Biophysical Journal, Volume 720

Supplemental information

Gating current noise produced by Brownian models of a voltage sensor

Luigi Catacuzzeno, Fabio Franciolini, Francisco Bezanilla, and Robert S. Eisenberg



Gating current noise produced by Brownian models of a voltage sensor

Luigi Catacuzzeno®, Fabio Franciolini®, Francisco Bezanilla? and Robert S. Eisenberg3'4

! Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy

? Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Sciences, Chicago, lllinois.
® Department of Physiology and Biophysics, Rush University, Chicago IL 60612 USA

* Department of Applied Mathematics, lllinois Institute of Technology, Chicago IL 60616 USA

Supplementary Data

A | B
= D
E 2/ e 1M
£ N
S & '
g 1 1
o 15
g \oo\o \Q‘?} ﬁ
3 &0 \
s Of N\ 1 S [
® & 80
1} | & &
- A & S 40
O &6
< 20| \ | &0
. & &
N\ <
2 oS 40 V
()]
£
5 sl eoaptoene b
. > L 15
N (@
S \)é
9 0
0.0 0.2 0.4 4 0 4
time (ms) x(nm)

Supplementary Figure 1. Test of the total current conservation in the Simplified model. A) Time
dependent position (top) and unfiltered gating current (bottom) obtained in a simulation with the
Simplified model. Friction coefficient and energy profile are the same used in Figure 4A of the
main paper. Black and red arrows indicate the points in time chosen to verify the total current
conservation. B) Spatial profile of (from top to bottom): i) radius of the voltage sensor domain; ii)



the ionic current, assessed as
d

lions (6,6 = 2 ;P ACO) F (157571 . (x, D)) dx== 3. [ ACOF (8157 (v, 0)2)

where x,,; and x,, are the left and right extremes of the gating pore, F is the Faraday constant,
and z; is the valence of ion j. iii) the current carried by the voltage sensor, assessed as iz, (x,t) =
S [l eo zsa(x,t) dx = == [Feq zg4(x,t) dx, where zg, (x, t) is the charge density profile of the S,

. . . dE(x, X4,
segment; iv) the displacement current, defined as 15, (x, t) = A(x) & £(x) % , Where

E(x,x4,t) is the electric field, for which we have explicitly indicated the dependence on the
spatial dimension, time, and position of the voltage sensor xs4, A(X) is the area at position x, & is
the permittivity of free space and £(x) is the position-dependent dielectric constant; v) total
current, defined as i;o; (X, t)= ljons (X, t) + isa(x, t) + igispi(x, t). Red and black lines refer to the
profiles assessed at the two time points indicated with the arrows of same colors in panel A. For a
more extensive treatment and derivation of the current conservation and of the mathematical
forms of the various current see Supplementary material in Catacuzzeno et al., (2019).
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Supplementary Figure 2. Effects of filter cut-off frequency on the shape of the current shot. A)
Current shot simulated with the simplified model, no energy barrier (same parameters of Figure
2C of the main paper), filtered with an 8-pole Bessel filter at varying cut-off frequency (indicated).
B) Plot of the amplitude (Amp) and duration of the current shots at half amplitude (tqs), estimated
at different filter frequencies.
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Supplementary Figure 3. Differential dependence of the apparent charge on the friction
coefficient and applied voltage. Plots of the apparent charge estimated from the Simplified model
with (7.4kT, upper plots) and without (lower plots) an energy barrier, at varying friction coefficient

(A) and applied potentials (B). The plots clearly show that the apparent charge depends on the two
parameters in the no-barrier case, but not in the high barrier case.
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Supplementary Figure 4. Dependence of the apparent charge on the spreading of the gating
charges. Panel B shows variance-mean current plots obtained from the Simplified model, including

four gating charges at an inter-charge distance of 5 A. In the three simulations the standard

deviation of the normal distribution used to distribute the gating charges was varied, as indicated
in panel A.



