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Supplementary Data 
 

 
 
 
Supplementary Figure 1. Test of the total current conservation in the Simplified model. A) Time 
dependent position (top) and unfiltered gating current (bottom) obtained in a simulation with the 
Simplified model. Friction coefficient and energy profile are the same used in Figure 4A of the 
main paper. Black and red arrows indicate the points in time chosen to verify the total current 
conservation. B) Spatial profile of (from top to bottom): i) radius of the voltage sensor domain; ii) 
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the ionic current, assessed as 
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where     and     are the left and right extremes of the gating pore,   is the Faraday constant, 

and    is the valence of ion j. iii) the current carried by the voltage sensor, assessed as          
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     , where          is the charge density profile of the S4 

segment; iv) the displacement current, defined as                          
           

  
 ,  where 

          is the electric field, for which we have explicitly indicated the dependence on the 
spatial dimension, time, and position of the voltage sensor xS4,      is the area at position x,     is 
the permittivity of free space and      is the position-dependent dielectric constant; v) total 
current, defined as          =                                . Red and black lines refer to the 

profiles assessed at the two time points indicated with the arrows of same colors in panel A. For a 
more extensive treatment and derivation of the current conservation and of the mathematical 
forms of the various current see Supplementary material in Catacuzzeno et al., (2019). 
 

 
 

Supplementary Figure 2. Effects of filter cut-off frequency on the shape of the current shot. A) 

Current shot simulated with the simplified model, no energy barrier (same parameters of Figure 

2C of the main paper), filtered with an 8-pole Bessel filter at varying cut-off frequency (indicated). 

B) Plot of the amplitude (Amp) and duration of the current shots at half amplitude (t0.5), estimated 

at different filter frequencies. 
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Supplementary Figure 3. Differential dependence of the apparent charge on the friction 

coefficient and applied voltage. Plots of the apparent charge estimated from the Simplified model 

with (7.4kT, upper plots) and without (lower plots) an energy barrier, at varying friction coefficient 

(A) and applied potentials (B). The plots clearly show that the apparent charge depends on the two 

parameters in the no-barrier case, but not in the high barrier case. 

 

 
 

Supplementary Figure 4. Dependence of the apparent charge on the spreading of the gating 

charges. Panel B shows variance-mean current plots obtained from the Simplified model, including 

four gating charges at an inter-charge distance of 5 Å. In the three simulations the standard 

deviation of the normal distribution used to distribute the gating charges was varied, as indicated 

in panel A. 
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Numerical solution of the PNP system 

Discretization of the flux conservative equation 

Ions in the baths and vestibules were subjected to electro-diffusion governed by the following flux 

conservative equation: 
        

  
                 (1) 

that for our mono-dimensional model may be discretized following Figure S6, obtaining the following eqn. 

    
        

 

  
 

    
        

 

    
      eqn. A1 

where     
  represent the concentration of ion j in the ith volume element at time n  t,  t is the time-step,  

    
  is the flux (moles per unit time) of ion j from volume element i-1 to volume element i, and  Voli is the 

volume of volume element i. The ion flux follows the Nernst –Plank equation: 
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That in our case may be discretized in the following way: 
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   eqn. A2 

Where       is the surface of the left border of the ith volume element,      is the diffusion coefficient 

of ion j inside the ith  volume element,    is the position of the left border of volume element ith, zj 

is the valence of ion j, F is the Faraday constant, R is the universal gas constant, T is the absolute 

temperature and   
  is the electric potential profile in the ith  volume element at time n  t. 

 

 

Supplementary Figure 5. Discretization of the spatial domain in our model 
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Equations A1 and A2 may be combined to give the following equation 
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and            
  

Equations A3 form a linear system of N-2 equations, with i=1,……., N-1. They can be coupled with the 

boundary conditions imposing a constant ion concentration at the left and right boundaries 

    
         and       

          

to obtain a set of N linear equation for the N unknown     
   ………..      

    that may be solved with an 

algorithm for tridiagonal systems as given in Press et al., 1992, thus recovering the ion concentration 

profiles at each timestep   . 

 

Discretization of the Gauss law (Poisson equation) 

Gauss law of electrostatics (that represent the integrated form of the Poisson’s equation) relates the flux of 

the electric field  out of a closed surface to the net charge existing inside 

∮         
 

       
  eqn. A4 

Where ∮  is the integration over a closed surface, E(x) is the electric field, q is the charge contained inside 

the closed surface,    is the permittivity of free space and      is the relative dielectric constant. Applying 

gauss law to the ith volume element we obtain: 

                 
                

    
  
   

  
 

Where    is the relative dielectric constant across the left boundary of the volume element, and   
    is the 

net charge inside the ith volume element, given by 
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Where    is the elementary charge and        is the amount of gating charge inside the ith volume element. 

Considering that 
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We obtain the following linear system of equations: 

       
          

           
          eqn. A5 

Where 
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Equations A5 form a linear system of N-2 equations, with i=1,……., N-1. They can be coupled with the 

boundary conditions imposing a known applied potential at the left and right boundaries 

  
       and      

      

to obtain a set of N linear equation for the N unknown   
   ………..     

    that may be solved with an 

algorithm for tridiagonal systems as given in Press et al., 199,2  thus recovering the electrostatic potential 

profile at each timestep   . 

 

Steady state solution of the PNP system 

In our model we assume that ions relaxes much faster that the voltage sensor. This means that for each 

given position of the voltage sensor the ion concentration and electrostatic potential profiles assume 

instantaneously their equilibrium values. In our computations these equilibrium profiles were found by 

iteratively solving eqn A3 and A5 using a timestep of 0.2 ns, until finding equilibrium, that was defined as 

the situation in which the maximum relative change in the electrostatic potential within the all spatial 

profile obtained in the iteration was lower than 10-8. 

 
 


