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2 H. ZHANG AND OTHERS
1. GENERALIZE THE TWO-STAGE MODEL TO MULTIVARIATE

We define I, as a k x k identity matrix, and 1, as a ¢ x 1 unit vector. Let G = (Gy,...,Gy)7, and
X = (Xy,...,Xn)7. Let ny,p be the regression coefficient of the mth subtype with pth covariate.

(c)

)T, where m,” represents M subtypes first stage parameters of the pth

Let 1y = (p- -1t
covariate. Here we grouped the first stage parameters by covariates, and this notation could be
convenient for introducing different second stage design matrices for multiple covariates. Z,, is
the second stage design matrix of pth other covariate linking the first stage regression coefficients
nl(,c) and corresponding second stage parameters A, for pth other covariate, where n,(f) =ZpAp.
Let A = (AT,...,A5)T and n© = {ngc)T, . ,’r/gf)T}T , where A and n(®are the second stage
and first stage parameters for all the P other covariates. Let Zgg) = @g’zlzp, where @5:12,, isa
block diagonal matrix with Z; to Zp as the diagonal block.

For the convenience of estimation procedure, we will use 1,, = (1, .-, 7mp)’ to represent
the P covariates first stage parameters of mth subtype. Let n = (nT,...,n%,)T, where n represent
the first stage parameters for the P other covariates grouped by subtypes, and 7 is a reordering of
(). Let Zx = {Zg? }x, where 7 is reordering the row of the design matrix to group the first-stage
parameters by subtypes, thus n = ZxA. We don’t perform any second stage decomposition on
the regression coefficients of intercepts, since making assumption on the prevalence of different
cancer subtypes could potentially yield bias, which means Z; = I,;. The second stage parameters
are always grouped by covariates.

To combine the notations of the coefficients of genotype G and other covariates X, we define
dy = (Bm,mL)T, where d,,, represent the first stage parameters of both G and X for the mth
subtype, and let d = (d7,...,d%,)T and & = (87, AT)T, where § represent the second stage
parameters of both G and X. Let Z = {Z¢g ® Zgz)},r, then we have d = Zd, where the second

stage design matrix Z links the first stage regression coefficients to the second stage parameters

for all of the covariates.
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2. TWO-STAGE MODEL EM ALGORITHM DERIVATION

Let Z = [Z:T,...,Z3T]T, where we split the second stage design matrix by rows into M different
matrices with Z7, as the 1 + (m — 1) x P to m x P rows of Z. Since d = (d¥,...,d%,)" and

d = ZJ (demonstrated in Supplementary Section 1), then d,,, = Z%,8 and Z, links the first stage
parameters of the mth subtypes d,, to the second stage parameters §. To avoid notation abuse,
we will use Z,, to represent Z;, through the Supplementary sections.

Let Yi,, = I(D; = m) denote whether the ith subject has subtype m and T;, be the observed
tumor characteristics status of the ith subject. Given the observed tumor characteristics, the
possible subtypes for subject ¢ will be a limited subset of all possible tumor subtypes, which
can be denoted as Vi, = {Yim : Yimthat is consistent with T;,}. Given C = (G,X), let C =
(CT,...,CT)T, where C; is a (P + 1) x 1 covariates vector for the ith subject. We assume
that (Yi1, Yia, . .., Yin, CT) are all observed and independently and identically distributed (i.i.d.)

distributed. Then the complete data log likelihood log L is

N M M
logL =Y |> ¥;;Cl'Z;6 —log {1+ > exp(C!Znd)}| . (2.1)
i=1 | j=1 m=1

In the vth iteration of the EM algorithm E step, we take the expectation of the latent variables
(Yi1,Yio,...,Yiar) given the observation tumor characteristics T,:

E step:

Pr(Y: L s() I(Y. .
YE = E(Yin|Ci, Tio; 80)) = L Fim|Cii 0 )Xo € Vio)
ZYivneyio P?"(Y;m = 1|Ci; 6(v))

where Y2 is the probability of the ith person to be mth subtype given his observed tumor char-
acteristics, genotype and other covariates. I(Y;,, € );,) denote whether the mth subtype for the
ith subject belong to the subsets of possible subtypes given the observed tumor characteristics.
We defined the complete data log likelihood with expectation to the observed tumor character-

istics as A(8]6")) = Eyp, 50 (log L). In the M step, we get the updates of § by maximizing
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A(8)6™)) , 6+ = arg maxs A(6]6)), where

N

M
A@I6™)y =>" Zy.§cfzj—1og{1+Zexp(cfzma)} : (2.2)

i=1 | j=1 m=1

The M step could be solved with weighted least square interaction algorithm. Let YE =

(YE ..., YE )T and YE = {(YiE)T, ..., (YE)TYT By taking derivatives of A(d]6(")), we have

) n L ZTC;exp(CTZo
Jj=1

a gt 1+2 _,exp(CTZ,,8) |’

and

_9A@88"Y) _ i [ oL, Z] C; exp(CTZ48)CT Zs
0608" =1 1+32M  exp(CrZ,,9)
{Z zl'c, eXp(CTZk(S} {Zz 1exp(CT2,6)ClZ,}

1+ Zm ,exp(Cr'Z,,6) 1+ Zm ,exp(CT'Z,,6) 24
By writing the Equation 2.3 and 2.4 into matrix form, we have :
aA(gL;sW) =Z"C(Y" - P), (2.5)
and
agg‘;‘;ﬁ))) =7TCcl,wCy,Z, (2.6)

