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Supplementary Notes 1 

Supplementary note 1: Alternative machine learning pipelines and effect on results 2 

In order to find a machine learning pipeline that best fits our multi-study data, we examined several 3 

different pipelines, and eventually chose the one that produced the highest number of well-predicted 4 

metabolites overall among the healthy datasets.  5 

Specifically, we tried both random forest (RF) and elastic net models (ENet), from the “ranger” [1] and 6 

“glmnet” [2] packages, respectively. For each algorithm, we additionally tried both a pipeline that 7 

included model tuning via grid search and a pipeline that did not include tuning and used default 8 

hyperparameters instead. For the tuned pipeline, we used nested cross-validation (CV), meaning that 9 

an outer 10-fold CV loop was used for estimating the overall model performance, and an inner 10-fold 10 

CV loop was used to find hyperparameters that optimize the root mean square error (RMSE). The 11 

hyperparameters we tuned for RF were mtry (number of features per tree), trees (number of trees), 12 

and min_n (minimal number of samples in a tree node). For ENet, we tuned mixture (proportion of L1 13 

regularization in the model) and penalty (total amount of regularization in the model) hyperparameters. 14 

Each pipeline produced qualitatively similar results in terms of which metabolites were most 15 

predictable but some differed in the final set of well-predicted metabolites given our strict cutoff 16 

(Additional file 3: Figure S8). Overall, the RF models performed better on our data than the ENet ones, 17 

with highly similar results between the pipeline version with tuning and that without tuning (Additional 18 

file 3: Figure S8). The RF-without-tuning yielded 418 well-predicted metabolites out of 1255 models 19 

(accumulating over all datasets), and the RF-with-tuning, ENet-with-tuning, and ENet-without-tuning 20 

yielded 407, 323, and 241 well-predicted metabolites, respectively. 21 

We ran each regression task (a specific metabolite in a specific dataset) 5 times to also examine the 22 

stability of each pipeline, given the randomness introduced by the models. All pipelines were similarly 23 

stable, as quantified by the percent of metabolites that were either always well-predicted or never well-24 

predicted across the 5 runs. Specifically, all pipelines resulted in 83%-86% metabolites being always or 25 

never well-predicted, and 92%-95% if also allowing 1 of the 5 runs to disagree with the others. 26 

The pipeline that resulted in most well-predicted metabolites overall was the one without 27 

hyperparameter tuning using RF with default hyperparameters and was thus selected for further 28 

analysis.  29 

 30 
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Supplementary note 2: Comparisons to previous studies and validation  31 

As a validation of our machine learning pipeline, we compared the predictability of metabolites 32 

obtained using our pipeline in one specific dataset to results from a recent study that applied a 33 

somewhat different machine learning pipeline to the same dataset. In this study (Mallick et al. [3]), a 34 

machine learning method, termed MelonnPan, was used for predicting metabolite levels based on 35 

functional profiles of the microbiome. Mallick et al. used a dataset of IBD patients and controls to train 36 

and tune the models, and another independent cohort to evaluate performance and determine which 37 

metabolites can be well-predicted (using a similar threshold to the one used in our study). The 38 

combined dataset from that study is also included in our meta-analysis and is labeled as 39 

‘FRANZOSA_IBD’. Importantly, while both MelonnPan and our study use a machine learning-based 40 

framework, a few important differences should be acknowledged. First, Mallick et al. trained the model 41 

on a mix of IBD and control subjects from the training set, while in our study we considered both the 42 

training and validation cohorts but only the healthy subjects. Second, Mallick et al. used gene-family 43 

relative abundances as features, whereas our study used genera relative abundances. Yet, even when 44 

considering these methodological differences, since both studies ultimately aimed to predict 45 

metabolite levels based on microbiome composition, we expected a significant overlap. To compare 46 

our results with those reported in Mallick et al., we obtained the list of 107 well-predicted metabolites 47 

from that study’s supplementary data, and mapped metabolite names to HMDB IDs using 48 

MetaboAnalyst [4]. Out of these 107 metabolites, 98 were mapped to HMDB IDs, of which 81 were also 49 

included in our analysis. We found that 60 metabolites (74%) of these 81 were also well-predicted by 50 

our pipeline in this dataset (Additional file 3: Figure S3A). Interestingly, 20 of the 21 metabolites well-51 

predicted in Mallick et al. but not well-predicted by our pipeline, were also significantly associated with 52 

