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1. Generalize the two-stage model to multivariate

We define Ik as a k×k identity matrix, and 1q as a q×1 unit vector. Let G = (G1, . . . , GN )T , and

X = (X1, . . . ,XN )T . Let ηmp be the regression coefficient of the mth subtype with pth covariate.

Let η
(c)
p = (η1p, . . . , ηMp)

T , where η
(c)
p represents M subtypes first stage parameters of the pth

covariate. Here we grouped the first stage parameters by covariates, and this notation could be

convenient for introducing different second stage design matrices for multiple covariates. Zp is

the second stage design matrix of pth other covariate linking the first stage regression coefficients

η
(c)
p and corresponding second stage parameters λp for pth other covariate, where η

(c)
p = Zpλp.

Let λ = (λT1 , . . . ,λ
T
P )T and η(c) = {η(c)T

1 , . . . ,η
(c)T
P }T , where λ and η(c)are the second stage

and first stage parameters for all the P other covariates. Let Z
(c)
X = ⊕Pp=1Zp, where ⊕Pp=1Zp is a

block diagonal matrix with Z1 to ZP as the diagonal block.

For the convenience of estimation procedure, we will use ηm = (ηm1, . . . , ηmP )T to represent

the P covariates first stage parameters of mth subtype. Let η = (ηT1 , . . . ,η
T
M )T , where η represent

the first stage parameters for the P other covariates grouped by subtypes, and η is a reordering of

η(c). Let ZX = {Z(c)
X }π, where π is reordering the row of the design matrix to group the first-stage

parameters by subtypes, thus η = ZXλ. We don’t perform any second stage decomposition on

the regression coefficients of intercepts, since making assumption on the prevalence of different

cancer subtypes could potentially yield bias, which means Z1 = IM . The second stage parameters

are always grouped by covariates.

To combine the notations of the coefficients of genotype G and other covariates X, we define

dm = (βm,η
T
m)T , where dm represent the first stage parameters of both G and X for the mth

subtype, and let d = (dT1 , . . . ,d
T
M )T and δ = (θT ,λT )T , where δ represent the second stage

parameters of both G and X. Let Z = {ZG ⊕ Z
(c)
X }π, then we have d = Zδ, where the second

stage design matrix Z links the first stage regression coefficients to the second stage parameters

for all of the covariates.
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2. Two-stage model EM algorithm derivation

Let Z = [Z∗T1 , . . . ,Z∗TM ]T , where we split the second stage design matrix by rows into M different

matrices with Z∗m as the 1 + (m − 1) × P to m × P rows of Z. Since d = (dT1 , . . . ,d
T
M )T and

d = Zδ (demonstrated in Supplementary Section 1), then dm = Z∗mδ and Z∗m links the first stage

parameters of the mth subtypes dm to the second stage parameters δ. To avoid notation abuse,

we will use Zm to represent Z∗m through the Supplementary sections.

Let Yim = I(Di = m) denote whether the ith subject has subtype m and Tio be the observed

tumor characteristics status of the ith subject. Given the observed tumor characteristics, the

possible subtypes for subject i will be a limited subset of all possible tumor subtypes, which

can be denoted as Yio = {Yim : Yimthat is consistent with Tio}. Given C = (G,X), let C =

(CT
1 , . . . ,C

T
N )T , where Ci is a (P + 1) × 1 covariates vector for the ith subject. We assume

that (Yi1, Yi2, . . . , YiM ,C
T
i ) are all observed and independently and identically distributed (i.i.d.)

distributed. Then the complete data log likelihood logL is

logL =

N∑
i=1

 M∑
j=1

YijC
T
i Zjδ − log

{
1 +

M∑
m=1

exp(CT
i Zmδ)

} . (2.1)

In the vth iteration of the EM algorithm E step, we take the expectation of the latent variables

(Yi1, Yi2, . . . , YiM ) given the observation tumor characteristics Tio:

E step:

Y E
im = E(Yim|Ci,Tio; δ

(v)) =
Pr(Yim|Ci; δ

(v))I(Yim ∈ Yio)∑
Yim∈Yio

Pr(Yim = 1|Ci; δ
(v))

,

where Y E
im is the probability of the ith person to be mth subtype given his observed tumor char-

acteristics, genotype and other covariates. I(Yim ∈ Yio) denote whether the mth subtype for the

ith subject belong to the subsets of possible subtypes given the observed tumor characteristics.

