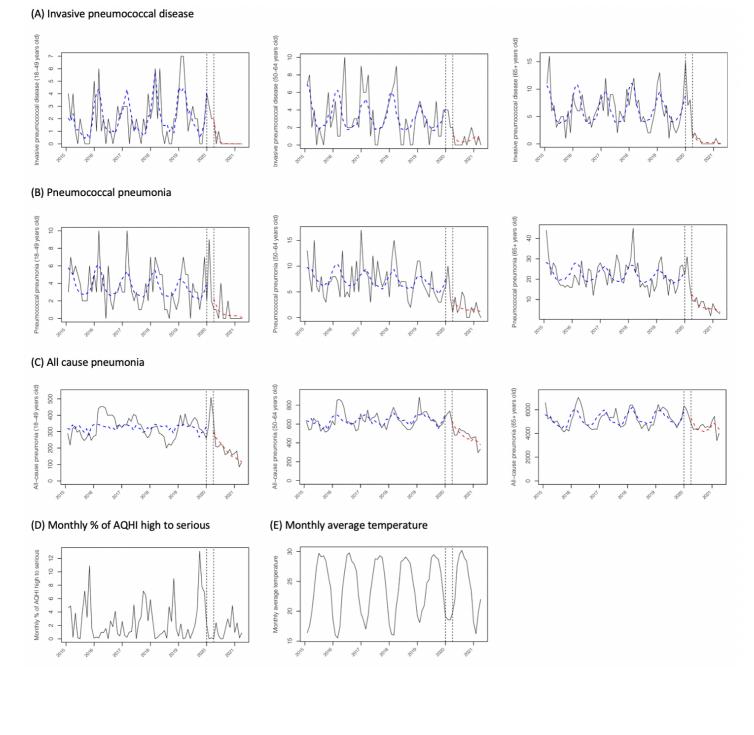
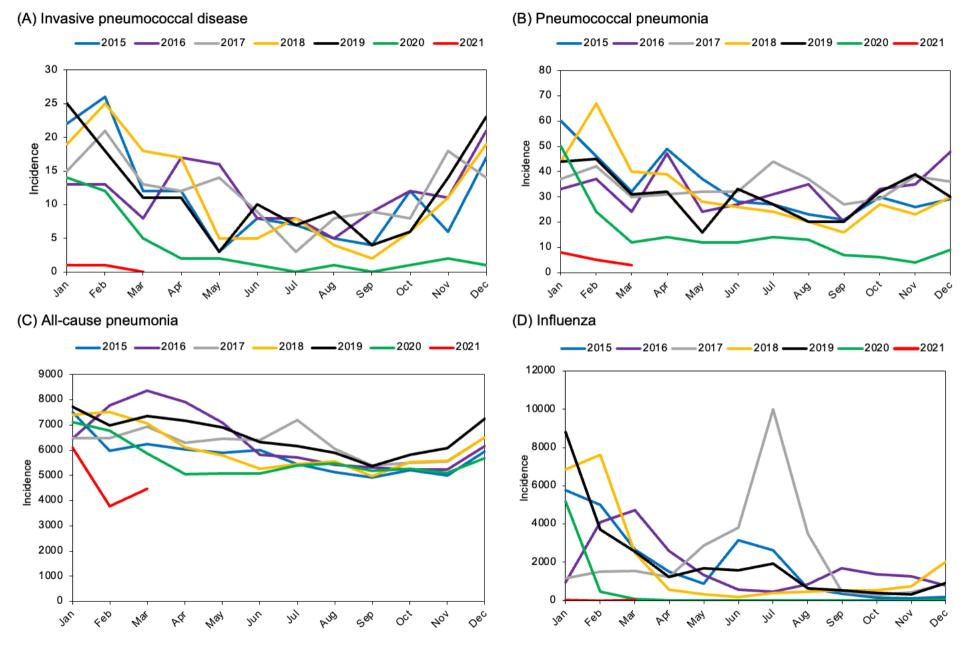



Figure 2. Admission numbers of fracture hip, acute kidney injury and PD peritonitis. 419x237mm (144 x 144 DPI)


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary file.

Figure S1. Trend analysis of monthly number of (A) age-stratified hospitalizations for invasive pneumococcal disease, (B) age-stratified hospitalizations for pneumonococcal pneumonia, (C) age-stratified hospitalizations for and (D) monthly percentage of air quality health index (AQHI) high to serious and (E) monthly average ambient temperature.

Figure S2. Monthly incidence of (A) Invasive pneumococcal disease (IPD), (B) Pneumococcal pneumonia, (C) All-cause pneumonia and (D) Influenza in January 2015 to March 2021.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

	Rela	ative risk (95% CI)	Change in trend#
	Period 1 ^	Period 3 [^]	
IPD			
All ages	1.0020 (0.9977-1.064)	0.8484 (0.7501-0.9597)**	-70.39% (-86.55% to -34.73%)**
18-49 years	1.0129 (1.0022-1.0238)	0.5272 (0.2176-1.2772)	-31.27% (-89.72% to 359.72%)
50-64 years	0.9969 (0.9888-1.0051)	0.9585 (0.8087-1.1362)	-70.43% (-92.80% to 21.42%)
65 years or above	1.0012 (0.9953-1.0071)	0.7777 (0.6111-0.9897)*	-70.83% (-91.59% to 1.12%)
Pneumococcal Pneumonia			
All ages	0.9978(0.9953-1.0004)	0.9042(0.8621-0.9483)***	-42.79% (-59.36% to -19.48%)*
18-49 years	0.9964(0.9887-1.0042)	0.6768(0.2171-2.1093)	-32.32% (-78.29% to 110.93%)
50-64 years	0.9962(0.9907-1.0017)	0.9174(0.8260-1.0189)	-50.21% (-76.93% to 7.48%)
65 years or above	0.9986(0.9954-1.0017)	0.9107(0.8612-0.9640)*	-41.19% (-60.82% to -11.73%)*
All-cause pneumonia		-	
All ages	1.0014(1.0012-1.0016)***	0.9835(0.9815-0.9855)***	-11.24% (-12.76% to -9.7%)***
18-49 years	1.0000(0.9992-1.0008)	0.9263(0.9164-0.9364)***	-6.05% (-13.41% to 1.94%)
50-64 years	1.0015(1.0009-1.0021)***	0.9620(0.9556-0.9684)***	-9.32% (-14.14% to -4.22%)***
65 years or above	1.0011(1.0009-1.0013)***	0.9879(0.9858-0.9901)***	-13.30% (-12.94% to -9.64%)***
hange in hospitalizatio	n numbers	d 3 (March 2020 to March 2021), the (r	elative risk expressed the month-to-month

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6,7
-		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	6,7
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	6,7
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6,7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6,7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6,7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7,8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7,8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	7,8
		(c) Explain how missing data were addressed	N/A
		(d) Cohort study—If applicable, explain how loss to follow-up was	N/A
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	7,8

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially	
-		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
-			1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Invasive pneumococcal disease, pneumococcal pneumonia and all-cause pneumonia in Hong Kong during the COVID-19 pandemic compared with the preceding 5 years: a retrospective observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-055575.R2
Article Type:	Original research
Date Submitted by the Author:	28-Sep-2021
Complete List of Authors:	Chan, King-Pui Florence; Queen Mary Hospital, Department of Medicine Ma, Ting-Fung; University of Wisconsin-Madison, Department of Statistics Ip, Mary; University of Hong Kong Ho, Pak-leung; Queen Mary Hospital, Microbiology; University of Hong Kong, Carol Yu Centre for Infection
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health, Respiratory medicine
Keywords:	COVID-19, Respiratory infections < THORACIC MEDICINE, Thoracic medicine < INTERNAL MEDICINE, Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Title: Invasive pneumococcal disease, pneumococcal pneumonia and all-
2	cause pneumonia in Hong Kong during the COVID-19 pandemic compared
3	with the preceding 5 years: a retrospective observational study
4	
5	King-Pui Florence Chan, MBBS ¹ , Ting-Fung Ma, MPhil ² , Mary Sau-Man Ip ¹ , MD,
6	Pak-Leung Ho, MD ³
7	
8	Authors' affiliations:
9	1. Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong
10	Kong SAR, China
11	2. Department of Statistics, University of Wisconsin - Madison, United States of
12	America
13	3. Department of Microbiology, and Carol Yu Centre for Infection, University of
14	Hong Kong, Hong Kong SAR, China
15	ORCID: <u>0000-0003-2094-1206</u> (King-Pui Florence Chan); <u>0000-0001-6028-5640</u>
16	(Ting-Fung Ma); <u>0000-0002-8692-6933</u> (Mary Sau-Man Ip); <u>0000-0002-8811-1308</u>
17	(Pak-Leung Ho)
18	
19	Correspondence to:
20	Pak-Leung Ho
21	Department of Microbiology and Carol Yu Centre for Infection, Queen Mary Hospital,
22	University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
23	Email: plho@hku.hk
24	Tel: 852-2255-2579

