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Supplementary Note 1: Continuum theory

A. Numerical characterization of elastic moduli

Our characterization of the elatic moduli begins with the standard kinematic assumptions of Timoshenko beam
theory [1]. Let ux(x, y, z), uy(x, y, z), and uz(x, y, z) be the underlying continuum displacement field. Here, the x
direction is oriented along the beam, the y direction is oriented out of plane, and the z direction is oriented vertically.
In following Timoshenko beam theory, we assume:

1. There are no out-of-plane displacements: uy(x, y, z) = 0.

2. Cross sections of the beam remain planar. Hence, we may introduce the following parameterization:

uz(x, y, 0) =h(x) (S1)

ux(x, y, z) =− zϕ(x) + u(x), (S2)

where z = 0 coincides with the midplane of the beam.

Under these assumptions, h(x), ϕ(x), and u(x) are the independent degrees of freedom in our effective 1D model. In
the main text, we assume that u(x) = 0, as is valid in experiments. Nonetheless, we can probe elongations of the
beam in simulation, and hence we include u(x) in our analysis here. The equations of motion are obtained by invoking
conservation of angular momentum in the ŷ direction, linear momentum in the x̂ direction, and linear momentum in
the ẑ direction. These conserved quantities give rise to the following equations of motion:

Iϕ̈ =∂xM + σzx (S3)

ρḧ =∂xσzx (S4)

ρü =∂xσxx, (S5)

where ρ is the volumetric mass density, I is the cross sectional moment of inertia, M is the bending moment, and
σij is the stress tensor. Next, we expand the moments and stresses to linear order in the the deformations of the
beam, which include bend ∂xϕ, shear ∂xh− ϕ, and elongation ∂xu. We can summarize the linear response by a 3 by
3 matrix Cij : σzxM

σxx

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

∂xh− ϕ∂xϕ
∂xu

. (S6)

Eq. (S6) is an enlarged version of Eq. (10) in the main text. It is useful first to make predictions on which moduli will
dominate Eq. (S6) based on the properties of the microscopic unit cell presented in Fig. 1 of the main text. First, we
expect the beam to inherit the Young’s modulus, E, shear modulus µ, and bending moment B present in standard
beam theory. Moreover, since elongation or compression of the central piezoelectric sensor induces antisymmetric
stresses in the piezoelectric actuator, we expect elongation ∂xu and bending ∂xϕ to give rise to shear stress σzx.
Hence, we expect Cij to take the form:

Cij =

µ P K
0 B 0
0 0 E

 (S7)

In Eq. (S7), the moduli K and P are introduced via the piezoelectric feedback. The modulus P is the odd micropolar
modulus, which is the primary focus of this work. The modulus K is an asymmetric modulus between shear and
elongation.

Supplementary Figure 1 shows the result of finite-element simulations that directly probe the response of the
metabeam. The moduli are determined by applying strain controlled boundary conditions at the terminating faces
of a single unit cell and computing the reaction forces. We find that E = 152.4 × 109kg/ms2, µ = 1.3 × 109kg/ms2,
and B = 0.112 × 106kg/s2 are independent of the transfer function H(ω). Moreover, we confirm that when the
electronic feedback is present, the linear response C contains nonzero K and P . We empirically find that K and
P are proportional to the transfer function H(ω) via the relationship K = ΛH and P = ΠH, for (real) material
constants Λ = 1.2 × 109kg/ms2 and Π = 4.7 × 106kgm/s2. Additionally, we find small, but non-zero, values for C23

and C32. This coupling between elongation and bending arises since the piezoelectrics are mounted only on the top
surface of the metabeam. However, since |C32| and |C23| are small, we can safely neglect these terms in the subsequent
analysis.
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Supplementary Figure 1: Determination of linear response via finite-element simulation. The normalized magnitude and
complex argument of the nonzero moduli are shown for three different values of the transfer function H. The quantities E, µ,
and B are normalized by their passive values E0, µ0, B0 (determined when H = 0). The modulus K is normalized by µ0. The
moduli P , C23, and C32 are normalized by µ0hb, where hb is the thickness of the metabeam (see section Supplementary Note
0 H).

Supplementary Figure 2: (a) The fifteen lowest eigenfrequencies computed in COMSOL for the active metabeam withH(ω) = 3,
and hence P = 3Π. (b-d) The eigenmodes associated with selected branches. The color indicates the vertical displacement.
(e) The vibrational spectrum with periodic boundary conditions for low frequencies (<∼7kHz) are plotted in the complex ω
plane. The color of the data points indicates the wave number kL, where L is the length of a unit cell. The solid black lines
indicate the continuum theory. For simplicity, only the vibrational frequencies with positive real part are shown. The red region
has a winding number of ν = −1 and the grey region has a winding number of ν = 0, as determined by Eq. (30). Numerical
modes with negligible imaginary part are represented by the small grey dots. For these simulations, we set the transfer function
to H(ω) = 3 and hence P = 3Π. (f) The spectrum for the lowest 15 modes in the complex ω, illustrating the complexity of
the full spectrum of the metabeam. Same color scheme as in panel (a).