We defined the complete data log likelihood with expectation to the observed tumor character-

istics as A(δ|δ(v)) = EY |To,δ(v)(logL). In the M step, we get the updates of δ by maximizing
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A(δ|δ(v)) , δ(v+1) = arg maxδ A(δ|δ(v)), where

A(δ|δ(v)) =

N∑
i=1

 M∑
j=1

Y E
ijC

T
i Zj − log{1 +

M∑
m=1

exp(CT
i Zmδ)}

 . (2.2)

The M step could be solved with weighted least square interaction algorithm. Let YE
m =

(Y E
1m, . . . , Y

E
Nm)T , and YE = {(YE

1 )T , . . . , (YE
M )T }T . By taking derivatives of A(δ|δ(v)), we have

∂A(δ|δ(v))
∂δ

=

N∑
i=1


M∑
j=1

ZTj CiY
E
ij −

∑M
k=1 ZTkCi exp(CT

i Zkδ)

1 +
∑M
m=1 exp(CT

i Zmδ)

 , (2.3)

and

−∂A(δ|δ(v))
∂δ∂δT

=

N∑
i=1

[∑M
k=1 ZTkCi exp(CT

i Zkδ)CT
i Zk

1 +
∑M
m=1 exp(CT

i Zmδ)

−
{∑M

k=1 ZTkCi exp(CT
i Zkδ)

}
1 +

∑M
m=1 exp(CT

i Zmδ)
∗
{∑M

l=1 exp(CT
i Zlδ)CT

i Zl
}

1 +
∑M
m=1 exp(CT

i Zmδ)

]
. (2.4)

By writing the Equation 2.3 and 2.4 into matrix form, we have :

∂A(δ|δ(v))
∂δ

= ZTCT
M (YE −P), (2.5)

and

−∂A(δ|δ(v))
∂δ∂δT

= ZTCT
MWCMZ, (2.6)

, where CM = IM ⊗ C, and the weighted matrix W = D −AAT , with D = diag(P − Pmis),

P = E(Y|C; δ̂), Pmis = E(Y|C,To; δ̂), and A = D(1M ⊗ IN ). During the tth iteration of the

weighted Least square, let Y∗(t) = W(l)(YE − P(t)) + CMZδ(t), where P(t) and W(l) uses the

same definition as P and W evaluated at the δ(t). The weighted least square updates would be

δ(t+1) = (ZTCT
MW(t)CMZ)−1ZTCT

MY∗(t) . As t → ∞, the weighted least square interaction

converged to δ̂
(c)

.

3. Variance component score statistics Qσ2 derivation

Given the mixed effect two-stage model β = Zfθf + Zru, where we decompose the first stage

regression parameters of genotype into fixed effect θf and random effect u. Zf and Zr are the
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corresponding design matrix for θf and u. Let τ = (θTf ,λ
T )T and Zτ = {Zf ⊕ (⊕Pp=1Z

(p))}π,

where τ represents the vector of second stage fixed effects and Zτ is the corresponding second

stage design matrix. Then let the design matrix Z = [Zτ ,Zr], where Z is the second stage

design matrix for all of the covariates. Following the designation of Zm in Appendix A, we have

Zm = [Zmτ ,Zmr]. Given the assumption that u follows an arbitrary distribution F with mean 0

and variance σ2. The likelihood of the mixed effect two-stage model L(τ , σ2) would be,

L(τ , σ2) =

∫
exp{l(τ ,u)}dF (u;σ2), (3.7)

where

l(τ ,u) =

N∑
i=1

( M∑
j=1

YijC
T
i (Zmττ + Zmru)− log

[
1 +

M∑
m=1

exp
{
CT
i (Zmττ + Zmru)

})
. (3.8)

By taking a two-term Taylor expansion,

exp{l(τ ,u)} = exp l(τ ,0)
[
1 +

∂l(τ ,0)

u
u +

1

2
uT
{∂l(τ ,0)

∂u

∂l(τ ,0)

∂uT
+
∂2l(τ ,0)