2		
3 4	26	Abstract
5	27	Objectives: To compare the incidence and severity of invasive pneumococcal
6 7	28	diseases (IPD), pneumococcal pneumonia and all-cause pneumonia during COVID-
8 9	29	19 pandemic period with universal masking and social distancing to that of previous
10 11	30	5 years.
12 13	31	Design: Retrospective observational study on incidence of invasive pneumococcal
14 15	32	diseases (IPD), pneumococcal pneumonia and all-cause pneumonia between
16 17	33	January 2015-December 2019 and March 2020-March 2021. January-February 2020
18	34	was excluded from analysis as it was treated as transitional period between normal
19 20 21	35	time and pandemic.
22 23	36	Setting: Episode-based data by retrieval of hospitalization records from the Hospital
24 25	37	Authority's territory-wide electronic medical record database in Hong Kong.
26 27	38	Participants: Hospitalized patients with invasive pneumococcal diseases (IPD)
28 29	39	(n=742), pneumococcal pneumonia (n=2163) and all-cause pneumonia (including
30	40	COVID-19 pneumonia, n=453,999) at age 18 or above. Control diagnoses were
31 32 33	41	included to assess confounding from health-seeking behaviors.
34 35	42	Primary and secondary outcome: Primary outcome is the incidence of diseases
36	43	between two periods. Secondary outcomes include disease severity surrogated by
37 38 39	44	length of stay and mortality.
40 41	45	Results: Monthly average number of IPD, pneumococcal pneumonia and all-cause
42	46	pneumonia hospitalization significantly decreased by 88.9% (95%CI 79.8%-98.0%,
43 44	47	p<0.0005), 72.5% (95%Cl 65.9%-79.1%, p<0.0005) and 17.5% (95%Cl 16.8%-
45 46	48	18.2%, p<0.0005), respectively. Change in trend from January 2015-December 2019
47	49	to March 2020-March 2021 was -70% (95%CI -87% to -35%, p=0.0025), -43%
48 49	50	(95%CI -59% to -19%, p=0.0014) and -11% (95%CI -13% to -10%, p<0.0005),
50 51	51	respectively. Length of stay for IPD and pneumococcal pneumonia episodes were
52 53	52	insignificantly different in the two periods. No reductions in hospitalizations for control
55 55	53	diagnoses were observed.
56 57	54	Conclusions: Incidence of IPD, pneumococcal pneumonia, and all-cause
58 59 60	55	pneumonia decreased during COVID-19 pandemic. This was observed with

Page 4 of 34

56	universal masking and social distancing. We postulated this is related to reduced
57	transmission of respiratory viruses and bacteria.
50	
58	
59	Strength and limitations of this study:
60	 A territory-wide study with near 100% practice of universal masking and
61	wide practice of social distancing
62	 Other factors including temperature and air quality were also included in
63	our analysis
64	 Disease severity of IPD, pneumococcal pneumonia, and all-cause
65	pneumonia were compared between the two periods
66	 Data from private sector (<10%) were not included in our study
67	 The causal relationship cannot be ascertained from this retrospective
68	study
69	
70	Funding: This work is partly funded by a grant from the Health and Medical
71	Research Fund (reference number CID-HKU1-13), Food and Heatlh Bureau, The
72	Government of the Hong Kong Special Administrative Region.
73	
74	Competing interests: There are no competing interests.
75	
76	Data availability statements: No additional data is available.
77	
78	Authors' contributions:
79	King-Pui Florence Chan and Ting-Fung Ma were involved in study concept and
80	design; acquisition, analysis and interpretation of data; drafting the work and final
81	approval of the manuscript. Mary Sau-Man Ip were involved in critical revision of
82	manuscript for important intellectual content and final approval of the manuscript.
83	Pak-Leung Ho was involved in study concept and design; analysis and
84	interpretation of data; drafting of manuscript; critical revision of the manuscript for
85	important intellectual content; study supervision; and approval of the final version of
86	the manuscript.
87	

1		
2 3	00	Mard county 4174
4	88	Word count: 4174
5 6	89	Keywords: pneumococcal, COVID-19, masking, regression analysis
7 8	90	
9 10	90	
11		
12 13		
14		
15 16		
17		
18 19		
20 21		
22		
23 24		
25		
26 27		
28 29		
30		
31 32		
33 34		
35		
36 37		
38 39		
40		
41 42		
43 44		
45		
46 47		
48 49		
50		
51 52		
53		
54 55		
56 57		
58		
59 60		
~~		

Text

Introduction

Coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections was first reported in late 2019 [1]. It became a global pandemic and was declared as a public health emergency of international concern on 30 January 2020 by the World Health Organization [2]. As of 22 September2021, more than 229 million people were infected, causing more than 4.7 million deaths globally.

Pneumococcal disease is caused by Streptococcus pneumoniae infection, with at least 100 known serotypes of pneumococci [3]. Pneumococcal disease can be roughly divided into non-invasive disease and invasive disease. Non-invasive disease includes sinusitis, acute otitis media and pneumonia. Invasive pneumococcal disease (IPD) is defined as isolation of Streptococcus pneumoniae from a normally sterile sites, including blood and cerebrospinal fluid [4]. IPD is a notifiable disease in Hong Kong since 9th January 2015. Pneumococcal infection is a major cause of morbidity and mortality worldwide [5], with 1.6 million estimated deaths annually in 2005 [6]. Incidence of IPD and mortality of pneumococcal pneumonia are higher at extremes of age [7-8].

The first pneumococcal conjugated vaccine (PCV), Prevnar 7 (PCV7) was introduced to United States in 2000 and incorporated in Hong Kong Childhood Immunisation Programme for children under 2 years old since September 2009 [9-10]. In Hong Kong, PCV7 was replaced by the 10-valent and 13-valent pneumococcal conjugate vaccines (PCV10 and PCV13) in 2010 and 2011 respectively [11-12]. PCV13 was effective in preventing vaccine-type pneumococcal pneumonia, bacteraemia and nonbacteraemic community-acquired pneumonia [13]. Decline in incidences of all-cause pneumonia in children and elderly was reported after implementation of PCV in childhood vaccination program [14-15]. 23-valent polysaccharide vaccine (PPSV23) was effective in preventing pneumococcal pneumonia and reducing mortality from pneumococcal pneumonia in nursing home residents [16]. In our locality, elderly at age 65 years and above without high risk conditions, namely immunodeficiency or chronic cardiac, pulmonary, liver or renal disease, or diabetes mellitus were recommended to receive either a single dose of

Page 7 of 34

60

BMJ Open

1 2		Ŭ
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\end{array}$	123	PCV13 or a single dose of PPSV23. Number of PPSV23 vaccine recipients at age
	124	65 years or above increased from 35,000 in year 2015/2016 to 81,700 in 2019/2020,
	125	with approximately 46% of population in the age group cumulatively vaccinated in
	126	2020 [17]. Pneumonia is a common disease causing hospitalization, accounting for
	127	2.9% of all inpatient discharges and death in Hong Kong [18]. It is the second
	128	leading cause of death with age specific death rates increased markedly after age 65
	129	[17].
	130	
	131	Whether patients with COVID-19 are more susceptible to pneumococcal
	132	superinfection is still under debate. Superinfection of pneumococcal in COVID-19
	133	patients was reported [19]. Yet, low frequency of bacterial coinfection in patients with
	134	early COVID-19 was also observed [20-21]. There is limited evidence on the
	135	incidence and severity of IPD, pneumococcal pneumonia, and all-cause pneumonia
	136	during COVID-19 pandemic, especially in area where universal masking and social
	137	distancing were widely practiced. Since January 2020, universal masking in public
	138	area was voluntarily performed by Hong Kong citizens against COVID-19. Cross
	139	sectional telephone self-reported surveys by the Hong Kong Public Opinion
	140	Research Institute (HKPORI) showed percentage of wearing mask was 74.5% on
	141	20th-23rd January 2020 (n=1,008), 97.6% on 5th-20th February (n=10,405) and
	142	98.9% on 4th-19th March (n=15,739) [22]. On 23rd July 2020, masking was
	143	mandatory in public area upon the introduction of Prevention and Control of Disease
	144	(Wearing of Mask) Regulation (Cap. 599I). Social distancing measurements were
	145	voluntarily practiced by public and implemented by government since 25th January
	146	2020. These public health interventions were shown to associate with relatively low
	147	rate of COVID-19 and early termination of influenza season in Hong Kong [23]. Our
	148	previous studies suggested universal masking and social distancing were associated
	149	with significant reduction in acute exacerbation of chronic obstructive pulmonary
	150	disease and asthma in Hong Kong [24,25]. In the current study, we hypothesized
	151	that the aforementioned COVID-19 related public health interventions and reduction
	152	in respiratory virus activities would be associated with reduction in hospitalization
	153	due to pneumococcal infections and pneumonia in general.
56 57		
58 59		

155 Materials and Methods

A retrospective study assessing the numbers of IPD, pneumococcal pneumonia, and
all-cause pneumonia which required hospital hospitalization during the period of
COVID-19 in Hong Kong, comparing with that in the preceding five years as baseline
was conducted. The study period was 1st January 2015 to 31st March 2021 with
exclusion of 1st January 2020 to 28th February 2020 from analysis, when public
health practices such as mask wearing were not yet fully adopted.

163 Data source

20
 164 Episode-based data was obtained by retrieval of hospitalization records from the
 21 22
 165 Hospital Authority's territory-wide electronic medical record database, Clinical Data
 23 24
 24
 25
 167 care service in Hong Kong [24,25].

27 168

Diagnosis code of pneumococcal pneumonia (ICD-9 code 481) was searched on CDARS. IPD is a notifiable disease since January 2015 with monthly number notified cases and age obtained from the Department of Health, Hong Kong Special Administrative Region (HKSAR). Monthly number of influenza virus detection was collected from a territory-wide laboratory surveillance for both in-patients and out-patients in both public and private medical sectors from the Centre for Health Protection (CHP), HKSAR [17].