IBD (each metabolite tested independently using a Mann-Whitney test, with FDR-corrected P value < 53 

0.05), suggesting that the disease status may have amplified the predictability of these metabolites 54 

when training the machine learning models on mixed case-control datasets. 55 

Finally, to also provide additional support to our final set of robustly well-predicted metabolites, we 56 

compared this set to findings from an independent analysis [5] of paired stool microbiome-metabolome 57 

profiles from the TwinsUK cohort [6] – the largest cohort with such data published to date (not included 58 

in our meta-analysis due to limited data availability). As part of this analysis, the authors have estimated 59 

the proportion of variance in each detected metabolite explained by the composition of the microbiota, 60 

by regressing fecal metabolite concentrations against the microbial UniFrac beta-diversity. Since we 61 

believe that our set of robustly well-predicted metabolites captures consistent, robust, and 62 

reproducible associations between the microbiome and specific metabolites, we expected this set to 63 

show some agreement with microbiome-metabolite associations detected by a completely different 64 
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statistical framework and in a new, independent dataset. Indeed, obtaining the calculated estimations 65 

of explained variance from this study, we found that robustly well-predicted metabolites were 66 

associated with significantly higher proportions of variance explained compared to metabolites not in 67 

this set (Mann-Whitney P = 0.0008, Additional file 3: Figure S3B). 68 

 69 

Supplementary note 3: Metabolic pathways-oriented analysis of robustly well-predicted metabolites 70 

Among robustly well-predicted metabolites, we found multiple metabolites that take part in clinically 71 

important pathways known to involve the gut microbiome, such as bile acid transformations, 72 

trimethylamine N-oxide (TMAO) metabolism, tryptophan metabolism, and polyamine biosynthesis. 73 

Here, we elaborate on several of these metabolic pathways, highlighting which related metabolites 74 

were robustly associated with the microbiome and how these findings coincide with existing literature. 75 

Bile acids have an essential role in fat digestion but also act systematically as hormones, regulating both 76 

glucose and fatty acids levels and immune homeostasis [7]. Our analysis echoes the microbiota’s known 77 

essential role in the transformation of primary bile acids to secondary bile acids [7]. Specifically, we 78 

found that the levels of the primary bile acids cholic acid (HMDB0000619), chenodeoxycholic acid 79 

(HMDB0000518), glycochenodeoxycholate (HMDB0000637) taurocholic acid (HMDB0000036), 80 

taurodeoxycholic acid (HMDB0000896), lithocholyltaurine (HMDB0000722), and 81 

taurochenodeoxycholate (HMDB0000951), as well as secondary bile acids such as lithocholic acid 82 

(HMDB0000761), were all robustlywell-predicted by the microbiota’s composition. We additionally 83 

found that the Blautia genus consistently contributes to cholic acid models (Additional file 1: Table S8). 84 

Indeed, previously reported genomic analysis revealed that strains of this genus contain bile acid 85 

hydrolysis enzymes [7]. This finding is also supported by rodent models: Mice that were fed cholic acid 86 

showed a drastic increase in Blautia abundance [8]. Additional major bile components were robustly 87 

well-predicted, including cholesterol (HMDB0000067), taurine (HMDB0000251, a deconjugation 88 

product of the primary bile acid taurochenodesoxycholate), and urobilin (the oxidized form of 89 

urobilinogen, a product of microbial metabolism of bile pigment) (see Figure 3C). Contributors analysis 90 

indicated that Bacteroides played a consistent role in cholesterol models, consistent with previous 91 

reports [9, 10]. Our analyses also indicated that the Bilophila genus is consistently associated with 92 

Taurine, again in agreement with experimental results [11, 12]. 93 

TMAO metabolism by both the host and gut bacteria has been widely studied for its involvement in 94 

atherosclerosis development. Specifically, dietary choline and L‐carnitine are metabolized by intestinal 95 

bacteria to produce TMA, which, in turn, is further oxidized into TMAO in the liver and absorbed into 96 

the bloodstream [13, 14]. Two metabolites involved in this process were found to be robustly well-97 
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predicted, namely N6, N6, N6-Trimethyl-L-lysine (HMDB0001325), and gamma-butyrobetaine 98 