∂uuT
}
u + ε

]
, (3.9)

where the error ε has the third and higher order terms of u. By writing the likelihood in Equa-

tion 3.7 as L(τ , σ2) = E[exp{l(τ ,u)}] and then take the log, then log-likelihood of the mixed

effect two-stage model logL(τ , σ2) would be,

logL(τ , σ2) = l(τ ,0) +
1

2
tr
{∂l(τ ,0)

∂u

∂l(τ ,0)

∂uT
+
∂2l(τ ,0)

∂uuT
}
σ2 + o(σ2). (3.10)

Under the null hypothesis H0 : σ2 = 0, τ̂ is the MLE of τ . Following similar derivation as

Equation 2.3 and 2.4, we have Uu(τ̂ ) = ∂l(τ̂ ,0)
∂u = ZTr GT

M (Y−Pr) and −∂
2l(τ ,0)
∂uuT = Ĩr, wherePr =

E(Y|X; τ̂ ) and Ĩr = Iuu−ITuτ I−1ττ Iτu, with Iuu = ZTr GT
MWrGMZr, Iττ = ZTτ CT

MWrCMZτ and

Iτu = ITuτ = ZTτ CT
MWrGMZr. The weighted matrix Wr has the same definition as the one used

for Equation 2.6 , but evaluated under the null hypothesis H0 : σ2 = 0. By taking derivatives of

logL(τ , σ2) with respect to σ2, the efficient score Uσ2(τ̂ ) would be,

Uσ2(τ̂ ) =
1

2

{
(Y −Pr)

TGMZrZ
T
r GT

M (Y −Pr)− tr(Ĩr)
}

. (3.11)
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By dropping the second term tr(Ĩr), we only use the first term as the variance component score

statistics,

Qσ2 = (Y −Pr)
TGMZrZ

T
r GT

M (Y −Pr). (3.12)

Qσ2 follows a mixture of chi-square distributions
∑s
i=1 ρiχ

2
i,1, where χ2

i,1 i.i.d. follows χ2
1 and

(ρ1, . . . , ρs) are the eigenvalues of Ĩr. Proof is as following, Since the the efficient score of u under

the null hypothesis H0 : σ2 = 0 is Uu(τ̂ ) = ZTr GT
M (Y − Pr) , then Uu(τ̂ )

d→ N(0, Ĩr). Let

the eigen decomposition of Ĩr to be ATΓA, where Γ is a diagonal matrix whose entries are the

eigenvalues of Ĩr, and A is an orthogonal matrix whose columns are eigenvectors of Ĩr. Qσ2 can

be transformed as

Qσ2 = Uu(τ̂ )TUu(τ̂ ) = Uu(τ̂ )T Ĩ
− 1

2
r ATΓAĨ

− 1
2

r Uu(τ̂ ), (3.13)

where Ĩ
− 1

2
r = AΓ−

1
2AT and Γ−

1
2 is a diagonal matrix with entries as ( 1√

ρ1
, . . . , 1√

ρs
). SinceAĨ

− 1
2

r Uu(τ̂ )
d→

N(0, Is), where Is is an s× s identity matrix, then Qσ2 follows a mixture of chi-square distribu-

tions
∑s
i=1 ρiχ

2
i,1.

4. Proof of independence between Qθf
and Qσ2

Let P = Eθf=0,σ2=0(Y|X;λ) be the mean of Y under the global null hypothesis H0 : θf = 0, σ2 =

0. Let Uθf
(λ̂) = ZTf GM (Y − Pf) be the efficient score of θf, where Pf = Eθf=0,σ2=0(Y|X; λ̂) .

Then we have Qθf
= Uθf

(λ̂)T Ĩ−1f Uθf
(λ̂) and Qσ2 = Uu(τ̂ )TUu(τ̂ ), where Ĩ = Iθθ − ITθλIλλIλθ,

with Iθθ = ZTGGT
MWfGMZG, Iλλ = ZTXXT

MWfXMZX, and Iλθ = ITλθ = ZTXXT
MWfGMZG.