All-cause pneumonia including the following ICD-9 codes for viral, bacterial, tuberculous, fungal and unspecified pneumonia, pneumonia due to inhalation of food or vomitus and lung abscess were obtained from CDARS (ICD-9 code 003.22, 055.1, 0.1160-1.1166, 112.4, 115, 117.3, 480, 481, 482, 483.1, 483.8, 485, 486, 487, 507.0, 513). Patient with COVID-19 associated pneumonia was included in the all-cause pneumonia dataset. The contribution of COVID-19 within all-cause pneumonia was queried using ICD codes for COVID-19 disease (ICD-9 code 079.89, 480.8, 519.8). Demographics data (including sex, age), clinical data (including hospitalization date, length of stay, episode death, date of death) were collected. The results including admission number of various diseases were available in the CHP website and the Hospital Authority Statistics Report [17,26].

1 2		
3	188	
4 5	189	Inclusion/ exclusion criteria
6 7	190	Patients with 1) age 18 or above 2) hospitalization for the listed diseases
8 9	191	(pneumococcal pneumonia, IPD and pneumonia) were included in the study.
10	192	
11 12	193	Children at aged 0 to 17 years old were excluded in this study. Duplicated record of
13 14	194	single patient with different diagnoses in same hospital admission were removed.
15 16 17 18 19 20	195	
17	196	Other diagnoses
18 19 20 21 22 23 24 25	197	Number of hospitalization for other common medical and surgical conditions
	198	including acute kidney injury (ICD-9 code 580, 584), fracture hip (ICD-9 code 820)
	199	and peritonitis due to peritoneal dialysis (PD peritonitis) (ICD-9 code 996.68) were
	200	collected. These were included to evaluate the possibility of decrease in hospital
25 26	201	attendance due to various reasons such as fear of COVID-19 infection in hospital.
27 28 29 30 31	202	These diseases were selected as are non-communicable diseases and have minimal
	203	interactions with environmental factors including mean ambient temperature and air-
	204	pollution.
32 33	205	
34 35	206	Other variables
36 37	207	Monthly mean ambient temperature was obtained from the Hong Kong Observatory
38	208	[27]. Air quality was measured by air quality health index (AQHI), which is calculated
39 40	209	based on the cumulative health risk attributable to a 3-hour moving average
41 42	210	concentrations of ozone, nitrogen dioxide, sulphur dioxide and particulate matter [28].
43 44	211	It was reported in scale of 1 to 10 and 10+ and grouped into five health risk
45	212	categories, namely low [1-3], moderate [4-6], high [7], very high [8-10] and serious
46 47	213	[10+] with different precautionary actions were advised. People with respiratory
48 49	214	illness were advised to minimize their outdoor stay when AQHI high to serious. The
50	215	AQHI was reported hourly in 13 stations located in different area of Hong Kong. The
51 52	216	total number of hours with AQHI recorded as high to serious grades were expressed
53 54	217	as percentage of total number of hours collected in a month.
55 56	218	
57	219	Statistical method
58 59	220	Total number of hospitalizations due to IPD, pneumococcal pneumonia and all-cause
60	221	pneumonia were collected and analysed. Each disease was further divided into three

different age groups, including 18 to 49 years, 50 to 64 years, and 65 years or abovefor analysis.

7 224

Analysis was done on the number of hospitalizations between January 2015 to December 2019, the period prior COVID-19 (period 1) and March 2020 to March 2021 (period 3), while January to February 2020 (period 2) was treated as transition period and excluded from the analysis. Wilcoxon rank sum test was first used to analyse the statistical significance of number of hospitalizations between period 1 and period 3. Generalized linear models were then applied for statistical inference of various types of responses. Log-linear model was used for studying the effect of pandemic as intervention under segmented regression framework in term of the change in trend (i.e. an increase or decrease in the level of the segment) between period 1 (pre-intervention segment) and period 3 (post-intervention segment) on the monthly hospitalization count. Regression coefficients of log-linear model can be interpreted as the effect due to pandemic by log-linear model [29]. We assumed temporal dependence can be adjusted by the effect of pandemic, including masking, social distancing and other behavioural changes, and climate related variables including temperature and AQHI.

³⁴ 240

Generalized linear model was used for comparing the mortality rate of individuals between the two time periods [30]. Hospitalization length of stay (LOS) was described in days using median and standard deviation. Statistical inference of the LOS in hospitalization of individuals was done by Wilcoxon rank sum test with odds ratio and relative risks and confidence intervals calculated [29].

Monthly incidence rate for each disease was calculated using the total population followed by age groups stratification (18 to 49 years, 50 to 64 years and \geq 65 years) and expressed as number per 100,000 person-year. Age-specific population data was obtained from the Census and Statistics Department.

252 Ethics Approval

The study was approved by the Institutional Review Board of the University of Hong
 Kong/ Hospital Authority Hong Kong West Cluster (Reference Number UW-21-325).
 255

1 2		
3 4	256	Patient and public involvement
5	257	Patients or the public were not involved in the design, or conduct, or reporting, or
6 7	258	dissemination plans of our research.
8 9		
10 11		
12		
13 14		
15 16		
17 18		
19		
20 21		
22 23		
24 25		
26		
27 28		
29 30		
31 32		
33 34		
35		
36 37		
38 39		
40 41		
42 43		
44		
45 46		
47 48		
49 50		
51		
52 53		
54 55		
56 57		
58		
59 60		

1		11
2 3	260	Results
4 5	260 261	Invasive pneumococcal disease
6 7	262	The total number of notified IPD episodes was 742 in the entire study, with 699
8	263	reported in period 1 and 17 reported in period 3. Pneumococcal serotypes for 684 of
9 10	264	the 699 episodes in period 1, and 13 of the 17 episodes in period 3 were
11 12	265	successfully determined. The proportions attributed to PCV13 serotypes was 66.5%
13 14	266	(465/699) and 29.4% (5/17) respectively for period 1 and period 3. Serotype 3 was
15 16	267	the commonest serotype in both periods, accounting for 41.3% (289/699) and 17.6%
17 18 19 20 21 22 23	268	(3/17) of total, respectively. From period 1 to period 3, the monthly number of IPD
	269	caused by PCV13 serotypes declined by 95.1% (95%CI 93.4%-96.4%) while those
	270	for non-PCV13 serotypes declined by 83.0% (95%CI 78.8%-86.5%), and those for
	271	PPSV23 serotypes declined by 94.1% (95% CI 92.3%-95.5%). The small difference
24	272	between declines in PCV13 and PPSV23 serotypes was mainly attributed to
25 26	273	serotype 6A which was included in PCV13 but not in PPVS23.
27 28 29 30 31 32 33 34 35	274	
	275	Monthly number of IPD peaked in January-February each year except in 2016, with
	276	the peak in April (Figure 1A and Figure S1). Monthly average number of notified IPD
	277	episodes was 11.7 \pm 6.2 in period 1, with significant decrease to 1 \pm 4.3 in period 3
	278	(p<0.0005). By log-linear model segmented regression, relative risk of IPD in period
36 37	279	3 was 0.85 (95%Cl 0.75-0.96, p=0.0089) (Table S1). Further analysis on the relative
38 39	280	risk of different age groups showed significant decline in relative risk of IPD in aged
40	281	≥65 years (0.78, 95%Cl 0.61-0.99, p=0.041). Estimated change in trend in the mean
41 42	282	number of cases from period 1 to period 3 was -70% (95%CI -87% to -35%,
43 44	283	p=0.0025) (Figure 1A, Table S1).
45 46	284	
47	285	Incidence rate per 100,000 person-years was 2.2 in period 1 and 0.2 in period 3, with
48 49	286	an interval reduction of 88.9% (95%CI 79.8%-98.0%, p<0.0005). Incidence rate ratio
50 51	287	between period 1 and period 3 was 0.11 (95%Cl 0.07-0.18, p<0.0005) (Table 1). IPD
52 53	288	is most prevalent in age ≥65. The magnitude of reduction in incidence rate was
54	289	similar across different age groups, ranging from 81.3% to 93.5% (p<0.0005 for all
55 56	290	age groups) (Table 1).
57 58	291	
59 60		
00		

1		
2 3 4	292	The overall median LOS for IPD was 12 (Interquartile range, IQR 16) days in period
5 6 7 8 9	293	1 and 12 (IQR 11) days in period 3 (Table 2), with statistically insignificant difference
	294	(p=0.89). Statistically insignificant variations in LOS of different age groups were
	295	observed.
10 11	296	
12	297	Pneumococcal pneumonia
13 14	298	In the entire study period, there were 2,163 episodes of hospitalization for
15 16	299	pneumococcal pneumonia, with 1970 episodes in period 1 and 119 episodes in
17 18	300	period 3 (Table 1). Monthly number of pneumococcal pneumonia was peaked in
19	301	January-February each year except in 2016, with the peak in April (Figure 1B and
20 21 22 23 24 25 26	302	Figure S1). The average monthly hospitalizations was 32.8 ± 9.9 episodes in period 1,
	303	with significant drop to 9.2 ± 3.9 episodes in period 3 (p<0.0005). By log-linear model
	304	segmented regression, relative risk of pneumococcal pneumonia was 0.90 (95%CI
	305	0.86-0.95, p<0.005) in period 3. Trend analysis revealed a change of -43% (95%CI -
27 28	306	59% to -19%, p=0.0014, Figure 1B, Table S1) from period 1 to period 3. Age groups
29 30 31 32 33 34 35 36 37	307	analysis showed similar change in trend for all age groups, with statistically
	308	significance in aged ≥65 years (-41%, 95%Cl -61% to -12%, p=0.010) from period 1
	309	to period 3 (Table S1, Figure S2).
	310	
	311	Overall, the incidence rate of hospitalization for pneumococcal pneumonia
38 39	312	decreased significantly by 72.5% (95%Cl 65.9%-79.1%, p<0.0005), from 6.2 per
40	313	100,000 person-years in period 1 to 1.7 per 100,000 person-years in period 3.
41 42	314	Incidence rate ratio between period 1 and period 3 was 0.28 (95%CI 0.23-0.33,
43 44	315	p<0.0005) (Table 1). Incidence rate per 100,000 person year showed statistically
45 46	316	significant reduction in all age groups, ranging from 73.0% to 82.5%.
47	317	
48 49	318	Majority of the patients with pneumococcal pneumonia were treated with in-patient
50 51	319	care. The total number of patients treated as outpatients and discharged from
52	320	emergency department was 30 in period 1 and 0 in period 3.
53 54	321	
55 56	322	The overall median LOS for pneumococcal pneumonia in period 1 and period 3 was
57 58	323	9 (IQR 14) days and 12 (IQR 17) days in all age group (p=0.051) (Table 2). Age
59 60	324	group stratification showed insignificant changes in length of stay in those aged 18-

