SUPPLEMENTAL MATERIAL

Supplemental Figures

DNA binding domain

Figure S1. The H-NS regulator encoded in pAB5 is 100% identical to the H-NS encoded in other LCPs. Amino acids alignment of the H-NS regulators encoded in the LCPs pAB5, pAB3 and pAB4 and the H-NS encoded in UPAB1 chromosome.

Figure S2. H-NS reduce PNAG production. UPAB1, UPAB1p-, and UPAB1p- empty vector (p-/vec) or the vector expressing the pAB5 regulators. Immunoblots using antibodies anti-PNAG (A) and antibodies anti-UPAB1 as loading control (B). Cells were taken from overnight LB-agar plates incubated at 26 °C and adjusted to OD 1.

Figure S3. PgaA-D and CsgG like clusters are involved in Congo-red binding. Deletions of pgaA-D, pgaA and csgG were made in UPAB1 Δ hns background (top panel) and UPAB1p- background. Cells were incubated for 48 hours at 26°C on YESCA-Congored agar plates.

FigureS4.

Growth curves of UPAB1p- and derivative mutant strains in YESCA-DMSO media, measured by OD600. The graphs represent the mean and standard deviation of three replicates.

S5. **pAB5** inhibits CUP pili formation. Western blot of OD-normalized whole cell. Western blot probing for CupA (the Usher protein from Cup 2 pili). RNAP is included as loading control.

Figure S6. Biofilm formation in UPAB1p- mutants and complemented strains. Cells were grown for 8 hours on LB broth at 37°C under static conditions. Biofilm formation was measured by the crystal violet binding and normalized to the OD600. The values represent the mean and standard deviations from three independent experiments. Statistical analysis by t test was performed by comparison with the pAB5- strain (** $p \le 0.005$, * $p \le 0.05$).

Table S1. List of regulators identified in pAB5

Accession number	Description	Protein name
D1G37_RS18580	H-NS histone family protein	H-NS
D1G37_RS18620	TetR/AcrR family transcriptional regulator	TetR1
D1G37_RS18650	TetR/AcrR family transcriptional regulator	TetR2
D1G37_RS18810	TetR family transcriptional regulator	TetR3
D1G37_RS18815	ArsR family transcriptional regulator	ArsR
D1G37_RS18965	metal/formaldehyde-sensitive family	FrmR
	transcriptional regulator	

Strain	Relevant properties	Reference
UPAB1	MDR Urine isolate with pAB5 plasmid	(1)
UPAB1p- (p-)	UPAB1derivative strain without pAB5	(1)
UPAB1∆ <i>hns</i>	UPAB1 containing an unmarked hns deletion	this study
p-/vec	UPAB1p- containing the pVRL2 expression vector	this study
p-/ <i>hns</i>	p- expressing <i>hns</i> in pVRL2	this study
p-/ <i>tetR</i> 1	p- expressing <i>tetR</i> 1 in pVRL2	this study
p-/ <i>tetR</i> 2	p- expressing <i>tetR</i> 2 in pVRL2	this study
p-/ <i>tetR</i> 3	p- expressing <i>tetR</i> 3 in pVRL2	this study
p-/ <i>ars</i> R	p- expressing <i>arsR</i> in pVRL2	this study
p-/ <i>frm</i> R	p- expressing <i>frm</i> R in pVRL2	this study
p-∆ <i>pgaA-D</i>	p- containing an unmarked pgaA-D deletion	this study
p-∆ <i>pgaA</i>	p- containing an unmarked pgaA deletion	this study
p-∆ <i>csgG</i>	p- containing an unmarked <i>csgG</i> deletion	this study
p-∆Ab <i>12600</i>	p- containing an unmarked D1G37_12600 deletion	this study
p+∆ <i>hns ∆pgaA-D</i>	UPAB1 containing an unmarked <i>hns</i> and <i>pgaA-D</i> deletion	this study
p+∆ <i>hns ∆pgaA</i>	UPAB1 containing an unmarked <i>hns</i> and <i>pgaA</i> deletion	this study
p+∆ <i>hns</i> ∆csgG	UPAB1 containing an unmarked <i>hns</i> and <i>csgG</i> deletion	this study
p-∆ <i>pgaA-D</i> /c	p-∆ <i>pgaA-D</i> complemented	this study
p-∆ <i>pgaA</i> /c	p-∆ <i>pgaA</i> complemented	this study
p-∆ <i>csgG</i> /c	p-∆csgG complemented	this study

Table S2. Bacterial strains used in this study.	

