Cell Metabolism, Volume 32

Supplemental Information

Alpha-Ketoglutarate, an Endogenous

Metabolite, Extends Lifespan and

Compresses Morbidity in Aging Mice

Azar Asadi Shahmirzadi, Daniel Edgar, Chen-Yu Liao, Yueh-Mei Hsu, Mark Lucanic, Arash Asadi Shahmirzadi, Christopher D. Wiley, Garbo Gan, Dong Eun Kim, Herbert G. Kasler, Chisaka Kuehnemann, Brian Kaplowitz, Dipa Bhaumik, Rebeccah R. Riley, Brian K. Kennedy, and Gordon J. Lithgow

AKG 2% (w/w) and regular diet

List of assessed deficits in aged mice- Frailty index

Integument:	Physical/Musculoskeletal:	Vestibulocochlear/Auditory:	Digestive/Urogenital:
1. Alopecia	6. Tumors	14. Vestibular disturbance	23. Malocclusions
2. Loss of fur color	7. Distended abdomen	15. Hearing loss	24. Rectal prolapse
3. Dermatitis	8. Kyphosis	16. Cataracts	25. Vaginal/uterine/ Penile prolapse
4. Loss of whiskers	9. Tail stiffening	17. Eye discharge/swelling	26. Diarrhea
5. Coat condition	 Gait disorders Tremor Forelimb grip strength Body condition score 	18. Microphthalmia	Respiratory system:
		ریت 19. Corneal opacity mb grip strength	27. Breathing rate/depth
		20. Vision loss	Discomfort and others:
	···· , ·····	21. Menace reflex	28. Mouse Grimace
		22. Nasal discharge	29. Piloerection
			30. Temperature
			31. Weight

Figure S1. Experimental Design, Related to Figure 1-4. The mice were fed AKG or Standard diet at 18 months of age. The study consists of two cohorts (n=183 animal total) and two sacrifice groups. Cohort-1 consists of female control (n=24), female AKG (n=20), male control (n=24) and male AKG (n=22) animals. Cohort-2 consists of female control (n=23), female AKG (n=23), male control (n=24) and male AKG (n=23) animals. All cohorts and sacrificed groups were started on diet at the same age (18 months). Cohort-1 mice were used for all the frailty index measurements and lifespan. Cohort-2 mice were used for replication of survival, metabolic studies and complementary aging studies. List of assessed 31 clinically relevant frailty is provided. All the phenotypes were scored as described by Whitehead, J.C., et al., except for temperature and weight for which the new scaling scores were used. Temperature and Weights Scoring: Briefly, average and standard deviations (STDEV) were calculated sex specifically using our own baseline data sets (data collected before the start of the treatment-mice at 18th month old). A decrease in temperature or weight within one STDEV is scored as a (0), a decrease bigger than one STDEV but smaller than 2 STDEV will be scored as a (0.5) and any decrease more than 2 STDEV is scored as a (1)

		Age (day	rs) at 50%	Age (days) at 90% mortality		Age (days) at 100% mortality		
		mor	tality					
		Cohort-1	Cohort-2	Cohort-1	Cohort-2	Cohort-1	Cohort-2	
	Control	876	847	1015	931	1019	948	
	AKG	932	875	1109	962	1116	975	
	Percentage	16.6%	10.5%	19.7%	8%	21%	6.6%	
D	survival increase							
nale	from inception of							
Fer	study (AKG vs.							
	Cntrl)							
	Percentage	6.3%	3.3%	9%	3.3%	10%	2.8%	
	survival increase							
	from birth (AKG							
	vs. Cntrl)							
	Control	955	812	1068	969	1109	987	
	AKG	995	847	1155	987	1173	1008	
	Percentage	9.6%	12.8%	16.4%	4.2%	11.2%	4.7%	
e	survival increase							
Ma	from inception of							
	study (AKG vs.							
	Cntrl)							
1	Percentage	4.2%	3.7%	8.1%	1.8%	5.7%	2.1%	
	survival increase							
	in survival from							
	birth (AKG vs.							
	Cntrl)							

 Table S1. The effect of AKG treatment on lifespan, Related to Figure 1.

Figure S2. AKG treatment extends health span and alleviates frailty phenotypes,

Related to Figure 2. All individual frailty phenotypes (total of 31 phenotypes), separately graphed (a) female and (b) male. Data are mean \pm s.e.m. of the group, n= all animals alive at each measurement time. *P <0.0016, **P < 0.00032 (Non-parametric two tailed t-test, Bonferroni correction). As in almost all longitudinal studies, missing values have caused data fluctuations during the course of our study. The main contributor to this fluctuation is the death of the frail animal between measurement time points. When the deceased animal is omitted from the group, the total frailty score of the group is improved (lower scores). The remaining mice in the study might exhibit the phenotype, which again change the total score of the group.