2 3	225	40 means (n. 0.0054) and exact SCE means (n. 0.000). Increases in law oth of stars from 0.
4	325	49 years (p=0.8051) and aged \geq 65 years (p=0.226). Increase in length of stay from 9
5 6	326	(IQR 15) days to 13 (IQR 20) days was observed in age group 50-64 years, and was
7 8	327	statistically significant (p=0.019). Mortality rate for all ages was 13.1% (95% CI
9	328	11.7%-14.8%) in period 1 and 22.7% (95%CI 15.5%-31.3%) in period 3 (p=0.0187).
10 11	329	Mortality rate was only statistically significant in aged 50-64 years (p=0.0007) but not
12 13 14 15 16	330	in aged 18-49 years (p=0.9917) and aged ≥65 years (p=0.246) (Table 2).
	331	
	332	All-cause pneumonia
17	333	In the entire study period, total hospitalization episodes for all-cause pneumonia was
18 19	334	453,999, of which 372,660 episodes in period 1 and 67,474 episodes in period 3.
20 21	335	Among the 67,474 patients in period 3, 331 were diagnosed with COVID-19 and
22 23	336	pneumonia. Monthly number of all-cause pneumonia peaked in January to March
24	337	each year (Figure 1C and Figure S1). Mean monthly number of hospitalizations for
25 26	338	all-cause pneumonia declined by 16.4% (95%Cl 15.7%-17.1%, p<0.0005) from
27 28	339	6211 \pm 845.0 episodes in period 1 to 5190.3 \pm 593.8 episodes in period 3 (p<0.0005)
29 30	340	(Figure 1C). Estimated change in trend in the mean number of cases in period 3 was
31	341	-11% (95%CI -13% to -10%, p<0.0005). By log-linear model segmented regression,
32 33	342	relative risk of all-cause pneumonia in period 3 compared with period 1 was 0.98
34 35	343	(95%Cl 0.98-0.99, p<0.0005) (Table S1).
36	344	
37 38	345	Overall, the incidence rate per 100,000 person-years was 1,169.7 in period 1, with
39 40	346	17.5% (95%CI 16.8%-18.2%, p<0.0005) reduction in period 3 to 964.5 per 100,000
41 42	347	person-years in period 3. Incidence rate ratio between period 1 and period 3 was
43	348	0.83 (95%CI 0.82-0.83, p<0.0005) (Table 1). The incidence rate decrease in period
44 45	349	3 compared to period 1 in all age groups.
46 47	350	
48 49	351	The overall median LOS for all-cause pneumonia episodes was 6 (IQR 9) days in
50	352	period 1 and 6 (IQR 10) days in period 3 (p<0.005) (Table 2). Different age groups
51 52	353	showed decrease in LOS but were only statistically significant in age 18-49 years
53 54 55 56 57 58 59 60	354	and 50-64 years. The mortality rate increased from 20.5% (95% CI 20.4%-20.6%) in
	355	period 1 to 24.2% (95%Cl 24.9%-25.6%) in period 3 (p<0.005) for all-cause
	356	pneumonia. The increase in mortality rate was statistically significant in all age
	357	groups (Table 2).

1	Λ
	Д
_	т.

1		14
2		
3 4	358	
5 6	359	For subgroup of aspiration pneumonia, total number of hospitalization in the entire
7	360	study period was 21,183, with 17990 episodes in period 1 and 2684 episodes in
8 9	361	period 3. Mean monthly number of aspiration pneumonia was 299.8 \pm 31.3 in period 1
10 11	362	and 206.5±30.5 in period 3 (p<0.0005).
12 13	363	
14	364	
15 16	365	COVID-19
17 18 19 20	366	In period 3, the total reported cases of COVID-19 infection at age 18 or above was
19	367	10,348 [15]. Among these patients, 331 were diagnosed with pneumonia. Majority of
21	368	them were in the age group 65 years old or above (n=175). 58 of them were in age
22 23	369	group 18-49 while 98 patients in age group 50-64. None of the patients were
24 25	370	diagnosed with coinfection of COVID-19 and pneumococcal pneumonia.
26	371	
27 28	372	
29 30	373	Influenza
30 31 32 33 34 35	374	The total number of influenza A or B viruses detected from January 2015 to March
	375	2021 in Hong Kong was 123,732. The monthly number of influenza detections
	376	decreased drastically by 99.5% (95%Cl 99.4%-99.5%, p<0.0005) from 1,966±2179
36 37	377	in period 1 to 10±18 in period 3 (Figure 1D and Figure S1). The monthly average
38	378	number of respiratory specimens tested was 4313 ± 1172 in period 1 and 3203 ± 1868
39 40	379	in period 3.
41 42	200	Dy leg linear model commented regression, relative risk of influence was 0.02
43 44	380	By log-linear model segmented regression, relative risk of influenza was 0.92 (05%) CL 0.88 0.05 pc0.0005). Estimated abange in trend in the mean number of
45	381	(95%CI 0.88-0.95, p<0.0005). Estimated change in trend in the mean number of
46 47	382	detections in period 3 was -99.0% (95%CI -99.3% to -98.7%, p<0.0005) of that in
48 49	383	period 1 (Figure 1D)
50	384	
51 52	385	
53 54	386	Other diagnosis: acute kidney injury, PD peritonitis and fracture hip
55 56	387	The monthly average number of hospitalization episodes for acute kidney injury in
57	388	period 1 and period 3 was 807.8 ± 87.5 and 911.7 ± 62.6 , respectively (p<0.0005)
58 59	389	(Figure 2) The monthly average number of hospitalization episodes for PD peritonitis
60		

2		
3 4	390	was 246.7 \pm 27.7 in period 1 and 255.9 \pm 31.9 in period 3 (p=0.23). The monthly
5	391	average number of hospitalization episodes for fracture hip was 432.9 ± 53.1 in period
		1 and 417.3±51.6 in period 3 (p=0.37)

tor peer terier only

1		16
2 3 4 5	204	Discussion
	394 205	Discussion
6	395 206	
7 8	396	Hong Kong is a city with population of 7.5 million where universal masking and social
9 10	397	distancing were widely practiced during COVID-19 pandemic period. This study
11	398	showed a drastic decrease in numbers of hospitalization for IPD and pneumococcal
12 13	399	pneumonia and a lesser but still very significant decrease in all cause pneumonia
14 15	400	after anti-COVID-19 measures in March 2020 to March 2021.
16 17	401	During COVID 10 period, degraphenes in insidence of IDD wars cheened in Taiwan and
18	402	During COVID-19 period, decrease in incidence of IPD were observed in Taiwan and
19 20	403	Singapore [31,32]. The decrease in IPD in Hong Kong was greater magnitude
21 22	404	compare to other countries [33]. Our study added new information on the incidence
23	405	and severity of IPD, pneumococcal pneumonia and all-cause pneumonia in terms of
24 25	406	age-stratification.
26 27	407	In our COVID 10 notion to there was no provinces and as infection. This may partly
28 29	408 409	In our COVID-19 patients, there was no pneumococcal co-infection. This may partly
30	409	be contributed by the infrequent investigation of pneumonia with pneumococcal urinary tests and PCR assays. In an Italian study of 469 COVID-19 patients, 9% was
31 32	410	found to be positive for urinary pneumococcal antigen. However, the positive result
33 34	411	had no impact on clinical outcome [34]. In another study that investigated the
35 36	412	respiratory specimens of COVID-19 patients using PCR assays, 60% were found to
37	414	be positive for <i>Streptococcus pneumoniae</i> but it was unable to distinguish between
38 39	415	colonization and infection [35]
40 41	416	
42 43	417	Introduction of the current pneumococcal conjugate vaccines has been highly
44	418	successful in reducing the incidence of pneumococcal diseases worldwide [36,37].
45 46	419	Vaccine efficacy of PCV13 against vaccine type IPD in children aged ≤5 years was
47 48	420	86%-96% [38]. In adults aged \geq 65 years, the vaccine efficacy against vaccine type
49 50	421	IPD was reported as 75% and against vaccine type community-acquired pneumonia
51	422	were reported as 45.6% and 72.8% respectively [13,39]. In contrast, PPV23 only has
52 53	423	vaccine efficacy of 24% against vaccine type community acquired pneumonia in
54 55	424	aged ≥65 years [40]. In Hong Kong, a marked reduction in vaccine type IPD was
56 57	425	observed in children few years after implementation of PCV in 2009 [10,12].
58	426	However, the indirect effect on adult IPD was not evident. Annual number of adult
59 60	427	IPD hospitalization remains static in period 1 (Figure 1A). Universal masking and
	_,	

social distancing measures in Hong Kong was shown to have an association with decrease in the incidence of SARS-CoV2 [41,42] and influenza [43] during the COVID-19 pandemic. Our study showed 88.9% reduction in incidence of adult IPD. The drastic decrease in incidence of IPD included both vaccine and non-vaccine types and was comparable and greater than the reported figure after introduction of pneumococcal vaccines [13,37]. IPD can lead to significant mortality and morbidity [44]. Our study showed decrease in incidence and trend of IPD and were statistically significant. The decrease in mortality of IPD during the COVID-19 pandemics was statistically insignificant, which can be contributed by the relative small sample size.

