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Figure S1. Representation of the different BRET-based biosensors used for MT1 characterization.
(A) In basal condition, MT1 is bound to inactive complex αβγ (left part). In our case, we used α
proteins fused to RlucII and Gγ proteins fused to GFP10. When melatonin is added, it binds to and
activates the MT1 receptor leading to the dissociation of the complex (upper panel). RlucII too
distant from GFP10 to transfer its energy, a decrease of BRET is observed (bottom panel). (B) For
this experiment, we used βarrestin-2 fused to RlucII (βarrestin-2-RlucII) and the CAAX part of Kras
protein which anchors to the plasma membrane fused to rGFP (CAAX-rGFP). In basal state,
βarrestin-2 is not present at the plasma membrane (upper left panel). Upon MT1 activation by
melatonin, βarrestin-2 is recruited to MT1 at the cell surface leading to a proximity between
βarrestin-2-RlucII and CAAX-rGFP leading to an increase of EbBRET signal (upper right panel) as
shown by the dose-response curve on the bottom panel. (C) The last BRET sensor used was the
unimolecular biosensor of PKC activation. This biosensor contains the c1b domain of PKCδ able to
bind DAG, RlucII, two specific phospho-substrate sequences (pPKC1 and pPKC2), two phospho-
sensing domains (FHA1 and FHA2) and a rGFP (upper left panel). Upon MT1 activation by
melatonin, Gα15 is activated leading to the activation of PLC, producing DAG and IP3 and PKC
activation. This activated PKC and our biosensors are then able to bind to DAG present at the
plasma membrane (upper right panel). PKC phosphorylates the biosensor, leading to its
conformational change increasing the proximity of RlucII with rGFP and an increase of EbBRET
(bottom panel).
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Figure S2. MT1 variant receptors are as expressed at the cell surface as the MT1-WT.
Cell surface expression of MT1 variants measured by enzyme-linked immunosorbent assay (ELISA) 
in HEK293 cells in parallel of BRET experiments for every G protein activation or βarrestin-2 
recruitment. Cell surface expression of each variant was adjusted to MT1-WT. Statistical analysis 
was performed using one-sample t test. Data represents means ± SEM of 3 to 6 experiments. Data 
were fitted in GraphPad Prism 9.
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Figure S3. Melatonin concentration-response curves for G protein activation and βarrestin-2 
recruitment of the MT1-WT and the different variant profiles grouped in 3 clusters.
Functional profile of the MT1-WT receptor and the first cluster corresponding to the 21 variants 
with a similar profile to the MT1-WT receptor. The cluster 2 groups 7 variants with a total loss of 
βarrestin-2 recruitment and generally an impairment of Gα12 and/or Gα15 activation. The cluster 
3 groups 3 variants with a loss of βarrestin-2 recruitment and a defect for every maximal efficacy 
(Max) but with similar potencies (EC50) to the MT1-WT. Cell surface expression of each variant 
was adjusted to MT1-WT and monitored by ELISA. Experiments were repeated at least 3 times.
Data were plotted using non-linear regression with a fixed Hill slope equal to 1. Data points 
represent means ± SEM of 3 to 15 experiments. WT; wild-type. Data were fitted in GraphPad Prism 
9.
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Figure S4. Radial graph representation of the different variant profiles grouped in 3 clusters.
On each radial graph for each MT1 variant, maximal agonist-induced efficacy (Max) and potency 
(EC50) obtained by BRET are indicated. The three clusters were made regarding the profile of each 
variant. The first cluster corresponds to the 21 variants with a similar profile to the MT1-WT 
receptor. The cluster 2 groups 7 variants with a total loss of βarrestin-2 recruitment and generally 
an impairment of Gα activation potencies, especially for Gα12 and/or Gα15. The cluster 3 groups 
3 variants with a defect for every efficacy (Max) but generally with similar potencies (EC50) to the 
MT1-WT. WT profile is represented in red and mutant profiles are in blue. A loss of potency or 
efficacy for a specific protein results in the decrease of the blue area. Cell surface expression of 
each variant was adjusted to MT1-WT and monitored by ELISA. Data were fitted in Microsoft Excel 
2016.
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Figure S5. Kinetic of melatonin-induced MT1 internalization in response to melatonin. 
Kinetic of melatonin-induced BRET response between MT1-WT (Blue), R54W (Green), I309T 
(Brown) and C314R (Purple) receptors fused to RlucII and the early endosome marker FYVE fused 
to rGFP, in absence (Dark curves) or presence (Clear curves) of the dominant negative Dynamin 
K44A (DynK44A) to inhibit endocytosis. Only MT1-WT receptor internalizes contrary to R54W, 
I309T and C314R. Data points represent means ± SEM of 3 experiments. WT; wild-type. Data were 
fitted in GraphPad Prism 9.
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Supporting Tables

Table S1. Coding variants of MTNR1A (NM_005958.4) which were accurately detected in 8,687 
individuals. 2,102 cases and 4,008 controls were involved in the case-control study for type 2 
diabetes; 991 cases and 985 controls were involved in the case-control study for childhood 
obesity; 1,301 cases and 2,621 controls were involved in the case-control study for adulthood 
obesity.