B. Notions of reciprocity

Here we provide a list of four minimal systems that illustrate the distinction between reciprocity in the sense of
momentum conservation and Maxwell-Betti reciprocity. For simplicity, we consider one-dimensional systems for which
linear momentum is the relevant form of momentum.
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Supplementary Figure 3: Illustrations of reciprocity violation. Four model systems are shown in which masses are
connected by Hookean springs, or generalizations of Hookean springs. The top row shows the rest state of each system, while
deformed states are shown beneath. The red arrows indicate forces. a. A Hookean spring exerts equal and opposite forces on the
two attached particles when stretched or compressed. This system respects linear momentum conservation and Maxwell-Betti
reciprocity. b. A mass is connected to a fixed wall by a Hookean spring. Due to the presence of the wall, the linear momentum
of the mobile particle is not conserved. Nonetheless, Maxwell-Betti reciprocity is respected. c. Three masses are connected
by generalized springs. When the right bond (connecting particles 2 and 3) is stretched/compressed, an outward/inward
tension is exerted on the left bond (connecting particles 1 and 2). However, when the left bond is stretched/compressed, an
inward/outward tension is exerted on the right bond. In each deformed state, the forces on all particles sum to zero, indicating
that linear momentum is conserved. Nonetheless, the system violates Maxwell-Betti reciprocity due to the asymmetry in
the relationship between the right and left bond. Such a system can be realized via sensors and linear actuators coupled by
electronic feedback. Such a system requires an energy source, but no external medium to provide the linear momentum. d. A
generalized spring is constructed in which the forces acting on the two masses are not equal and opposite. Such a device requires
an external source of linear momentum (not shown) to provide the force imbalance, and a source of energy to compensate for
the violation of Maxwell-Betti reciprocity. e-f. Energy extracting cycles performed with the systems in panels c. and d.,
respectively.

System 1 The first system is a simple Hookean spring connecting two masses, see Fig. 3a. This system respects both
linear momentum conservation and Maxwell-Betti reciprocity. The system has two degrees of freedom u1 and u2 being
the displacements of the two particles. There are two conjugate forces F1 and F2 that are defined via stipulation of
the virtual work:

dW = F1du1 + F2du2 (S8)

The system comes with a linear constitutive relation:[
F1

F2

]
=

[
−k k
k −k

]
︸ ︷︷ ︸

C

[
u1

u2

]
(S9)

where k is the spring constant. Since the linear response matrix C is symmetric, the linear response is compatible
with a quadratic potential energy V = k

2 (u1−u2)2 and hence respects Maxwell-Betti reciprocity. Secondly, we assume

dynamic forms dp1
dt = F1 and dp2

dt = F2 where p1 and p2 are the momenta associated with masses 1 and 2. The rate
of change of the total momentum P = p1 + p2 is given by:

dP

dt
=

dp1

dt
+

dp2

dt
= F1 + F2 = 0 (S10)
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where we have used Eq. (S9).

System 2 The second system we present respects Maxwell-Betti reciprocity, but does not conserve linear momentum.
This system is a mass pinned to a substrate by a Hookean spring, see Fig. 3b. This system is described by a single
degree of freedom u1. There is one conjugate force dW = F1du1 that is given by

F1 = ku1 (S11)

In this case, the linear response matrix C is simply a scalar C = k. Thus we have C = CT and the system obeys
Maxwell-Betti reciprocity and it is compatible with an energy function V = 1

2u
2
1. However, the total linear momentum

in the system P = p1 is manifestly not conserved since there are configurations of the system for which dP
dt = F1 is

nonzero. Indeed, linear momentum is conserved if the substrate is included in the analysis. However, we take the
point of view that the substrate is not dynamical (since perhaps it is very large) and hence a more reasonable choice
of system is the single mass.

System 3 Now we provide an example of a system in which linear momentum is conserved but Maxwell-Betti
reciprocity is violated. As shown in Fig. 3c, consider a collection of three coupled masses with three degrees of
freedom u1, u2, and u3. The the system has three conjugate forces defined through a statement of virtual work
dW = F1du1 +F2du2 +F3du3. The masses are coupled through specially designed actuators such that they have the
following constitutive relationship F1

F2

F3

 =

 0 ka −ka
−ka 0 ka

ka −ka 0


︸ ︷︷ ︸

C

u1

u2

u3

 (S12)

In this case, the linear response matrix C is not symmetric. This is an indication that the system violates Maxwell-
Betti reciprocity. To see that an energy function cannot be defined, consider the following protocol illustrated in
Fig. 3e.

u1(t) =


tU t ∈ [0, T ]

TU t ∈ [T, 2T ]

U(3T − t) t ∈ [2T, 3T ]

0 t ∈ [3T, 4T ].

(S13)

u2(t) =0 (S14)

u3(t) =


0 t ∈ [0, T ]

(t− T )U t ∈ [T, 2T ]

UT t ∈ [2T, 3T ]

U(4T − t) t ∈ [3T, 4T ].

(S15)

The work done along this closed cycle in the configuration space can be easily computed to be
∫ 4T

0
dW = 1

2U
2ka.

Since the work is nonzero along a closed cycle, a potential energy function cannot be defined. Nonetheless, the total
linear momentum P = p1 + p2 + p3 is conserved since:

dP

dt
= F1 + F2 + F3 = 0 (S16)

for all configurations.