Incidence of all-cause pneumonia showed a much lower magnitude of decrease with the lesser decrease observed in those aged ≥65 years (supplementary file, Figure S2C). In our study, patients with diagnosis of pneumonia during the hospital stay were included. On review of data, majority of pneumonia patients in age group 65 years or above had other comorbidities including dementia, diabetes mellitus and malignancy included in the same admission. The prevalence of chronic disease is higher in elderly. The population of Hong Kong has been seeing an aging trend and the population of 65 years old or above was 1,114,600 in 2015, and increased to 1,371,800 in 2020. The incidence of chronic disease, for example, malignancy increased by 38.1% from 2008 to 2018 [17]. Patients with chronic diseases are at higher risk of acquiring infection including pneumonia. Moreover, chronic disease can be the cause leading to hospital admission with subsequent development of hospital acquired pneumonia.

43 451

Pneumococcal pneumonia and IPD are debilitating diseases which have been shown to require long length of hospital stay and high hospital cost [45,46]. The LOS in pneumococcal pneumonia was slightly increased from 17.7 to 19.5 days but was statistically insignificant. Looking into different age groups, only patients with age 50 to 64 years old showed statistically significant increase in LOS, while patients in age group 18 to 49 years old and 65 years old or above showed slight decrease. The severity of pneumococcal pneumonia were comparable in the two periods.

⁵⁸ 460 Health seeking behaviour was also evaluated in our study. Admissions of non ⁶⁰ 461 communicable diseases revealed either statistically insignificant decrease in hospital

Page 19 of 34

BMJ Open

attendance or statistically significant increase in hospital attendance. The incidence of AKI increased in our study from 807.8±87.5 in period 1 to 911.7±62.6 in period 3. Drug induced AKI is an important cause in Asia [47]. Possible explanation can be due to the health seeking behaviour of patients with intake of over-the counter medication for mild diseases prior seeking help from the hospital. Yet the exact cause of increase in incidence of AKI should be investigated. Our study covered more than one year time for COVID-19 pandemics with a relatively stable number of hospital attendance. Hence, the decrease in incidence of pneumococcal pneumonia, IPD and all-cause pneumonia cannot be explained by health seeking behaviour alone.

Collateral damages were observed during the COVID-19 pandemic [48-49], some of which were contributed by the decrease in general medical services to concentrate healthcare resources for the care of SARS-CoV-2 patients and the prevention of possible viral spread. However, due to the relatively small number of COVID-19 cases in Hong Kong, provision of acute medical services was minimally disrupted. In our study, the data on admissions for fractures, acute kidney injury and PD peritonitis showed no decrease during the COVID-19 pandemic. Hence the observed decrease in hospital admissions for pneumococcal pneumonia, IPD and all-cause pneumonia should not be artefactual.

Limitations

This is a retrospective observational study and the direct effect of universal masking, social distancing (e.g. closure of schools, bars and pubs) and other strategies on pneumococcal pneumonia, IPD and all-cause pneumonia cannot be ascertained. However, our study covered a period of more than one year when infection control related behavioral changes were made throughout, with a consistent observation of decrease in hospitalization for these diseases seen. Other factors, namely ambient temperature and AQHI, that might have possible effect on the hospitalization numbers were also included in our analysis. However, the individual effects of universal masking, social distancing and other strategies cannot be evaluated separately. It is modelled by the effect of pandemic as a whole in our study.

1 2		
3 4	495	
5	496	Our study focused on hospital hospitalization numbers in the Hospital Authority. For
6 7	497	IPD, the incidence was obtained from Central of Health Protection, HKSAR, which
8 9	498	included data from both public and private hospitals data. The LOS and mortality
10 11	499	data of IPD were retrieved from the database in Hospital Authority. Admissions to
12 13 14	500	private hospital or those received out-patient treatment for pneumococcal pneumonia
	501	and all-cause pneumonia were not included in our study. However, Hospital
15 16	502	Authority is the largest healthcare provider in Hong Kong which provides 90% of in-
17	503	patient services in Hong Kong [26]. Data from Hospital Authority is representable for
18 19	504	the general epidemiology of Hong Kong.
20 21	505	
22 23	506	Conclusions
24	507	The incidence of pneumococcal pneumonia, IPD and all-cause pneumonia
25 26 27 28 29 30 31 32 33 34 35 36 37 38	508	decreased during COVID-19 pandemics compare to the data in previous five years.
	509	This was observed with widespread practice of universal masking and social
	510	distancing. While causality cannot be shown from our data, it is likely that the
	511	decrease could be attributed to universal masking and social distancing, which would
	512	have reduced the transmission of bacteria and viruses and related bacterial
	513	superinfection.
39 40 41 42 43 44 45		

515 Figure caption

Figure 1. Trend analysis of monthly numbers of invasive pneumococcal disease (IPD), pneumococcal pneumonia, all-cause pneumonia, and influenza in Hong Kong, January 2015 to March 2021. Numbers of IPD were those obtained through mandatory notification. Numbers of pneumococcal pneumonia and all-cause pneumonia were territory-wide hospitalizations by discharge diagnoses. Numbers of influenza viruses were those detected in respiratory specimens in a territory-wide laboratory surveillance. The two vertical lines delineated the time intervals from January 2015 to December 2019 (period 1, prior to COVID-19), January to February 2020 (period 2, excluded form analysis) and March 2020 to March 2021 (period 3, COVID-19 pandemic).

23 526

527 Figure 2. Admission numbers of fracture hip, acute kidney injury and PD peritonitis.

2 3 4	529	References	
5 6 7 8	530	. Wu Z, McGoogan JM. Characteristics of and Important Lessons drom the	
	531	Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report	
9 10	532	of 72314 Cases From the Chinese Center for Disease Control and Prevention.	
11	533	JAMA. 2020.	
12 13	534	. World Health Organization statement on the second meeting of the International	
14 15	535	Health Regulations (2005) Emergency Committee regarding the outbreak of	
16	536	novel coronavirus (2019-nCoV. Available: <u>https://www.who.int/news/item/30-01-</u>	
17 18	537	2020-statement-on-the-second-meeting-of-the-international-health-regulations-	
19 20	538	(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-	
21 22	539	(2019-ncov). Accessed on 10th May 2021.	
23	540	. Ganaie F, Saad JS, McGee L, et al. A New Pneumococcal Capsule Type, 10D, is	3
24 25 26 27 28 29	541	the 100th Serotype and Has a Large <i>cps</i> Fragment from an Oral Streptococcus.	
	542	<i>mBio.</i> 2020 May 19;11(3):e00937-20.	
	543	. Ludwig E, Bonanni P, Rohde G, et al. The remaining challenges of	
30	544	pneumococcal disease in adults. <i>Eur Respir Rev.</i> 2012 Mar 1;21(123):57-65.	
31 32	545	. Drijkoningen JJ, Rohde GG. Pneumococcal infection in adults: burden of disease	:-
33 34	546	Clin Microbiol Infect. 2014 May;20 Suppl 5:45-51.	
35 36	547	. World Health Organization Pneumococcal Disease. Available:	
37	548	https://www.who.int/ith/diseases/pneumococcal/en/; Accessed on 7th June 2021.	
38 39	549	. Burgos J, Luján M, Larrosa MN, et al. The problem of early mortality in	
40 41	550	pneumococcal pneumonia: a study of risk factors. <i>Eur Respir J.</i> 2015	
42 43	551	Aug;46(2):561-4.	
44	552	. Chi RC, Jackson LA, Neuzil KM. Characteristics and outcomes of older adults	
45 46	553	with community-acquired pneumococcal bacteremia. J Am Geriatr Soc. 2006	
47 48	554	Jan;54(1):115-20.	
49 50	555	. Ho PL, Chiu SS, Chow FK, et al. Pediatric hospitalization for pneumococcal	
51	556	diseases preventable by 7-valent pneumococcal conjugate vaccine in Hong Kong	j .
52 53	557	<i>Vaccine</i> . 2007 Sep 28;25(39-40):6837-41.	
54 55	558	0. Ho PL, Chiu SS, Ang I, et al. Serotypes and antimicrobial susceptibilities of	
56	559	invasive Streptococcus pneumoniae before and after introduction of 7-valent	
57 58	560	pneumococcal conjugate vaccine, Hong Kong, 1995-2009. Vaccine. 2011 Apr	
59 60	561	12;29(17):3270-5.	