Plasmid	Relevant properties	Reference
pVRL2	Expression vector in Acinetobacter, Gm ^r	(2)
pVRL2/hns	pVRL2 containing hns	this study
pVRL2/tetR1	pVRL2 containing tetR1	this study
pVRL2/tetR2	pVRL2 containing tetR2	this study
pVRL2/tetR3	pVRL2 containing tetR3	this study
pVRL2/arsR	pVRL2 containing arsR	this study
pVRL2/frmR	pVRL2 containing frmR	this study
pAT03H	pMMB67EH with FLP recombinase, Hyg ^r	Feldman
		lab
pAT04H	pMMB67EH with RecAb recombinase,	Feldman
	Hyg ^r	lab
pUCT18T-miniTn7-Gm	mobilizable mini-Tn7 vector, Gm ^r	(3)
pUCT18T-miniTn7-pgaA-D	for $\Delta pgaA-D$ complementation	this study
pUCT18T-miniTn7-pgaA	for $\Delta pgaA$ complementation	this study
pUCT18T-miniTn7- <i>csgG</i>	for $\Delta csgG$ complementation	this study
pTNS2	Tn7 transposase-expressing helper	(4)
	plasmid, Amp ^r	
pRK2013	RK2 derivative, Kmr, self-transmissible	(5)
pET28 a+	Kmr	Novagen
pET28 a-CupA	pET28a+ expressing <i>cupA</i> from UPAB1	this study

Table S3. Bacterial plasmids used in this study.

Name	Sequence ^a	gene target
Cloning in pVRL2 (g	gene expression)	
HNS xhol Fw	CCG CTCGAG ATGATGAAAGAATTTAATTTAG	hns
HNS pstl Rv	AAAA CTGCAG TTATTTAATCAGGAATTCACTCA	
<i>tetR</i> 1 xhol Fw	CCG CTCGAG ATGACAAATAAAGCTTCACAGC	te <i>tR</i> 1
<i>tetR</i> 1 pstl Rv	AAAA CTGCAG TCAAAATTGCTCACCATATAAA	
<i>tetR</i> 2 xhol Fw	CCG CTCGAG ATGACTAAAGTTATTTCAAAAA	tetR2
<i>tetR</i> 2 pstl Rv	AAAA CTGCAG TTAAGCCTCAAATGTCTGAATTA	۱.
<i>tetR</i> 3 xhol Fw	CCG CTCGAG ATGATGTCTAGATTAGATAAAAG	TA tetR3
<i>tetR</i> 3 pstl Rv	AAAA CTGCAG TTAAGACCCACTTTCACATTT	
arsR xhol Fw	CCG CTCGAG ATGGGGATCTCCTTAAACCATG	arsR
<i>arsR</i> pstl Rv	AAAA CTGCAG TTAAATGTGAAAGTGGGTCTTA	
frmR xhol Fw	CCG CTCGAG ATGCCTAATCAGGTTGAAGACAA	frmR
<i>frmR</i> pstl Rv	AAAA CTGCAG CTATTTTAAATATGATTTTAGA	
Mutant construction	<u>1</u>	
Hns2 FP1	AATTCGAGCTCGGTACCCGGGGATCAACA	hns deletion
Hns2 RP1	GATGATTCTATATATACGATT AGCAGCTCCAGCCTACACAATCGCTTAAT ACTCTATATGTTTTAA	hns deletion
Hns2 FP3	AGGAACTAAGGAGGATATTCATATGTGAT GTATAAAAAAAGCCTA	hns deletion
Hns2 RP3	GCCTGCAGGTCGACTCTAGAGGATCCG	hns deletion
<i>pgaA</i> Up Fw	AATTCGAGCTCGGTACCCGGGGATCGCT AATTGTTTTAAGTCCATA	pgaA deletion

Table S4. Oligonucleotides used in this study.

^aEngineered resctriction enzyme sites are indicated in bold.