Frailty	Trend test		Frailty Phenotype	Trend test		
Phenotypes (Female)	(Mann-Kenda	11)	(Female)	(Mann-Kendall)		
	S statistics	P-Value		S statistics	P-Value	
1. Alopecia	7	0.3675207	17. Kyphosis	18	0.0076802**	
2. Body Condition	21	0.0026666*	18. Loss of Whiskers	6	0.7595545	
3. Body Weight	13	0.0715054	19. Malocclusion	-4	0.45325471	
4. Breathing Rate	9	0.1282753	20. Menace Reflex	7	0.3675207	
5. Cataracts	11	0.0572793	21. Microphthalmia	5	0.4469742	
6. Coat Condition	19	0.0068637**	22. Nasal Discharge	0	NaN	
7. Corneal Opacity	11	0.0572793	23. Piloerection	15	0.0354981*	
8. Dermatitis	17	0.0162609*	24. Rectal Prolapse	13	0.0567382	
9. Diarrhea	6	0.2112995	25. Tail Stiffening	13	0.0715054	
10. Distended Abdomen	9	0.1803918	26. Temperature Loss	5	0.4523703	
11. Eye Discharge	16	0.0226870*	27. Tremors	9	0.1803918	
12. Loss of Fur color	20	0.00389**	28. Tumors	2	0.8025873	
13. Gait Disorder	18	0.0098091**	29. Vestibular Disturbance	14	0.0482861*	
14. Grimace	11	0.1331284	30. Vision Loss	5	0.5480055	
15. Grip Strength Loss	17	0.0162609*	31. Vaginal Prolapse	0	NaN	
16. Hearing Loss	19	0.0068637**				
		A		0	•	
Phenotypes	Change with Age		(Male)	Change with Age		
(Male)	S statistics	P-Value	(S statistics	P-Value	
	22	0.000374**	17 Kunhosis	22	0.00600055**	
2 Body Condition	17	0.009374	18 Loss of Whiskers	5	0.38273309	
2. Body Weight	26	0.0010817**	10. Malacelusian	3	0.30213303	
3. Body Weight	20	0.0019017		4	0.700197	
4. Breathing Rate	13	0.1077560	20. Menace Reflex	4	0.71052302	
5. Cataracts	10	0.197012	21. Microphthalmia	11	0.10017829	
6. Coat Condition	26	0.0019817**	22. Nasal Discharge	-7	0.3093073	
7. Corneal Opacity	10	0.197012	23. Piloerection	22	0.00937477**	
8. Dermatitis	19	0.021895**	24. Rectal Prolapse	3	0.66252058	
9. Diarrhea	0	NaN	25. Tail Stiffening	12	0.17354622	
10. Distended Abdomen	12	0.1439428	26. Temperature Loss	22	0.00937477**	
11. Eye Discharge	20	0.0169649*	27. Tremors	12	0.17354622	
12. Loss of Fur color	22	0.0093747**	28. Tumors	23	0 00508587**	
					0.00000001	

Table S2. Results of statistical analysis that test for a possible monotonic trend for each frailty phenotype with aging (time), Related to Figure 3. P values are the result of Mann-Kendall

0.6671689

0.0248218*

0.000836***

4

19

28

14. Grimace

15. Grip Strength Loss

16. Hearing Loss

Trend Test for changes in frailty over time for females (Table 3) and males (Table 4), *P < 0.05, **P < 0.01 and ***P < 0.001. The absolute value of S statistics indicate the direction and magnitude of the trend (S >0 an increasing trend, S<0 a decreasing trend, S=0 no trend).

30. Vision Loss

31. Penile Prolapse

0.06348653

0.66716899

16

4

Figure S3. Age-associated frailty phenotypes (including only those that have significant monotonic trend with time), Related to Figure 3. Individually graphed frailty phenotypes that significantly increase with aging, comparing control with AKG treated mice for (a) female and (b) male. Data are mean ±s.e.m. of the group. Mixed Models was used to test if each age dependent phenotype was affected by AKG supplementation for female (c) and male (d) in the study. *P <0.05, **P <0.01, ***P<0.001, ****P<0.0001. As in almost all longitudinal studies, missing values have caused data fluctuations during the course of our study. The main contributor to this fluctuation is the death of the frail animal between measurement time points. When the deceased animal is omitted from the group, the total frailty score of the group is improved (lower scores). The remaining mice in the study might exhibit the phenotype, which again change the total score of the group. (c) A picture of two cages of female mice side by side at the age of 28 months; on the left are AKG treated mice and on the right are control mice. As presented by the picture female AKG mice have better coat condition more black hair and less alopecia.

