
Supplementary Information: Multivariate analysis reveals shared

genetic architecture of brain morphology and human behavior

Ronald de Vlaming1,*, Eric A.W. Slob2,3,4,*, Philip R. Jansen5,6, Alain Dagher7, Philipp D.

Koellinger1,8, Patrick J.F. Groenen9, and Cornelius A. Rietveld2,3,*

1School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, The

Netherlands

2Department of Applied Economics, Erasmus School of Economics, Rotterdam, The

Netherlands

3Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of

Economics, Rotterdam, The Netherlands

4MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge,

Cambridge, UK

5Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

6Department of Complex Trait Genetics, Center for Neuroscience and Cognitive Research,

Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

7Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

8La Follette School of Public Affairs, University of Wisconsin-Madison, WI, USA

9Econometric Institute, Erasmus School of Economics, Rotterdam, The Netherlands

*These authors contributed equally

**Corresponding author: Cornelius A. Rietveld, Erasmus University Rotterdam,

Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands, Phone:

+31(0)10-408-1401, E-mail: nrietveld@ese.eur.nl

1

Supplementary Note 1

Genomic-relatedness-based restricted maximum likelihood (GREML) estimation, as developed and intro-

duced by Yang et al. (2010), quantifies the degree to which genetic similarity between individuals maps

to phenotypic similarity. Bivariate GREML has been developed to additionally estimate genetic corre-

lations between combinations of two traits (Lee et al., 2012). Although tools such as MTG2 (Lee and

Van der Werf, 2016) and GEMMA (Zhou and Stephens, 2012) provide multivariate generalisations of

GREML, these tools offer only limited scalability in terms of the number of traits (for a detailed com-

parison, see Supplementary Note 3). We develop a computational efficient multivariate version of GREML,

MGREML, which can be used to analyse a large number of quantitative traits simultaneously. The deriva-

tions presented in this section reflect the implementation of our method in Python 3.x (available via

https://github.com/devlaming/mgreml).

A maximum likelihood approach is taken to jointly estimate the genetic and environmental covariance be-

tween multiple traits. In this section, efficient expressions are presented that are fundamental to make

MGREML estimation computationally feasible for large data sets. Most importantly, a combination of a

canonical transformation (as also proposed by Lee and Van der Werf (2016)), and a transformation using a

commutation matrix are used to transform the full covariance matrix across traits and observations into a

block-diagonal matrix.

As an optimisation method, we employ the quasi-Newton approach of the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm (see e.g., Nocedal and Wright, 2006). For this algorithm, computationally efficient

expressions are needed for the log-likelihood and the gradient. In addition, to compute standard errors of

our estimates, we need efficient expressions for the average information (AI) matrix (Gilmour et al., 1995).

We take the following steps to obtain an implementation of MGREML that can perform BFGS steps in

O
(
NT 2

)
time and calculate the standard errors of heritabilities and genetic correlations in O

(
NT 4

)
time,

where N denotes the sample size and T the number of phenotypes included in the analysis:

1. Set up the multivariate model used in MGREML.

2. Transform phenotypes using eigenvectors from the genomic-relatedness matrix (GRM) A, where A is

derived from single-nucleotide polymorphism (SNP) data, and re-order the observations, in such a way

that the grand phenotypic covariance matrix across all traits and observations is block-diagonal.

2

3. Define the log-likelihood function, its gradient, and the AI matrix.

4. Develop tractable notation for different covariates across traits.

5. Find efficient expressions to calculate the log-likelihood.

6. Parametrise the genetic variance matrix VG and environmental variance matrix VE such that they

are both guaranteed to be at least positive semidefinite.

7. Given the parametrisation, find efficient expressions to calculate the gradient.

8. Given the parametrisation, find efficient expressions to calculate the AI matrix.

9. Maximise the log-likelihood using a BFGS algorithm.

10. Use a delta method to compute standard errors of estimated heritabilities, genetic correlations, and

environmental correlations.

In the next subsections, we discuss these steps one by one in more detail. Throughout the derivations, we will

make use of the fundamental property of linear combinations of multivariate normally distributed vectors,

that is, if vector δ ∼ N (µ,Σ), then the linear combination Cδ + m ∼ N (Cµ + m,CΣC>).

Step 1. Setting up the multivariate model

The original model for bivariate GREML, as developed by Lee et al. (2012), for two normally distributed

quantitative traits, Y1 and Y2, observed in the same set of N unrelated individuals, can be written as follows:

 y1

y2

 ∼ N

 X1 0

0 X2

 β1

β2

 ,

 σG11
A σG12

A

σG12
A σG22

A

+

 σE11
IN σE12

IN

σE12
IN σE22

IN

 , (1)

where parameter σG11 (resp. σG22) denotes the genetic variance of trait Y1 (Y2) and σG12 denotes the genetic

covariance of traits Y1 and Y2. The parameters with subscript E are defined in an analogous manner for the

environmental variances and covariance. Matrix A denotes the N ×N genomic-relatedness matrix (GRM)

and matrix IN denotes the N × N identity matrix.. Vector y1 (resp. y2) denotes the N × 1 vector of

outcomes for trait Y1 (Y2), and matrix X1 (resp. X2) denotes the fixed-effect covariates with effects β1 (β2)

for Y1 (Y2).

Eq. 1 can be written more compactly using the Kronecker product (denoted by ⊗) and by applying the

vectorisation operator (denoted by vec (), where vec ([v1 . . . vb]) =
[
v>1 . . . v>b

]>
) to the N × 2

3

matrix of phenotypes, Y∗. That is:

vec (Y∗) ∼ N (X∗β,VG ⊗A + VE ⊗ IN) , where

Y∗ =

(
y∗1 y∗2

)
, X∗ =

 X∗1 0

0 X∗2

 , β =

 β1

β2

 ,

VG =

 σG11 σG12

σG12
σG22

 , and VE =

 σE11 σE12

σE12
σE22

 .

Here, VG is the 2 × 2 genetic covariance matrix and VE the 2 × 2 environmental covariance matrix. This

model can easily be generalised to a model for T normally distributed quantitative traits, all observed in the

same set of N individuals, in an N × T matrix Y∗. That is:

vec (Y∗) ∼ N (X∗β,V∗) , where V∗ = VG ⊗A + VE ⊗ IN , (2)

and where X∗ is a block-diagonal matrix, comprising blocks X∗t for traits t = 1, . . . , T , where X∗t is the

N ×Kt matrix of fixed-effects covariates for trait t, where Kt denotes the number of fixed-effect covariates

that apply to trait t. In this model, VG denotes the T ×T genetic covariance matrix across the T traits and

VE the environmental covariance matrix.

Step 2. Transforming and re-ordering phenotypes

Using a canonical transformation (see, e.g., Ducrocq and Chapuis (1997)), such that we transform the

data to be independent across individuals (rather than across traits), as suggested and applied by Lee and

Van der Werf (2016), we introduce a high degree of sparsity in our model. That is, by taking the eigenvalue

decomposition (EVD) of A = PDP>, where P is an orthogonal matrix (i.e., such that P>P = PP> = IN ,

with IN again being the identity matrix) and D a diagonal matrix of eigenvalues (EVs), d1, . . . , dN , we can

4

premultiply Y∗ in Eq. 2 by P> to obtain a sparse formulation of the model. Specifically, we have that:

vec
(
P>Y∗

)
=
(
IT ⊗P>

)
vec (Y∗) ∼ N

((
IT ⊗P>

)
X∗β,

(
IT ⊗P>

)
V∗ (IT ⊗P)

)
, where

(3)(
IT ⊗P>

)
V∗ (IT ⊗P) = VG ⊗

(
P>AP

)
+ VE ⊗

(
P>P

)
(4)

= VG ⊗
(
P>PDP>P

)
+ VE ⊗

(
P>P

)
(5)

= VG ⊗D + VE ⊗ IN . (6)

The distribution of vec
(
P>Y∗

)
can now be written more compactly as:

vec
(
P>Y∗

)
∼ N

((
IT ⊗P>

)
X∗β,VG ⊗D + VE ⊗ IN

)
. (7)

The covariance matrix of this model is highly sparse, but this sparsity is spread over many rows and columns.

However, by pre-multiplying the left-hand side of our model by the appropriate commutation matrix, K(N,T)

(i.e., re-ordering observations such that we order by individuals first, and then by traits, rather than the

other way around), we can obtain a model where the resulting covariance matrix V is block-diagonal. That

is, based on Eq. 7, we can now write y = K(N,T)vec
(
P>Y∗

)
= vec

(
Y∗
>

P
)

= vec (Y) as follows:

y ∼ N
(
X̃β,V

)
, where V = D⊗VG + IN ⊗VE and X̃ =

X1

X2

...

XN

, (8)

and where

Xj =

x>j1 0

. . .

0 x>jT

 , (9)

is the T × K matrix of fixed-effect covariates across traits for observation j = 1, . . . , N after the linear

transformation by the eigenvectors from the GRM. Here, K is the total number of covariates across traits

(i.e., K =
∑T
t=1Kt). More specifically, vector x>jt equals the j-th row from the N ×Kt matrices P>X∗t , and

5

the vectors of zeros are conformable to the dimensions of xjt. In turn, X∗t is the N×Kt matrix of fixed-effect

covariates for trait t.

Notice that several asterisks have been dropped. That is, we here define our T ×N matrix of outcomes Y as

Y∗
>

P, and our grand matrix of fixed-effect covariates, X̃, and its constituents, Xj for j = 1, . . . , N , and our

covariance matrix, V, as outlined above. These definitions boil down to pre-multiplication of conformable

matrices by the transposed matrix of eigenvectors of the GRM, and re-ordering of rows of vectorised matrices

in accordance with the commutation matrix. These definitions of Y and Xj for j = 1, . . . , N enable us to

reduce the computational complexity of our model relatively easily. Notice that V can be written as follows:

V =

V1 0

. . .

0 VN

 , where (10)

Vj = djVG + VE for j = 1, . . . , N, (11)

and where Vj is a T × T symmetric positive (semi)definite matrix. Thus, V is now a block-diagonal matrix

in which each block on the diagonal is a T ×T matrix. As such, V is nothing more than a linear combination

of VG and VE with weights based on the consecutive eigenvalues of the GRM. This matrix has sufficient

structure to permit significant computational gains.

The combination of (i) dj ≥ 0∀ j, (ii) VG being at least positive semidefinite, and (iii) VE being positive

definite, forms a set of sufficient conditions for Vj to be positive definite ∀ j, and, in turn, for V to be

positive definite. As the GRM is at least positive semidefinite by definition, the first condition holds for

sure. Secondly, by choosing an appropriate parametrisation of our model, we ensure VG is always at least

positive semidefinite. Finally, by again choosing an appropriate parametrisation, we also ensure VE is always

at least positive semi-definite.

In further derivations, we make the stronger assumption that VE is always positive definite (thus, by virtue

of the set of sufficient conditions, ensuring V is always positive definite). Although this assumption may

fail to hold in certain empirical applications (e.g., perfectly multicollinear traits as input for an MGREML

analysis), it is safe to make this assumption for the derivations, especially since the software implementation

of MGREML by default only accepts phenotypes that are not perfectly multicollinear. This requirement

forces each phenotype to have its own idiosyncratic signal, even if that signal is very small.

6

The situation is in fact quite analogous to derivations for, e.g., the ordinary least squares (OLS) estimator,

where one has the assumption that regressors (i.e., the explanatory variables) are not perfectly multicollinear

although there is nothing preventing such collinearity to be present in empirical data. Analogous to OLS

regression with perfect multicollinearity of regressors, MGREML produces an error in case multicollinearity

among the phenotypes is too high.

Step 3. The log-likelihood function, its gradient, and the information matrix

Log-likelihood function. The generic log-likelihood of a mixed linear model for n × 1 vector y (in our

case n = NT), as a function of parameters in θ, with fixed-effect covariates X̃, and variance matrix V, is

given by

log l (θ) = −1

2

(
nlog (2π) + log |V|+ log

∣∣∣X̃>V−1X̃
∣∣∣− log

∣∣∣X̃>X̃
∣∣∣+ y>My

)
, where (12)

M = V−1 −V−1X̃
(
X̃
>

V−1X̃
)−1

X̃
>

V−1. (13)

Importantly, V is a function of θ. Thus, we aim to find the θ that sets the matrix V such that it maximises

the log-likelihood of the observed data under the assumed distribution. Although this model incorporates

fixed-effects X̃ to correct for possible confounding effects, it is not concerned with estimating those fixed

effects. The primary aim of the model is to estimate the parameters θ that make the variance matrix fitting

the data as well as possible. Nevertheless, one can still use, e.g., the generalised least squares (GLS) estimator

to obtain estimates of the fixed effects, because the model yields estimates of θ̂ and V̂. That is, one can

obtain the fixed-effects estimates by:

b =
(
X̃
>

V̂
−1

X̃
)−1

X̃
>

V̂
−1

y. (14)

This option is also implemented in the GCTA software package (Yang et al., 2011). The generic log-likelihood

in Eq. 12 is also described by Yang et al. (2011) and is, in turn, based on a broad literature, including the

works of Harville (1977), Casella and Searle (1985), and Searle et al. (1992). This log-likelihood is such that

the presence of fixed-effect covariates does not bias the estimation of variance components, something that

typically occurs when applying classical maximum likelihood estimation to such problems. For the simple

case without covariates, it is clear that in our case (without the canonical transformation and commutation)

the matrix V is a full (NT) × (NT) matrix. Thus, under this näıve approach, even computing the log-

likelihood requires calculation of the eigenvalues of V (in order to calculate log |V| in a numerically stable

7

manner). These eigenvalues can be computed in O
(
N3T 3

)
time when using standard algorithms. As such,

the complexity becomes prohibitively large when N and T increase. Alternative strategies to compute log |V|

(where V is a full (NT)× (NT) matrix) exist, yet involve a computational bottleneck requiring O
(
N3T 3

)
time.

Restricted maximum likelihood. In order to estimate VG and VE , we need to find the parameters that

maximise the log-likelihood function in Eq. 12. This approach is known as restricted maximum likelihood

(REML). We are able to perform REML estimation efficiently by using highly efficient expressions for the

log-likelihood and the gradient that we derive in subsequent sections. These expressions allow for rapid

application of line-search methods and a BFGS algorithm. In addition, once our estimates have converged,

we will use an efficient expression for the AI matrix (Gilmour et al., 1995). This expression will also be

derived in subsequent sections. Given we can easily calculate the AI matrix, obtaining the covariance matrix

of θ̂ is straightforward. In turn, we can use covariance matrix θ̂ in conjunction with a delta method to

compute the standard errors of our estimates of genetic correlations and heritabilities. Derivations for this

delta method are also provided later on in this section.

Gradient of the log-likelihood. For a given parameter θ1 in the set of parameters θ (using index 1

without loss of generality), the gradient of the log-likelihood, in accordance with Yang et al. (2011), is given

by:

g1 =
1

2
y>M

∂V

∂θ1
My− 1

2
tr

(
M
∂V

∂θ1

)
. (15)

As we will show later on, we are able to compute NT × 1 vector r = My in O (NT) time in case covariates

are absent in our model and in O
(
NT 2

)
time in case there is a fairly limited number of covariates. Using

the expression in Eq. 13 for M, we can rewrite the gradient as follows:

g1 =
1

2
r>
∂V

∂θ1
r− 1

2
tr

(
V−1

∂V

∂θ1

)
+

1

2
tr

(
V−1X̃

(
X̃
>

V−1X̃
)−1

X̃
>

V−1
∂V

∂θ1

)
. (16)

In our case, V is a block-diagonal matrix and therefore its inverse and its derivatives (both first- and second-

order partial derivatives) also have a block-diagonal structure. These block-diagonal matrices have equally

sized blocks. It holds for two block-diagonal matrices with equally-sized blocks, B and C, that the block

diagonal matrix resulting from their product has blocks that are given by the products of the corresponding

8

blocks in the two matrices. That is, block h in BC is the product of block h in B times block h in C. Also,

note that tr (AB) = tr (BA) and that the trace of a block-diagonal matrix can be written as the sum of

traces of those blocks. These insights can be used to further rewrite the gradient as follows:

g1 =
1

2

 N∑
j=1

r>j
∂Vj

∂θ1
rj

− N∑
j=1

tr

(
V−1j

∂Vj

∂θ1

)
+ tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂θ1
V−1j Xj

 , where (17)

Z = X̃
>

V−1X̃ =

N∑
j=1

X>j V−1j Xj . (18)

Although Equations 17 and 18 may seem more involved than Eq. 16, the gradient has now been decomposed

into a contribution per observation. This decomposition is at the core of making time complexity for the

gradient linear in the number of observations. For reasons of brevity, we refer to Z in Eq. 18 as the GLS

precision matrix.