(HMDB0001161, an intermediate in gut microbe-dependent formation of TMA from L-carnitine) [14, 99 

15]. TMAO itself was included in our analysis but was not robustly well-predicted, perhaps 100 

unsurprisingly as the majority of TMAO is extracted in urine and only a small fraction (~4%) is extracted 101 

in feces [16]. This most likely indicates that TMAO extraction in the stool is affected more by inter-102 

personal physiological variation rather than differences in microbial activity in the gut.  103 

Perhaps one of the most well-studied classes of microbially-governed metabolites is short chain fatty 104 

acids (SCFA). SCFAs have been shown to influence a wide spectrum of physiological processes, ranging 105 

from gut-brain axis crosstalk to immunomodulation [17]. However, quantification of SCFAs in common 106 

untargeted MS methods is challenging due to their high volatility [18]. As a result, most of the SCFAs 107 

are missing from our analysis, and only butyric acid was found to be robustly well-predicted.  108 

Our analysis also supports the established microbial involvement in tryptophan metabolism [19]. 109 

Tryptophan itself as well as its derivatives, tryptamine and indolepropionate were all robustly well-110 

predicted (see Additional file 3: Figure S3B). These two derivatives are known agonists of the aryl 111 

hydrocarbon receptor, an important transcription factor that mediates xenobiotic degradation and 112 

immune response [20, 21]. Our analysis found that members of the Odoribacter genus consistently 113 

contributed to tryptophan models, in line with evidence of Odoribacter Splanchnicus’s (isolated from 114 

human stool) ability to metabolize tryptophan [22]. 115 

Polyamines are ubiquitous to all living cells and possess a wide set of biological functions including gene 116 

regulation, resistance to oxidative stress, and cell proliferation and differentiation [23]. In certain 117 

cancers, polyamine metabolism is dysregulated, and several recent and ongoing clinical trials are testing 118 

agents targeting polyamines for both therapy and prevention of cancer [24]. The colonic bacterial 119 

population is known to directly contribute to shifts in polyamine metabolism (and therefore to 120 

carcinogenesis), and indeed levels of several polyamines and related metabolites in the stool were 121 

consistently associated with the microbiome in our analysis, including  N1,N12-diacetylspermine 122 

(HMDB0002172), putrescine (HMDB0001414), N-acetylputrescine (HMDB0002064), S-123 

adenosylmethionine (HMDB0001185), cadaverine (HMDB0002322) N1-acetylspermidine 124 

(HMDB0001276), and N1-acetylspermine (HMDB0001186) [23, 25] (see Additional file 3: Figure S3C). 125 

The Alistipes genus was a consistent contributor to all robustly well-predicted polyamines. Indeed, this 126 

bacteria was found to possess enzymes in the polyamines metabolic pathway [26]. 127 

Two robustly well-predicted metabolites, namely gamma-aminobutyric acid (GABA, HMDB0000112) 128 

and N-acetyl-L-aspartic acid (HMDB0000812), also illustrated the suggested role of the microbiome in 129 

the gut-brain axis. GABA is an important neurotransmitter that was found to be metabolized by 130 
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Bacteroides strains [27]. N-acetyl-L-aspartic acid is the most abundant amino acid in brain tissue and is 131 

a key osmolyte and precursor for the neurotransmitter N‐acetylaspartylglutamate [28]. 132 

Our results additionally support more recent findings such as multiple commensal gut bacteria’s role in 133 

L-proline biosynthesis, discovered using protein similarity networks [29], specifically by acting on 4-134 

hydroxyproline (HMDB000025) which was robustly well-predicted in our analysis. 4-hydroxyproline can 135 

also be obtained through diet and carries health benefits [30].  136 

Lastly, we note the class of polyunsaturated fatty acids (PUFA). PUFAs, and specifically omega-3 and 137 

omega-6 acids, all have a key role in regulating the homeostasis of the immune system, lipid 138 

metabolism, and inflammatory reaction and have an important role in cancer development, food 139 

allergies, and cardiovascular diseases [31]. Our analysis highlights the microbial role in the metabolism 140 

of PUFAs, including many omega-6 derivatives such as dihomo-gamma-linolenic acid (HMDB0002925), 141 

arachidonic acid (HMDB0001043), adrenic acid (also named docosatetraenoic acid, HMDB0002226), 142 

docosapentaenoic acid (22n-6) (HMDB0001976), 9,10-DHOME (HMDB0004704) and 12,13-DHOME 143 