Figure S4. Metabolic rate and heart function of aged mice (Cohort-2 data), Related to

Figure 3. (a) Energy expenditure, (b) Carbon dioxide production and (c) Oxygen consumption decrease upon AKG administration in female mice. However (d) Respiratory exchange ratio remains the same. Animals were monitored for about four consecutive days (92 hrs). The measurements were done at two separate time points during lifespan (19 and 23 months old) using same animals for both runs. Plots were generated using CalR, the data is adjusted to bodyweight. Control (n=5) and AKG (n=5). Data are mean±s.e.. *p < 0.05 and ***p < 0.001 (Two way ANOVA tests). (e-l) Echocardigraphy test was performed to measure cardiovascular function close to animal median life, age=29 months old, n= all female animals alive at the time of study, data are mean±s.e... No significant change was observed for any of the measurements (t-test two tailed). Treadmill exhaustion tests were performed to measure cardiovascular system and motor function for (**m**,**n**) male and (**o**,**p**) female, age= 29 months old. n= all animals alive at the time of study. No significant change (t-test two tailed).

Figure S5. mTOR activity is not changed in tissues of mice treated with AKG, Related

to Figure 4. (a-f) Western blots of mTORC1 (indicated by p-S6/S6) and mTORC2 (indicated by p-Akt/Akt) activities in multiple tissues of female mice treated with AKG for 3 months. Overall three months AKG treatment does not change mTORC1 and mTORC2 activities

							mals
	18 mo old animals		Aged Control		Age	d AKG	AKG
	Mean (pg/ml)	STDEV	Mean (pg/ml)	STDEV	Mean (pg/ml)	STDEV	Aged 5
Eotaxin	591.3	104.9	408.4	101.7	537.4	90.5	Eotaxin
G-CSF	261.3	44.3	277.22	70.7	139.9	27.1	GM-CSF
IFNy	2.6	2.9	1.8	1.97	2.8	2.5	IFNy
IL-1a	140.1	113.1	246.7	227.2	357.8	80.3	IL-1α
IL-1B	3.3	0.8	4.4	3.15	2.9	1.15	IL-1β
IL-2	5.5	2.0	4.7	4.3	2.3	1.53	IL-2
IL-6	11.9	6.5	7.9	4.2	10.0	14.3	IL-6
IL-7	4.1	3.7	29.6	35.7	15.2	23.4	IL-7
IL-12	7.0	6.1	10.4	9.98	3.7	3.8	IL-12 (p40)
IL-12	23.6	29.7	16.5	14.4	6.4	NaN	IL-12 (p70)
IL-15	23.0	12.9	23.4	11.0	126.2	232.5	IL-15
IL-17	6.1	3.3	1.39	0.95	3.1	1.1	IL-17
CXCL-10	69.2	3.3	162.4	110.9	80.5	22.7	CXCL-10
CXCL-1	179.1	46.1	102.0	71.4	131.1	93.9	CXCL-1
CXCL-5	469.4	413.9	7302.9	6745.7	9755.5	7505.9	CXCL-5
CCL-2	16.2	5.3	35.3	24.1	20.1	1.5	CCL-2
M-CSF	3.3	1.6	2.2	1.1	2.2	0.9	M-CSF
CXCL-9	25.0	28.3	108.5	146.8	30.8	11	CXCL-9
MIP-1α	59.1	48.7	97.0	60.3	91.8	39.4	MIP-1α
MIP-1β	86.2	19.4	89.5	5.7	107.9	44.5	MIP-1β
MIP-2	32.6	10.8	14.8	13.2	13.8	4.7	MIP-2
RANTES	21.4	13.4	34.2	23.7	33.7	10.7	RANTES
TNFa	1.9	NaN	5.8	3.8	2.5	2.5	ΤΝFα
VEGF	0.6	0.3	0.6	0.1	0.6	0.3	VEGF