Information matrix of the log-likelihood. Without loss of generality, let I12 (resp. E [I12]) denote the

element from the observed (expected) information matrix, corresponding to parameters θ1 and θ2. Based on

the work by Gilmour et al. (1995), we know that

I12 =
1

2
tr

(
M

∂2V

∂θ1∂θ2

)
− 1

2
tr

(
M
∂V

∂θ1
M
∂V

θ2

)
+ y>M

∂V

∂θ1
M
∂V

∂θ2
My− 1

2
y>M

∂2V

∂θ1∂θ2
My and (19)

E [I12] =
1

2
tr

(
M
∂V

∂θ1
M
∂V

θ2

)
. (20)

The average of these two expressions can be written as follows:

1

4
tr

(
M

∂2V

∂θ1∂θ2

)
− 1

4
y>M

∂2V

∂θ1∂θ2
My +

1

2
y>M

∂V

∂θ1
M
∂V

∂θ2
My. (21)

As the computational complexity of this expression is high, Gilmour et al. (1995) note that y>M ∂2V
∂θ1∂θ2

My

can be approximated by its expectation tr
(
M ∂2V

∂θ1∂θ2

)
when these second-order derivatives are non-zero, as

is the case under our parametrisation.

In fact, when V is linear in the parameters of the model, these second-order derivatives with respect to V are

zero at any rate, in which case the AI matrix is the exact average of the observed and expected information

matrices. This exact average is used by others in the AI-REML literature (e.g., Yang et al. (2011)).

For our nonlinear parametrisation, under the approximation as proposed by Gilmour et al. (1995), the

9

expression for an element of the AI matrix is given by:

I12 =
1

2
y>M

∂V

∂θ1
M
∂V

∂θ2
My. (22)

Thus, given the efficient expression of My and the block-diagonal structure of the problem, an element of

the AI matrix can be described as:

I12 =
1

2

[
r>
∂V

∂θ1
V−1

∂V

∂θ2
r− r>

∂V

∂θ1
V−1X̃

(
X̃
>

V−1X̃
)−1

X̃
>

V−1
∂V

∂θ2
r

]
(23)

=
1

2

 N∑
j=1

r>j
∂Vj

∂θ1
V−1j

∂Vj

∂θ2
rj

−
 N∑
j=1

r>j
∂Vj

∂θ1
V−1j Xj

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂θ2
r

 . (24)

Step 4. Tractable notation for different covariates across traits

In most derivations that will follow, we assume there is one set of k fixed-effect covariates that applies to all

traits. In that case, we allow for Tk fixed effects in total. This assumption simplifies derivations considerably.

However, here we show that the resulting expressions can easily be generalised to cases in which different

sets of covariates apply to different traits, as well as to the case of having no covariates at all. The biggest

advantage of considering one set of covariates that applies to all traits, is that we can write down the matrix

of fixed-effect covariates for a particular observation j as a Kronecker product.

Let Kt denote the set of covariates that applies to trait t for t = 1, . . . , T . We assume that K =
⋃T
t=1Kt

is the complete set of covariates, which, without loss of generality, for now applies to all traits. That is,

K = Kt ∀ t, with k = ||K|| denoting the total number of unique covariates. Now, letting

X = P>X∗, (25)

with X∗ and X denoting the N × k matrices of fixed-effect covariates (the latter after the canonical trans-

formation) with observations in the rows and covariates in the columns, we obtain that the T ×Tk matrices

Xj for observations j = 1, . . . , N , as defined in Eq. 9, can be written as:

Xj = IT ⊗ x>j . (26)

Here, the 1 × k vector x>j is the j-th row from X for j = 1, . . . , N . With this notation for the same set

10

of covariates applying to all traits, we can easily generalise to the case of different covariates for different

traits. Now, assume there is a binary matrix St for each trait, such that St is a Kt × k matrix (Kt ≤ k),

with StS
>
t = IKt

. When covariate j (from the full set of covariates, K) is the i-th covariate for trait t, then

element i, j in matrix St is equal to one. Otherwise, that element equals zero. Note that in case all covariates

apply to a given trait, St is simply equal to Ik. Effectively, StA yields a submatrix of matrix A, comprising

only Kt unique rows from the k rows in A. If matrix A is square, StAS>t yields the Kt ×Kt submatrix of

A in which the appropriate rows and columns from A are selected.

Now, we can construct a grand block-diagonal matrix

S =

S1 0

. . .

0 ST

 , (27)

such that SS> = IK , where K =
∑T
t=1Kt. Using these definitions, the GLS precision matrix can be written

as:

Z = S

 N∑
j=1

(IT ⊗ xj) V−1j
(
IT ⊗ x>j

)S>, (28)

and the T ×K matrix of fixed-effect covariates for observation j as

Xj =
(
IT ⊗ x>j

)
S>. (29)

We now have a concise notation for the two possible scenarios. In the first scenario, there is a set of k

fixed-effect covariates that applies to all traits. In the second scenario, there are different covariates for

different traits. This notation help us to obtain efficient expressions for the log-likelihood, gradient, and the

AI matrix.

Step 5. Calculating the log-likelihood efficiently

To calculate the log-likelihood rapidly, we need efficient expressions for V−1, log |V|, log |Z|, and y>My =

y>r with r referring to what we call the rescaled GLS residuals or, even more briefly, just residuals.

11

Decomposition of the variance matrix. The full variance matrix, V, in our model in Eq. 8, has a block-

diagonal structure as illustrated in Eq. 10 and Eq. 11. Hence, the inverse of V is a block-diagonal matrix

too, with V−1j for j = 1, . . . , N as blocks. Also, the determinant of V is the product of the determinants

of Vj for j = 1, . . . , N . Let the EVD of VE be given by QΦQ>, with QQ> = Q>Q = IT . We then can

rewrite Vj as follows:

Vj = QΦ
1
2

(
djṼG + IT

)
Φ

1
2 Q>, where (30)

ṼG = Φ−
1
2 Q>VGQΦ−

1
2 . (31)

As our model assumes a positive definite VE , Φ is a diagonal matrix with positive diagonal entries and Φ−
1
2

is defined in terms of real numbers. Moreover, because VG is at least positive semi-definite, so is ṼG (this

can be shown easily using quadratic forms with respect to ṼG, which can be rewritten as quadratic forms

with respect to VG). Let LΛL> denote the EVD of ṼG, with LL> = L>L = IT . Now, we can rewrite Vj

as:

Vj = QΦ
1
2 L (djΛ + IT) L>Φ

1
2 Q>. (32)

Hence, we have that

V−1j = FD∗jF
>, where (33)

D∗j = (djΛ + IT)
−1

and (34)

F = QΦ−
1
2 L. (35)

Note that although F is square, it is neither necessarily a symmetric nor necessarily an orthogonal matrix.

By means of this expression for Vj , we are able to invert the (NT)× (NT) covariance matrix V at the price

of performing N matrix multiplications, each in O
(
T 3
)

time. That is, multiplying T × T matrix FD∗j with

T × T matrix F>. Thus, we have reduced time for inverting V from O
(
N3T 3

)
to O

(
NT 3

)
.

In our case, a further reduction is possible, because we can exploit the fact that V−1j only varies from

observation to observation in terms of the diagonal matrix D∗j . This insight allows us to derive fast expressions

for the log-likelihood and gradient, because we do not need to calculate V−1j explicitly. As we will show,

this implies that we can calculate the log-likelihood and gradient in O
(
NT 2

)
time.

12

Efficient determinant of the variance matrix. For two conformable square matrices, B and C, the

following identity holds:

|AB| = |A| |B| . (36)

Moreover, the determinant of a block-diagonal matrix can be written as the product of the determinants of

the blocks. Therefore, the determinant of V can be rewritten as:

|V| =
N∏
j=1

|Vj | (37)

=

N∏
j=1

(∣∣∣QΦ
1
2 L (djΛ + IT) L>Φ

1
2 Q>

∣∣∣) (38)

=

N∏
j=1

(
|Q|

∣∣∣Φ 1
2

∣∣∣ |L| |djΛ + IT |
∣∣∣L>∣∣∣ ∣∣∣Φ 1

2

∣∣∣ ∣∣∣Q>∣∣∣) (39)

=

N∏
j=1

(
|djΛ + IT |

∣∣∣L>∣∣∣ |L| ∣∣∣Φ 1
2

∣∣∣ ∣∣∣Φ 1
2

∣∣∣ ∣∣∣Q>∣∣∣ |Q|) (40)

=

N∏
j=1

(
|djΛ + IT |

∣∣∣L>L
∣∣∣ |Φ| ∣∣∣Q>Q

∣∣∣) (41)

=

N∏
j=1

(
T∏
t=1

(djλt + 1) |IT |
T∏
t=1

φt |IT |

)
(42)

=

N∏
j=1

(
T∏
t=1

(djλt + 1)

T∏
t=1

φt

)
, (43)

where λt is the t-th diagonal entry of Λ and where φt is defined analogously with respect to Φ. Hence, the

log-determinant of V is given by

log |V| = N

T∑
t=1

log (φt) +

N∑
j=1

T∑
t=1

log (djλt + 1) , (44)

where λt are the EVs of ṼG in Λ, dj are the EVs of the GRM, and φt the EVs of VE in Φ. Calculating this

log-determinant now takes O (NT) time, given we have precomputed the EVD of the GRM, ṼG, and VE .

GLS precision matrix, its inverse, and determinant. Here we start again with the assumption of

identical covariates across traits (i.e., S = ITk). Using our expression for V−1j in Eq. 33 and properties of

13

the Kronecker product, the GLS precision matrix can be rewritten as:

Z =

N∑
j=1

X>j V−1j Xj (45)

=

N∑
j=1

(IT ⊗ xj)
(
V−1j ⊗ I1

) (
IT ⊗ x>j

)
(46)

=

N∑
j=1

(
V−1j ⊗ xjx

>
j

)
(47)

=

N∑
j=1

((
FD∗jF

>
)
⊗ xjx

>
j

)
(48)

=

N∑
j=1

(F⊗ Ik)
(
D∗j ⊗ xjx

>
j

) (
F> ⊗ Ik

)
(49)

= (F⊗ Ik)

 N∑
j=1

(
D∗j ⊗ xjx

>
j

)(F> ⊗ Ik

)
(50)

= (F⊗ Ik)

B1 0

. . .

0 BT

(
F> ⊗ Ik

)
, where Bt =

N∑
j=1

1

djλt + 1
xjx

>
j = X>D†tX and D†t = (Dλt + IN)

−1
.

(51)

Recall here that X is the N×k matrix of covariates, after the canonical transformation. Given that k = O (1),

each matrix Bt can be computed in O (N) time. We can, therefore, calculate Bt across all traits in O (NT)

time. The outer pre- and post-multiplications of the resulting block-diagonal matrix are trivial. Thus,

overall, Z can be calculated in O (NT) time. Notice here how we have avoided the need to calculate V−1j

explicitly, thus avoiding a computation in O
(
NT 3

)
time. We will pursue similar strategies for the remaining

terms in the log-likelihood, gradient, and AI matrix.

The inverse of the precision matrix can be obtained efficiently, as:

Z−1 =
((

F−1
)> ⊗ Ik

)
J
(
F−1 ⊗ Ik

)
, with (52)

J =

B−11 0

. . .

0 B−1T

 . (53)

Here, F is the T × T matrix which is fixed across observations and parameters. Therefore, inverting F

14

requires only O(T 3) time. Moreover, the blocks Bt of the inner matrix can jointly be inverted in O (T) time,

assuming k = O (1).

For the determinant of the precision matrix, we have that:

|Z| = |F⊗ Ik|
T∏
t=1

|Bt|
∣∣∣F> ⊗ Ik

∣∣∣ (54)

=

T∏
t=1

|Bt| |F⊗ Ik|
∣∣∣F> ⊗ Ik

∣∣∣ (55)

=

T∏
t=1

|Bt|
∣∣∣(F⊗ Ik)

(
F> ⊗ Ik

)∣∣∣ (56)

=

T∏
t=1

|Bt|
∣∣∣FF> ⊗ Ik

∣∣∣ (57)

=

T∏
t=1

|Bt|
∣∣∣FF>

∣∣∣k (58)

=

T∏
t=1

|Bt|
∣∣∣QΦ−

1
2 LL>Φ−

1
2 Q>

∣∣∣k (59)

=

T∏
t=1

|Bt|
∣∣∣QΦ−1Q>

∣∣∣k (60)

=

T∏
t=1

|Bt|
(
|Q|

∣∣Φ−1∣∣ ∣∣∣Q>∣∣∣)k (61)

=

T∏
t=1

|Bt|
(∣∣Φ−1∣∣ |Q| ∣∣∣Q>∣∣∣)k (62)

=

T∏
t=1

|Bt|
(∣∣Φ−1∣∣ ∣∣∣QQ>

∣∣∣)k (63)

=

T∏
t=1

|Bt| |Φ|−k . (64)

Here, Φ are the EVs of VE . Therefore, the log-determinant of Z is:

log |Z| =
T∑
t=1

(log |Bt| − klog (φt)) , (65)

where Bt = X>D†tX and where φt denotes the t-th EV of VE . For numerical stability, we compute the

EVD of Bt for t = 1, . . . , T and compute log |Bt| by taking the sum of the logarithm of the resulting EVs.

We use the same EVDs to set B−1t .

15

In case we have different covariates across traits, our precision matrix is given by:

Z = (S (F⊗ Ik))

B1 0

. . .

0 BT

((

F> ⊗ Ik

)
S>
)
. (66)

Here, S is the binary K × Tk matrix as defined earlier. This equation implies Z can still be obtained in

O (NT) when the covariates differ by trait, assuming k = O (1). In such a case, we compute the EVD of Z

as it is (which can still be done in O
(
T 3
)

time), and use this decomposition to compute both log |Z| and

Z−1.

GLS residuals. Expressions for the GLS residuals and y>My can now also be rewritten such that we can

compute them in O
(
NT 2

)
time. To see this, note that for the case of indentical covariates across traits, we

can compute the T × 1 vectors of rescaled GLS residuals, rj , the Tk× 1 vector of GLS estimates, b, and the

rescaled T × 1 phenotype vectors, ỹj , for j = 1, . . . , N as follows:

My =

r1
...

rN

 , where (67)

rj = ỹj − F
(
D∗jF

> ((IT ⊗ x>j
)
b
))
, (68)

b = Z−1

 N∑
j=1

(IT ⊗ xj) ỹj

 , and (69)

ỹj =
(
F
(
D∗j

(
F>yj

)))
. (70)

Now, let Ỹ = (ỹ1 . . . ỹN) denote the T ×N matrix of T × 1 vectors ỹj for j = 1, . . . , N . Then, b can

be written as:

b = Z−1

 N∑
j=1

(IT ⊗ xj)
(
ỹj ⊗ I1

) (71)

= Z−1

 N∑
j=1

ỹj ⊗ xj

 (72)

= Z−1vec
(
X>Ỹ

>)
. (73)

16

Given these expressions, Ỹ can be calculated in O
(
NT 2

)
time. Moreover, given that k = O (1), X>Ỹ

>
can

be calculated in O (NT) time, provided we have Ỹ. Using Ỹ, b, and
(
IT ⊗ x>j

)
, it is straightforward to

construct the rescaled GLS residuals. The full set of residuals can therefore be obtained in O
(
NT 2

)
time.