System 4 Finally, we consider an example that violates both Maxwell-Betti reciprocity and linear momentum
conservation [2]. The model has two degrees of freedom u1 and u2 and two conjugate forces F1 and F2. The
constitutive relation is given by: [

F1

F2

]
=

[
−k(1 + ε) k(1 + ε)
k(1− ε) −k(1− ε)

]
︸ ︷︷ ︸

C

[
u1

u2

]
(S17)
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Supplementary Figure 4: Dispersion relations of the discrete model of the odd micropolar metabeam calculated.
Here we use for p > 0 (parameters are the same as those in Fig. 3a), and the color bar represents the normalized wavenumber
kL. See Section IIF of the main text for the description of the model. The solid black line represents the continuum theory
with wave number kL ∈ [−0.96, 0.96].

Here, the linear response matrix is no longer symmetric C 6= CT , indicating that Maxwell-Betti reciprocity is violated.
Moreover, as illustrated in Fig. 3f, one can perform a cycle in the configuration space that extracts work:

u1(t) =


0 t ∈ [0, T ]

(t− T )U t ∈ [T, 2T ]

UT t ∈ [2T, 3T ]

(S18)

u2(t) =


Ut t ∈ [0, T ]

TU t ∈ [T, 2T ]

U(3T − t) t ∈ [2T, 3T ]

(S19)

The total work done is
∫ 3T

0
dW = 2kεU2. However, the total linear momentum P = p1 + p2 is not conserved since

dP

dt
= −kε(u1 − u2) (S20)

which is nonvanishing. To physically realize such a system, a linear momentum sink must be present in addition to a
source of energy to provide the Maxwell-Betti reciprocity violation.

C. Dispersion relations calculated using the discrete model

Fig. S4 shows a comparison of the dispersion relations for the discrete model and continuum theory.

D. Boundary conditions in the continuum

Here we derive the index Eqs. (M6) and (M7) in the main text. For concreteness, we will perform the derivation
in the context of the continuum theory for the active metabeam, with sufficient discussion to allow generalization.
For further discussion, see Ref. [3] and references therein. Consider a system with semi-infinite boundary conditions
[0,∞) governed by the dynamical matrix D(k). In the notation of Eq. (23), we seek to determine many vectors

Ψ = (p̃h, p̃ϕs̃, b̃) satisfy the equation

[D(k)− ω] ·Ψ = 0 (S21)
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Supplementary Figure 5: Illustration of localized modes from continuum theory. a-b. The spectrum in the complex
plane for P > 0, using notation identical to that used in Figure M1. Here we highlight two modes ωA = 1 × 103Hz and
ωB = 1.5 × 105Hz, schematically placed within the complex plane. We compute the eigenmodes of Eq. (S44) at frequencies

ωA and ωB using the parameter ω1 = 105Hz, `1 = 10−3m, `2 = 10−2m, P̃ = 1. In c-d. we show the shearing s̃ and bending b̃
profiles over space. Consistent with the winding number ν̃(ωA) = 1, there is one left localized mode and three right localized
modes at ωA. Moreover, we have ν̃(ωB) = 2, which is consistent with two left-localized modes and two right-localized modes.

with Im(k) > 0 subject to γ independent, homogeneous boundary conditions at x = 0. By independent, homogeneous
boundary conditions, we mean boundary conditions that can be stated in the following form:

B1,1 . . . B1,4(N+1)

...
...

Bγ,1 . . . Bγ,4(N+1)





p̃h(x)
p̃ϕ(x)
s̃(x)

b̃(x)
...

∂Nx p̃h(x)
∂Nx p̃ϕ(x)
∂Nx s̃(x)

∂Nx b̃(x)


x=0

= 0 (S22)
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where B is a matrix of rank γ. To count the number of solutions to [D(k) − ω] ·Ψ = 0, we introduce the winding
number

ν̃(ω) = lim
R→∞

1

2πi

∮
Γ(R)

d

dk
log f(k)dk (S23)

where f(k) = det[D(k)− ω] and Γ(R) is the contour [−R,R] completed by Reiφ with φ ∈ [0, π]. Notice that f(k) is
a polynomial with non-negative powers of k. Let d be the rank of the polynomial f(k). To simplify the derivation
below, we will assume without loss of generality that 4N ≥ d. This is not a restriction because it can always be
achieved by augmenting B with zero columns. Since f(k) contains only positive powers of k, the poles of f(k) are
located at |k| → ∞ and hence are not included in the contour Γ(R) for any R. Thus, by Cauchy’s argument principle,
ν̃(ω) counts the number of zeros of f(k) with Im(k) > 0. Each zero ka has an associated “candidate” eigenvector Ψa,
with a = 1, 2, . . . , ν̃. Therefore, we may write:

p̃h(x)
p̃ϕ(x)
s̃(x)

b̃(x)
...