Page 23 of 34

1		22
2 3 4 5 6 7 8 9	562	11. Deloria, K.M., Bennett, J.C., Garcia, Q.M., et al. Global Landscape Review of
	563	Serotype-Specific Invasive Pneumococcal Disease Surveillance among
	564	Countries Using PCV10/13: The Pneumococcal Serotype Replacement and
	565	Distribution Estimation (PSERENADE) Project. <i>Microorganisms</i> . 9.
10	566	12. Ho, P.L., Law, P.Y., and Chiu, S.S., 2019. Increase in incidence of invasive
11 12 13 14 15 16	567	pneumococcal disease caused by serotype 3 in children eight years after the
	568	introduction of the pneumococcal conjugate vaccine in Hong Kong. Hum. Vaccin.
	569	Immunother. 15: 455-458.
17	570	13. Bonten MJ, Huijts SM, Bolkenbaas M, et al. Polysaccharide conjugate vaccine
18 19	571	against pneumococcal pneumonia in adults. N Engl J Med. 2015 Mar
20 21	572	19;372(12):1114-25.
22 23	573	14. López EL, Glatstein E, Ezcurra GC, et al. Rapid Decrease in Rates of
24 25	574	Hospitalization Resulting From Invasive Pneumococcal Disease and Community-
26	575	Acquired Pneumonia in Children Aged <60 Months After 13-Valent
27 28	576	Pneumococcal Conjugate Vaccine Introduction in Argentina. J Pediatric Infect Dis
29 30	577	Soc. 2018 Feb 19;7(1):30-35.
31 32 33 34 35	578	15. Nieto Guevara J, Daza C, Smith R. Decrease in Hospitalizations for Pneumonia
	579	in Children under Five Years of Age in an Indian Reservation in Panama after the
	580	Introduction of the Heptavalent Pneumococcal Conjugate Vaccine (PCV7). Int J
36 37	581	Pediatr. 2013;2013:514578.
38 39	582	16. Maruyama T, Taguchi O, Niederman MS, et al. Efficacy of 23-valent
40	583	pneumococcal vaccine in preventing pneumonia and improving survival in
41 42	584	nursing home residents: double blind, randomised and placebo controlled trial.
43 44	585	<i>BMJ.</i> 2010 Mar 8;340:c1004.
45 46	586	17. Centre for Health Protection, Department of Health, Hong Kong Special
47	587	Administrative Region. Available: <u>https://www.chp.gov.hk/</u> Accessed on 5th May
48 49	588	
50 51	589	18. Department of Health Public Health Information System (PHIS). Available:
52 53	590	https://www.healthyhk.gov.hk/phisweb/en/chart_detail/26/ Accessed on 5th May
54	591	2021.
55 56	592	19. Cucchiari D, Pericàs JM, Riera J, et al.; Hospital Clínic 4H Team. Pneumococcal
57 58	593	superinfection in COVID-19 patients: A series of 5 cases. <i>Med Clin (Barc)</i> . 2020
59 60	594	Dec 11;155(11):502-505.

2 3									
4	595	20. Karami Z, Knoop BT, Dofferhoff ASM, et al. Few bacterial co-infections but							
5 6	596	frequent empiric antibiotic use in the early phase of hospitalized patients with							
7 8	597	COVID-19: results from a multicentre retrospective cohort study in The							
9	598	Netherlands. Infect Dis (Lond). 2021 Feb;53(2):102-110.							
10 11	599	21. Hughes S, Troise O, Donaldson H, et al. Bacterial and fungal coinfection among							
12	600	hospitalized patients with COVID-19: a retrospective cohort study in a UK							
13 14	601	secondary-care setting. Clin Microbiol Infect. 2020 Oct;26(10):1395-1399.							
15 16	602	22. Community Health Module Research Reports, Hong Kong Public Opinion							
17	603	Research Institute. Available: https://www.pori.hk/research-reports. Accessed on							
18 19	604	10th April 2021.							
20 21	605	23. Chan KH, Lee PW, Chan CY, et al. Monitoring respiratory infections in covid-19							
22 23	606	epidemics. <i>BMJ</i> . 2020;369:m1628.							
24	607	24. Chan KPF, Ma TF, Kwok WC, et al. Significant reduction in hospital admissions							
25 26	608	for acute exacerbation of chronic obstructive pulmonary disease in Hong Kong							
27 28	609	during coronavirus disease 2019 pandemic. <i>Respir Med.</i> 2020 Sep;171:106085.							
29	610	25. Chan KPF, Kwok WC, Ma TF, et al. Territory-wide Study on Hospital Admissions							
30 31	611	for Asthma exacerbation in COVID-19 Pandemic. Ann Am Thorac Soc. 2021 Feb							
32 33	612	26.							
34 35	613	26. Hospital Authority Statistical Report. Available:							
36	614	https://www3.ha.org.hk/Data/HAStatistics/StatisticalReport. Accessed on 12th							
37 38	615	April 2021.							
39 40	616	27. Hong Kong Observatory.							
41 42 43	617	Available: https://www.hko.gov.hk/en/wxinfo/pastwx/mws/mws.htm. Accessed on							
	618	18th April 2021.							
44 45	619	28. Air Quality Health Index monthly summary.							
46 47	620	Available: https://www.aqhi.gov.hk/en/aqhi/statistics-of-aqhi/aqhi-monthly-							
48 49	621	summary.html. Accessed on 18th April 2021.							
50	622	29. Wagner AK, Soumerai SB, Zhang F, et al. Segmented regression analysis of							
51 52	623	interrupted time series studies in medication use research. J Clin Pharm Ther.							
53 54	624	2002 Aug;27(4):299-309.							
54 55	625	30. A. Agresti. Categorical Data Analysis, 3rd Edition. Wiley, 2012.							
56 57	626	31. Lim RH, Chow A, Ho HJ. Decline in pneumococcal disease incidence in the time							
58 59 60	627	of COVID-19 in Singapore. J Infect. 2020;81(6):e19-e21.							

1		24
2 3 4	628	32. Juan HC, Chao CM, Lai CC, et al. Decline in invasive pneumococcal disease
5	629	during COVID-19 pandemic in Taiwan. J Infect. 2021 Feb;82(2):282-327.
6 7	630	33. Teng JLL, Fok KMN, Lin KPK, et al. Substantial decline in invasive
8 9	631	pneumococcal disease (IPD) during COVID-19 pandemic in Hong Kong. Clin
10 11	632	Infect Dis. 2021 Apr 27:ciab382.
12	633	34. Valsecchi P, Colaneri M, Zuccaro V, et al. Impact of Pneumococcal Urinary
13 14	634	Antigen Testing in COVID-19 Patients: Outcomes from the San Matteo COVID-
15 16	635	19 Registry (SMACORE). <i>J Pers Med</i> . 2021 Jul 31;11(8):762.
17	636	35. Zhu X, Ge Y, Wu T, Zhao K, Chen Y, Wu B, Zhu F, Zhu B, Cui L. Co-infection
18 19	637	with respiratory pathogens among COVID-2019 cases. Virus Res. 2020
20 21	638	Aug;285:198005.
22 23	639	36. Bennett JC, Hetrich MK, Garcia Quesada M, et al. Changes in Invasive
24	640	Pneumococcal Disease Caused by Streptococcus pneumoniae Serotype 1
25 26	641	Following Introduction of PCV10 and PCV13: Findings from the PSERENADE
27 28	642	Project. <i>Microorganisms</i> . 2021 Mar 27;9(4):696.
29 30	643	37. Waight PA, Andrews NJ, Ladhani SN, et al. Effect of the 13-valent pneumococcal
31	644	conjugate vaccine on invasive pneumococcal disease in England and Wales 4
32 33	645	years after its introduction: an observational cohort study. Lancet Infect Dis. 2015
34 35	646	May;15(5):535-43.
36 37	647	38. Berman-Rosa M, O'Donnell S, Barker M, et al. Efficacy and Effectiveness of the
38	648	PCV-10 and PCV-13 Vaccines Against Invasive Pneumococcal Disease.
39 40	649	Pediatrics. 2020 Apr;145(4):e20190377.
41 42	650	39. McLaughlin JM, Jiang Q, Isturiz RE, et al. Effectiveness of 13-Valent
43 44	651	Pneumococcal Conjugate Vaccine Against Hospitalization for Community-
45	652	Acquired Pneumonia in Older US Adults: A Test-Negative Design. Clin Infect Dis.
46 47	653	2018 Oct 30;67(10):1498-1506.
48 49	654	40. Lawrence H, Pick H, Baskaran V, et al. Effectiveness of the 23-valent
50	655	pneumococcal polysaccharide vaccine against vaccine serotype pneumococcal
51 52	656	pneumonia in adults: A case-control test-negative design study. PLoS Med. 2020
53 54	657	Oct 23;17(10):e1003326.
55	658	41. Cheng VC, Wong SC, Chuang VW, et al. The role of community-wide wearing of
56 57	659	face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to
58 59 60	660	SARS-CoV-2. <i>J Infect.</i> 2020 Jul;81(1):107-114.