Let R = (r1 . . . rN) denote the T ×N matrix of rescaled GLS residuals. Then, we obtain that:

y>My = ι> (R ◦Y) ι. (74)

Here, ι> is a 1×T vector of ones and ι a N×1 vector of ones, and ‘◦’ denotes the Hadamard or element-wise

product. Recall that Y is the T ×N matrix of phenotypes after post-multiplication by P, the eigenvectors

of the GRM. In case we have different covariates across traits, we only need to modify our expressions for b

and rj . In this particular case, we have that:

rj = ỹj − F
(
D∗jF

>
((

IT ⊗ x>j
)
S>b

))
, where (75)

b = Z−1Svec
(
X>Ỹ

>)
. (76)

Constant. In case we are interested in the constant term in the log-likelihood function, we need an efficient

expression for log
∣∣∣X̃>X̃

∣∣∣. Under identical covariates across traits, we have that:

X̃
>

X̃ =

N∑
j=1

(IT ⊗ xj)
(
IT ⊗ x>j

)
(77)

=

N∑
j=1

(
IT ⊗ xjx

>
j

)
(78)

=

X>X 0

. . .

0 X>X

 . (79)

Here, X is the N×k matrix of covariates that is identical across all traits, after the canonical transformation.

It therefore holds that:

log
∣∣∣X̃>X̃

∣∣∣ = T log
∣∣∣X>X

∣∣∣ , (80)

17

where log
∣∣∣X>X

∣∣∣ can be obtained in a numerically stable manner from the EVD of X>X. X>X and its

EVD can be obtained in O (N) time, provided k = O (1). Note that when there are different covariates

across traits,

log
∣∣∣X̃>X̃

∣∣∣ =

T∑
t=1

log
∣∣∣StX>XS>t

∣∣∣ . (81)

This step involves taking submatrices of X>X and computation of the determinants of those submatrices.

When we assume k = O (1), all these determinants can be obtained in O (T) time in total. Here, the

bottleneck is the calculation of X>X, which takes O (N) time when k = O (1). Thus, from a computational

point of view, the calculation of log
∣∣∣X>X

∣∣∣ is trivial for reasonable values of N and T , and for k = O (1).

Overall complexity of the log-likelihood. We can compute the MGREML log-likelihood in O
(
NT 2

)
time, provided the number of unique covariates is at most O (1), irrespective of whether we have (i) no

covariates at all, (ii) identical covariates across traits, or (iii) partial overlap between the sets of covariates

that apply to the different traits. However, in spite of the same time complexity, we still expect the lowest

runtime in the first case, as terms such as log |Z| can then be ignored altogether. We expect the highest

runtime in the third case, because of the additional steps that need to be taken in that case.

Step 6. Parametrisation of the covariance matrices

Before we can derive efficient expressions for the gradient and AI matrix, we need to settle the parametrisation

of our model so that we can define the partial derivatives of V with respect to our parameters. To do so, we

follow a simple factor model for both VG and VE . That is:

VG = CGC>G, and (82)

VE = CEC>E , (83)

where CG has size T ×FG and CE has size T ×FE , with FG ≤ T and (for identification purposes) FE = T .

Thus, we have at most as many genetic factors as we have traits, and we have as many environmental factors

as we have traits. Importantly, these definitions ensure VG and VE are always valid covariance matrices

(i.e., they are both at least positive semidefinite).

18

Partial derivatives. Let γ denote the genetic parameter in row t and column f of CG. This parameter can

be conceptualised as the coefficient of the path from genetic factor f to trait t or, put differently, the effect

of some latent genetic factor f (with unit variance) on trait t. By the product rule, the partial derivative of

VG with respect to this parameter is:

∂VG

∂γ
=
∂CG

∂γ
C>G + CG

∂C>G
∂γ

(84)

=
∂CG

∂γ
C>G +

(
∂CG

∂γ
C>G

)>
. (85)

Notice that the partial derivative of CG with respect to γ is zero everywhere, except for the element in row

t and column f . By recognising that we can write CG as (cG1 . . . cGFG
), where cGf is T × 1 vector of

coefficients from factor f to all traits, it follows that

∂CG

∂γ
C>G =

∂CG

∂γ

c>G1

...

c>GFG

 (86)

=

0(t−1)×T

c>Gf

0(T−t)×T

 . (87)

Therefore,

∂VG

∂γ
=

(
0T×(t−1) cGf 0T×(T−t)

)
+

0(t−1)×T

c>Gf

0(T−t)×T

 . (88)

Analogously, with ε denoting the coefficient from environmental factor f to trait t, the partial derivative of

VE with respect to ε is:

∂VE

∂ε
=

(
0T×(t−1) cEf 0T×(T−t)

)
+

0(t−1)×T

c>Ef

0(T−t)×T

 . (89)

19

Based on these expressions, it follows that:

∂Vj

∂γ
= dj

(

0T×(t−1) cGf 0T×(T−t)

)
+

0(t−1)×T

c>Gf

0(T−t)×T

 and (90)

∂Vj

∂ε
=

(

0T×(t−1) cEf 0T×(T−t)

)
+

0(t−1)×T

c>Ef

0(T−t)×T

 . (91)

Hence, the partial derivatives of the covariance matrices for observations j = 1, . . . , N , with respect to

environmental parameters, do not have any observation-specific terms. Moreover, for genetic parameters,

except for a scaling coefficient dj (i.e., the EVs from the GRM), the partial derivatives of the covariance

matrices for observations j = 1, . . . , N are also independent of observation-specific terms. This insight is

useful in reducing the computational complexity of the gradient and AI matrix.

Step 7. Calculating the gradient efficiently

From the expression of the gradient of the log-likelihood in Eq. 17, it follows that we need efficient expressions

for the squared sum of residuals and two traces.

Squared sum of residuals. Here, we seek an efficient expression for
∑N
j=1 r>j

∂Vj

∂θ1
rj . In Step 5, we

already derived efficient expressions for computing rj for j = 1, . . . , N in O
(
NT 2

)
time. For θ1 being a

genetic parameter γ, denoting the coefficient from genetic factor f to trait t, we therefore obtain the following

20

expression:

N∑
j=1

r>j
∂Vj

∂θ1
rj =

N∑
j=1

djr
>
j

(

0T×(t−1) cGf 0T×(T−t)

)
+

0(t−1)×T

c>Gf

0(T−t)×T

 rj (92)

=

N∑
j=1

dj

(

01×(t−1) r>j cGf 01×(T−t)

)
rj + r>j

0(t−1)×1

c>Gfrj

0(T−t)×1

 (93)

=

N∑
j=1

dj
[
r>j cGfRtj +Rjtc

>
Gfrj

]
(94)

= 2

N∑
j=1

Rtjdj
(
r>j cGf

)
. (95)

Here, Rtj denotes element t, j from the T ×N matrix of rescaled GLS residuals, R. Thus, Rtj is the rescaled

GLS residual for individual j when explaining trait t. We can rewrite this expression much more compactly

and efficiently as:

N∑
j=1

r>j
∂Vj

∂θ1
rj =

{
2RDR>CG

}
tf
, (96)

where {A}ij denotes the element in row i and column j of a given matrix A, and where D denotes the

diagonal matrix with EVs from the GRM. As D is a diagonal matrix, calculating RDR>CG is trivial (e.g.,

construct R̃ = RD
1
2 and take R̃

>
R̃CG). Importantly, notice that the matrix product 2RDR>CG provides

the values of
∑N
j=1 r>j

∂Vj

∂θ1
rj for all genetic parameters. Therefore, given some genetic parameter γ, we just

need to take the appropriate row and column from this matrix to obtain the contribution of
∑N
j=1 r>j

∂Vj

∂θ1
rj

to the element of the gradient vector that corresponds to that parameter. Analogously, for θ1 being a

environmental parameter ε denoting the coefficient from environmental factor f to trait t, we get:

N∑
j=1

r>j
∂Vj

∂ε
rj =

{
2RR>CE

}
tf
. (97)

Notice that by computing 2RDR>CG and 2RR>CE , we obtain two matrices of which the appropriate

entries are the values of
∑N
j=1 r>j

∂Vj

∂θ1
rj for all parameters in our model. Thus, calculating this part of the

gradient has a computational complexity equal to that of computing these two matrices. This can be done in

21

O
(
NT 2

)
time, because the number of factors in our model is at most proportional to the number of traits.

First trace. Next, we need an efficient expression for
∑N
j=1 tr

(
V−1j

∂Vj

∂θ1

)
. First, let us define

TG =

N∑
j=1

V−1j dj and TE =

N∑
j=1

V−1j . (98)

By substituting V−1j with the expression for it in Eq. 33, we get:

TG = F

 N∑
j=1

djD
∗
j

F> and TE = F

 N∑
j=1

D∗j

F>. (99)

These expressions imply that both TG and TE can be obtained by taking a sum of diagonal matrices, and

by respectively pre- and post-multiplying the resultant matrices by F and F>.

Now, let us consider a genetic parameter, γ, denoting the effect of genetic factor f on trait t. In this case,

we have that:

N∑
j=1

tr

(
V−1j

∂Vj

∂γ

)
= tr

 N∑
j=1

(
V−1j dj

∂VG

∂γ

) = tr

 N∑
j=1

V−1j dj

 ∂VG

∂γ

 = tr

(
TG

∂VG

∂γ

)
(100)

= tr

TG

(

0T×(t−1) cGf 0T×(T−t)

)
+

0(t−1)×T

c>Gf

0(T−t)×T

 (101)

= tr

((
0T×(t−1) TGcGf 0T×(T−t)

))
+ tr

TG

0(t−1)×T

c>Gf

0(T−t)×T

 (102)

= 2tr

((
0T×(t−1) TGcGf 0T×(T−t)

))
(103)

= {2TGCG}tf . (104)

Analogously, for environmental parameter ε, indicating the effect of environmental factor f on trait t, we

have:

N∑
j=1

tr

(
V−1j

∂Vj

∂ε

)
= {2TECE}tf . (105)

22

Matrices TE and TG can be obtained in O (NT) time. Further calculation of 2TGCG and 2TCE is trivial.

By calculating these two matrices and taking the appropriate elements, we have the contribution of each

parameter in our model to the gradient with respect to the
∑N
j=1 tr

(
V−1j

∂Vj

∂θ1

)
term. Thus, calculating this

term for all parameters in the model can be done in O (NT) time.

Second trace. To derive an efficient expression for the second trace, we start with the case of different

covariates for each traits and then consider the special case of equal covariates across traits. To see how the

computational complexity of the second trace can be reduced, even when we have different covariates per

trait, first note that our aim is to find an efficient expression for the following term from Eq. 17:

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂θ1
V−1j Xj

 . (106)

Here, we cannot use properties of the Kronecker product to make certain terms cancel out with respect to the

inverse of Z. Therefore, our derivations focus here on finding an efficient expression for X>j V−1j
∂Vj

∂θ1
V−1j Xj .

However, it is important to recognise that it is still possible to write our matrix of covariates as a Kronecker

product, post-multiplied by S>. That is, we have that:

Xj =
(
IT ⊗ x>j

)
S>. (107)

Let’s first focus on the term for γ. Because of the constancy of the partial derivatives for Vj with respect

to γ over the observations (except for scalar dj), we have that:

N∑
j=1

X>j V−1j
∂Vj

∂γ
V−1j Xj =

N∑
j=1

djX
>
j V−1j

∂VG

∂γ
V−1j Xj (108)

=

N∑
j=1

djS (IT ⊗ xj) FD∗jF
> ∂VG

∂γ
FD∗jF

> (IT ⊗ x>j
)
S> (109)

= S

 N∑
j=1

dj (IT ⊗ xj) FD∗jF
> ∂VG

∂γ
FD∗jF

> (IT ⊗ x>j
)S>. (110)

Thus, using S to select the appropriate submatrix of the Tk×Tk matrix between square brackets is something

that can be done after aggregating observations. Therefore, we can focus on finding an efficient expression

23

for the term in between the square brackets. For that term, we have that:

N∑
j=1

dj (IT ⊗ xj) FD∗jF
> ∂VG

∂γ
FD∗jF

> (IT ⊗ x>j
)

(111)

=

N∑
j=1

dj (IT ⊗ xj) (F⊗ I1) D∗jF
> ∂VG

∂γ
FD∗j

(
F> ⊗ I1

) (
IT ⊗ x>j

)
(112)

=

N∑
j=1

dj (F⊗ xj) D∗jF
> ∂VG

∂γ
FD∗j

(
F> ⊗ x>j

)
(113)

=

N∑
j=1

dj (F⊗ Ik) (IT ⊗ xj) D∗jF
> ∂VG

∂γ
FD∗j

(
IT ⊗ x>j

) (
F> ⊗ Ik

)
(114)

= (F⊗ Ik)

 N∑
j=1

dj (IT ⊗ xj) D∗jF
> ∂VG

∂γ
FD∗j

(
IT ⊗ x>j

)(F> ⊗ Ik

)
(115)

= (F⊗ Ik)

 N∑
j=1

(IT ⊗ xj)

((
djD

∗
jF
> ∂VG

∂γ
FD∗j

)
⊗ I1

)(
IT ⊗ x>j

)(F> ⊗ Ik

)
(116)

= (F⊗ Ik)

 N∑
j=1

((
djD

∗
jF
> ∂VG

∂γ
FD∗j

)
⊗
(
xjx

>
j

))(F> ⊗ Ik

)
. (117)

The Kronecker product in the summand can be written as:

(
djD

∗
jF
> ∂VG

∂γ
FD∗j

)
⊗
(
xjx

>
j

)
(118)

=
((

D∗jF
>
)
⊗ Ik

)((
dj
∂VG

∂γ

)
⊗
(
xjx

>
j

)) ((
FD∗j

)
⊗ Ik

)
. (119)

The middle Kronecker product in the preceding expression can be written as:

dj

(

0T×(t−1) cGf 0T×(T−t)

)
⊗
(
xjx

>
j

)
+

0(t−1)×T

c>Gf

0(T−t)×T

⊗ (xjx>j)
 (120)

= dj

0k×(t−1)k cGf1xjx

>
j 0k×(T−t)k

...
...

...

0k×(t−1)k cGfTxjx
>
j 0k×(T−t)k

+ dj

0k×(t−1)k cGf1xjx

>
j 0k×(T−t)k

...
...

...

0k×(t−1)k cGfTxjx
>
j 0k×(T−t)k

>

, (121)

24

with cGft denoting the genetic effect of genetic factor f on trait t. Thus, the Kronecker product in the

summand can be written as:

(
djD

∗
jF
> ∂VG

∂γ
FD∗j

)
⊗
(
xjx

>
j

)
(122)

= djHj + djH
>
j , (123)

where

Hj =
((

D∗jF
>
)
⊗ Ik

)

0k×(t−1)k cGf1xjx
>
j 0k×(T−t)k

...
...

...

0k×(t−1)k cGfTxjx
>
j 0k×(T−t)k

((FD∗j
)
⊗ Ik

)
(124)

=

0k×(t−1)k xjx

>
j (djλ1 + 1)

−1∑T
s=1 cGfsFs1 0k×(T−t)k

...
...

...