Name	Sequence ^a	gene target
Mutant construc	tion	
<i>pgaA</i> Up R∨ deletion	AGCAGCTCCAGCCTACACAATCGCTGGC	pgaA
	AGCTATCACGGACATGGC	
<i>pgaA</i> Dw Fw deletion	TAGGAACTAAGGAGGATATTCATATGAGTT	pgaA
	TGTCCTGCTCTATAAT	
<i>pgaA</i> Dw Rv deletion	GCCTGCAGGTCGACTCTAGAGGATCTAAT	pgaA
	CTGGATGTGTTTGAAGG	
pnag Up Fw deletion	AATTCGAGCTCGGTACCCGGGGATCGAAC	pgaA-D
	ACGGCAGAACAACTTTCT	
pnag Up Rv deletion	AGCAGCTCCAGCCTACACAATCGCTTATGG	pgaA-D
	TCAGTACCGAATCATT	
pnag Dw Fw deletion	TAGGAACTAAGGAGGATATTCATATTATAAT	pgaA-D
	TTTGAATAGCTTGCT	
pnag Dw Rv deletion	GCCTGCAGGTCGACTCTAGAGGATCTAATC	pgaA-D
	TGGATGTGTTTGAAGG	
12595 FP1 deletion	GAATTCGAGCTCGGTACCCGGGGATCGGT	csgG
	AGCCTCTACCTATTGGAT	
12595 RP1 deletion	AGCAGCTCCAGCCTACACAATCGCTGTTTA	csgG
	CTCTATAAAGATAAATAAAT	
12595 FP3 deletion	AATAGGAACTAAGGAGGATATTCATATGTTT	csgG
	TGGATATGTGTTAGATGA	
12595 RP3 deletion	GCCTGCAGGTCGACTCTAGAGGATCAACAA	csgG
	GTT TTTTCTCACCTGTCC	
12600 FP1 deletion	GAATTCGAGCTCGGTACCCGGGGATCCATAT	Ab12600

Table S4. Oligonucleotides used in this study (continued).

12600 RP1 deletion	AATTAACTATCTATAGAATAA AGCAGCTCCAGCCTACACAATCGCTCTAACA	Ab12600
	CATATCCAAAATTATTGAA	
12600 FP3	AATAGGAACTAAGGAGGATATTCATATGATG ATTAAGAAACTTCTCATT	Ab12600 deletion
12600 RP3	GCCTGCAGGTCGACTCTAGAGGATCGTAA ATACCGTTTTAAACGGAAG	Ab12600 deletion

^aEngineered resctriction enzyme sites are indicated in bold.

Table S4. Oligonucleotides used in this study (continued).

Name	Sequence ^a	gene target
pUC18TminiTn7T-	Gm (strain complementation)	
pgaA Fw hind3	CTGCAGGAATTCCTCGAG AAGCTT GGGT	pgaA/pgaA-D
<i>pgaA</i> Rv kpni	GCAAGGCCTTCGCGA GGTACC GGGTTT T TGGTAAATCTTTTTCTA	pgaA
complementation		
pnag Rv kpni	GCAAGGCCTTCGCGA GGTACC GGGTCA TTTCAAATCATATCGAGT	pgaA-D
complementation		
12595 Fw hind3	CTGCAGGAATTCCTCGAG AAGCTT GGGA AGTTGAGCTATTGTCCTCTG	csgG
complementation		
12595 Rv kpni	CCTGCAAGGCCTTCGCGA GGTACC GGG	csgG
Tn7R		miniTn7T
GImS1 UPAB1 <u>RT-PCR</u>	TTTGCTGATGAAAATAGCGG	insertion
RT <i>rpoB</i> F	CTAACGGTGTGCCGGTAGAT	rpoB
RT <i>rpoB</i> R	TCTTGCTCACCGCCTACTTT	
RT 510 F	GCTTGTCCACCATCCGTACT	pgaA
RT 510 R	AAGACCGTGAAATGGAAACG	
RT 505 F	CCTTGTTTACGCGCTTCTTC	pgaB
RT 505 R	GCTGTGCCTTGATCTCAACA	
RT 500 F	AAAAGGCTGCATAAGCCAAA	
pgaC		
RT 500 R	ACAGCACTGCCGAAATTCTT	
RT 12595 F	GGGCAGGCGAAAACTATTCT	csgG
RT 12595 R	CCGCGTCCTAAAATACCAAA	

RT 12600 F TTCTTGCGATGAGTTTGGTG

RT 12600 R AGCTAGGCCCTTACCTTTGG

^aEngineered resctriction enzyme sites are indicated in bold.

Bibliography

- Di Venanzio G, Flores-Mireles AL, Calix JJ, Haurat MF, Scott NE, Palmer LD, Potter RF, Hibbing ME, Friedman L, Wang B, Dantas G, Skaar EP, Hultgren SJ, Feldman MF. 2019. Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nat Commun 10:1100.
- Lucidi M, Visaggio D, Prencipe E, Imperi F, Rampioni G, Cincotti G, Leoni L, Visca P. 2019. New shuttle vectors for real-time gene expression analysis in multidrug-resistant Acinetobacter species: In vitro and in vivo responses to environmental stressors. Appl Environ Microbiol 85.
- 3. Kumar A, Dalton C, Cortez-Cordova J, Schweizer HP. 2010. Mini-Tn7 vectors as genetic tools for single copy gene cloning in Acinetobacter baumannii. J Microbiol Methods 82:296–300.
- 4. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2:443–448.
- 5. Figurski DH, Helinski DR. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–52.