Chr_Pos Conse- AA
(hg19) quence change Control Case Control Case Control Case

4_187476468 C T NS p.G18R 1 0 0 2 0 0 0
4_187476365 A G NS p.V52A 1 3 0 3 1 1 1
4_187476360 G A NS p.R54W 1 0 0 1 1 0 0
4_187476335 C A SD p.? 1 0 1 0 0 0 0
4_187455657 G A NS p.P80L 1 1 0 0 0 0 1
4_187455636 G A NS p.S87L 1 0 1 0 0 0 0
4_187455634 T C NS p.I88V 1 1 0 0 0 1 0
4_187455625 T A NS p.N91Y 1 0 1 0 0 0 1
4_187455617 C T SG p.W93* 1 1 0 0 0 1 0
4_187455609 C T NS p.G96D 1 12 10 2 5 5 1
4_187455561 A T NS p.I112N 0 0 1 0 0 0 1
4_187455523 G A NS p.R125C 1 0 1 0 0 0 0
4_187455504 T C NS p.H131R 1 1 0 1 0 0 1
4_187455483 A G NS p.L138P 1 0 1 0 1 1 0
4_187455426 G A NS p.A157V 1 0 1 0 0 0 0
4_187455399 C T NS p.G166E 1 159 64 19 28 103 40
4_187455386 G C SG p.Y170* 1 2 2 1 0 2 0
4_187455358 C T NS p.A180T 1 1 1 0 0 2 0
4_187455261 A G NS p.I212T 1 1 29 1 1 6 5
4_187455235 C T NS p.V221M 1 0 0 0 1 0 1
4_187455213 T C NS p.K228R 0 0 1 0 0 0 0
4_187455127 T A NS p.I257F 1 1 0 0 0 1 0
4_187455100 C T NS p.A266T 1 3 0 3 0 2 1
4_187455099 G A NS p.A266V 1 152 93 42 26 102 49
4_187455097 T C NS p.S267G 0 0 1 0 0 0 1
4_187454975 C G NS p.R307S 0 1 0 1 0 0 0
4_187454956 A G NS p.C314R 1 1 0 0 0 1 0
4_187454935 C T NS p.V321M 1 1 1 0 0 0 0
4_187454920 C T NS p.D326N 1 0 1 0 1 0 0
4_187454905 C A NS p.V331F 1 0 1 0 0 0 0
4_187454894 T A NS p.K334N 1 26 13 4 4 16 4

CAGT
GGAG
ACGG
TTTC

4_187454877 G A NS p.T340I 1 2 0 0 0 1 0
4_187454871 T C NS p.N342S 0 1 0 0 0 0 0
4_187454863 C T NS p.V345I 1 5 2 2 0 4 3
4_187454843 T A SL p.*351Yext*? 0 1 0 0 0 0 0

Minor Allele Count
Type 2 diabetes Obesity Childhood Obesity Adulthood

0 0 2 04_187454882 del FS p.W333* 1 1 1

Ref Mut GnomAD

AA, amino acid; Chr, chromosome; Del, deletion; FS, frameshift variant; GnomAD, genome 
aggregation database browser (v2.1.1; 1: present, 0: absent); Mut, mutated allele; NS, non-
synonymous variant; Pos, position (according to the human alignment hg19/GRCh37); Ref, 
reference allele; SD, splice-donor variant; SG, stop-gain variant; SL, stop-loss variant.
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Table S2. Association between MTNR1A coding variants and the risk of T2D, childhood obesity 
and adulthood obesity.

Study Variant OR [CI] P π P τ P
CC T2D Cluster of rare variants 1.17 [0.759-1.78] 0.473 0.373 0.483
CC ObC Cluster of rare variants 0.669 [0.302-1.47] 0.315 0.464 0.427
CC ObA Cluster of rare variants 0.706 [0.406-1.19] 0.201 0.383 0.275
CC T2D p.G166E (rs28383653) 0.941 [0.676-1.30] NA NA 0.712
CC ObC p.G166E (rs28383653) 2.28 [1.03-5.16] NA NA 0.0445
CC ObA p.G166E (rs28383653) 0.804 [0.546-1.16] NA NA 0.257
CC T2D p.A266V (rs28383652) 1.15 [0.855-1.54] NA NA 0.347
CC ObC p.A266V (rs28383652) 0.757 [0.364-1.56] NA NA 0.451
CC ObA p.A266V (rs28383652) 0.855 [0.596-1.21] NA NA 0.387

CC, case-control study; CI, confidence interval; NA, not applicable; ObC, obesity childhood; ObA, 
obesity adulthood; OR, odds ratio; π, mean effect of the cluster; τ, heterogeneous effect of the 
cluster
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Table S3. Data from the functional characterization of variants. Summary of the functional 
profiling of (A) Gαi1, Gαi2, Gαi3, (B) GαoA, GαoB, (C) Gα12 and Gα15 activation and βarrestin-2 
recruitment by MT1-WT and MT1 variants. Data represent the mean ± SEM of 3-13 independent 
experiments with repeats in quadruplicate. Data were analyzed by comparing independent fits.
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 NR denotes that the experimental parameter could not be determined due to lack of a 
concentration-response curve. 