0k×(t−1)k xjx
>
j (djλT + 1)

−1∑T
s=1 cGfsFsT 0k×(T−t)k

((FD∗j
)
⊗ Ik

)
(125)

=

0k×(t−1)k xjx

>
j (djλ1 + 1)

−1
{

c>GfF
}
1

0k×(T−t)k
...

...
...

0k×(t−1)k xjx
>
j (djλT + 1)

−1
{

c>GfF
}
T

0k×(T−t)k

((FD∗j
)
⊗ Ik

)
(126)

=

xjx

>
j (djλ1 + 1)

−1
(djλ1 + 1)

−1
{

c>GfF
}
1
Ft1 . . . xjx

>
j (djλ1 + 1)

−1
(djλT + 1)

−1
{

c>GfF
}
1
FtT

...
...

xjx
>
j (djλT + 1)

−1
(djλ1 + 1)

−1
{

c>GfF
}
T
Ft1 . . . xjx

>
j (djλT + 1)

−1
(djλT + 1)

−1
{

c>GfF
}
T
FtT

(127)

=

xjx

>
j (djλ1 + 1)

−1
(djλ1 + 1)

−1
{

C>GF
}
f1
Ft1 . . . xjx

>
j (djλ1 + 1)

−1
(djλT + 1)

−1
{

C>GF
}
f1
FtT

...
...

xjx
>
j (djλT + 1)

−1
(djλ1 + 1)

−1
{

C>GF
}
fT
Ft1 . . . xjx

>
j (djλT + 1)

−1
(djλT + 1)

−1
{

C>GF
}
fT
FtT

 .

(128)

25

In this expression, {v}i denotes element i in a given vector v and Fij denotes element i, j in F. As a result,

N∑
j=1

dj (IT ⊗ xj) FD∗jF
> ∂VG

∂γ
FD∗jF

> (IT ⊗ x>j
)

(129)

= (F⊗ Ik)

 N∑
j=1

djHj + djH
>
j

(F> ⊗ Ik

)
(130)

=

(F⊗ Ik)

 N∑
j=1

djHj

(F> ⊗ Ik

)+

(F⊗ Ik)

 N∑
j=1

djHj

> (F> ⊗ Ik

) . (131)

Therefore,

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂γ
V−1j Xj

 (132)

= tr

Z−1S

(F⊗ Ik)

 N∑
j=1

djHj

(F> ⊗ Ik

)+

(F⊗ Ik)

 N∑
j=1

djHj

> (F> ⊗ Ik

)
S>

(133)

= tr

Z−1S

(F⊗ Ik)

 N∑
j=1

djHj

(F> ⊗ Ik

)S>

+ tr

Z−1S

(F⊗ Ik)

 N∑
j=1

djHj

> (F> ⊗ Ik

)S>

(134)

= tr

Z−1S

(F⊗ Ik)

 N∑
j=1

djHj

(F> ⊗ Ik

)S>

+ tr

S

(F⊗ Ik)

 N∑
j=1

djHj

(F> ⊗ Ik

)S>Z−1

(135)

= tr

Z−1S

(F⊗ Ik)

 N∑
j=1

djHj

(F> ⊗ Ik

)S>

+ tr

Z−1S

(F⊗ Ik)

 N∑
j=1

djHj

(F> ⊗ Ik

)S>

(136)

= 2tr

Z−1S

(F⊗ Ik)

 N∑
j=1

djHj

(F> ⊗ Ik

)S>

 . (137)

26

Thus, our efforts to find an efficient expression for the second trace lead us to finding an efficient expression

for
∑N
j=1 djHj . Note here that:

N∑
j=1

djHj =

(
diag

({
C>GF

}
f•

)
⊗ Ik

)
B (diag ({F}t•)⊗ Ik) , (138)

with

diag

({
C>GF

}
f•

)
=

{

C>GF
}
f1

0

. . .

0
{

C>GF
}
fT

 , (139)

diag ({F}t•) =

Ft1 0

. . .

0 FtT

 , (140)

BG =

BG11 . . . BG1T

...
...

BG1T . . . BGTT

 , (141)

BGst = X>DD†sD
†
tX. (142)

Therefore,

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂γ
V−1j Xj

 (143)

= 2tr

(
Z−1S

[
(F⊗ Ik)

((
diag

({
C>GF

}
f•

)
⊗ Ik

)
BG (diag ({F}t•)⊗ Ik)

)(
F> ⊗ Ik

)]
S>
)
. (144)

With our previously defined binary K × Tk selector matrix S, we can now rewrite our trace as follows:

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂γ
V−1j Xj

 (145)

= 2tr

((
diag

({
C>GF

}
f•

)
⊗ Ik

)
BG (diag ({F}t•)⊗ Ik)

[(
F> ⊗ Ik

)
S>Z−1S (F⊗ Ik)

])
. (146)

27

In the last expression, notice that diag

({
C>GF

}
f•

)
⊗ Ik and diag ({F}t•)⊗ Ik are both diagonal matrices.

Therefore, by properties of the Hadamard product, we have that:

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂γ
V−1j Xj

 = 2

({
C>GF

}
f•

>
⊗ ι1×k

)
[BG ◦ J] ({F}t• ⊗ ιk×1) (147)

=
{

2
(
C>GF⊗ ι1×k

)
[BG ◦ J]

(
F> ⊗ ιk×1

)}
ft
, where (148)

J =
(
F> ⊗ Ik

)
S>Z−1S (F⊗ Ik) , (149)

BG =

BG11 . . . BG1T

...
...

BG1T . . . BGTT

 , and (150)

BGst = X>DD†sD
†
tX. (151)

Therefore, to determine the second trace, we need to compute our grand Tk×Tk matrix BG. This calculation

can be done in O
(
NT 2

)
time. Next, we need to compute the element-wise product of this grand matrix with

J, which is readily available from previous steps and computationally trivial. Finally, we need to pre-multiply

the resultant matrix by the FG×Tk matrix C>GF⊗ ι1×k and post-multiply by the Tk×T matrix F>⊗ ιk×1,

where FG denotes the number of genetic factors in our model. These two multiplications can be carried out

in O
(
T 3
)

time. Thus, overall, the second trace can be computed in O
(
NT 2

)
time, provided k = O (1) and

thereby K = O (T).

Analogously, for ε, the effect of environmental factor f on trait t, we have that:

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂ε
V−1j Xj

 =
{

2
(
C>EF⊗ ι1×k

)
[BE ◦ J]

(
F> ⊗ ιk×1

)}
ft
, where (152)

BE =

BE11 . . . BE1T

...
...

BE1T . . . BETT

 and (153)

BEst = X>D†sD
†
tX. (154)

Notice that in case of identical covariates across traits, J as defined in Eq 149 reduces to J as defined in

Eq 53. When S = ITk, we can substitute Z−1 in Eq. 148 by the efficient expressions in Eq. 52. Doing so

28

yields:

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂γ
V−1j Xj

 (155)

=

2
(
C>GF⊗ ι1×k

)

BG11 . . . BG1T

...
...

BG1T . . . BGTT

 ◦ (156)

(
F> ⊗ Ik

)((
F−1

)> ⊗ Ik

)

B−11 0

. . .

0 B−1T

(F−1 ⊗ Ik
)

(F⊗ Ik)

(
F> ⊗ ιk×1

)

ft

(157)

=

2
(
C>GF⊗ ι1×k

)

BG11 . . . BG1T

...
...

BG1T . . . BGTT

 ◦

B−11 0

. . .

0 B−1T

(
F> ⊗ ιk×1

)

ft

(158)

=

2
(
C>GF⊗ ι1×k

)

B−11 ◦BG11 0

. . .

0 B−1T ◦BGTT

(
F> ⊗ ιk×1

)

ft

(159)

=

2C>GF

ι1×k

(
B−11 ◦BG11

)
ιk×1 0

. . .

0 ι1×k
(
B−1T ◦BGTT

)
ιk×1

F>

ft

(160)

=

2F

ι1×k

(
B−11 ◦BG11

)
ιk×1 0

. . .

0 ι1×k
(
B−1T ◦BGTT

)
ιk×1

F>CG

tf

. (161)

By virtue of the symmetry of both B−1t and BGtt, we get that:

ι1×k
(
B−1t ◦BGtt

)
ιk×1 = tr

(
B−1t BGtt

)
. (162)

29

Thus, in case of identical covariates across traits, we have that:

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂γ
V−1j Xj

=

2F

tr
(
B−11 BG11

)
0

. . .

0 tr
(
B−1T BGTT

)
F>CG

tf

.

Analogously, for ε, the effect of environmental factor f on trait t, we can derive that:

tr

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂ε
V−1j Xj

 (163)

=

2F

tr
(
B−11 BE11

)
0

. . .

0 tr
(
B−1T BETT

)
F>CE

tf

. (164)

Overall, computing the second trace can be done in O
(
NT 2

)
time when covariates differ across traits and in

O (NT) time in case of identical covariates across traits. These statements about the computational order

rely on k = O (1).

Overall complexity of the calculation of the gradient. We can compute the gradient in O
(
NT 2

)
time, provided k = O (1). Notice again, however, that having no covariates at all is numerically easier in

terms of the degree to which the problem scales with O
(
NT 2

)
. The reason is that many terms can be

ignored altogether (e.g., log |Z|) in a model without covariates.

Step 8. Calculating the AI matrix efficiently

From the expression of the AI matrix of the log-likelihood in Eq. 24, it follows that we need efficient

expressions for weighted squared sum of residuals for each combination of parameters.

First squared sum of residuals in the AI matrix. Here, we need to find an efficient expression for∑N
j=1 r>j

∂Vj

∂θ1
V−1j

∂Vj

∂θ2
rj . Central in this derivation is finding an efficient expression for

∂Vj

∂θ2
rj . For a genetic

30

parameter γ and environmental parameter ε, we have:

∂Vj

∂γ
rj = dj

∂VG

∂γ
rj (165)

= dj

(

0T×(t−1) cGf 0T×(T−t)

)
+

0(t−1)×T

c>Gf

0(T−t)×T

 rj (166)

= dj

cGfRtj +

0(t−1)×1

c>Gfrj

0(T−t)×1

 and (167)

∂Vj

∂ε
rj =

cEfRtj +

0(t−1)×1

c>Efrj

0(T−t)×1

 . (168)

31

With θ1 being a genetic parameter, λ, denoting the effect of genetic factor g on trait u, and θ2 being a

genetic parameter, γ, denoting the effect of genetic factor f on trait t, we have that:

N∑
j=1

r>j
∂Vj

∂θ1
V−1j

∂Vj

∂θ2
rj =

N∑
j=1

r>j
∂Vj

∂λ
V−1j

∂Vj

∂γ
rj (169)

=

N∑
j=1

d2j

[
c>GgRuj +

(
01×(u−1) c>Ggrj 01×(T−u)

)]
V−1j

cGfRtj +

0(t−1)×1

c>Gfrj

0(T−t)×1

(170)

=

N∑
j=1

d2j

[(
c>GgV

−1
j cGfRujRtj

)
+

((
01×(u−1) c>Ggrj 01×(T−u)

)
V−1j cGfRtj

)
(171)

+ c>GgV
−1
j

0(t−1)×1

c>Gfrj

0(T−t)×1

Ruj +

(
01×(u−1) c>Ggrj 01×(T−u)

)
V−1j

0(t−1)×1

c>Gfrj

0(T−t)×1

(172)

=

N∑
j=1

d2j

[{
C>GV−1j CG

}
gf
RujRtj +

{
C>GR

}
gj

{
V−1j CG

}
uf
Rtj (173)

+
{

C>GR
}
fj

{
V−1j CG

}
tg
Ruj +

{
V−1j

}
ut

{
C>GR

}
gj

{
C>GR

}
fj

]
. (174)

Similarly, with θ1 being an environmental parameter, ν, denoting the effect of environmental factor g on

trait u, and θ2 being a genetic parameter, γ, denoting the effect of genetic factor f on trait t, we have that:

N∑
j=1

r>j
∂Vj

∂θ1
V−1j

∂Vj

∂θ2
rj =

N∑
j=1

r>j
∂Vj

∂ν
V−1j

∂Vj

∂γ
rj (175)

=

N∑
j=1

dj

[{
C>EV−1j CG

}
gf
RujRtj +

{
C>ER

}
gj

{
V−1j CG

}
uf
Rtj (176)

+
{

C>GR
}
fj

{
V−1j CE

}
tg
Ruj +

{
V−1j

}
ut

{
C>ER

}
gj

{
C>GR

}
fj

]
. (177)

Finally, for θ1 being an environmental parameter, ν, denoting the effect of environmental factor g on trait

u, and θ2 being an environmental parameter, ε, denoting the effect of environmental factor f on trait t, we

32

have that:

N∑
j=1

r>j
∂Vj

∂θ1
V−1j

∂Vj

∂θ2
rj =

N∑
j=1

r>j
∂Vj

∂ν
V−1j

∂Vj

∂ε
rj (178)

=

N∑
j=1

[{
C>EV−1j CE

}
gf
RujRtj +

{
C>ER

}
gj

{
V−1j CE

}
uf
Rtj (179)

+
{

C>ER
}
fj

{
V−1j CE

}
tg
Ruj +

{
V−1j

}
ut

{
C>ER

}
gj

{
C>ER

}
fj

]
. (180)

While calculating the log-likelihood, we already obtained R. Moreover, matrices C>ER and C>GR in the three

preceding expressions both need to be computed only once. This calculation can be done in O
(
NT 2

)
time.

Thus, the computationally most intensive steps here are obtaining matrices V−1j CG, V−1j CE , C>GV−1j CG,

C>EV−1j CG, and C>EV−1j CE . Each of these matrix multiplications can be carried out in at most O
(
T 3
)

time. Thus, across observations, carrying out all these matrix multiplications for j = 1, . . . , N can be done

in O
(
NT 3

)
time.

Bearing all this in mind, we can initialise a P ×P matrix I∗ with P denoting the number of free parameters

in our model. Here, it holds that P = O
(
T 2
)
. For each given observation, j, and a given combination of

parameters, {θ1, θ2}, we can add r>j
∂Vj

∂θ1
V−1j

∂Vj

∂θ2
rj to the appropriate element in I∗. In this fashion, we can

calculate
∑N
j=1 r>j

∂Vj

∂θ1
V−1j

∂Vj

∂θ2
rj for all combinations of parameters in O

(
NT 4

)
time.