2		
3 4	661	42. Chan JF, Yuan S, Zhang AJ, et al. Surgical Mask Partition Reduces the Risk of
5	662	Noncontact Transmission in a Golden Syrian Hamster Model for Coronavirus
6 7	663	Disease 2019 (COVID-19). Clin Infect Dis. 2020 Nov 19;71(16):2139-2149.
8 9	664	43. Wong SC, Lam GK, AuYeung CH, et al. Absence of nosocomial influenza and
10	665	respiratory syncytial virus infection in the coronavirus disease 2019 (COVID-19)
11 12	666	era: Implication of universal masking in hospitals. Infect Control Hosp Epidemiol.
13 14	667	2021 Feb;42(2):218-221.
15	668	44. Chan T, Tay MZ, Kyaw WM, et al. Epidemiology, vaccine effectiveness, and risk
16 17	669	factors for mortality for pneumococcal disease among hospitalised adults in
18 19	670	Singapore: a case-control study. <i>BMC Infect Dis.</i> 2020 Jun 17;20(1):423.
20	671	45. Darbà J, Marsà A. Hospital incidence, in-hospital mortality and medical costs of
21 22	672	
23		pneumococcal disease in Spain (2008-2017): a retrospective multicentre study.
24 25	673	Curr Med Res Opin. 2021 Mar;37(3):523-530.
26 27	674	46. Brotons P, Gelabert G, Launes C, et al. Cost of hospitalizing children with
28	675	invasive pneumococcal pneumonia. Vaccine. 2013 Feb 4;31(7):1117-22.
29 30	676	47. Yang L. Acute Kidney Injury in Asia. <i>Kidney Dis (Basel)</i> . 2016;2(3):95-102.
31 32	677	48. Bersano A, Kraemer M, Touzé E, et al. Stroke care during the COVID-19
33	678	pandemic: experience from three large European countries. Eur J Neurol. 2020
34 35	679	Sep;27(9):1794-1800.
36 37	680	49. Del Vecchio Blanco G, Calabrese E, et al. The impact of COVID-19 pandemic in
38	681	the colorectal cancer prevention. Int J Colorectal Dis. 2020 Oct;35(10):1951-1
39 40		
41		
42 43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54		
55 56		
57 58		
59		
60		

. .

 BMJ Open

. ..

		All ages		18-49 years		50-64 years	≥65 years	
Disease ^a	No. of episodes	Incidence rate per 100,000 person-years	No. of episodes	Incidence rate per 100,000 person-years	No. of episodes	Incidence rate per 100,000 person-years	No. of cases	Incidence rate per 100,000 person-years
IPD	-							
Period 1	699	2.2	125	0.7	195	2.2	379	6.2
Period 2	26	2.4	5	0.9	6	2.0	15	6.6
Period 3	17	0.2	3	0.08	8	0.4	6	0.4
% reduction ^b		88.9% (79.8%-98.0%)***		88.6% (66.8%-110.4%)***		81.3% (62.1%-100.4%)***		93.5% (82,2%-104.8%)**
IRR⁰		0.11(0.07-0.18)***		0.11(0.04-0.36)***		0.19(0.09-0.38)***		0.07(0.03-0.15)***
Pneumococcal pneumonia			Ó	0				
Period 1	1,970	6.2	217	1.3	435	4.9	1,318	21.7
Period 2	74	6.9	11	2.0	14	4.7	49	32.4
Period 3	119	1.7	8	0.2	24	1.2	87	5.9
% reduction		72.5% (65.9%-79.1%)***		82.5% (64.5 <mark>%-100.5%)***</mark>		74.8% (61.0%-88.6%)***		73.0% (65.2%-80.8%)***
IRR⁰		0.28(0.23-0.33)***		0.18(0.09-0.35)***		0.25(0.17-0.38)***		0.27(0.22-0.34)***
All-cause pneumonia					PLA			
Period 1	372,660	1169.7	19,502	115.3	38,360	432.4	314,798	5177.1
Period 2	13,865	1288.2	843	153.6	1,448	484.6	11,574	5062.3
Period 3	67,474	964.5	2,473	69.3	6,181	318.3	58,820	3958.0
% reduction		17.5% (16.8%-18.2%)***		39.9% (37.1%-42.7%)***		26.4% (24.3%-28.5%)***		23.5% (22.8%-24.3%)***
IRR⁰		0.83(0.82-0.83)***		0.60(0.58-0.63)***		0.74(0.72-0.76)***		0.77(0.76-0.77)***

^a Period 1, January 2015 to December 2019 (before covid-19); period 2, January 2020 to February 2020 (transition period); period 3 March 2020 to 32 March 2021 (post-COVID-19).

³³ ^b Percentage reduction in period 3 relative to period 1 as the baseline

400 000

 34 ^c Incidence rate ratio between period 1 and period 3

*p <0.05 to 0.01, **p <0.01 to 0.005, ***p<0.005

2	7
_	/

Table 2. Median length of stay and mortality rate of pneumococcal pneumonia, invasive pneumococcal disease (IPD) and pneumonia in the periods

	Median I	ength of stay	; days (IQR) [#]		Mortality rate; % (95%Cl)				
	All ages	18-49 years	50-64 years	≥65 years	All ages	18-49 years	50-64 years	≥65 years	
IPD									
Period 1	12 (16)	13 (19)	13 (17)	12 (13)	12.1 (8.8-16.1)	9.1 (3.4- 18.7)	8.4 (3.7-15.9)	15.3 (10.3-21.4)	
Period 3	12 (11)	4 (3)	16 (19)	12 (6)	6.3 (1.6-30.2)	0.0	0.0	14.3 (3.6-57.9)	
Pneumococcal Pneumonia		7							
Period 1	9 (14)	7 (14)	9 (15)*	10 (14)	13.1 (11.7-14.8)*	4.2 (1.9-7.7)	7.5 (5.3-10.5)**	16.3 (13.6-18.7)	
Period 3	12 (17)	7 (13)	13 (20)*	12 (16)	22.7 (15.5-31.3)*	0.0	29.2 (12.6-51.1)**	23.0 (14.6-33.2)	
All-cause pneumonia									
Period 1	6 (9)***	4 (6)***	6 (9)**	6 (10)	20.5 (20.4-20.6)***	5.3 (4.9-5.6)*	13.0 (11.4-12.0)***	22.4 (22.2-22.4)	
Period 3	6 (10)***	4 (8)***	6 (10)**	6 (10)	24.2 (24.9-25.6)***	6.8 (5.9-7.9)*	16.1 (5.2-17.0)***	27.0 (26.6-27.3)	
*p <0.05 to 0.01, **p < #IQR= interquartile rai		005, ***p<0.0	05						

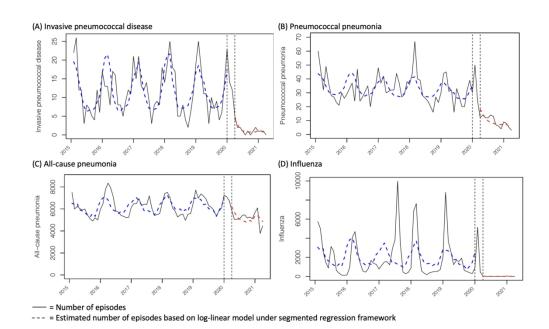
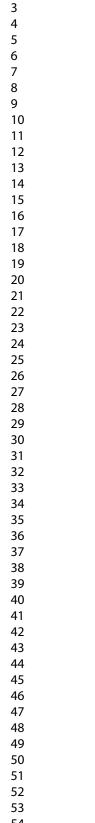


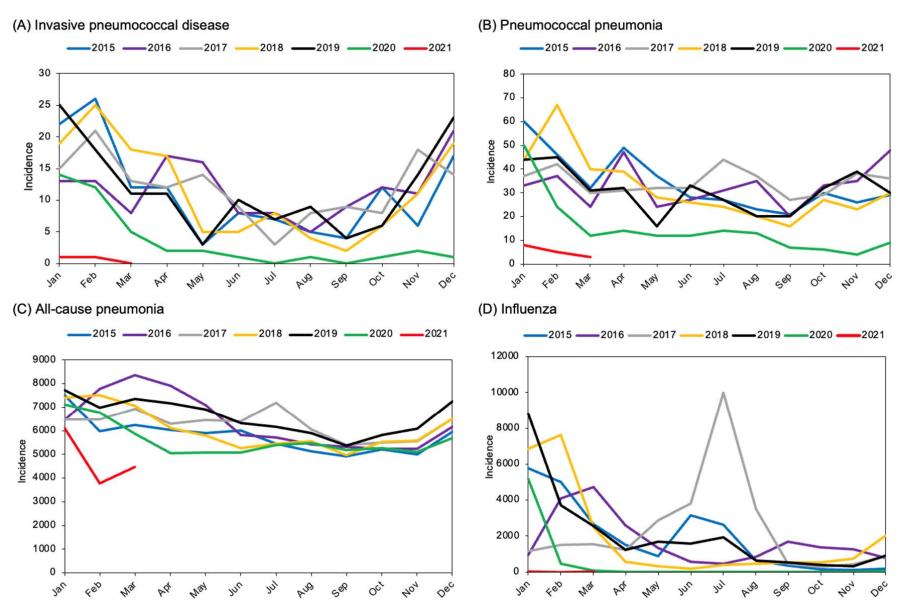
Figure 1. Trend analysis of monthly numbers of invasive pneumococcal disease (IPD), pneumococcal pneumonia, all-cause pneumonia, and influenza in Hong Kong, January 2015 to March 2021. Numbers of IPD were those obtained through mandatory notification. Numbers of pneumococcal pneumonia and all-cause pneumonia were territory-wide hospitalizations by discharge diagnoses. Numbers of influenza viruses were those detected in respiratory specimens in a territory-wide laboratory surveillance. The two vertical lines delineated the time intervals from January 2015 to December 2019 (period 1, prior to COVID-19), January to February 2020 (period 2, excluded form analysis) and March 2020 to March 2021 (period 3, COVID-19 pandemic).


352x218mm (144 x 144 DPI)

-----Fracture hip ------Acute kidney injury -----PD peritonitis

Figure 2. Admission numbers of fracture hip, acute kidney injury and PD peritonitis.