The weighted matrix Wf has the same definition as in Equation 2.6, but evaluated under the null

hypothesis H0 : θ = 0. To prove the independence between Qθf
and Qσ2 , it’s equivalent to prove

the independence between Uθf
(λ̂) and Uu(τ̂ ) by treating Ĩf as fixed. Through Taylor expansion,

Y −Pf ≈ (I−P1)(Y −P), (4.14)
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where P1 = WfXMZX(ZTXXT
MWfZXXM )−1ZTXXT

M , I is the identity matrix. Similarly we have,

Y −Pr ≈ (I−P2)(Y −P), (4.15)

where P2 = WrCMZτ (ZTτ CT
MWfZτCM )−1ZTτ CT

M . Then we have ZTτ CT
MWr(I − P2)T = 0.

Since C = [G,X] and Zτ = {Zf ⊕ (⊕Pp=1Z
(p))}π, then CMZτ can be written as [GMZf,XMZτ ].

Because ZTτ CT
MWr(I−P2)T = 0, then

ZTf GT
MWr(I−P2)T = 0,

ZTXXT
MWr(I−P2)T = 0. (4.16)

Through central limit theorem,

(Uθf
(λ̂)T , Uu(τ̂ )T )T

d→ N(0,Σ), (4.17)

where Σ are the covariance matrix. To prove the independence between Uθf
(λ̂) and Uu(τ̂ ), we

only need to prove cov{Uθf
(λ̂), Uu(τ̂ )} = 0. Hence

cov{Uθf
(λ̂), Uu(τ̂ )} ≈ cov

{
ZTf GT

M (I −P1)(Y −P),ZTr GT
M (I−P2)(Y −P)

}
= ZTf GT

M (I−P1)Wr(I−P2)TGMZr

= −P1Wr(I−P2)TGMZr

= 0. (4.18)

5. Computation time simulations

We compared the computation time of analyzing 1,000 SNPs for five different methods: FTOP,

MTOP, standard logistic regression, FTOP with only complete data and polytomous logistic re-

gression. The methods were split into two groups: 1. Methods working on all the data consisted

of MTOP, FTOP, standard logistic regression. 2. Methods working on complete data consisted

of FTOP with complete data and polytomous model. To have a fair comparison with the polyto-

mous model, FTOP with complete data was implemented using the Wald test so that the MLE
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estimation time is included. We generated the data based on the four and six tumor character-

istics setting described in Section 3.2.1 in the main manuscript. The total sample size was set

to be 5,000, 25,000, 50,000 and 100,000. The cases with complete data were respectively around

30% and 23% for the four and six tumor characteristics settings. We performed 1,000 indepen-

dent simulations to calculate the averaged processing time for each method. All analyses were

implemented in R version 3.6.0. MTOP, FTOP were implemented in TOP package version 1.0.8.

Standard logistic regression was carried out in stats package version 3.6.1. (R Core Team, 2019).

Polytomous model used nnet package 7.3.12 (Venables and Ripley, 2013). The polytomous model

in R was implemented in two steps. The first step used multinom function to fit the model. The

second step used vcov function to get the covariance matrix of the estimates. Around 30% com-

putation time was in the second step which could be potentially due to inefficient implementation

of vcov function in R.

Supplementary Figure 1 presents the log of averaged computation times (s) for 1000 SNPs.

Standard logistic regression had the smallest computation time among all the methods since

standard logistic regression didn’t include any tumor marker data in the analysis. FTOP was

significantly faster compared to MTOP, since FTOP only needed to estimate parameters for all

the covariates under the null hypothesis for one time. FTOP was 32-71 fold computationally

faster than MTOP under different simulation settings. FTOP with only complete data was 2-14

fold computationally faster than the polytomous model under different simulation settings. More

discussion about the computation complexity of MTOP and FTOP could be found in Section 5

of the main manuscript.

6. Bias evaluation

We conducted simulations to evaluate whether removing the rare subtypes with less than 10 cases

would bias the estimates. Similar setting as Section 3 in the main manuscript, we simulated the
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data mimicking the PBCS. Under the four tumor characteristics setting, the effect sizes were

0.08, 0.08, 0.05, 0.05, 0.05 for baseline effect, ER, PR, HER2, and grade main effect, respectively.