∂Nx p̃h(x)
∂Nx p̃ϕ(x)
∂Nx s̃(x)

∂Nx b̃(x)


x=0

=



p̃1
h · · · p̃ν̃h
p̃1
ϕ · · · p̃ν̃ϕ
s̃1 · · · s̃ν̃

b̃1 · · · b̃ν̃

...
kN1 p̃

1
h · · · kNν̃ p̃ν̃h

kN1 p̃
1
ϕ · · · kNν̃ p̃ν̃ϕ

kN1 s̃
1 · · · kNν̃ s̃ν̃

kN1 b̃
1 · · · kNν̃ b̃ν̃


︸ ︷︷ ︸

H


g1

g2

...
gν̃

 (S24)

We seek to determine the number of linearly independent vectors g that satisfy the boundary conditions B ·H ·g = 0.
Thus, we seek to determine dim ker B ·H. Since 4N ≥ d ≥ ν̃, the columns of H are linearly independent and hence
rank H = ν̃. Therefore, we may write:

B =
[
a1 a2 · · · aγ

]


bT1
bT2
...

bTγ

 (S25)

H =
[
c1 c2 · · · cν̃

]


dT1
dT2
...

dTν̃

 (S26)

(S27)

where each set of vectors {ai}, {bi}, {ci}, {di} are individually linearly independent. Therefore, we may write

B ·H =
[
a1 a2 · · · aγ

]


b1 · c1 b1 · c2 · · · b1 · cν̃
b2 · c1 b2 · c2 · · · b2 · cν̃

...
...

. . .
...

bγ · c1 bγ · c2 · · · bγ · cν̃


︸ ︷︷ ︸

G


dT1
dT2
...

dTν̃

 (S28)

For any generic D(k) and generic ω ∈ C, the singular values of G will be nonzero. (By generic, we mean that the only
exceptions, if any, constitute a measure zero sets). In this case, we have rank B ·H = min(ν̃, γ). Hence by the rank
nullity theorem, dim ker B ·H = ν̃−min(ν̃, γ), which is the index theorem given in the methods. For solutions on the
domain x ∈ (−∞, 0], a similar derivation applies. The difference being that f(k) has d− ν̃(ω) zeros with Im(k) < 0.

We now provide two examples physically relevant independent homogeneous boundary conditions. Stress-free
boundary conditions can be formulated by choosing B as follows:

B =

[
0 0 C11 C12

0 0 C21 C22

]
(S29)
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where C is the constitutive matrix. For motion-free boundary conditions, one may write

B =

[
1 0 0 0
0 1 0 0

]
(S30)

which imposes that p̃h = p̃ϕ = 0 at the boundary, i.e. there is no rotation or translation in time at the boundary.
To impose displacement free boundary conditions, one can reformulate the linear differential equation such that
Ψ = (p̃h, p̃ϕ, h, ϕ) instead of Ψ = (p̃h, p̃ϕ, s̃, b̃).

E. Boundary conditions in discrete models

Here we derive and interpret ν(ω) in discrete settings, such as discrete models or finite element simulations. We refer
the reader to Refs. [3, 4], and references therein, for additional discussion. For concreteness, we will illustrate each
step with the discrete model in Section IIF of the main text. To begin, suppose that the ith unit cell of the discrete
model is described by an n-component vector Ψi. For the example at hand, we have n = 4 and Ψi = (pi, li, hi, ϕi)

where pi = mḣi is the vertical linear momentum and li = Jϕ̇i is the angular momentum of each unit cell about its
center of mass. The linear equations of motion for an infinite system take the form:

i∂t



...
Ψi−1

Ψi

Ψi+1

...

 =


. . .

. . .
. . .

. . .
. . .

Dl · · · D−1 D0 D1 · · · Dr 0
0 Dl · · · D−1 D0 D1 · · · Dr

. . .
. . .

. . .
. . .


︸ ︷︷ ︸

D



...
Ψi−1

Ψi

Ψi+1

...

 (S31)

where the matrix D is an infinite matrix formally known as an Laurent operator. Each n × n matrix Di lies in the
ith off diagonal, with i ranging from l < 0 to r > 0. For the system at hand, we have l = r = −1, and the equations
of motion in Eqs. (21-22) of the main text take the form

i∂t



...
Ψi−1

Ψi

Ψi+1

...

 =



. . .
. . .

. . . D0 D1 0
D−1 D0 D1

0 D−1 D0
. . .

. . .
. . .





...
Ψi−1

Ψi

Ψi+1

...

 (S32)

with

D0 =i


0 0 −2kµ −kµL− 2p
0 0 −kµL −kµL2 − 2κB − 2pL
1
m 0 0 0
0 1

J 0 0

 (S33)

D1 =i

0 0 kµ p
0 0 kµL κB + pL
0 0 0 0
0 0 0 0

 (S34)

D−1 =i

0 0 kµ Lkµ + p
0 0 0 κB
0 0 0 0

 (S35)

For an infinite system, one is interested in the spectrum of D. To find the eigenvalues, one can perform a Fourier
transform to obtain the symbol

D(λ) =

r∑
i=l

Diλ
i (S36)
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where λ = eikL with k being the wavenumber and L being the lattice spacing. We are then interested in the solutions
to the equation:

F (λ) ≡ det[D(λ)− ω] = 0 (S37)

For the example at hand,

F (λ) =
kµκB
Jm

λ2 − 4kµκB − (Jkµ + Lmp+mκB)ω2

Jm
λ

+
2kµLp+ 6kµκB − (2Jkµ + kµL

2m+ 2Lmp+ 2mκB)ω2 + Jmω4

Jm

− 4kµκB − (Jkµ +mκB)ω2

Jm

1

λ
+
kµκB
Jm

1

λ2
(S38)

For the semi-infinite system bounded on the left, then we are interested in the solutions of the following equation:

i∂t


Ψ0

Ψ1

Ψ2

...

 =



D0 D1 · · · Dr 0
D−1 D0 D1 · · · Dr 0

...
. . .