Second squared sum of residuals in the AI matrix. Here, we need to find an efficient expression for(∑N
j=1 r>j

∂Vj

∂θ1
V−1j Xj

)
Z−1

(∑N
j=1 X>j V−1j

∂Vj

∂θ2
r
)

. In case of identical covariates across traits, this term can

be rewritten as: N∑
j=1

r>j
∂Vj

∂θ1
V−1j Xj

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂θ2
r

 (181)

=

 N∑
j=1

r>j
∂Vj

∂θ1
FD∗jF

>Xj

Z−1

 N∑
j=1

X>j FD∗jF
> ∂Vj

∂θ2
rj

 (182)

=

 N∑
j=1

r>j
∂Vj

∂θ1
FD∗jF

>Xj

((
F−1

)> ⊗ Ik

)J

 N∑
j=1

(
F−1 ⊗ Ik

)
X>j FD∗jF

> ∂Vj

∂θ2
rj

 . (183)

33

Substituting F by F⊗ I1 and Xj by its definition as Kronecker product, we get that:

 N∑
j=1

r>j
∂Vj

∂θ1
V−1j Xj

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂θ2
r

 (184)

=

 N∑
j=1

r>j
∂Vj

∂θ1
FD∗j

(
F> ⊗ I1

) (
IT ⊗ x>j

) ((
F−1

)> ⊗ Ik

)J

 N∑
j=1

(
F−1 ⊗ Ik

)
(IT ⊗ xj) (F⊗ I1) D∗jF

> ∂Vj

∂θ2
rj

(185)

=

 N∑
j=1

r>j
∂Vj

∂θ1
FD∗j

(
IT ⊗ x>j

)J

 N∑
j=1

(IT ⊗ xj) D∗jF
> ∂Vj

∂θ2
rj

 . (186)

Here, J is as defined in Eq. 53. For θ2 being a genetic parameter γ denoting the effect of genetic factor f on

trait t, we have:

N∑
j=1

(IT ⊗ xj) D∗jF
> ∂Vj

∂γ
rj (187)

=

∑N
j=1 xjdj (djλ1 + 1)

−1
({

F>CG

}
1f
Rtj + {F}t1

{
C>GR

}
fj

)
...∑N

j=1 xjdj (djλT + 1)
−1
({

F>CG

}
Tf
Rtj + {F}tT

{
C>GR

}
fj

)
 . (188)

Analogously, for θ2 being an environmental parameter ε denoting the effect of environmental factor f on

trait t, we have:

N∑
j=1

(IT ⊗ xj) D∗jF
> ∂Vj

∂ε
rj (189)

=

∑N
j=1 xj (djλ1 + 1)

−1
({

F>CE

}
1f
Rtj + {F}t1

{
C>ER

}
fj

)
...∑N

j=1 xj (djλT + 1)
−1
({

F>CE

}
Tf
Rtj + {F}tT

{
C>ER

}
fj

)
 . (190)

34

When we define the Tk × 1 vectors wγ and wε as:

wγ =

∑N
j=1 xjdj (djλ1 + 1)

−1
({

F>CG

}
1f
Rtj + {F}t1

{
C>GR

}
fj

)
...∑N

j=1 xjdj (djλT + 1)
−1
({

F>CG

}
Tf
Rtj + {F}tT

{
C>GR

}
fj

)
 and (191)

wε =

∑N
j=1 xj (djλ1 + 1)

−1
({

F>CE

}
1f
Rtj + {F}t1

{
C>ER

}
fj

)
...∑N

j=1 xj (djλT + 1)
−1
({

F>CE

}
Tf
Rtj + {F}tT

{
C>ER

}
fj

)
 , (192)

we can stack these vectors into a Tk × P matrix W. Here, P denotes the number of parameters and we

need to make sure that the parameters are indexed in the same manner over the columns of W as over

the columns of I∗. The second term of the AI matrix across all parameter combinations is then given by

W>JW. Given that we already finalised the calculation of I∗ when computing the first squared sum of

residuals in the AI matrix, our final AI matrix can be expressed as:

I =
1

2

(
I∗ −W>JW

)
. (193)

However, these vectors w can be written more efficiently in terms of Hadamard products:

wγ = vec

X>

d1
d1λ1+1 . . . d1

d1λT+1

...
. . .

...

dN
dNλ1+1 . . . dN

dNλT+1

 ◦
(
{R}t•

{
C>GF

}>
f•

+
{

C>GR
}
f•
{F}>t•

)
 and (194)

wε = vec

X>

1
d1λ1+1 . . . 1

d1λT+1

...
. . .

...

1
dNλ1+1 . . . 1

dNλT+1

 ◦
(
{R}t•

{
C>EF

}>
f•

+
{

C>ER
}
f•
{F}>t•

)
 . (195)

Here, {R}t•,
{

C>GF
}
f•

, etc., are all column vectors. Thus, the second term in each Hadamard product is

the sum of two outer products of pairs of vector. Each pair comprises an N × 1 vector and a T × 1 vector,

and therefore the outer products are all of size N × T .

C>EF, C>GF, R, F, C>ER, and C>GR and their elements are readily available after calculating the log-

likelihood and its gradient. Computing the Hadamard products can be done in O (NT) time. Pre-multiplying

35

these Hadamard products by X> also requires O (NT) time, provided k = O (1). Vectorisation and pre-

multiplication by the block-diagonal matrix is trivial. As this chain of calculations needs to be carried out

for all P parameters, where P = O
(
T 2
)
, calculating the full matrix W requires O

(
NT 3

)
time. Finally, we

need to compute W>JW in O
(
T 5
)

time. Thus, assuming T < N , this means the time complexity of the

AI matrix lies in computing I∗. This computation requires O
(
NT 4

)
time.

Finally, in case the covariates are not identical across traits we have that:

 N∑
j=1

r>j
∂Vj

∂θ1
V−1j Xj

Z−1

 N∑
j=1

X>j V−1j
∂Vj

∂θ2
r

 (196)

=

 N∑
j=1

r>j
∂Vj

∂θ1
FD∗jF

> (IT ⊗ x>j
)
S>

Z−1

 N∑
j=1

S
(
IT ⊗ x>j

)
FD∗jF

> ∂Vj

∂θ2
rj

 (197)

=

 N∑
j=1

r>j
∂Vj

∂θ1
FD∗jF

> (IT ⊗ x>j
)S>Z−1S

 N∑
j=1

(IT ⊗ xj) FD∗jF
> ∂Vj

∂θ2
rj

 (198)

=

 N∑
j=1

r>j
∂Vj

∂θ1
FD∗j

(
IT ⊗ x>j

)(F> ⊗ Ik

)
S>Z−1S (F⊗ Ik)

 N∑
j=1

(IT ⊗ xj) D∗jF
> ∂Vj

∂θ2
rj

 (199)

=

 N∑
j=1

r>j
∂Vj

∂θ1
FD∗j

(
IT ⊗ x>j

)J

 N∑
j=1

(IT ⊗ xj) D∗jF
> ∂Vj

∂θ2
rj

 , (200)

where J is as defined in Eq. 149. When using the definition of J as in Eq. 149 (rather than in Eq. 53), we

get that expressions for the AI matrix with different covariates across traits are the same as expressions for

the AI matrix in case of identical covariates.

Overall complexity of the calculation of the AI matrix. The time complexity of calculating the AI

matrix is linear in the number of observations, and quadratic in the number of parameters. With P = O
(
T 2
)
,

the AI matrix can be computed in O
(
NT 4

)
time. The computational complexity thus increases rapidly with

the number of traits, but our approach seems to yield the lowest time complexity that can be expected to

be attainable. The reason is that the number of parameters in the MGREML model increases quadratically

with the number of traits considered. In an information matrix, the number of unique elements increases

quadratically with the number of parameters. Therefore, the factor T 4 cannot reasonably be avoided.

Similarly, each individual contributes linearly to the AI matrix as well as to its time complexity. Therefore,

the factor N cannot reasonably be avoided either.

36

Step 9. Maximising the likelihood using a BFGS algorithm

To maximise the likelihood function, we use a Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (No-

cedal and Wright, 2006). The reason for using a BFGS algorithm instead of a Newton-Raphson algorithm,

is that the former only requires evaluations of the likelihood function and its gradient. The latter requires

calculation of the AI matrix, which is computationally much more expensive. BFGS is a quasi-Newton

method in which each update takes the form:

θk+1 = θk + αkpk. (201)

Here, α is the step size of the line search, k is an iteration counter, and

pk = −B−1k ∇log l (θk) , (202)

is the search direction with ∇log l (θ) the gradient of log l (θ) and B−1k+1 the approximation of the inverse

Hessian, defined by:

sk = θk+1 − θk = αkpk, (203)

dk = ∇log l (θk+1)−∇log l (θk) , (204)

ρk = (s>k dk)−1, (205)

B−1k+1 = (I− ρkskd>k)B−1k (I− ρkdks>k) + ρksks
>
k . (206)

Using these expressions, the BFGS algorithm can be described as:

1. Given start θ0, convergence tolerance ε > 0, and B−10 = I.

2. k ← 0.

3. While ‖∇log l (θk) ‖ > ε.

4. Compute search direction pk = −B−1k ∇log l (θk).

5. Set θk+1 = θk + αkpk, with αk being obtained with a Golden section line search.

6. Compute B−1k+1 as in Eq. 206.

7. k ← k + 1.

37

8. End while

Step 10. Computing standard errors using a delta method

The estimation procedure returns an estimate of θ (i.e., an estimate of the factor model that underpins VG

and VE). In practice, it is often more useful to investigate the genetic and environmental variance matrices,

the genetic and environmental correlation matrices, and the SNP-based heritability (h2SNPs), which can all

be defined in terms of transformations of VG and VE . In this section, the appropriate standard errors for

these transformations are derived.

For some function g(θ), the delta method states that when this function is evaluated at the maximum

likelihood estimate, θ̂ML, the value this function returns is (approximately) distributed as:

g(θ̂ML) ∼ N
(
g(θ̂ML),∇g(θ̂ML)>I−1(θ̂ML)∇g(θ̂ML)

)
. (207)

Here, ∇g(θ) = ∂g(θ)/∂θ is the gradient of g() with respect to θ. In what follows, the functions g(θ) and

their gradients are defined to derive the estimates and standard errors of the SNP-based heritability (h2SNPs),

the genetic and environmental correlation matrix, and the genetic and environmental variance-covariance

matrix.

Heritability. For h2SNPs of trait t (denoted by h2SNPs(t)), we have that:

h2SNPs(t) = VGt (VGt + VEt)
−1

=
VGt

Vt
, (208)

where VGt
denotes the genetic variance of trait t, VEt

the corresponding environmental variance, and Vt =

VGt
+ VEt

the total variance of trait t. Using the product rule and the chain rule, we get:

∂h2SNPs(t) = ∂VGt
(VGt

+ VEt
)
−1 − VGt

(VGt
+ VEt

)
−2

(∂VGt
+ ∂VEt

) (209)

=
∂VGt

Vt
− VGt

Vt

∂VGt
+ ∂VEt

Vt
(210)

=
∂VGt

Vt
− h2t

∂VGt + ∂VEt

Vt
(211)

=

(
1− h2t

)
∂VGt

− h2t∂VEt

Vt
. (212)

38

Thus, quite intuitively, when h2SNPs(t) = 0, changes in VEt will not affect h2SNPs(t) (as long as VGt = 0, the

heritability will remain zero). Conversely, when h2SNPs(t) = 1, changes in VGt
will not affect h2SNPs(t) (as

long as VEt
= 0, the SNP-based heritability remains one). Finally, the larger Vt is, the less h2SNPs(t) will be

affected by changes in either VEt or VGt .

Let bt be a T × 1 binary vector with all elements equal to zero except for element t. We then have that:

VGt = b>t CGC>Gbt. (213)

This expression in turn implies, by the product rule, that:

∂VGt
= b>t

(
∂CGC>G + CG∂C>G

)
bt

= b>t ∂CGC>Gbt + b>t CG (∂CG)
>

bt

= b>t ∂CGC>Gbt +
(
b>t CG (∂CG)

>
bt

)>
= b>t ∂CGC>Gbt + b>t ∂CGC>Gbt

= 2b>t ∂CGC>Gbt.

Analogously, we have that:

∂VEt
= 2b>t ∂CEC>Ebt. (214)

Let γ denote the effect of genetic factor f on trait t. In this case, we have that:

∂CG

∂γ
=

 1, for element t, f

0, elsewhere.
(215)

Thus,

b>t
∂CG

∂γ
=

(
01×(f−1) 1 01×(FG−f)

)
. (216)

This expression reduces to:

b>t
∂CG

∂γ
C>Gbt = γ. (217)

39

By means of substituting, we obtain that:

∂h2SNPs(t)

∂γ
= 2γ

1− h2SNPs(t)

Vt
. (218)

Analogously, for the effect ε of some environmental factor f on trait t, we have that:

∂h2SNPs(t)

∂ε
= −2ε

h2SNPs(t)

Vt
. (219)

These parameters can be computed easily for each trait.

Genetic correlation and environmental correlation. The genetic correlation between two traits, t

and u, equals:

ρGtu =
CovGtu√
VGt

VGu

. (220)

Here, VGt
and VGu

denote the genetic variance of traits t and u respectively, and CovGtu
denotes the genetic

covariance of t and u. By definition, the correlation is one and the standard error is zero in case t = u.

Therefore, we focus exclusively on the case where t 6= u.

By using the product and chain rule, we get that:

∂ρGtu =
∂CovGtu√
VGtVGu

− 1

2

CovGtu√
VGtVGu

∂VGt
VGu

+ VGt
∂VGu

VGtVGu

(221)

=
∂CovGtu√
VGt

VGu

− 1

2
ρGtu

∂VGt
VGu

+ VGt
∂VGu

VGt
VGu

. (222)

By defining vector bu analogously to bt, substituting expressions found when deriving the gradient of

h2SNPs(t), and recognising that:

CovGtu = b>t CGC>Gbu and (223)

∂CovGtu
= b>t ∂CGC>Gbu + b>u ∂CGC>Gbt, (224)

we can derive that:

∂ρGtu
=

b>t ∂CGC>Gbu + b>u ∂CGC>Gbt√
VGt

VGu

− ρGtu

b>t ∂CGC>GbtVGu
+ b>u ∂CGC>GbuVGt

VGt
VGu

. (225)

40

Notice that if t 6= u, for a parameter γ that constitutes the genetic effect of factor f on trait t and a parameter

λ that constitutes the effect of genetic factor g on trait u, the following holds regardless of whether f = g or

f 6= g:

b>t ∂CGC>Gbt
∂λ

= 0, (226)

b>u ∂CGC>Gbu
∂γ

= 0, (227)

b>t ∂CGC>Gbu
∂λ

= 0, and (228)

b>u ∂CGC>Gbt
∂γ

= 0. (229)

Moreover, from the preceding derivations of the gradient of the heritability, we know that:

b>t ∂CGC>Gbt
∂γ

= γ, and (230)

b>u ∂CGC>Gbu
∂λ

= λ. (231)

Finally, when f = g (i.e., λ and γ correspond to the same genetic factor), we have that:

b>t ∂CGC>Gbu
∂γ

= λ, and (232)

b>u ∂CGC>Gbt
∂λ

= γ. (233)

Notice that if f 6= g, these two partial derivatives are also zero. By substituting expressions, we get for t 6= u

and f = g:

∂ρGtu

∂γ
=

λ√
VGt

VGu

− ρGtu

γ

VGt

, and (234)

∂ρGtu

∂λ
=

γ√
VGtVGu

− ρGtu

λ

VGu

. (235)

Either λ or γ may be constrained to zero in the given factor model. Finally, it holds that:

∂ρGtt

∂γ
= 0. (236)

41

By analogy, we obtain that:

∂ρEtu

∂ε
=

ν√
VEtVEu

− ρEtu

ε

VEt

, (237)

∂ρEtu

∂ν
=

ε√
VEt

VEu

− ρEtu

ν

VEu

, and (238)

∂ρEtt

∂ε
= 0. (239)

In the first equality, ε is the effect of some environmental factor on trait t and ν is the effect of that same

environmental factor on trait u (if any, because ν can be constrained to zero in the given factor model). In

the second equality, ν is the effect of some environmental factor on trait u and ε the environmental effect

of that same factor on trait t (if any, because, as before, ε can be constrained to zero in the given factor

model).

Variance components. For the estimated factor coefficients in CG and CE , the covariance matrix is

readily available. However, sometimes one may be interested in the covariance between the elements in VG

and VE . That is, one may be interested in the covariance of the variance components rather than in the

factor coefficients. For this case, we consider the genetic (respectively environmental) variance of trait t. We

have already seen that when γ (ε) denotes the effect of genetic (environmental) factor f on trait t, it holds

that:

∂VGt

∂γ
= 2γ, and (240)

∂VEt

∂ε
= 2ε. (241)

Thus, gradient vectors for the genetic and environmental variance can be calculated easily. Let’s now consider

the genetic covariance between traits t 6= u, again letting γ denote the effect of genetic factor f on trait t

and letting λ denote the effect of that same genetic factor f on trait u. From before, we know that:

∂CovGtu

∂γ
= λ, and (242)

∂CovGtu

∂λ
= γ. (243)

42

Similarly, for the environmental covariance between t 6= u, with ε denoting the effect of environmental factor

f on trait t and ν denoting the effect of that same environmental factor on trait u, we have that:

∂CovEtu

∂ε
= ν, and (244)

∂CovEtu

∂ν
= ε. (245)

Consequently, gradient vectors of genetic and environmental covariances can also be calculated easily.