Male

b.	18 mo olo Mean (pg/ml)	l animals STDEV	Aged Mean (pg/ml)	Control STDEV	Age Mean (pg/ml)	d AKG STDEV	18 mo old animals	Aged Control Aged AKG	8 < 6 4 2 >	
Eotaxin	479.2	13.7	374.6	52.7	319.1	137.9			Eotaxin	
G-CSF	338.1	47.9	375.0	252.0	304.2	175.1			GM-CSF	
IFNy	1.0	NaN	3.1	3.3	5.4	8.7			IFNγ	
IL-1a	22.0	1.3	113.1	114.9	117.3	149.1			IL-1α	
IL-1B	18.8	28.6	7.7	7.0	2.9	1.9			IL-1β	
IL-2	2.0	1.0	6.5	2.4	4.6	5.2			IL-2	
IL-6	9.3	9.9	12.5	11.8	9.7	6.5			IL-6	
IL-7	3.39	1.2	3.3	3.5	1.3	0.5			IL-7	
IL-12	8.3	NaN	12.4	9.3	11.8	8.1			IL-12 (p40)	
IL-12	27.2	NaN	193.7	Nan	4.5	3.8			IL-12 (p70)	Ē
IL-15	45.2	41.7	17.9	10.7	34.0	24.4			IL-15	ň
IL-17	4.7	3.4	14.6	22.9	1.6	0.9			IL-17	เล
CXCL-10	57.4	11.6	74.6	13.3	63.9	15.2			CXCL-10	le
CXCL-1	264.8	NaN	142.1	29.8	174.4	57.5			CXCL-1	
CXCL-5	832.4	NaN	1549.6	1566.5	1585.0	904.7			CXCL-5	
CCL-2	15.9	0.8	52.5	37.3	13.3	4.4			CCL-2	
M-CSF	2.3	1.5	3.0	1.4	2.9	2.4			M-CSF	
CXCL-9	24.0	10.4	45.2	26.9	23.6	9.5			CXCL-9	
MIP-1α	76.6	10.5	112.6	105.1	105.7	125.5			MIP-1α	
MIP-1β	85.1	3.3	291.4	308.8	85.6	62.0			MIP-1β	
MIP-2	9.1	11.4	279.9	459.5	15.8	14.6			MIP-2	
RANTES	11.6	NaN	31.5	47.8	22.9	14.1			RANTES	
TNFa	0.8	NaN	33.1	39.2	7.0	1.2			TNFα	
VEGF	2.5	3.8	0.7	0.08	0.9	0.5			VEGF	

Supplemental Figure 6. AKG reduces inflammation more robustly in females than in

males, Related to Figure 4. The mean plasma concentration of 24 inflammatory cytokines and chemokines of middle aged (age=18 months, n=5), aged control and AKG fed (24 months old, n=5) animals for (a) Male and (b) Female. The heatmap of each sex has been presented alongside their value chart. For graphing the heatmap, the fold changes of cytokines and chemokines were calculated for (a) males and (b) females using the untreated 18 months old animals as reference for each sex.

a.

Table S3. q	RT-PCR	primers used i	in this study,	Related to	Star Method (Oligonucleotides)
			• •				

Genes	Forward primers (5'-3')	Reverse primers (5'-3')	Probe
Mouse p16 ^{INK4A}	AACTCTTTCGGTCGTACCCC	TCCTCGCAGTTCGAATCTG	Custom designed UPL probe: 5'-/56-FAM/AGG TGA TGA/ZEN/TGAT GGGCAACGTT CAC/3IABkFQ - 3
Mouse p21	TTGCCAGCAGAATAAAAGGTG	TTTGCTCCTGTGCGGAAC	UPL Probe #9
Human IL-1- α	GGTTGAGTTTAAGCCAATCCA	TGCTGACCTAGGCTTGATGA	UPL Probe #6
Human IL-1- β	CTGTCCTGCGTGTTGAAAGA	TTGGGTAATTTTTGGGATCTA CA	UPL Probe #78
Human IL-6	GCCCAGCTATGAACTCCTTCT	GAAGGCAGCAGGCAACAC	UPL Probe #45
Human IL-8	AGACAGCAGAGCACACAAGC	ATGGTTCCTTCCGGTGGT	UPL Probe #72
Human CCL2	AGTCTCTGCCGCCCTTCT	GTGACTGGGGCATTGATTG	UPL Probe #40
Human CXCL-1	GCTGAACAGTGACAAATCCAAC	CTTCAGGAACAGCCACCAGT	UPL Probe #52
Human MMP-3	CAAAACATATTTCTTTGTAGAG GACAA	TTCAGCTATTTGCTTGGGAAA ,	UPL Probe #36
Human actin	CCAACCGCGAGAAGATGA	TCCATCACGATGCCAGTG	UPL Probe #58
Human p21	TCACTGTCTTGTACCCTTGTGC	GGCGTTTGGAGTGGTAGAAA	UPL Probe #32