. . .
. . .

. . .
. . .

Dl · · · D−1 D0 D1 · · · Dr 0
0 Dl · · · D−1 D0 D1 · · · Dr 0

. . .
. . .

. . .
. . .

. . .


︸ ︷︷ ︸

D̃L


Ψ0

Ψ1

Ψ2

...

 (S39)

Here D̃L is a semi-infinite matrix known as a Toeplitz operator, which is the truncation of a Laurent operator. We
seek to determine the number of eigenvectors of D̃L with eigenvalue ω, or equivalently dim ker[D̃L − ω]. Notice that

ker[D̃L − ω] is isomporphic to the subspace of ker[D − ω] that obeys the constraint:

0 =


D−1 0 0 0
D−2 D−1 0 0

...
. . .

. . . 0
Dl · · · D−2 D−1


︸ ︷︷ ︸

ML


Ψl

Ψl+1

...
Ψ−1

 (S40)

The constraint in Eq. (S40) can be interpreted as the boundary conditions implied by the truncation of the Laurent
operator. The number of independent boundary conditions is given by γL = rank ML. For the discrete model of the
beam, the constraint reads D−1 ·Ψ−1 = 0, or equivalently h−1 = 0 and ϕ−1 = 0, which are displacement and rotation
free boundaries. Notice that in general, the form of ML depends on how the continuum equation is discretized. More
generally, one can show that rank M = degF (1/λ), where deg denotes the highest power appearing in the polynomial.
For the discrete model of the odd micropolar beam, we have γL = 2.

Next we consider the integral

ν(ω) =
1

2πi

∮
S1

d

dλ
logF (λ)dλ (S41)

where S1 is the unit circle. By Cauchy’s argument principle, ν(ω) counts with multiplicity the number of zeros of
minus the number of poles of F (λ) with |λ| ≤ 1 (or equivalently Im(k) > 0). Each of the zeros represents and
eigenmode of D(λ) there are exactly γL poles at λ = 0 corresponding to the γL constraints imposed by the matrix M.
Next, supposing ν + γL > 0, let λa and Ψa

i , with a = 1, 2, . . . , ν(ω) + γL be the roots and eigenvectors, respectively.
Then we may define the matrix

H =

 Ψ1
l · · · Ψν+γL

l
...

...

Ψ1
−1 · · · Ψν+γL

−1

 (S42)
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We seek to determine dim ker ML ·H. Notice that rank H = min(ν + γL, n|l|) and rank M = γL < n|l|. Therefore,
for a generic D(λ) and a generic ω ∈ C we have rank ML ·H = min(γL, ν + γL). Hence, by the rank-nullity theorem,

dim ker ML ·H = max(0, ν). Thus there will generically be max[ν(ω), 0] eigenmodes of D̃L at frequency ω localized

to the left boundary. Likewise, to study eigenmodes localized to the right, one obtains D̃R by truncating D in the
opposite direction. In this case, one is interested in the constraint matrix:

MR =


Dl D2 · · · D1

...
...

D2 D1

D1

 (S43)

For MR, we have γL = rank MR = degF (λ). Repeating the argument above, for a generic D(λ) and ω ∈ C, one

has rank ker MR ·H = max[0,−ν(ω)] and thus there will be max[0,−ν(ω)] eigenmodes of D̃R localized to the right
boundary.

Finally, we discuss the application to numerical eigenmode solvers. The COMSOL simulations impose a finite
element mesh on a single unit cell, whose points form the content of the vector Ψi that is governed by an n×n matrix
D(λ), now with a much larger n. When solving for eigenmodes at a given wavenumber k, COMSOL requires that the
state of the right boundary is equal to the state of the left boundary of the mesh multiplied by a phase eikL. This is
equivalent to implementing surface coupling between nearest neighbor unit cells, corresponding to r = −l = 1. For
this surface coupling, the constraint matrices MR and ML effectively impose motion-free boundary conditions. In
the continuum, motion-free boundaries are captured by Eq. (S30), for which γ = 2. Hence, for the data in Fig. 3 and
Fig. M1, one should compare ν(ω) = ν̃(ω)− 2.

F. Explicit calculation of eigenmodes

Here we provide explicit calculations of eigenmodes in the continuum theory. The starting place is the wave equation
in Eq. (23) of the main text, repeated here:

ω


p̃h
p̃ϕ
s̃

b̃

=ω1


0 0 −k`1 −P̃ `1k
0 0 i iP̃ − k`2
−k`1 −i 0 0

0 −k`2 0 0


︸ ︷︷ ︸

D(k)


p̃h
p̃ϕ
s̃

b̃

 (S44)

The secular equation is given by

0 = ω̃4 −
[
1− iP̃ k`2 + k2(`21 + `22)

]
ω̃2 + k4`21`

2
2 (S45)

First notice that when P = 0 and to leading order in k = 0, the eigensystem of D(k) takes the following form:
p̃h
p̃ϕ
s̃

b̃

 =

 ±ik`1±ik`2
1

 with ω = ±k2`1`2ω1 (S46)

which represents a bending dominated goldstone mode. The second two modes are shearing dominated gaped modes:
p̃h
p̃ϕ
s̃

b̃

 =

±ik`1±1
i
k`2

 with ω = ±
(

1− k2 `
2
1 + `22

2

)
ω1 (S47)