Under the six tumor characteristics setting, two additional tumor characteristics were simulated

with an effect as 0.05. For each simulation, we removed subtypes with less than 10 cases, just as

in our previous simulations and real data analysis. We generated 10,000 simulation replicates to

evaluate the bias of the two-stage model estimate after removing the rare subtypes.

As Supplementary Table 3 shows, the estimates were unbiased in both four and six tumor

characteristics settings. Since removing the rare subtypes didn’t involve the genetic effects, the

estimates were unbiased.

7. Power simulation with 5,000 subjects

Additional simulations for global association tests with 5,000 subjects were also considered for a

larger effect size. We set βm as 0.25 for the scenario I, when there was no heterogeneity between

tumor markers. The case-case parameter for ER (θ
(1)
1 ) as 0.25 for scenario II, when heterogeneity

was only driven by ER. The case-case parameter for ER (θ
(1)
1 ) as 0.25, and the other case-

case parameters were set to follow a normal distribution with mean 0 and variance 4.0 × 10−4,

when there were multiple tumor markers driving the heterogeneity. Similar to the low effect

size simulations, standard logistic regression had the highest power when there presented no

heterogeneity across subtypes.similar to the lower effect size simulations, MTOP had the highest

power when there were heterogeneous associations (Supplementary Figure 2). The power of FTOP

with only complete data and polytomous model were almost 0 under this case.
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Table 1: The correlations of ER, PR, HER2, and grade

Correlation ER PR HER2 Grade
ER 1 0.61 -0.16 -0.39
PR 0.61 1 -0.17 -0.32
HER2 -0.16 -0.17 1 0.20
Grade -0.39 -0.32 0.20 1

Table 2: The frequencies of the joint distribution of ER (positive vs. negative), PR (positive vs.
negative), HER2(positive vs. negative), and grade (ordinal 1, 2, 3). Within the table, ”-” and
”+” represent negative and positive, respectively.

ER PR HER2 Grade Frequency (%)
- - - 1 0.38
+ - - 1 2.42
- + - 1 0.21
+ + - 1 15.04
- - + 1 0.09
+ - + 1 0.24
- + + 1 0.02
+ + + 1 0.87
- - - 2 2.64
+ - - 2 5.87
- + - 2 0.71
+ + - 2 32.74
- - + 2 1.31
+ - + 2 1.37
- + + 2 0.16
+ + + 2 3.89
- - - 3 9.50
+ - - 3 3.02
- + - 3 0.69
+ + - 3 10.30
- - + 3 3.75
+ - + 3 1.39
- + + 3 0.28
+ + + 3 3.11
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Table 3: The bias of the estimates from the two-stage polytomous model using the EM algorithm
with 105 randomly simulated samples. T5 and T6 represent the two additional binary tumor
characteristics simulated other than ER, PR, HER2 and grade in the six tumor characteristics
setting.

Sample Size ER PR HER2 Grade T5 T6
Four tumor characteristics

25,000 −2× 10−3 1× 10−3 1× 10−3 0.00
50,000 0.00 0.00 0.00 0.00
100,000 0.00 0.00 0.00 0.00

Six tumor characteristics
25,000 0.00 −2× 10−3 −4× 10−3 −1× 10−3 0.00 0.00
50,000 0.00 0.00 0.00 0.00 0.00 0.00
100,000 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Sample size of four tumor characteristics in Polish Breast Cancer Study

ER PR HER2 Grade
Positive 1,316 1,056 1,246 Grade 1 356
Negative 594 847 254 Grade 2 968
Missing 168 157 578 Grade 3 554