419x237mm (144 x 144 DPI)


Log number of incidence

 BMJ Open

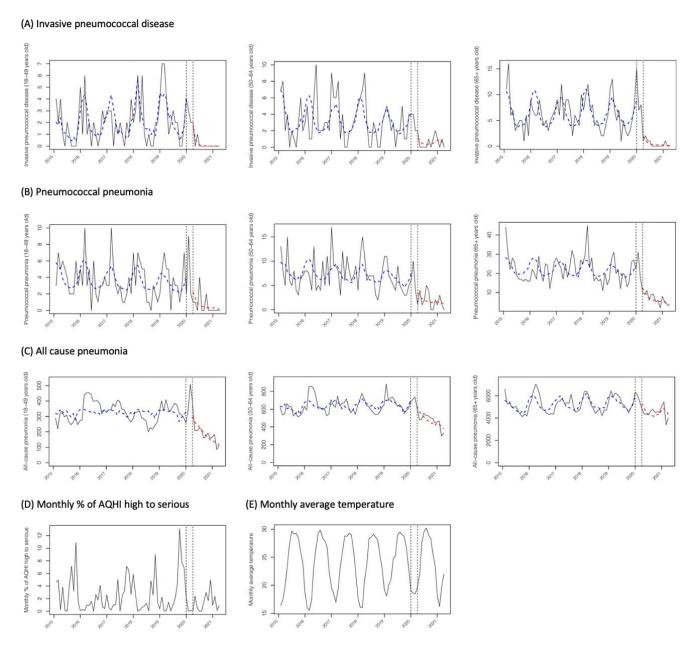

Supplementary file.

Figure S1. Monthly incidence of (A) Invasive pneumococcal disease (IPD), (B) Pneumococcal pneumonia, (C) All-cause pneumonia and (D) Influenza in January 2015 to March 2021.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S2. Trend analysis of monthly number of (A) age-stratified hospitalizations for invasive pneumococcal disease, (B) age-stratified hospitalizations for pneumonococcal pneumonia, (C) age-stratified hospitalizations for and (D) monthly percentage of air quality health index (AQHI) high to serious and (E) monthly average ambient temperature.

47

BMJ Open

18-49 years 1.0129 (1.0022-1.0238) 0.5272 (0.2176-1.2772) -31.27% (-89 50-64 years 0.9969 (0.9888-1.0051) 0.9585 (0.8087-1.1362) -70.43% (-99 65 years or above 1.0012 (0.9953-1.0071) 0.7777 (0.6111-0.9897)* -70.83% (-9 Pneumococccal	
All ages 1.0020 (0.9977-1.064) 0.8484 (0.7501-0.9597)** -70.39% (-80 18-49 years 1.0129 (1.0022-1.0238) 0.5272 (0.2176-1.2772) -31.27% (-80 50-64 years 0.9969 (0.9888-1.0051) 0.9585 (0.8087-1.1362) -70.43% (-90 65 years or above 1.0012 (0.9953-1.0071) 0.7777 (0.6111-0.9897)* -70.83% (-90 Pneumococcal	
18-49 years 1.0129 (1.0022-1.0238) 0.5272 (0.2176-1.2772) -31.27% (-89 50-64 years 0.9969 (0.9888-1.0051) 0.9585 (0.8087-1.1362) -70.43% (-99 65 years or above 1.0012 (0.9953-1.0071) 0.7777 (0.6111-0.9897)* -70.83% (-9 Pneumococccal	
50-64 years 0.9969 (0.9888-1.0051) 0.9585 (0.8087-1.1362) -70.43% (-9) 65 years or above 1.0012 (0.9953-1.0071) 0.7777 (0.6111-0.9897)* -70.83% (-9) Pneumococcal	36.55% to -34.73%)**
65 years or above 1.0012 (0.9953-1.0071) 0.7777 (0.6111-0.9897)* -70.83% (-9 Pneumococcal Pneumonia Pneumonia	39.72% to 359.72%)
Pneumococcal Pneumonia Pneumonia	92.80% to 21.42%)
Pneumonia	91.59% to 1.12%)
All ages 0.9978(0.9953-1.0004) 0.9042(0.8621-0.9483)*** -42.79% (-59) 18-49 years 0.9964(0.9887-1.0042) 0.6768(0.2171-2.1093) -32.32% (-7) 50-64 years 0.9962(0.9907-1.0017) 0.9174(0.8260-1.0189) -50.21% (-7) 65 years or above 0.9986(0.9954-1.0017) 0.9107(0.8612-0.9640)* -41.19% (-6) All-cause pneumonia	
18-49 years 0.9964(0.9887-1.0042) 0.6768(0.2171-2.1093) -32.32% (-76) 50-64 years 0.9962(0.9907-1.0017) 0.9174(0.8260-1.0189) -50.21% (-76) 65 years or above 0.9986(0.9954-1.0017) 0.9107(0.8612-0.9640)* -41.19% (-60) All-cause pneumonia	
50-64 years 0.9962(0.9907-1.0017) 0.9174(0.8260-1.0189) -50.21% -70 65 years or above 0.9986(0.9954-1.0017) 0.9107(0.8612-0.9640)* -41.19% -60 All-cause pneumonia	59.36% to -19.48%)*
65 years or above 0.9986(0.9954-1.0017) 0.9107(0.8612-0.9640)* -41.19% (-60 All-cause pneumonia -41.19% (-60 All ages 1.0014(1.0012-1.0016)*** 0.9835(0.9815-0.9855)*** -11.24% (-1 18-49 years 1.0000(0.9992-1.0008) 0.9263(0.9164-0.9364)*** -6.05% (-13 50-64 years 1.0015(1.0009-1.0021)*** 0.9620(0.9556-0.9684)*** -9.32% (-14 65 years or above 1.0011(1.0009-1.0013)*** 0.9879(0.9858-0.9901)*** -13.30% (-1 'Trend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the relative risk expressed n hospitalization numbers of period 3 compared to period 1 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in period 1	78.29% to 110.93%)
All-cause pneumonia -11.24% (-1 All ages 1.0014(1.0012-1.0016)*** 0.9835(0.9815-0.9855)*** -11.24% (-1 18-49 years 1.0000(0.9992-1.0008) 0.9263(0.9164-0.9364)*** -6.05% (-13 50-64 years 1.0015(1.0009-1.0021)*** 0.9620(0.9556-0.9684)*** -9.32% (-14 65 years or above 1.0011(1.0009-1.0013)*** 0.9879(0.9858-0.9901)*** -13.30% (-12) Yrrend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the relative risk expressed in hospitalization numbers of period 3 compared to period 1 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in period 1	76.93% to 7.48%)
All ages 1.0014(1.0012-1.0016)*** 0.9835(0.9815-0.9855)*** -11.24% (-1.0012)*** 18-49 years 1.0000(0.9992-1.0008) 0.9263(0.9164-0.9364)*** -6.05% (-13.005) (-1.005)*** 50-64 years 1.0015(1.0009-1.0021)*** 0.9620(0.9556-0.9684)*** -9.32% (-14.0011)*** 65 years or above 1.0011(1.0009-1.0013)*** 0.9879(0.9858-0.9901)*** -11.30% (-1.0011)*** ^Trend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the relative risk expressed n hospitalization numbers of period 3 compared to period 1 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in period 3.	60.82% to -11.73%)*
All ages 1.0014(1.0012-1.0016)*** 0.9835(0.9815-0.9855)*** -11.24% (-1.0012)*** 18-49 years 1.0000(0.9992-1.0008) 0.9263(0.9164-0.9364)*** -6.05% (-13.005) (-1.005)*** 50-64 years 1.0015(1.0009-1.0021)*** 0.9620(0.9556-0.9684)*** -9.32% (-14.0011)*** 65 years or above 1.0011(1.0009-1.0013)*** 0.9879(0.9858-0.9901)*** -11.30% (-1.0011)*** ^Trend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the relative risk expressed n hospitalization numbers of period 3 compared to period 1 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in period 3.	
18-49 years 1.0000(0.9992-1.0008) 0.9263(0.9164-0.9364)*** -6.05% (-13 50-64 years 1.0015(1.0009-1.0021)*** 0.9620(0.9556-0.9684)*** -9.32% (-14 65 years or above 1.0011(1.0009-1.0013)*** 0.9879(0.9858-0.9901)*** -13.30% (-1 *Trend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the relative risk expressed in hospitalization numbers of period 3 compared to period 1 -4 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in period 1 -4	12.76% to -9.7%)***
50-64 years 1.0015(1.0009-1.0021)*** 0.9620(0.9556-0.9684)*** -9.32% (-14 65 years or above 1.0011(1.0009-1.0013)*** 0.9879(0.9858-0.9901)*** -13.30% (-1) `Trend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the relative risk expressed n hospitalization numbers of period 3 compared to period 1 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in period 3.	3.41% to 1.94%)
65 years or above 1.0011(1.0009-1.0013)*** 0.9879(0.9858-0.9901)*** -13.30% (-1. Trend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the relative risk expressed n hospitalization numbers of period 3 compared to period 1 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in p	4.14% to -4.22%)***
Trend in period 1 (January 2015 to December 2019) and 3 (March 2020 to March 2021), the relative risk expressed n hospitalization numbers of period 3 compared to period 1 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in p	12.94% to -9.64%)***
n hospitalization numbers of period 3 compared to period 1 #Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in p	
#Estimate the change in trend in the mean monthly number of cases in period 3, compare with the monthly trend in p	
	period 1

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what	2-3
		was done and what was found	
Introduction	2	Euclair the exicutific heateneous dand extinue to far the investigation hairs	5.6
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7-8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	7-8
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	7-8
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	5, 7-8
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	7-8
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	7-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7-9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	N/A
		(d) Cohort study—If applicable, explain how loss to follow-up was	N/A
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	8-9

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	Τ
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	Т

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.