Cell Reports, Volume 37

## Supplemental information

## **Regulation of CYLD activity**

### and specificity by phosphorylation

## and ubiquitin-binding CAP-Gly domains

Paul R. Elliott, Derek Leske, Jane Wagstaff, Lisa Schlicher, Georgina Berridge, Sarah Maslen, Frederik Timmermann, Biao Ma, Roman Fischer, Stefan M.V. Freund, David Komander, and Mads Gyrd-Hansen

|                               | CYLD 464-552 + Ub      | CYLD 464-565 + Ub                              |
|-------------------------------|------------------------|------------------------------------------------|
| Data collection               |                        |                                                |
| Beamline                      | Diamond I03            | Diamond I03                                    |
| Space group                   | P 41212                | P 2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> |
| a, b, c (Å)                   | 43.93, 42.93, 171.34   | 63.93, 64.49, 75.93                            |
| $\alpha, \beta, \gamma$ (°)   | 90.00, 90.00, 90.00    | 90.00, 90.00, 90.00                            |
| Wavelength                    | 0.96863                | 0.96863                                        |
| Resolution (Å)                | 41.64-1.71 (1.74-1.71) | 64.49-1.85 (1.89-1.85)                         |
| R <sub>merge</sub>            | 4.2 (59.1)             | 6.1 (56.6)                                     |
| /ol                           | 15.0 (1.9)             | 14.0 (2.1)                                     |
| CC(1/2)                       | 0.99 (0.90)            | 0.99 (0.75)                                    |
| Completeness (%)              | 100.0 (99.9)           | 100.0 (10Ó.0)                                  |
| Redundancy                    | 6.0 (6.3)              | 6.3 (6.3)                                      |
| Pofinomont                    |                        |                                                |
| Remember $(\Lambda)$          | 1161 171               | 10 15 1 85                                     |
| No reflections (test set)     | 41.04 - 1.71<br>18.237 | 43.13 - 1.03<br>27 /25                         |
| R = I R                       | 21 0/23 8              | 21,400<br>18 3/23 6                            |
| No atoms                      | 21.0/23.0              | 10.3/23.0                                      |
|                               | 1010                   | 0050                                           |
| Protein                       | 1342                   | 2658                                           |
| vvater<br>D fa stars          | 98                     | 192                                            |
| B-TACIOIS                     | 24.70                  | 00.47                                          |
| VVIISON B                     | 34.7b                  | 29.47                                          |
| Protein                       | 49.9                   | 40.6                                           |
| vvater                        | 55.1                   | 40.4                                           |
| K.m.s deviations              | 0.011                  | 0.000                                          |
| Bond lengths (A)              | 0.011                  | 0.009                                          |
| Bond angles (°)               | 1.1/4                  | 1.017                                          |
| Ramachandran statistics       | 0.6, 3.8, 95.6         | 0.0, 1.5, 98.5                                 |
| (outliers, allowed, favoured) |                        |                                                |

### Table S1. Data Collection and Refinement Statistics, Related to Figure 2.

Numbers in brackets are for the highest resolution bin. Datasets were collected and structures determined from a single crystal each.

# Figure S1



#### Figure S1: IKKβ phosphorylates CYLD *in vitro*, Related to Figure 1.

(A) Qualitative DUB assays for assessing CYLD enzyme activity. Lys63-Ub4 was incubated with different CYLD fragments (200 nM) and Ub cleavage was monitored over 90 minutes. Samples were resolved by SDS-PAGE and stained using silver stain. (B) Qualitative DUB assays as in (A) but using Met1 Ub4 as a substrate. (C) To investigate phosphorylation of CYLD by IKK $\beta$ , full-length CYLD purified from sf9 cells was treated with  $\lambda$ PP. The  $\lambda$ PP was subsequently removed by size exclusion chromatography and the dephosphorylated CYLD was determined by western blotting as indicated. (D) BEST-TROSY region for <sup>15</sup>N-labelled Ub (**Extended Data 1**) collected alone or in the presence of three-molar excess CAP-Gly2 (226-313) or CAP-Gly3 (460-582). (E) Chemical shift perturbation plot of <sup>15</sup>N-labelled Ub titrated with three-fold excess of CAP-Gly2 (226-313). (F) Chemical shift perturbation plot of <sup>15</sup>N-labelled Ub titrated with three-fold excess of Ub. (G) Chemical shift perturbation plot as in (F) with <sup>15</sup>N-labelled CAP-Gly2.