When P > 0, we proceed numerically. Let us use numerical values representative of the experiment, `1 = 10−3m,
`2 = 10−2m, P̃ = 1, and ω1 = 105Hz. We will consider the modes at two select frequencies: ωA = 103Hz and
ωB = 106Hz. Notice that ωA � ω1 � ωB and that the degree of Eq. (S45), treated as a polynomial in k, is d = 4.
From the location of ωA and ωB in the complex plane, we have ν(ωA) = 1 and ν(ωB) = 2, see Fig. 5a-b. Therefore,
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for ωA, we expect one solution to Eq. (S45) left-localized solution (Im(k) > 0) and d − ν(ωA) = 3 right-localized
solutions (Im(k) < 0), see Fig. 5c-d. We plot the corresponding eigenmode of D(k) for each of these values, and we
find that there is stronger mixing between bending and shearing than in the passive case.

To illustrate the meaning of ν̃(ωA) = 1, suppose we impose two boundary conditions (γ = 2) such as s̃ = b̃ = 0 at
x = 0. Given that there is only one left-localized mode, the two boundary conditions cannot be satisfied for a system
with a boundary on the left. However, there are three right-localized modes so there is one nonzero linear combination
of right localized modes that satisfy the boundary conditions. We can repeat the calculation now for ωB , for which
we have ν̃(ωB) = 2. Hence we expect ν̃(ωB) = 2 left localized modes and d− ν̃(ωB) = 2 right localized modes before

considering boundary conditions. Once we impose γ = 2 boundary conditions (e.g. s̃ = b̃ = 0), one finds that it is
not possible to formulate a linear combination for a nonzero mode at either boundary.

G. Role of additional vibrational modes

As shown in Fig. M1 of the main text, the continuum theory predicts a total of four vibrational modes: two flexural
goldstone modes and two gapped, shear dominated modes. However, at high frequencies, comparable to ω1, the
continuum theory is not expected to self-consistently apply. Hence, the shear dominated modes should not necessarily
be thought of as a physical prediction made by the continuum theory. Moreover, there is a second simplifications
invoked when using this continuum theory. The physical beam has a total of four goldstone modes: a flexural mode,
a torsional mode, an out-of-plane deformation, and a longitudinal mode. Our ability to apply the continuum theory
to the physical beam rests on two prerequisites. First the experiments probe frequencies on the order of <∼ 10kHz,
well below ω1 ≈ 100kHz. Second, based on the construction of the piezoelectric feedback, we assume that at low
frequencies, only the flexural mode significantly couples to the electronic feedback. To validate these assumptions, in
Fig. 2 we use COMSOL to compute the lowest 15 vibrational modes for P > 0. In panel a, the real part of the first
15 modes are plotted as a function of k, and the modes associated with selected branches are shown in panels b-d.
(Modes from every branch are shown Fig. 11.) In panels e-f, we plot the spectrum in the complex plane. Frequencies
with negligible imaginary parts are indicated by grey dots, and the remaining frequencies are colored by their wave
number k. As can be seen, for frequencies less than ≈ 7kHz, only the flexural modes (shown also in Fig. 3 of the main
text) have a significant imaginary part. This validates our assumption that that the piezoelectric feedback primarily
couples to the flexural modes at low frequencies.

One can ask how the presence of additional vibrational modes affects the computation of the winding number ν(ω) in
Eq. (30) of the main text. As shown in Fig. 2e, only the flexural mode as a significant imaginary part at low frequencies,
and so only flexural modes will be significantly localized in the frequency range of interest. Additionally, one can ask
how to reconcile the continuum equation (Eq. 45) with the fact that the shear dominated band contributes to ν(ω)
despite being an unphysical artifact of the theory. The answer is that the physically relevant piece of information is
not necessarily the absolute value of ν(ω), but rather the relative value ν(ω′) − ν(ω′′) for any two given frequencies
ω′ and ω′′. Suppose, for example, there are n left localized modes at ω′ with a given set of boundary conditions. The
absolute value of ν(ω′) and the way in which the boundary conditions are quantified will depend on the details of
the theory. However, given only the value of ν(ω′) − ν(ω′′), one can conclude that there will be n − ν(ω′) + ν(ω′′)
left localized modes at ω′′ for the same set of boundary conditions. Finally, we note that to compute the relative
value ν(ω′) − ν(ω′′), one need only draw a line in the complex plane from ω′′ to ω′ and count the number of signed
crossings with the periodic boundary spectrum. Hence, the value ν(ω′)− ν(ω′′) only depends on accurately resolving
the spectrum in the frequency range of interest, and not on features of the spectrum outside the range of validity of
the theory.