Implementation practicalities

Controlling for population stratification. A primary concern in genetic studies is bias resulting from

population stratification. To deal with this, a common practice in the GWAS and GREML literature is

the inclusion of the lead principal components (PCs) of the GRM as fixed-effect covariates in the model.

Instead of using the lead PCs as fixed-effect covariates, which increases the computational burden, MGREML

removes the effect of the lead PCs from the data. That is, to control for the K lead PCs, the corresponding

K rows of P>Y are dropped, when applying the canonical transformation. In our software implementation

of MGREML, users can set K in accordance with the degree of population stratification in the dataset under

consideration. By default, K = 20.

Initialising coefficient matrices. To start the optimisation algorithm, starting values for CG (Eq. 82)

and CE (Eq. 83) are required. For a fully saturated model, MGREML sets starting values such that each trait

has an initial h2SNPs of 20% and such that CGC>G and CEC>E are both proportional to a convex combination

of the identity matrix and the phenotypic covariance matrix. Here, the phenotypic covariance matrix receives

weight 0.999. In case a non-saturated model is specified for CG, MGREML gives all free elements in row t

of CG (corresponding to trait t) an equal weight, such that the implied genetic variance of trait t equals 20%

of the phenotypic variance in that trait. Thus, also here, the initialisation starts at h2SNPs = 20% (except for

the case where a trait has no genetic variance according to the model). An analogous approach is applied

when a non-saturated model is specified for CE . Then, scaling is such that 1− h2SNPs = 80%.

Unbalanced data. In case a dataset is unbalanced (i.e., not all traits and/or relevant control variables

are available for all individuals in the data), the mathematical complexity of REML estimation increases

dramatically. When we consider the full (NT) × 1 phenotype vector y, associated variance matrix V, and

matrix of fixed-effect covariates X̃, missing data requires us to keep only the subset of the rows of X̃ and y

43

as well as the rows and columns of V for which both the phenotypic as well as data on the control variables

is available. Under balanced data, V is a block-diagonal matrix with all blocks being of equal size, viz.,

T ×T (see Eq. 11). Under unbalanced data, the variance-covariance matrix is still block-diagonal. However,

the blocks are then no longer necessarily of equal size. Thus, at first sight, we can no longer use our efficient

expressions.

Yet, here we show that by including a set of dummy variables to control for missing data we fit we can still

apply our computationally efficient expressions. To see this, we first inspect the case of balanced data more

closely. By overloading notation from previous parts, we can denote the singular-value decomposition (SVD)

of the matrix of fixed-effect covariates by:

X̃ =

(
P1 P0

) Θ

0

Q>. (246)

Here, it holds that P0
>X̃ = 0. We now define K = P0

>, and we let r = rank
(
X̃
)

denote the rank of X̃.

Then, rank (P0) = NT −r. As a result, the REML log-likelihood function in case of balanced data (ignoring

the constant), can be described as:

l (θ) = −1

2
log
(∣∣∣KVK>

∣∣∣)− 1

2
y>K>

(
KVK>

)−1
Ky. (247)

Searle et al. (1992) show that:

K>
(
KVK>

)−1
K = V−1 −V−1X̃

(
X̃
>

V−1X̃
)−1

X̃
>

V−1. (248)

This identity allowed us to formulate the log-likelihood in Eq. 12, for which we developed efficient expressions

in the preceding parts. Let M now denote the total number of missing values across phenotypes. Then

(overloading notation), the (NT −M) × (NT) binary matrix S consisting of zeros and ones with precisely

a single one per row and at most a single one per column such that SS> = INT−M effectively selects the

44

observations with non-missing data from y. We can use matrix S to compute:

y∗ = Sy, (249)

V∗ = SVS>, and (250)

X̃
∗

= SX̃ =

(
P∗1 P∗0

) Θ∗

0

Q∗
>
. (251)

The last expression constitutes the singular value decomposition of X̃
∗
, such that P∗0

>
X̃
∗

= 0. We define

K∗ = P∗0
>

. With r = rank
(
X̃
∗)

denoting the rank of X̃
∗
, rank (P∗0) = NT −M − r. Therefore, the REML

log-likelihood function in case of unbalanced data (again ignoring the constant) can be described as:

l (θ) = −1

2
log
(∣∣∣K∗V∗K∗>∣∣∣)− 1

2
y∗>K∗

>
(
K∗V∗K∗

>
)−1

K∗y∗ (252)

= −1

2
log
(∣∣∣K∗SVS>K∗

>
∣∣∣)− 1

2
y>S>K∗

>
(
K∗SVS>K∗

>
)−1

K∗Sy. (253)

At first sight, it seems we can no longer apply the identity by Searle et al. (1992). However, K∗S in its

entirety can be considered as a design matrix, like K. With missing observations coded with an arbitrary

value (e.g., zero) and a set of M dummies that code for the missing observations, K∗S is orthogonal to

X̃. Based on this, S>K∗
>
(
K∗SVS>K∗

>
)−1

K∗S can be expressed in terms of a projection matrix. This

expression allows to express the log-likelihood under missing data as in Eq. 12, for which we have efficient

expressions. In this case, the projection matrix is based on X̃ and a set of M dummies that code for the

missing data.

More formally, we have an (NT) × K matrix of covariates X̃, an (NT − M) × (NT) selection ma-

trix S with elements that are either zero or one and with row-sum
∑NT
j=1 Sij = 1∀ i and column-sum∑(NT−M)

i=1 Sij ∈ {0, 1} ∀j, and we have an (NT −M)× (NT −M − r) matrix P∗0 with orthonormal columns

(i.e., P∗0
>

P∗0 = INT−M−r) that lie in the null-space of the (NT −M) × K matrix X̃
∗

= SX̃ such that

P∗0
>

X̃
∗

= 0(NT−M−r)×K . Finally, M is an M × (NT) matrix, defined analogously to S in such a manner

that it selects missing observations rather than non-missing observations as S does. We can now show that

SS> = INT−M , MM> = IM , SM> = 0(NT−M)×M , MS> = 0M×(NT−M), and S>S + M>M = INT .

Theorem 1. P̃0 = S>P∗0 lies in the left null space of X̃M =
[
X̃, M>

]
and has rank

(
P̃0

)
= rank (P∗0) ≡

NT −M − r.

45

Proof.

P̃0

>
X̃M = P>0

∗
S
[
X̃, M>

]
(254)

=
[
P>0
∗
SX̃, P>0

∗
SM>

]
(255)

=
[
P>0
∗
X̃
∗
, P>0

∗
0(NT−M)×M

]
(256)

= 0(NT−M−r)×(K+M). (257)

Hence, P̃0 lies in the null-space of X̃M .

rank
(
P̃0

)
= rank

(
P̃0

>
P̃0

)
(258)

= rank
(
P∗0
>

SS>P∗0

)
(259)

= rank
(
P∗0
>

P∗0

)
(260)

= rank (P∗0) ≡ NT −M − r. (261)

Hence, rank
(
P̃0

)
= NT −M − r.

Theorem 2. rank
(
X̃M

)
= r +M and, therefore, P̃0 spans the null space of X̃M .

Proof. rank
(
X̃M

)
is the number of independent columns in X̃M . Hence, orthogonalising one subset of

columns of X̃M with respect to another, non-overlapping subset of columns of X̃M does not change the

rank. Letting I −M>
(
MM>

)−1
M = I −M>M = S>S denote the orthogonal projection matrix that

removes the collinearity with columns of M>, we obtain – based on the orthogonalisation-argument – that,

rank
(
X̃M

)
= rank

([
X̃, M>

])
(262)

= rank
([

S>SX̃, M>
])

(263)

= rank
(
S>SX̃

)
+ rank

(
M>

)
(264)

= rank
(
X̃
>

S>SS>SX̃
)

+ rank
(
MM>

)
(265)

= rank
(
X̃
>

S>SX̃
)

+ rank (IM) (266)

= rank
(
SX̃
)

+M (267)

= rank
(
X̃
∗)

+M = r +M. (268)

46

Given that X̃M is an (NT)× (K +M) matrix with NT � K +M ≥ r+M and with rank equal to r+M ,

its null space is spanned by NT −M − r independent columns.

The preceding two theorems show that P̃0

>
= K∗S can be regarded as a design matrix, for which the

following identity holds:

S>K∗
>
(
K∗SVS>K∗

>
)−1

K∗S = V−1 −V−1X̃M

(
X>MV−1X̃M

)−1
X>MV−1, (269)

with X̃M =
[
X̃, M>

]
.

These derivations and proofs show that efficient MGREML estimation can still be applied to unbalanced

datasets by treating the data as balanced and including dummy variables for missing values as fixed-effect

covariates. In other words, the estimates one obtain with MGREML using this approach will be the same

when using the computationally more demanding expressions that arise when directly using unbalanced data.

Scale and convergence. Most terms in the log-likelihood function (Eq. 12) scale linearly with the number

of individuals N, and therefore we optimise over the log-likelihood divided by N in our software implemen-

tation of MGREML. This scaling by N enhances the numerical stability of the optimisation algorithm.

In a similar manner, the gradient also scales linearly with the number of individuals N. Moreover, for traits

that are on a larger scale (i.e., have a higher variance), one might reasonably expect a smaller response in the

log-likelihood to changes in the parameters and, thus, a corresponding element of the gradient closer to zero.

Therefore, MGREML takes both considerations into account in its definition of the convergence criterion.

More specifically, the convergence criterion is defined as the root mean square value of the rescaled gradient

vector. Here, an element of the rescaled gradient vector is defined as the corresponding element of the

true gradient divided by N (like how MGREML treats the log-likelihood) and multiplied by the standard

deviation of the trait that corresponds to the given parameter. These trait-specific standard deviations

are pre-computed by MGREML, before the optimisation algorithm starts. The standard deviations are

calculated using OLS residuals from regressing phenotype t = 1, . . . , T on its corresponding fixed-effect

covariates after the canonical transformation.

Likelihood-ratio test for nested models. Based on the model in Eq. 2, we can compare nested

models using a likelihood ratio test. For example, one could compare the unconstrained model to a

model without the genetic component. For two nested models, the likelihood-ratio statistic is given by

47

2 (log l (θML)− log l (θH0)), with θML the parameters in the unconstrained model and θH0 the parameters

in the restricted model. The test statistic follows a χ2(k) distribution, where k is the number of coefficients

that is free in the unconstrained model but constrained to zero in the (restricted) null model.

Supplementary Note 2

Supplementary Table 1 provides an overview of the data fields in the UK Biobank used to construct the

traits analysed in this study.

Supplementary Table 1: Overview of the traits analysed in this study, in alphabetical order: Trait, trait
description, measurement unit, and UK Biobank data fields used to construct the trait.

Trait Trait description Measurement unit UK Biobank data field

BMI Body mass index (logarithm) Kg/m2 21001

Depression score First principal component of depres-

sion intensity and frequency (loga-

rithm)

NA 2050, 2060, 4609, 4620,

5375, 5386, 2090, 2100

Drinking Alcoholic drinks consumed per week

(logarithm)

Number of units of al-

cohol per week

1558, 1568, 1578, 1588,

1598, 1608, 4407, 4418,

4429, 4440, 4451, 4462,

5364

Educational attainment Highest self-reported schooling degree

converted to US-schooling year equiv-

alents using ISCED categories

years 6138

Grey matter in amygdala Volume of grey matter in amygdala

(left+right)

mm3 25888, 25889

Grey matter in angular gyrus Volume of grey matter in angular gyrus mm3 25822, 25823

Grey matter in brain-stem Volume of grey matter in brain-stem mm3 25892

Grey matter in caudate Volume of grey matter in caudate

(left+right)

mm3 25880, 25881

Grey matter in central opercu-

lar cortex

Volume of grey matter in central oper-

cular cortex (left+right)

mm3 25864, 25865

Grey matter in cingulate

gyrus, (ad)

Volume of grey matter in cingulate

gyrus, anterior division (left+right)

mm3 25838, 25839

Grey matter in cingulate

gyrus, (pd)

Volume of grey matter in cingulate

gyrus, posterior division (left+right)

mm3 25840, 25841

Grey matter in crus I cerebel-

lum

Volume of grey matter in crus I cere-

bellum (left+right)

mm3 25900, 25902

48

Trait Trait description Measurement unit UK Biobank data field

Grey matter in crus I cerebel-

lum)

Volume of grey matter in crus I cere-

bellum (vermis)

mm3 25901

Grey matter in crus II cerebel-

lum

Volume of grey matter in crus II cere-

bellum (vermis)

mm3 25904

Grey matter in crus II cerebel-

lum

Volume of grey matter in crus II cere-

bellum (left+right)

mm3 25903, 25905

Grey matter in cuneal cortex Volume of grey matter in cuneal cortex

(left+right)

mm3 25844, 25845

Grey matter in frontal medial

cortex

Volume of grey matter in frontal me-

dial cortex (left+right)

mm3 25830, 25831

Grey matter in frontal opercu-

lum cortex

Volume of grey matter in frontal oper-

culum cortex (left+right)

mm3 25862, 25863

Grey matter in frontal orbital

cortex

Volume of grey matter in frontal or-

bital cortex (left+right)

mm3 25846, 25847

Grey matter in frontal pole Volume of grey matter in frontal pole

(left+right)

mm3 25782, 25783

Grey matter in Heschl’s gyrus Volume of grey matter in Hes-

chl’s gyrus (includes H1 and H2)

(left+right)

mm3 25870, 25871

Grey matter in hippocampus Volume of grey matter in hippocampus

(left+right)

mm3 25886, 25887

Grey matter in I-IV cerebellum Volume of grey matter in I-IV cerebel-

lum (left+right)

mm3 25893, 25894

Grey matter in inferior frontal

gyrus, po

Volume of grey matter in infe-

rior frontal gyrus, pars opercularis

(left+right)

mm3 25792, 25793

Grey matter in inferior frontal

gyrus, pt

Volume of grey matter in infe-

rior frontal gyrus, pars triangularis

(left+right)

mm3 25790, 25790

Grey matter in inferior tempo-

ral gyrus, (tp)

Volume of grey matter in inferior

temporal gyrus, temporooccipital part

(left+right)

mm3 25812, 25813

Grey matter in inferior tempo-

ral gyrus, (ad)

Volume of grey matter in Infe-

rior temporal gyrus, anterior division

(left+right)

mm3 25808, 25808

Grey matter in inferior tempo-

ral gyrus, (pd)

Volume of grey matter in inferior

temporal gyrus, posterior division

(left+right)

mm3 25810, 25811

49

Trait Trait description Measurement unit UK Biobank data field

Grey matter in insular cortex Volume of grey matter in insular cortex

(left+right)

mm3 25784, 25785

Grey matter in intracalcarine

cortex

Volume of grey matter in intracal-

carine cortex (left+right)

mm3 25828, 25829

Grey matter in IX cerebellum Volume of grey matter in IX cerebel-

lum (left+right)

mm3 25915, 25917

Grey matter in juxtapositional

lobule cortex

Volume of grey matter in juxtaposi-

tional lobule cortex (formerly supple-

mentary motor cortex) (left+right)

mm3 25832, 25833

Grey matter in lateral occipital

cortex, (id)

Volume of grey matter in lateral occipi-

tal cortex, inferior division (left+right)

mm3 25826, 25827

Grey matter in lateral occipital

cortex, (sd)