(HMDB0004705). The analysis further indicates the association of gut microbes and the omega-3 acids 144 

eicosapentaenoic acid (HMDB0001999) and Docosahexaenoic acid (HMDB0002183). These PUFA-145 

microbiota associations are supported by previous experimental findings, as metabolism of PUFAs was 146 

detected in cultured human intestinal bacteria [32]. In addition, experiments in specific pathogen-free 147 

mice compared to germ-free mice have established the role of mice gastrointestinal bacteria in 148 

modifying the fatty acid profiles of their hosts, in particular by increasing the levels of intermediates of 149 

polyunsaturated fatty acid-saturation metabolism [33]. Bacteroides genus was a consistent contributor 150 

to both docosapentaenoic acid (22n-6) and dihomo-gamma-linolenic acid models. This finding is 151 

supported by experiments in piglets, where piglets fed with omega 3 rich oils exhibited growth in cecum 152 

Bacteroides population compared to piglets fed with omega-6 rich oils [34].  153 

 154 

Supplementary note 4: Effect of excluding the infants dataset on robustness results  155 

While multiple sources of heterogeneity exist between the datasets included in this meta-analysis study 156 

(as discussed in the main text), the difference between infants’ and adults’ microbiomes may constitute 157 

one of the most prominent heterogeneity source. Specifically, the infant gut differs substantially from 158 

that of adults in both digestion, absorption, and motility [35, 36]. Moreover, microbial composition and 159 

metabolic activity in the gut changes dramatically over the first years of life [35, 37]. We therefore 160 

conducted an additional analysis in which we excluded the infants’ dataset included in our study 161 

(HE_INFANTS or HE in short), and report results below.  162 
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Out of 940 unique, non-rare, HMDB compound IDs found across the 8 healthy datasets (compared to 163 

951 when including HE), 264 (28%) were shared among 3 or more datasets.  Training a predictor for 164 

each of the 264 metabolites and in each dataset it appeared in resulted in a total of 1161 metabolite 165 

predictor models. Of these, 401 models were able to successfully predict the metabolite level (with 𝜌 166 

> 0.3 and FDR < 0.1), and accordingly defined as well-predicted.  167 

Using random-effects models and following the strategy and thresholds applied when analyzing the 168 

complete set of datasets, we found 97 robustly well-predicted metabolites, mostly overlapping with 169 

the 97 found when including HE_INFANTS dataset. Specifically, 93 of the robustly well-predicted 170 

metabolites remained so when excluding HE. Four metabolites that were found to be robustly well-171 

predicted when excluding the HE dataset and were not robustly well-predicted when the HE dataset 172 

was included were L-alpha-Aminobutyric acid (HMDB0000452), L-Methionine (HMDB0000696), D-173 

Xylose (HMDB0000098), and 3-Hydroxybutyric acid (HMDB0000011). For all of these metabolites, the 174 

performance of the microbiome-based models in the HE dataset was poor (Spearman correlation < 0.16 175 

and FDR-corrected p value > 0.4), and thus, when excluding HE from the corresponding random-effects 176 

models, the overall mean predictability was higher and exceeded the defined cutoff for robustness. The 177 

four metabolites that were no longer robustly well-predicted after excluding HE were 2-Hydroxy-3-178 

methylbutyric acid (HMDB0000407), gamma-Aminobutyric acid (HMDB0000112), L-Arabinose 179 

(HMDB0000646), and Creatine (HMDB0000064). The first 3 simply no longer appeared in 3 datasets 180 

and were therefor not included in the random-effects models analysis. Creatine did appear in enough 181 

datasets but without HE the overall predictability estimate dropped below our threshold. Though some 182 

of these metabolites may indeed interact differently with the microbiome in the infant gut compared 183 

to the adult gut, more infant datasets are required in order to more rigorously determine such 184 

differences.   185 
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