Ub contacts CAP-Gly2

Ub contacts CAP-Gly3

Figure S2

#### Figure S2: CAP-Gly domain 2 and 3 of CYLD bind Ub, Related to Figure 2.

(A) Superimposition of the two CAP-Gly3 molecules from crystal form 2 (467-565) (orthorhombic space group  $P2_12_12_1$ ) and CAP-Gly3 (467-552) from crystal form 1 (tetragonal space group *P*4<sub>1</sub>2<sub>1</sub>2) onto one another, revealing low RMSD between the Ub orientation in all the structures obtained. (B) Crystal packing within crystal form 2 stabilizes helix  $\alpha$ 2 of CAP-Gly3 and positions Val551 against a separate interface of Ub. (C) BEST-TROSY region for <sup>15</sup>N-labelled CAP-Gly3 and the CAP-Gly3 Ub-binding mutant, L475P (**Extended Data 3-4**). The L475P mutation does not significantly alter the conformation of the CAP-Gly3 domain and is unable to bind Ub. (D) BEST-TROSY region for <sup>15</sup>N-labelled CAP-Gly3 and CAP-Gly3 L475P in the presence of six-fold molar excess of Ub or two-fold molar excess NEMO (383-419), revealing that mutation of the Ub binding interface does not affect NEMO binding. (E) Structure-based sequence alignment of all reported mammalian CAP-Gly domains. Secondary structure for DCTN1 CAP-Gly domain (18-110) is shown on top and CYLD CAP-Gly3 (460-565) is shown on the bottom. CAP-Gly2 and CAP-Gly3 residues that bind Ub are shown as blue and purple spheres respectively. CAP-Gly domains tested for Ub binding (Extended Data 1) that do not bind Ub are depicted as red stars, whereas CAP-Gly2 and CAP-Gly3 that bind Ub are represented as green stars.





# Figure S3: CAP-Gly3 of CYLD is required for regulation of Ub deposition and signaling outcome, Related to Figure 3.

(A) Western blot analysis of CYLD levels in U2OS/NOD2 CYLD KO cells with reintroduced CYLD mutants as indicated. (B) qRT-PCR of U2OS/NOD2 CYLD KO cell lines with reintroduced CYLD mutants to assess *TNF* mRNA levels. Cells were stimulated for 3 h with 200 ng/ml L18-MDP. Values were normalized to values from L18-MDP-treated CYLD KO cells reconstituted with CYLD<sup>WT</sup>. Data shown represents mean ±SEM of at least 3 independent experiments.





### Figure S4: TNF-induced phosphorylation of CYLD, Related to Figure 4.

(A) Immunoprecipitation of FLAG-tagged CYLD from lysates of U2OS/NOD2 CYLD KO cells expressing FLAG-CYLD<sup>WT</sup> and stimulated or not with 20ng/ml TNF for 15 min. Lysates and IP samples were analyzed by western blotting as indicated before being processed for LC-MS/MS.



Actin

39



Figure S5: Ser568 phosphorylation together with Ser418 regulates CYLDs ability to control Ub deposition and signaling outcome after NOD2 but not IL-1 $\beta$  receptor stimulation, Related to Figure 5.