Missing 200
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Fig. 1: The log of computing time(s) for 1,000 SNPs. The computation time for MTOP, FTOP,
standard logistic regression, the two-stage model with only complete data and polytomous model
were estimated using 1, 000 random samples. In the first row, four tumor markers were included
in the analysis. Three binary tumor markers and one ordinal tumor marker defined 24 cancer
subtypes. In the second row, two extra binary tumor markers were included in the analysis. The
six tumor markers defined 96 subtypes. Around 77% cases would be incomplete.
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Fig. 2: Global association test power simulations using MTOP, FTOP, standard logistic regres-
sion, FTOP with only complete data and polytomous model with 5,000 subjects. For the figure
in the first row, four tumor markers were included in the analysis. Three binary tumor markers
and one ordinal tumor marker defined 24 cancer subtypes. Around 70% cases were incomplete.
For the three figures in the second row, two extra binary tumor markers were included in the
analysis. The six tumor markers defined 96 subtypes. Around 77% cases were incomplete. We
generated 2×105 random simulation replicates. The power was estimated by controlling the type
I error α < 5.0 × 10−8. The power for FTOP with complete data and polytomous model were
almost 0.
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Fig. 3: Global heterogeneity test power simulations result using FTOP, MTOP, and FTOP with
only complete data. For the two figures in the first row, four tumor markers were included
in the analysis. Three binary tumor markers and one ordinal tumor marker defined 24 cancer
subtypes. Around 70% cases would be incomplete. For the two figures in the second row, two extra
binary tumor markers were included in the analysis. The six tumor markers defined 96 subtypes.
Around 77% cases would be incomplete. The total sample size was 25,000, 50,000 and 100,000.
We generated 2× 105 random simulation replicates. The power was estimated by controlling the
type I error α < 5.0× 10−8. The power for FTOP with complete data was almost 0.
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Fig. 4: Individual tumor marker heterogeneity test power simulation results using FTOP with all
the markers, polytomous model with only ER. Four tumor markers were included to generate the
datasets. Three binary tumor markers and one ordinal tumor marker defined 24 cancer subtypes.
The missing rate for ER was 0.17, 0.30 and 0.50. The effect of ER was 0.08, and the effects of PR,
HER2 and grade were 0. The total sample size was 25,000, 50,000 and 100,000. We generated
2 × 105 independent simulations replicates. The power was estimated by controlling the type I
error α < 5.0× 10−8.
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Fig. 5: Type I error of individual tumor marker heterogeneity test for PR, HER2, and grade
using FTOP with all the four markers, the polytomous model with only one marker at a time.
Four tumor markers were included to generate the datasets. Three binary tumor marker and one
ordinal tumor marker defined 24 cancer subtypes. The missing rate for ER was 0.17, 0.30 and
0.50. The effect of ER was 0.08, and the effects of PR, HER2 and grade were 0. The total sample
size was 25,000, 50,000 and 100,000. We generated 2 × 105 independent simulations replicates.
The type I error was evaluated at 1.0×10−3 level given the number of simulation replicates. The
red dashed line showed the corrected type I error.
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Fig. 6: QQ plot of genome-wide association analysis with PBCS using MTOP, FTOP, standard
logistic regression, the polytomous model. MTOP and FTOP used additive structure. MTOP
assumed baseline and ER effects as fixed effects, and all the other effects were assumed as random
effects. PBCS had 2,078 invasive breast cancer and 2,219 controls. In total, 7,017,694 SNPs on
22 auto chromosomes with MAF more than 5% were included in the analysis. ER, PR, HER2,
and grade were used to define breast cancer subtypes.

Fig. 7: Manhattan plot and QQ plot of genome-wide association analysis with PBCS using MTOP
with additive structure. The baseline effect, ER and grade effects were modeled as fixed effects.
PBCS had 2,078 invasive breast cancer cases and 2,219 controls. In total, 7,017,694 SNPs on 22
auto chromosomes with MAF more than 5% were included in the analysis. ER, PR, HER2, and
grade were used to define breast cancer subtypes.
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Fig. 8: Manhattan plot and QQ plot of genome-wide association analysis with PBCS using MTOP
with pairwise interactions. Baseline effect and ER effect were modeled as fixed effects. All the
other effects were modeled as random effects. PBCS had 2,078 invasive breast cancer cases and
2,219 controls. In total, 7,017,694 SNPs on 22 auto chromosomes with MAF more than 5% were
included in the analysis. ER, PR, HER2, and grade were used to define breast cancer subtypes.

Fig. 9: Manhattan plot and QQ plot of genome-wide association analysis with PBCS using FTOP
with pairwise interactions. PBCS has 2,078 invasive breast cancer cases and 2,219 controls. In
total, 7,017,694 SNPs on 22 auto chromosomes with MAF more than 5% were included in the
analysis. ER, PR, HER2, and grade were used to define breast cancer subtypes.