Numerical solution of the PNP system
Discretization of the flux conservative equation

lons in the baths and vestibules were subjected to electro-diffusion governed by the following flux

conservative equation:

daci(x,t)
—L== = —VF(x, 1) (1)

that for our mono-dimensional model may be discretized following Figure S6, obtaining the following eqn.

n+i_ .n n_pn
C:: " —C;: F:"—F:"
It ]l il Ji+1
= egn. Al
At Vol; q

where c . represent the concentration of ion j in the i' " volume element at time n At, At is the time-step,
F]nl is the flux (moles per unit time) of ion j from volume element i-1 to volume element i, and Vol; is the

volume of volume element i. The ion flux follows the Nernst —Plank equation:

Fi(x,t) = —Area(x)D;(x) [VC (x,t) + VV(x t)] (2)

That in our case may be discretized in the following way:

n_ n. |G =S, 5F
Fji = —Area; Df'l |(XL+1+XL'—1)/ RT (XL+1+XL 1)/
2

|

Where Area; is the surface of the left border of the i volume element, D; ; is the diffusion coefficient
th

eqn. A2

P
|

of ion jinside the i volume element, x; is the position of the left border of volume element i, z;
is the valence of ion j, F is the Faraday constant, R is the universal gas constant, T is the absolute

temperature and V" is the electric potential profile in the i volume element at time n At.
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Supplementary Figure 5. Discretization of the spatial domain in our model



Equations A1 and A2 may be combined to give the following equation

n+1 n+1 n+l _
Ajicjica T Bjicii ™ +Giciiyy = Ry eqn. A3
Where
1 _ 2Dj;Area; At _ zjF Dj;Area; At

Aj = AL+ AF (VP = V), with A and A7 ; = L~

W (xip1—xi-1) Vol RT (xit+1—xi—1) Vol;

Cii=Cl +C? (VL — V), with C}, = 2Dt Aredin 4t 2 _ % F Djir1 Areais, At
Jou T Mi,j i i+1 | ,j —

y and C

(Xit2—xp) Vol; L) T ORT  (xig2—x) Vol

Bii=—Alj +A;; (V! =Vr) - CH+CH (Vi -V -1

— n
and R;; = —¢j;

Equations A3 form a linear system of N-2 equations, with i=1,....... , N-1. They can be coupled with the
boundary conditions imposing a constant ion concentration at the left and right boundaries

n+l _ n+l _
Go =CGrandgyoy =Cjr
to obtain a set of N linear equation for the N unknown c]-’,lg“l...........c}?ﬁfl that may be solved with an

algorithm for tridiagonal systems as given in Press et al., 1992, thus recovering the ion concentration
profiles at each timestep At.

Discretization of the Gauss law (Poisson equation)

Gauss law of electrostatics (that represent the integrated form of the Poisson’s equation) relates the flux of
the electric field out of a closed surface to the net charge existing inside

q
E(x)ds = eqn. A4
$E@) £ 2 |
Where ¢ is the integration over a closed surface, E(x) is the electric field, q is the charge contained inside
the closed surface, g, is the permittivity of free space and €(x) is the relative dielectric constant. Applying
gauss law to the i volume element we obtain:

net
n+1 _ Qi
E; = —

n+l _
gi+1 Area;yq Eiy & Area; €0

Where &; is the relative dielectric constant across the left boundary of the volume element, and g/*¢* is the
net charge inside the i volume element, given by

net _
q;"" = FZ CjizjVol; + eg Zgy;
J

Where e is the elementary charge and zg, ; is the amount of gating charge inside the i" volume element.
Considering that



yntl _yntl
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We obtain the following linear system of equations:

A VMY + BV + VI = R, eqn. A5
Where
A = — 2 gg€j Area; L _ 28041 Arediyg B = —(A~ + C~) and R, = qlnet
: (Xiy1—xi—1) Vol” (Xip2—x) Vol 't ¢ v Lovoy

Equations A5 form a linear system of N-2 equations, with i=1,......., N-1. They can be coupled with the
boundary conditions imposing a known applied potential at the left and right boundaries

Vit =, and Vi =0

to obtain a set of N linear equation for the N unknown V{*+1........... V11 that may be solved with an

algorithm for tridiagonal systems as given in Press et al., 199,2 thus recovering the electrostatic potential
profile at each timestep At.

Steady state solution of the PNP system

In our model we assume that ions relaxes much faster that the voltage sensor. This means that for each
given position of the voltage sensor the ion concentration and electrostatic potential profiles assume
instantaneously their equilibrium values. In our computations these equilibrium profiles were found by
iteratively solving eqn A3 and A5 using a timestep of 0.2 ns, until finding equilibrium, that was defined as
the situation in which the maximum relative change in the electrostatic potential within the all spatial
profile obtained in the iteration was lower than 10,