Volume of grey matter in lateral

occipital cortex, superior division

(left+right)

mm3 25824, 25825

Grey matter in lingual gyrus Volume of grey matter in lingual gyrus

(left+right)

mm3 25852, 25853

Grey matter in middle frontal

gyrus

Volume of grey matter in middle

frontal gyrus (left+right)

mm3 25788, 25789

Grey matter in middle tempo-

ral gyrus, (tp)

Volume of grey matter in middle

temporal gyrus, temporooccipital part

(left+right)

mm3 25806, 25807

Grey matter in middle tempo-

ral gyrus, (ad)

Volume of grey matter in mid-

dle temporal gyrus, anterior division

(left+right)

mm3 25802, 25803

Grey matter in middle tempo-

ral gyrus, (pd)

Volume of grey matter in middle

temporal gyrus, posterior division

(left+right)

mm3 25804, 25805

Grey matter in occipital

fusiform gyrus

Volume of grey matter in occipital

fusiform gyrus (left+right)

mm3 25860, 25861

Grey matter in occipital pole Volume of grey matter in occipital pole

(left+right)

mm3 25876, 25877

Grey matter in pallidum Volume of grey matter in pallidum

(left+right)

mm3 25884, 25884

Grey matter in paracingulate

gyrus

Volume of grey matter in paracingulate

gyrus (left+right)

mm3 25836, 25837

Grey matter in parahippocam-

pal gyrus, (ad)

Volume of grey matter in parahip-

pocampal gyrus, anterior division

(left+right)

mm3 25848, 25849

50

Trait Trait description Measurement unit UK Biobank data field

Grey matter in parahippocam-

pal gyrus, (pd)

Volume of grey matter in parahip-

pocampal gyrus, posterior division

(left+right)

mm3 25850, 25851

Grey matter in parietal oper-

culum cortex

Volume of grey matter in parietal op-

erculum cortex (left+right)

mm3 25866, 25867

Grey matter in planum polare Volume of grey matter in planum po-

lare (left+right)

mm3 25868, 25869

Grey matter in planum tempo-

rale

Volume of grey matter in planum tem-

porale (left+right)

mm3 25872, 25783

Grey matter in postcentral

gyrus

Volume of grey matter in postcentral

gyrus (left+right)

mm3 25814, 25815

Grey matter in precentral

gyrus

Volume of grey matter in precentral

gyrus (left+right)

mm3 25794, 25795

Grey matter in precuneous cor-

tex

Volume of grey matter in precuneous

cortex (left+right)

mm3 25842, 25843

Grey matter in putamen Volume of grey matter in putamen

(left+right)

mm3 25882, 25883

Grey matter in subcallosal cor-

tex

Volume of grey matter in subcallosal

cortex (left+right)

mm3 25834, 25835

Grey matter in superior frontal

Gyrus

Volume of grey matter in superior

frontal gyrus (left)

mm3 25786

Grey matter in superior pari-

etal Lobule

Volume of grey matter in superior pari-

etal lobule (left+right)

mm3 25816, 25817

Grey matter in superior tem-

poral gyrus, (ad)

Volume of grey matter in supe-

rior temporal gyrus, anterior division

(left+right)

mm3 25798, 25799

Grey matter in superior tem-

poral gyrus, (pd)

Volume of grey matter in superior

temporal gyrus, posterior division

(left+right)

mm3 25800, 25801

Grey matter in supracalcarine

cortex

Volume of grey matter in supracal-

carine cortex (left+right)

mm3 25874, 25875

Grey matter in supramarginal

gyrus, (ad)

Volume of grey matter in supra-

marginal gyrus, anterior division

(left+right)

mm3 25818, 25819

Grey matter in supramarginal

gyrus, (pd)

Volume of grey matter in supra-

marginal gyrus, posterior division

(left+right)

mm3 25820, 25821

51

Trait Trait description Measurement unit UK Biobank data field

Grey matter in temporal

fusiform cortex, (ad)

Volume of grey matter in tempo-

ral fusiform cortex, anterior division

(left+right)

mm3 25854, 25855

Grey matter in temporal

fusiform cortex, (pd)

Volume of grey matter in tempo-

ral fusiform cortex, posterior division

(left+right)

mm3 25856, 25857

Grey matter in temporal occip-

ital fusiform cortex

Volume of grey matter in temporal oc-

cipital fusiform cortex (left+right)

mm3 25858, 25859

Grey matter in temporal pole Volume of grey matter in temporal

pole (left+right)

mm3 25796, 25797

Grey matter in thalamus Volume of grey matter in thalamus

(left+right)

mm3 25878, 25879

Grey matter in V cerebellum Volume of grey matter in V cerebellum

(left+right)

mm3 25895, 25896

Grey matter in ventral stria-

tum

Volume of grey matter in ventral stria-

tum (left+right)

mm3 25890, 25891

Grey matter in VI cerebellum Volume of grey matter in VI cerebel-

lum (left+right)

mm3 25897, 25899

Grey matter in VI cerebellum) Volume of grey matter in VI cerebel-

lum (vermis)

mm3 25898

Grey matter in VIIb cerebel-

lum

Volume of grey matter in VIIb cerebel-

lum (left+right)

mm3 25906, 25908

Grey matter in VIIb cerebel-

lum)

Volume of grey matter in VIIb cerebel-

lum (vermis)

mm3 25907

Grey matter in VIIIa cerebel-

lum

Volume of grey matter in VIIIa cere-

bellum (left+right)

mm3 25909, 25911

Grey matter in VIIIa cerebel-

lum)

Volume of grey matter in VIIIa cere-

bellum (vermis)

mm3 25910

Grey matter in VIIIb cerebel-

lum

Volume of grey matter in VIIIb cere-

bellum (left+right)

mm3 25912, 25914

Grey matter in VIIIb cerebel-

lum)

Volume of grey matter in VIIIb cere-

bellum (vermis)

mm3 25913

Grey matter in X cerebellum Volume of grey matter in X cerebellum

(left+right)

mm3 25918, 25920

Grey matter in X cerebellum) Volume of grey matter in X cerebellum

(vermis)

mm3 25919

IQ Standardised fluid intelligence score correct-answers 20016, 20191

52

Trait Trait description Measurement unit UK Biobank data field

Neuroticism Neuroticism standardised score NA 1920, 1930, 1940, 1950,

1960, 1970, 1980, 1990,

2000, 2010, 2020, 2030

Reaction time Standardised reaction time milliseconds 20023

Standing height Standing height cm 50

Subjective well-being Subjective well-being: In general how

happy are you? (Average value over

time)

NA 4526, 20458

Visual memory Standardised visual memory score

(logarithm)

NA 399, 20132

Volume of brain Volume of brain, grey+white matter mm3 25010

In our analysis sample, we removed individuals with brain diseases or surgical brain damage. Supplementary

Table 2 provides an overview of the brain diseases and ICD10 codes used to make these exclusions.

As robustness check, to verify that our results are not merely a reflection of the physical proximity of brain

regions, we regressed the estimated genetic correlations on the physical distance between the different brain

regions (see Supplementary Note 3). Supplementary Table 3 provides an overview of the MNI (Montreal

Neurological Institute) coordinates used to calculate the distances between regions.

53

Supplementary Table 2: Overview of data fields in the UK Biobank used to exclude individuals with brain
diseases or surgical brain damage.

Trait UK Biobank data field ICD10 code
Dementia or Alzheimer’s disease 1263 F01, F02, G30
Parkinson’s disease 1262 G20, G21
Chronic degenerative neurologi-
cal

1258 G23, G31, G32

Guillain-Barré syndrome 1256 G610
Multiple Sclerosis 1261 G35
Other demyelinating disease 1397 G37
Stroke or ischaemic stroke 1081 G463, G464, I64, I694
Brain cancer 1031 C70, C71, D33
Brain haemorrhage 1491 I60, I61, I62, I691, I692, I693
Brain/intracranial abscess 1245 G060, G07
Cerebral aneurysm 1425 I671, Q282, Q283
Cerebral palsy 1433 G80, A521, A504, I64
Encephalitis 1246 A83, A86, B011, B020, B262,

A85, B004, B582, A84, B050,
B941, G04, A321, G05

Epilepsy 1264 G40, F803
Head injury 1266 S07, T040
Infections of the nervous system 1244 A80, A81, A82, A83, A84, A85,

A86, A87, A88, A89
Ischaemic stroke 1583 G45
Meningeal cancer 1031 C70, C793
Meningioma (benign) 1659 D33, D32
Meningitis 1247 G03, A170, A171, A203, G01,

G02, G00, G07
Motor neuron disease (ALS) 1259 G122
Neurological injury / trauma 1240
Spina bifida 1524 Q05, Q760
Subdural haematoma 1083 P100
Subarachnoid haemorrhage 1086 I60, S066, P103
Transient ischaemic attack 1082 G45

54

Supplementary Table 3: MNI coordinates of regions of interest.

Grey matter area x-coordinate y-coordinate z-coordinate
Central opercular cortex 55 -5 9
Planum temporale 57 -19 5
Middle temporal gyrus, anterior division 56 -1 -19
Frontal pole 29 59 1
Precuneous cortex 13 -61 34
Heschls gyrus (includes H1 and H2) 47 -22 7
Paracingulate gyrus -1 37 31
Juxtapositional lobule cortex (formerly Supplementary M 5 -3 63
Parietal operculum cortex 47 -27 31
Inferior temporal gyrus, posterior division 47 -21 -29
Cuneal cortex 21 -68 24
Middle temporal gyrus, posterior division 50 -23 -11
Superior temporal gyrus, posterior division 66 -20 3
Middle frontal gyrus 40 31 32
Superior temporal gyrus, anterior division 57 -10 -4
Planum polare 44 -10 -11
Insular cortex 41 -10 2
Lateral occipital cortex, inferior division 41 -77 -10
Precentral gyrus 48 -6 48
Cingulate gyrus, posterior division 9 -34 35
Cingulate gyrus, anterior division 9 18 27
Frontal operculum cortex 44 18 2
Superior frontal gyrus 14 18 59
Frontal orbital cortex 22 24 -21
Inferior temporal gyrus, temporooccipital part 51 -50 -20
Inferior temporal gyrus, anterior division 44 0 -42
Subcallosal cortex 8 17 -13
Supramarginal gyrus, anterior division 57 -30 54
Inferior frontal gyrus, pars opercularis 57 15 11
Supracalcarine cortex 23 -63 14
Inferior frontal gyrus, pars triangularis 49 27 14
Frontal medial cortex 41 24 35
Lateral occipital cortex, superior division 35 -70 37
Temporal fusiform cortex, posterior division 34 -32 -24
Temporal pole 34 16 -36
Middle temporal gyrus, temporooccipital part 65 -50 0
Temporal fusiform cortex, anterior division 27 -2 -44
Postcentral gyrus 42 -31 59
Occipital pole 23 -102 4
Angular gyrus 51 -53 33
Superior parietal lobule 30 -49 57
Supramarginal gyrus, posterior division 54 -39 36
Intracalcarine cortex 17 -77 5
Vermis crus I cerebellum 3 -71 -33
Parahippocampal gyrus, anterior division 17 -8 -29
Occipital fusiform gyrus 24 -77 -19
Parahippocampal gyrus, posterior division 24 -27 -18
Lingual gyrus 13 -59 -3
Hippocampus -26 -19 -17
Temporal occipital fusiform cortex 35 -48 -16
Pallidum 22 6 -2
Amygdala 27 5 -17
Caudate 12 11 10
Thalamus 15 -19 0
Putamen 25 1 -3
Vermis crus II cerebellum 3 -71 -34
Ventral striatum 20 -4 -5
Crus I cerebellum 45 -52 -35
X cerebellum 2 -50 -35
Brain-stem 1 -25 -33
Vermis VI cerebellum 3 -71 -29
Crus II cerebellum 46 -52 -46
VIIb cerebellum 7 -69 -32
Vermis VIIb cerebellum 3 -71 -33
Vermis X cerebellum 3 -68 -41
VIIIb cerebellum 30 -56 -53
I-IV cerebellum 9 -45 -16
Vermis VIIIb cerebellum 3 -71 -35
IX cerebellum 10 -47 -52
VI cerebellum 28 -57 -25
V cerebellum 11 -57 -14
VIIIa cerebellum 30 -65 -53
Vermis VIIIa cerebellum 3 -71 -32
Vermis IX cerebellum 5 -68 -35

55

Supplementary Note 3

Runtime analyses. Panels (a) and (c) in Supplementary Figure 1 provide the results of a runtime com-

parison between MGREML in default mode and in pairwise bivariate mode. Although pairwise bivariate

GREML is certainly not new (e.g., Lee et al., 2012), we implemented a pairwise mode in MGREML to

facilitate a fair comparison between the pairwise and multivariate approach. This approach also allows the

pairwise approach to take full advantage of the canonical transformation, the application of the commutation

matrix, efficient control for population stratification, and other aspects that are all efficiently implemented

in MGREML. The results presented are based solely on optimising the MGREML function. That is, the AI

matrix and standard errors are not computed in this application of MGREML to simulated data.

The data simulated here are on traits with h2SNPs = 25%, with a number of SNPs that equals the sample

size N , and with no genetic correlations and no environmental correlations between traits. The results show

that, given a number of individuals (N) and traits (T), MGREML is computationally faster than pairwise

bivariate GREML in all scenarios considered here. However, we observe in panel (a) that the disparity

between the two approaches decreases when sample size, N , increases. On the other hand, in terms of

the number of traits, T , panel (c) shows that the gap only widens when more traits are analysed. Finally,

we observe that even for as many as 200 traits, MGREML in default mode requires only 65 minutes and

MGREML in pairwise mode only requires four hours to complete.

Memory usage. In addition to runtime, panels (b) and (d) of Supplementary Figure 1 show memory

usage in GB. When fixing N = 20, 000 and varying T in panel (b), we find that for up to 100 traits, memory

usage hardly responds to T . In these scenarios, memory usage is about 12GB. However, when moving beyond

100 traits the memory required by MGREML in default mode starts to increase rapidly. The reason for

this pattern is that for T ≤ 100, at N = 20, 000, the GRM and its eigenvalue decomposition are the largest

objects that need to be held in the most memory-intensive step of the MGREML analysis. However, as

T goes beyond 100, the approximation of the inverse of the Hessian, used by the BFGS algorithm, starts

dominating memory usage.

For instance, when T = 1, 000 traits, there are 1, 000 × 1, 001 ≈ 106 parameters in the model. Thus, the

approximate inverse Hessian in that case is a full matrix with about 106 rows and 106 columns. Such a

matrix is memory-wise clearly far from feasible. Therefore, a future development of MGREML for enhanced

scalability might lie in the usage of a so-called limited-memory BFGS algorithm.

56

Finally, as visible from panel (d), at a logarithmic scale memory usage increases slowly with N for both the

default mode and the pairwise bivariate mode. This observation is in line with our theoretical expectation

that for typical values of N and T , holding the eigenvalue decomposition and/or the GRM in memory (prior

to the MGREML analysis itself) is memory-wise the most intensive step (requiring O(N2) memory).

Overall, we conclude that for reasonable values of T , MGREML in default mode and pairwise mode have a

very comparable performance in terms of memory usage. Moreover, in terms of CPU time, the default mode

strictly outperforms the pairwise model. Yet, for extremely large T (e.g., more than a hundred traits), users

of MGREML may consider using the pairwise mode instead of the default mode. However, in pairwise mode,

MGREML can no longer guarantee that the resulting genetic correlation matrix is positive semi-definite.