H. Simulations of quasistatic energy cycle and finite frequency efficiency

In Fig. 2a-b., we verify Eq. (20) via finite element simulations. We directly compute the work done by a single unit
cell of the material that undergoes a path of deformations via fully electromechanically coupled numerical simulations
in COMSOL Multiphysics. We enforce displacement boundary conditions on the side boundaries of a metamaterial
unit cell. We define the bending curvature κ = ∂xϕ to be the relative angle of the two terminating cross sections
divided by the unit cell’s length L, and γ = ∂xh to be the relative vertical displacements of the two cross sections
divided by the unit cell’s length. In the calculations, geometric and material parameters of the metamaterial are given
in Table S1 (See below). We take the beam on a rectangular path through deformation space with γmax = 9.375×10−3

and κ max = 1.0 m−1. We subdivide each leg of the path into approximately 150 subdivisions and perform a static
analysis at each subdivision to determine the reaction forces Fr and Fl and moments Ml and Mr at the left and right
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boundaries, respectively. We then compute the work done on the ith step as:

W i = L
[
(F ir − F il )(γi − γi−1) + (M i

r −M i
l )(κ

i − κi−1)
]

(S48)

where the index i labels the step.
For the example shown in the main text, P = 13.85×106 N/m and the volume of the unit cell is V = 576×10−9 m3.

The continuum theory then predicts that the magnitude of the work done should be given by:

|W theory| = PκmaxγmaxV = 0.0748 (J) . (S49)

In simulation, we find:

|Wsim| =

∣∣∣∣∣∑
i

W i

∣∣∣∣∣ = 0.0756 (J) , (S50)

We note that the continuum equations rely on the approximation of linearity, whereas the COMSOL simulations
directly compute the underlying forces and moments based on the microscopic details.

In addition to quasistatic strain controlled deformations, we also examine the efficiency of our metabeam at absorb-
ing energy from finite frequency waves. To do so, we first perform numerical simulations matching the parameters in
our experiments. From these numerical tests, we measure the mechanical energy flux from the left and right bound-
aries of a given unit cell (in this case the fifth unit cell). Denoting these energy fluxes by FL and FR, respectively, we
define the energy absorption efficiency of left-traveling waves by E = (FR − FL)/FR, where |FR| > |FL|. At 2 kHz,
we find the peak absorption efficiency per unit cell is equal to E = 0.38. Supplementary Figure 6 shows this efficiency
at frequencies from 0.6 to 3.0 kHz, where the waves propagating from the right to the left are attenuated.

Supplementary Figure 6: The absorption efficiency E as a function of frequency for an incident flexural wave.

Supplementary Note 2: Experimental details

A. Material parameters

The active metamaterial displayed in main-text Fig. 1 utilizes piezoelectric patches integrated with electronic
feedback [5–15]. Supplementary Figure 7 provides a schematic of the odd micropolar metamaterial. Tables S1 and
S2 contain the geometric and material parameters, respectively, used in the design.

Supplementary Table 1: Geometric parameters of the odd micropolar metamaterial.

L 32 mm hb 3 mm wh 6 mm
Lp 6 mm hp 0.55 mm wp 4 mm
L1 10 mm L2 6 mm
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Supplementary Table 2: Material properties of the odd micropolar metamaterial.

Material properties (Steel)
Eb 210.0 GPa Gb 80.8 GPa ρb 7800.0 kg m−3

Material properties (PZT 5J)

sE11 16.2× 10−12m2N−1 d33 5.93× 10−10 CN−1

sE33 20.7× 10−12m2N−1 d31 −2.74× 10−10 CN−1

sE44 47× 10−12m2N−1 d15 7.41× 10−10 CN−1

sE12 −4.54× 10−12m2N−1 εS33 1433.6 ε0
sE13 −5.9× 10−12m2N−1 εS11 1704.4 ε0
ρp 7700.0 kgm−3 ε0 8.842× 10−12 CmV −1

Supplementary Figure 7: Schematic of a unit cell.

B. Electrical control system

Supplementary Figure 8 shows a schematic of the electrical control system used in each unit cell. We use a standard
non-inverting voltage amplifier, and all the electrical circuits were fabricated on printed circuit boards (PCBs). The
parameters for the electrical components are listed in Table S3. The frequency dependence of the lowpass filter is
shown in main text Eq. (40) and depicted in Supplementary Figure 9.

During experiments, we also need to consider stability conditions of the metamaterial. In particular, we find
that small feedback effects emerge within individual unit cells associated with imperfections in fabrication. When
|H0| exceeds a critical value, the antisymmetric actuating voltages can no longer produce zero sensing signals in
experiments and the system experiences an instability. This critical value is |H0| ≈ 6 in our current system, but it
is highly dependent on the fabrication details. Due to the self amplification of the beam, the critical value of |H0|
usually decreases as the number of unit cells increases.

Supplementary Table 3: Circuit component parameters.

R1 1 MΩ R2 9.09 kΩ R3 15.74 kΩ
C1 1 nF C2 10 nF C3 2.2 nF

Op-amp OPA445
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Supplementary Figure 8: The schematic of the electrical control system and circuit diagrams for its individual components.

Supplementary Figure 9: Frequency response of the lowpass filter with the transfer function H(ω). Left: Amplitude; Right:
Phase angle.

Supplementary Note 3: Numerics

A. Transfer matrix method for wave dispersion

Here we describe the transfer matrix method [13] used to produce semi-analytical curves in Figures 3 and 6 in the
main text. In this approach, the piezoelectric sensing patch is idealized as a point-like strain probe located in the
middle each unit cell. This approximation is justified by the large ratio between the experimentally probed wavelengths
and the length of the piezoelectric patch (see Supplementary Figure 10). Similarly, piezoelectric actuating patches are
idealized as point sources that generate bending moments (see Supplementary Figure 10). With these approximations,
the metamaterial unit cell can be divided into seven homogeneous beam sections, shown in Supplementary Figure 10.

