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Supplementary Material
Akaike Information Criterion Analysis15

The Akaike Information Criterion (AIC) was calculated for each of the 16 included patients for each of the following models:
Model 1) Fit V0, S, ε , and λ per patient and γ0 = λ ; Model 2) Fit V0, S, ε , γ0 and λ per patient; Model 3) λ constant for all
patients, γ0 = λ , fit V0, S, ε per patient; Model 4) Fit γ0, V0, S, and ε) per patient, λ constant for all patients. Here, we followed
AIC calculation as described by Portet et al. based on the residual sum of squares (RSS)1:

AIC =

{
nparams <

nobs
40 nobs · log( RSS

nobs
)+2nparams

else nobs · log( RSS
nobs

)+2nparams +
2nparams·nobs

(nobs−nparams−1)
(1)

Here, the number of observations, nobs refers to the number of volume measurements, nparams is the number of parameters, and20

RSS refers to the residual sum of squares between the measured (Vmeasured) and simulated (Vsim) volumes:

RSS =
nobs

∑
i=1

((Vmeasured−Vsim).
2) (2)

A subset of patients did not comprise sufficient data points to evaluate all suggested models. Patients 6, 8 and 14 had six data
points, patient 15 five which impeded the calculation of the AIC for model 2 and 1,2 and 4 respectively for these patients
(the relevant bars are hence missing in Figure S1). The patient contributions were averaged (accounting for the number of
contributing patients) to arrive at the total AIC values: meanAICModel1 = 44.4, meanAICModel2 = 68.7, meanAICModel3 = 25.1,25

meanAICModel4 = 40.5
We concluded that model 3 was most suitable in terms of AIC and the number of patients which could be included.
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Figure S1. The Akaike Information Criterion (AIC) was calculated as described by Portet et al. based on the residual sum of
squares1 for each of the following models: Model 1) Fit V0, S, ε , and λ per patient and γ0 = λ ; Model 2) Fit V0, S, ε , γ0 and λ

per patient; Model 3) λ constant for all patients, γ0 = λ , fit V0, S, ε per patient; Model 4) Fit γ0, V0, S, and ε) per patient, λ

constant for all patients. The obtained AIC values are shown where possible given the number of data points for each patient.
Model 3 (red) provided the minimal total AIC summed over all 16 patients.
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Local Sensitivity Analysis
Following previous work2, a local sensitivity analysis of the model parameters was performed3 to determine how the simulated
tumor volume V changed in response to small perturbations in the model parameters S, ε and V0. Mathematically, this is given30

by ∂V/∂ p, where p = {S,ε,V0}. Specifically, using finite differences, we calculate the forward difference dense Jacobian
∂V/∂ p for each patient at each measurement point in time. Depending on the evaluation time point, different model parameters
are most sensitive. Four examples of the variation of local sensitivity over the evaluation time point are given in Figure S2 A).
Here we observe that, as expected, pre-treatment data points are only influenced by V0. Moreover, the sensitivity of ε increases
exponentially with time since RT onset. To summarize this, we report in Figure S2 B) the normalized maximum of the sensitive35

scores for each variable in ranked order. Here, it is observed that ε is the most sensitive parameter, followed by the surviving
fraction S, and the pre-treatment volume V0 for all patients but #12.

(A) Variation of local sensitivity by data point for a subset of patients.

(B) Ranked, normalized sensitivity for each variable.

Figure S2. Local sensitivity analysis of the model parameters S, V0, and ε . A) Overview over the variation of the sensitivity
by data point, B) Ranked, normalized, maximum over time local sensitivity scores calculated as the partial derivatives of the
tumor volume V with respect to the model parameters.
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Figure S3. Overview of model predictions for different times between fractions ranging from four to ten weeks. Reported
p-values correspond to log-rank testing between HFSRT and iRT+boost treatments.

4/6



Figure S4. Estimated growth trajectories of all included patients for fitted HFSRT (red), and simulated iRT (blue) and
iRT+boost (green) treatments with up to 11 treatment fractions. Shaded areas correspond to the envelope of the bootstrap
estimated modeling uncertainty.

5/6



Table S1. Overview of the patient-specific dosing in terms of total PTV gEUD and D98%. A Lyman parameter of -10 was
used for gEUD calculation. Treatments were delivered within five daily fractions for all patients. Abbreviations: PTV: Planning
target volume, gEUD: generalized equivalent uniform dose, D98% near minimum dose at least received by 98% of the PTV.

Patient PTV gEUD [Gy] PTV D98% [Gy]
1 37.0 35.9
2 35.5 34.5
3 32.5 29.3
4 33.6 30.7
5 33.7 30.6
6 31.3 29.5
7 32.6 28.8
8 37.5 34.0
9 33.9 30.5

10 32.7 31.2
11 32.6 31.0
12 31.9 30.3
13 33.1 31.1
14 33.0 30.1
15 33.9 31.9
16 35.0 31.5
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