(A) Western blot analysis of CYLD levels in U2OS/NOD2 CYLD KO cells reconstituted with CYLD variants as indicated. (B) Densitometric quantification of CYLD levels in (A). Data shown represents mean ±SEM of 2 values. (C) Purification and western blot analysis of Ub conjugates from U2OS/NOD2 cell lines. Cells were treated for 1 h with CpA (1  $\mu$ M) or DMSO prior to stimulation with 200 ng/ml L18-MDP for 1 h as indicated. Repeat experiment of data shown in Figure 5C to illustrate the partial reversal of RIPK2-Ub in cells expressing CYLD S568A. (D) Purification and western blot analysis of Ub conjugates from U2OS/NOD2 cell lines. Cells were treated with 10 ng/ml IL-1 $\beta$  for 30 min as indicated. (F) Relative levels of *CXCL8* mRNA in U2OS/NOD2 cell lines treated or not with 10 ng/ml IL-1 $\beta$  for 3 h. Data shown represents mean ±SEM of at least 3 independent experiments. \*p < 0.05, \*\*p < 0.01, *n.s.*, not significant.

Figure S6



# Figure S6: The absence of CYLD activity interferes with ubiquitination of TNF-RSC components, Related to Figure 6.

(A) Purification and western blot analysis of the TNFR1 complex in HCT-116 cells with shRNA knockdown of CYLD or mismatch control. Cells were stimulated with 50 ng/ml Biotin-TNF for indicated time points. Samples used for western blots analysis are from the same experiment shown in Figure 4B.

Figure S7



В

Α

# Figure S7: Non-phosphorylation-mediated activity of CYLD retains LUBAC at the TNF-RSC and restores normal Met1-Ub, but not Lys63-Ub, deposition, Related to Figure 7.

(A and B) Independent repeats of the data shown in Figure 7A. Purification and western blot analysis of the TNFR1 complex in U2OS/NOD2 cell lines as indicated. Cells were stimulated with 50 ng/ml Biotin-TNF for indicated time points. Lanes 1-12 in (B) are also shown in Figure 6C. Asterisks in (B) indicate that the scanned blots for Lys63-Ub and HOIP have been cut and reassembled to align with other blots in the figure. Due to a loading error the CYLD<sup>S418A/S586A</sup> samples (lanes 13-16) were shifted one lane relative to the other blots.



### Extended Data 1. Map of chemical shift perturbations, Related to Figure 1.

BEST-TROSY spectra for <sup>15</sup>N-labelled Ub alone (black) or in the presence of three-fold molar excess CAP-Gly domains. Chemical shift perturbations are only observed for CYLD CAP-Gly2 and CAP-Gly3 domains, green and red respectively. Residue numbers correspond to resonance assignment of Ub are shown.



### Extended Data 2. Map of chemical shift perturbations, Related to Figure 2.

BEST-TROSY spectra for <sup>15</sup>N-labelled CAP-Gly2 (black) or CAP-Gly2 F288D (blue) alone or in the presence of increasing concentrations of Ub. Complete backbone assignment of <sup>13</sup>C, <sup>15</sup>N CAP-Gly2 resonances permitted detailed interactions between CAP-Gly2 and Ub to be observed. Insert two regions show detailed titration of resonances Cys290 and Phe288.



## Extended Data 3. Map of chemical shift perturbations, Related to Figure 2.

BEST-TROSY spectra for <sup>15</sup>N-labelled CAP-Gly3 (black) with increasing concentrations of Ub. Resonance positions for CAP-Gly3 amino acids derived from complete backbone assignment of <sup>13</sup>C, <sup>15</sup>N CAP-Gly3 (460-582) spectra are shown.



### Extended Data 4. Map of chemical shift perturbations, Related to Figure 2.

BEST-TROSY spectra for <sup>15</sup>N-labelled CAP-Gly3 (black) in the presence of six-fold molar excess of Ub (dark blue) or two-fold molar excess of NEMO (light blue). The CAP-Gly3 Ubbinding mutant L475P, was recorded alone (purple) or in the presence of six-fold molar excess NEMO (red) exhibited similar chemical shift perturbations as WT CAP-Gly3. However, L475P is does not undergo any chemical shift perturbations in the presence of six-fold molar excess Ub (green).