For each section, we apply Timoshenko beam assumptions, yielding the following equation of motion for the n-th
beam section:

Bn
∂4wn
∂x4

+

(
Bnρnω

2

µn
+ Inω

2

)
∂2wn
∂x2

+

(
Inω

2 − µn
)
ρnω

2

µn
wn = 0, (S51)

where wn, Bn, ρn, νn, and In denote transverse displacement, bending stiffness, mass density per unit volume, shear
modulus and moment of inertia of the n-th homogeneous beam section, respectively. Furthermore, ω is the frequency
associated to the Bloch mode e−iωt. The solutions of wn read

wn = Āne
−iknx + B̄ne

iknx + C̄ne
−k̂nx + D̄ne

k̂nx, (S52)

where kn = −i
√
−αn−

√
α2

n−4Bnβn

2Bn
and k̂n =

√
−αn+

√
α2

n−4Bnβn

2Bn
with αn = ρnω

2Bn

µn
+ Inω

2 and βn =
(Inω2−µn)ρnω2

µn
.
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Supplementary Figure 10: Schematic for the transfer matrix method.

In the design, beam sections 1, 4 and 7 possess the same material and geometric parameters. Hence, we may simply

write kn = k1 and k̂n = k̂1 for these sections. Similarly, we may simply use kn = k2 and k̂n = k̂2 for sections 2, 3, 5
and 6. For beam sections 1, 4 and 7, we may summarize the forces and displacement in matrix form by:

Wn (x) = N1 (x) An, n = 1, 4, 7 (S53)

In Eq. (S53), Wn (x) =
[
wn (x) ϕn (x) Mn (x) Fn (x)

]T
, where ϕn (x), Mn (x) and Fn (x) are the rotational angle,

bending moment and shear force in the n-th beam section. Furthermore, An =
[
Ān B̄n C̄n D̄n

]T
. Lastly,

N1 (x) =


e−ik1x eik1x e−k̂1x ek̂1x

−ik21µ1+iω2ρ1
k1µ1

e−ik1x
ik21µ1−iω2ρ1

k1µ1
eik1x

−k̂21µ1−ω2ρ1

k̂1µ1
e−k̂1x

k̂21µ1+ω2ρ1

k̂1µ1
ek̂1x

−k21µ1+ω2ρ1
µ1

B1e
−ik1x −k21µ1+ω2ρ1

µ1
B1e

ik1x k̂21µ1+ω2ρ1
µ1

B1e
−k̂1x k̂21µ1+ω2ρ1

µ1
B1e

k̂1x

−iω2ρ1S1

k1
e−ik1x iω2ρ1S1

k1
eik1x ω2ρ1S1

k̂1
e−k̂1x −ω2ρ1S1

k̂1
ek̂1x


where Sn is the area of the cross-section of the n-th beam. Similarly, for beam sections 2, 3, 5 and 6, Eq. (S53) reads

Wn (x) = N2 (x) An, n = 2, 3, 5, 6 (S54)

where N2(x) is obtained by replacing the index “1” in N1(x) by “2”.
The effective point source vector generated by the left actuator can be written as

G = HA4 (S55)

where G =
[
0 0 Ma 0

]T
with Ma being the effective bending moment produced by the actuator, and

H =

 0 0 0 0
0 0 0 0

Hκaκs Hκaκs Hκaκs Hκaκs
0 0 0 0


where κa and κs denote electromechanical coupling coefficients of the piezoelectric actuator and sensor, respectively,
which are retrieved from finite-element simulations.

Next, we impose continuity conditions on the transverse displacement, rotational angle, bending moment and shear
force at the section boundaries (x = −a3,−a2,−a1, a1, a2 and a3) to obtain:

N1 (−a3) A1 = N2 (−a3) A2,
N2 (−a2) A2 = N2 (−a2) A3 + HA4,
N2 (−a1) A3 = N1 (−a1) A4,
N1 (a1) A4 = N2 (a1) A5,
N2 (a2) A5 = N2 (a2) A6 −HA4,
N2 (a3) A6 = N1 (a3) A7.

(S56)
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Eq. (S56) can be expressed as

A7 = TA1, (S57)

where the transfer matrix T is given by

T = N−1
1 (a3) N2 (a3) N−1

2 (a2)
[
N2 (a2) + HN−1

1 (a1) N2 (a1)
]
N−1

2 (a1) N1 (a1) N−1
1 (−a1)× (S58)

N2 (−a1)
[
N2 (−a2) + HN−1

1 (−a1) N2 (−a1)
]−1

N2 (−a2) N−1
2 (−a3) N1 (−a3) .

Applying Bloch theorem on the left and right edges of the unit cell gives

N1 (−a4) A1 = eikLN1 (a4) A7. (S59)

Combining Eqs. (S57) and (S59), one can derive

eikL
[
N−1

1 (−a4) N1 (a4) T
]
A1 = A1. (S60)

Solving the eigenvalue problem in Eq. (S60) for imposed frequencies, one can obtain the corresponding complex
wavenumbers.
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Supplementary Figure 11: The lowest 16 modes corresponding to bands shown in Fig. 2. The wavenumber is taken to be
kL = 0.314, where L is the lattice spacing. The odd micropolar modulus is P = 3Π. The color bar denotes the z (vertical)
component of the displacement field.
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