Comparisons with alternative individual-level data methods. To further investigate the compu-

tational gains afforded by MGREML, we compare our method to publicly available methods that are also

tailored towards the same type of analyses. In particular, we consider GCTA (Yang et al., 2011), MTG2

(Lee and Van der Werf, 2016), GEMMA (Zhou and Stephens, 2012), WOMBAT (Meyer, 2007), and BOLT-

REML (Loh et al., 2015). We also briefly discuss ASReml (Gilmour, 1997) vis-à-vis MGREML. We use our

empirical application (N = 20, 190) as an input to benchmark our method against GCTA, MTG2, GEMMA,

WOMBAT, and BOLT-REML.

We start with a bivariate analysis (T = 2), and then increase to T = 10. After this, we further increase T

in steps of 10, until we exhaust the full set of 86 traits. Thus, we consider T = 2, 10, 20, 30, . . . , 80, 86. For

each of these values of T , we allot each method exactly 24 hours of CPU time on the same type of machine

(i.e., a machine with 24 cores, a clock speed of 2.6GHz, and 64GB of memory).

In these analyses, GCTA runs out of memory even for T = 2 traits, without controlling for any fixed-effect

covariates. MTG2, on the other hand, can easily handle a bivariate analysis of this scale. Overall, MTG2

can handle at most 30 traits on our computing infrastructure. For this analysis, MTG2 requires 51 minutes

to compute the eigenvalue decomposition of the GRM and a further 16 minutes to estimate the multivariate

model. Notably, we run MTG2 without correcting for the first 20 principal components from the genetic

data. The reason for this omission is that MTG2’s computational complexity is O(NT 6) per iteration when

the number of unique fixed-effect covariates is O(1) (see Lee and Van der Werf, 2016, Supplementary Data,

Page 5), which becomes prohibitively complex for high T (even for T = 30). When T = 40, MTG2 runs out

of memory. Furthermore, MTG2 requires fully balanced data to use its fast algorithm, whereas MGREML

57

101

101.5

102

102.5

103

1 20 50 100 200
Number of traits

R
un

tim
e

(m
in

ut
es

)

MGREML (default) MGREML (pairwise mode)

(a)

101

101.2

101.4

101.6

101.8

102

1 20 50 100 200
Number of traits

M
em

or
y

(G
B

)

MGREML (default) MGREML (pairwise mode)

(b)

10−1

100

101

102

103

1000 5000 10000 20000
Individuals

R
un

tim
e

(m
in

ut
es

)

MGREML (default) MGREML (pairwise mode)

(c)

10−1

10−0.5

100

100.5

101

101.5

102

1000 5000 10000 20000
Individuals

M
em

or
y

(G
B

)

MGREML (default) MGREML (pairwise mode)

(d)

Supplementary Figure 1: Runtime (in minutes; first column) and memory usage (in GB; second column) of
MGREML applied to simulated data (i) in default mode (solid lines) and (ii) in pairwise bivariate mode

(dashed lines), as function of the number of traits T for sample size N = 20, 000 (first row) and as function
of sample size N for number of traits T = 50 (second row).

58

can deal with small amounts of missingness.

GEMMA, like MTG2, is able to handle at most T = 30 traits. For T = 40, the method does not converge

within 24 hours. For T = 50, the method crashes immediately due to insufficient memory. We do note here,

that MTG2 is considerably faster than GEMMA for estimating the variance components when N = 20, 190

and T = 30. Whereas GEMMA takes hours to estimate the model for T = 30, MTG2 is able to estimate

the model in 16 minutes once the eigenvalue decomposition of the GRM has been computed.

When using WOMBAT, even a simple bivariate analysis requires more than four hours of CPU time. Hence,

even the simple approach of aggregating results from [T (T − 1)]/2 pairwise bivariate analyses would imply

thousands of hours of runtime, when considering our full set of T = 86 traits. Moreover, for T = 10 traits,

the analysis fails due to its severe memory requirements. We conclude that WOMBAT has trouble with a

dense similarity matrix, as this software is optimised for cattle data in which one effectively looks at expected

relatedness (as implied by the pedigree). In such data, there is a lot of sparsity in the relatedness matrix. For

applications in human genetics, where the GRM is constructed using molecular genetic data, such sparsity

is completely absent.

Finally, we compare MGREML to BOLT-REML. For a simple bivariate analysis, BOLT-REML takes over

two hours to estimate the model. Hence, also here, the simple approach of aggregating results from pairwise

bivariate analyses would imply thousands of hours of runtime, when considering our full set of 86 traits.

Moreover, for T = 10 traits, BOLT-REML does not converge within 24 hours.

The commercial nature of ASReml is a significant impediment for widespread usage, especially in (behaviour)

genetics and related fields where researchers are used to work with freely and publicly available, open-source

software. Also, as with WOMBAT, ASReml, by design, is more tailored towards an expected relatedness

matrix that is implied by a given pedigree file. Again, a relatedness matrix based on molecular genetic data

is a dense matrix. Moreover, like GCTA and MTG2, ASReml relies strongly on the AI matrix to maximise

the log-likelihood function. Here, we stress that the AI matrix has an irreducible computational complexity

of O(NT 4) for a fully saturated model. Thus, at the scale of T = 86, methods such as ASReml simply

cannot compete with the BFGS algorithm implemented in MGREML.

Comparison with summary statistic methods. We investigated the statistical efficiency of MGREML

by comparing the standard errors of the estimated genetic correlations (Supplementary Data 8) to the

standard errors obtained by using bivariate LD-score regression (LDSC) (Bulik-Sullivan et al., 2015) and

59

SumHer (Speed and Balding, 2019) to estimate genetic correlations. For this comparison, we used PLINK

1.9 (Chang et al., 2015) to run a GWAS for each of the 86 traits using the 1,384,830 SNPs that are also used

for constructing the GRM, with the same covariates as those used in the MGREML analyses. The summary

statistics of these GWASs were used to compute genetic correlations in a pairwise fashion using LDSC v1.0.1

and SumHer (as implemented in LDAK 5.1).

For the LDSC analyses, we computed genetic correlations using two reference samples: The European

individuals of the 1000 Genomes data (McVean et al., 2012) and the European individuals of the UK Biobank

(as provided by the Pan-UKB Team, 2020). While the first reference sample is more commonly used in the

literature, the second reference sample is likely to reflect the LD structure of our analysis sample better.

For that reason, while the LDSC results somewhat depend on the reference sample used, in the main text

we report the results obtained using the UK Biobank reference sample. The estimated heritabilities, genetic

correlations and corresponding standard errors are available in Supplementary Data 4 and Supplementary

Data 5. The results show that the heritability estimates obtained with MGREML and LDSC are strongly

correlated (ρ = 0.95 when using the 1000Genomes reference sample, and ρ = 0.93 when using the UK

Biobank reference sample). The same holds for the genetic correlations (ρ = 0.90 and ρ = 0.88, these values

are based on the genetic correlations below the diagonal). Importantly, the standard errors obtained with

MGREML are, compared to the LDSC results, on average smaller for both the heritability estimates (37.6%

and 32.7%) and the genetic correlation estimates (45.2% and 50.6%).

The heritabilities, genetic correlations and corresponding standard errors as estimated using SumHer can

be found in Supplementary Data 7. Here, we used the recommended LDAK-Thin Model pre-computed

tagging files for the GBR population in UKB that are publicly available on the LDAK website (see: http://

dougspeed.com/pre-computed-tagging-files/). The results show that there is again a strong correlation

between heritability estimates from MGREML and SumHer (ρ = 0.94). The genetic correlations are also

highly correlated (ρ = 0.89). The standard errors obtained using MGREML are smaller than those obtained

using SumHer for both the heritability estimates (46.2%) as well as the genetic correlations (46.1%).

The comparison of the results obtained with MGREML on the one hand and those obtained with LDSC and

SumHer on the other hand illustrate again the statistical efficiency of individual-level data methods. While

all three methods provide similar estimates, MGREML provides the most precise estimates (i.e., those with

the smallest standard errors).

60

http://dougspeed.com/pre-computed-tagging-files/
http://dougspeed.com/pre-computed-tagging-files/

Construction of the genomic-relatedness matrix (GRM). Various tools, such as GCTA (Yang et al.,

2011) and LDAK (Speed et al., 2012), can be used to construct the GRM which is used as input for an

MGREML analysis. Importantly, the GRM as calculated by GCTA assumes that all SNPs explain the same

proportion of phenotypic variance (irrespective of, e.g., a SNP’s minor allele frequency and the region it is

located). Therefore, other perhaps more realistic assumptions about the distribution of SNP effects have

been proposed and utilized in tools such as LDAK. In the empirical application considered in this study,

however, using the GRM as calculated by LDAK (based on the so-called LDAK-Thin Model) yields a slightly

poorer fit in terms of the log-likelihood compared to using the GRM as calculated by GCTA. Assessing the

significance of this difference in fit is not straightforward, because these models are not nested with respect

to each other. In our empirical application, the estimated SNP-based heritabilities and genetic correlations

are highly similar when using these two differently calculated GRMs (Supplementary Data 8).

Correcting genetic correlations for physical proximity. To verify that our results are not merely

a reflection of the physical proximity of brain regions, we regressed the estimated genetic correlations on

the physical distance between the different brain regions. To compute distances between brain regions,

coordinates are used from the Harvard-Oxford cortical brain area maps, the JHU atlas for the subcortical

structures, and the cerebellar regions from the SUIT cerebellum atlas.

More specifically, we compute squared Euclidean distances using the MNI coordinates shown in Supplemen-

tary Table 3, denoted by d. Next, we square the estimated genetic correlations, and we compute the logit

transformation of these squared correlations, denoted by s, yielding a measure in R that is low for genetic

correlations close to zero and high for genetic correlations close to +1 or −1. We compute the logarithm

of d+ 1 to make the distances more normally distributed. The increment by one is needed, as the distance

between two specific regions can be zero (resulting from the granularity of the MNI coordinates), viz., Vermis

VIIb Cerebellum and Vermis Crus I Cerebellum.

We regress s on log(1 + d) and an intercept. Using the regression estimates, we compute fitted values ŝ.

Finally, we cast these fitted values to predicted absolute genetic correlations by taking the square root of the

logistic function of ŝ, and we compute the squared correlation between the absolute value of the estimated

genetic correlations and the absolute genetic correlations as predicted by this regression model. Here, we find

that physical distance explains 17.4% of the variation in the absolute value of genetic correlations between

relative grey matter volume in regions of interest, as estimated by MGREML.

61

Supplementary Note 4

In this section, we describe the analysis pipeline used to obtain the empirical results as reported in the main

text:

1. Restrict to individuals of European ancestry.

2. Exclude the individuals with brain damage (see Supplementary Table 2 for UK Biobank data cells used

to exclude these individuals).

3. Restrict dataset to directly genotyped HapMap3 SNPs + SNPs with imputation quality of 0.9 or

higher.

� This step leaves a total of 1, 796, 892 directly genotyped SNPs / SNPs with high imputation

quality.

4. Apply regular quality control on SNP data: minor allele frequency (MAF) < 0.01, missingness per

individual (MIND) < 0.05, missingness per SNP (GENO) < 0.05, Hardy-Weinberg equilibrium (HWE)

p-value < 0.001.

� This step leaves a total of 1, 582, 522 SNPs.

5. Drop long-range LD (linkage disequilibrium) regions, following Linnér et al. (2019).

� This step leaves a total of 1, 384, 830 SNPs.

6. Construct GRM, and apply relatedness cutoff of 0.025 using PLINK (Chang et al., 2015).

� This step leaves a total of N = 37, 392 individuals.

7. Curate phenotype data (including construction of genotyping platform dummy variable, which we use

as control variable for each trait)

� Exclude individuals with missing phenotypes: Our choice for fully balanced data leaves us with

N = 20, 190 individuals.

� Residualise the 74 brain volume phenotypes and the 2 global measures of brain volume with

respect to the following covariates: age, age2, sex, sex×age, head size, head motion while resting,

head motion in task, date, date2, UK Biobank Assessment Centre, interactions between the UK

Biobank Assessment Centre and all preceding covariates, and a constant.

62

� Residualise the 10 other traits with respect to the following covariates: age, age2, sex, sex×age,

head size, date, date2, UK Biobank Assessment Centre, interactions between the UK Biobank

Assessment Centre and all preceding covariates, and a constant.

– For IQ, when residualising, instead of age, we use age at the moment of the IQ assessment

and we, additionally, control for dummy variables for the number of IQ measurements used

to construct this variable.

8. Run MGREML (with adjustment for the first 20 lead PCs).

Supplementary References

Bulik-Sullivan, B. K., , Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., Daly, M. J., Price,

A. L., and Neale, B. M. (2015). LD Score regression distinguishes confounding from polygenicity in

genome-wide association studies. Nature Genetics, 47(3):291–295.

Casella, G. and Searle, S. R. (1985). On a matrix identity useful in variance component estimation. Biometrics

Unit Technical Reports; Number BU-875-M.

Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., and Lee, J. J. (2015).

Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4:1–16.

Ducrocq, V. and Chapuis, H. (1997). Generalizing the use of the canonical transformation for the solution

of multivariate mixed model equations. Genetics Selection Evolution, 29:205–224.

Gilmour, A. (1997). ASREML for testing fixed effects and estimating multiple trait variance components.

Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 12:386–390.

Gilmour, A. R., Thompson, R., and Cullis, B. R. (1995). Average information REML: an efficient algorithm

for variance parameter estimation in linear mixed models. Biometrics, 51:1440–1450.

Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related

problems. Journal of the American Statistical Association, 72(358):320–338.

Lee, S., Yang, J., Goddard, M., Visscher, P., and Wray, N. (2012). Estimation of pleiotropy between com-

plex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum

likelihood. Bioinformatics, 28(19):2540–2542.

Lee, S. H. and Van der Werf, J. H. (2016). MTG2: an efficient algorithm for multivariate linear mixed model

63

analysis based on genomic information. Bioinformatics, 32:1420–1422.

Linnér, R. K., Biroli, P., Kong, E., Meddens, S. F. W., Wedow, R., Fontana, M. A., Lebreton, M., Tino, S. P.,

Abdellaoui, A., Hammerschlag, A. R., et al. (2019). Genome-wide association analyses of risk tolerance

and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences.

Nature Genetics, 51(2):245–257.

Loh, P.-R., Bhatia, G., Gusev, A., Finucane, H. K., Bulik-Sullivan, B. K., Pollack, S. J., de Candia, T. R.,

Lee, S. H., Wray, N. R., Kendler, K. S., et al. (2015). Contrasting genetic architectures of schizophrenia

and other complex diseases using fast variance-components analysis. Nature Genetics, 47:1385–1392.

McVean, G. A., Altshuler, D. M., and the 1000 Genomes Project Consortium (2012). An integrated map of

genetic variation from 1,092 human genomes. Nature, 491:56–65.

Meyer, K. (2007). WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum

likelihood (REML). Journal of Zhejiang University Science B, 8:815–821.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer.

Pan-UKB Team (2020). https://pan.ukbb.broadinstitute.org.

Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components, chapter M.4, pages 451–452.

John Wiley and Sons, Hoboken, New Jersey, USA.

Speed, D. and Balding, D. J. (2019). Sumher better estimates the snp heritability of complex traits from

summary statistics. Nature Genetics, 51(2):277–284.

Speed, D., Hemani, G., Johnson, M. R., and Balding, D. J. (2012). Improved heritability estimation from

genome-wide SNPs. American Journal of Human Genetics, 91:1011–1021.

Yang, J., Benyamin, B., McEvoy, B., Gordon, S., Henders, A., Nyholt, D., Madden, P., Heath, A., Martin,

N., Montgomery, G., Goddard, M., and Visscher, P. (2010). Common SNPs explain a large proportion of

the heritability for human height. Nature Genetics, 42:565–9.

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: a tool for genome-wide complex

trait analysis. American Journal of Human Genetics, 88:76–82.

Zhou, X. and Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies.

Nature Genetics, 44:821–824.

64