, where Cj; = Iy ® C, and the weighted matrix W = D — AAT, with D = diag(P — Ps),
P = E(Y|C;6), Pmis = E(Y|C,T,;8), and A = D(1,; ® Iy). During the ¢th iteration of the
weighted Least square, let Y*® = WO (YE — P®)) 4 C,Z6", where P and W uses the
same definition as P and W evaluated at the 6. The weighted least square updates would be
st — (ZTCT WO CZ)'ZTCT Y | As t — oo, the weighted least square interaction

converged to ) ©

3. VARIANCE COMPONENT SCORE STATISTICS QQ,2 DERIVATION

Given the mixed effect two-stage model 8 = Zi0¢ + Z,u, where we decompose the first stage

regression parameters of genotype into fixed effect 6 and random effect u. Z¢ and Z, are the



A mized-model approach for testing of genetic associations 5

corresponding design matrix for @ and u. Let 7 = (87 ,AT)T and Z, = {Z; & (Gaf;lz(p))}ﬂ,
where T represents the vector of second stage fixed effects and Z. is the corresponding second
stage design matrix. Then let the design matrix Z = [Z,,Z,], where Z is the second stage
design matrix for all of the covariates. Following the designation of Z,, in Appendix A, we have
Z.y = |Zyr, L. Given the assumption that u follows an arbitrary distribution F with mean 0

and variance 2. The likelihood of the mixed effect two-stage model L(7,0?) would be,

L(t,0%) = /exp{l(r,u)}dF(u; o?), (3.7)

I(T,u) = Z

(3

M M
( YijCZT(Zm.,.T + Zmru) — log {1 + Z exp {CZT(Zm.,.T + Zmru)}). (3.8)
Jj=1 m=1

By taking a two-term Taylor expansion,

ol(T,0)

2
eXp{l(T,ll)} _ eXpl(T,O) {1 + Tu + %uT{al(Tyo) 8[(7’,0) 0 l(T70

ou ouT ouu”

) Ju+ e}, (3.9)

where the error € has the third and higher order terms of u. By writing the likelihood in Equa-
tion 3.7 as L(7,0?) = Elexp{l(7,u)}] and then take the log, then log-likelihood of the mixed

effect two-stage model log L(7,0?) would be,

b 1, 0l(r,0)di(T,0) 8°I(r,0)
log L(T,0°) = 1(7,0) + 2”{ ou oul Ouu”

}a? + o(a?). (3.10)

Under the null hypothesis Hy : 02 = 0, 7 is the MLE of 7. Following similar derivation as

Equation 2.3 and 2.4, we have Uy, () = % =7ZI'GY (Y-P,)and _Puro) I., whereP, =

OuuT

E(Y|X;7) and I = Low — 12 1710,y with Iy, = ZT G, W, G\ Z,, 1 = ZLCL,W,CZ, and
j — IZT = ZZCﬂWrG MmZ,. The weighted matrix W, has the same definition as the one used
for Equation 2.6 , but evaluated under the null hypothesis Hy : 02 = 0. By taking derivatives of

log L(T,0?%) with respect to o2, the efficient score U, (7) would be,

Uy () = %{(Y -P)'GNZ,ZT G (Y - P,) —tr(L))}. (3.11)
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By dropping the second term tr(ir), we only use the first term as the variance component score
statistics,

Qo= (Y -P)'GyZ,Z'GT, (Y - P,). (3.12)

Qo> follows a mixture of chi-square distributions Y77, p;x7;, where x7, ii.d. follows x} and

(p1,...,ps) are the eigenvalues of I.. Proof is as following, Since the the efficient score of u under

the null hypothesis Hy : 02 = 0 is Uy(#) = Z'GT,(Y — P,) , then Uu(+) % N(0,1,). Let

the eigen decomposition of I, to be AT A, where I is a diagonal matrix whose entries are the
eigenvalues of I, and A is an orthogonal matrix whose columns are eigenvectors of I.. Q,2 can

be transformed as

Qo = Un(#) Un(#) = Un(#) 7Ty 2ATT AL 2UL(3), (3.13)

~_1 =1
where I, 2 = AT~ 2 AT and ' 2 is a diagonal matrix with entries as (\/%, cee \/%) Since Al 2Uy (7) A

N(0,1), where I, is an s x s identity matrix, then @,z follows a mixture of chi-square distribu-

. s 2
tions D5y piXia-

4. PROOF OF INDEPENDENCE BETWEEN (Jg, AND ()2

Let P = Eg,—0.,2=0(Y|X; ) be the mean of Y under the global null hypothesis Hy : 8y = 0,02 =
0. Let Ug,(A) = ZF G (Y — Py) be the efficient score of @, where Py = Fg,_g 52— (Y|X; A) .
Then we have Qq, = Up,(A)TT; 'Up,(A) and Q2 = U, (7)TU, (), where T = Igg — T4, IxaIne,
with Igg = ZEGT, WG\ Za, Inx = ZEXE, WX Zx, and Ing = 1%, = ZL X1, WG/ Zc.
The weighted matrix Wy has the same definition as in Equation 2.6, but evaluated under the null
hypothesis Hg : @ = 0. To prove the independence between Qg, and Q),2, it’s equivalent to prove

the independence between U, (A) and U, () by treating If as fixed. Through Taylor expansion,

Y - P~ (I-Py)(Y - P), (4.14)
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where Py = WXy Zx (ZE X1, WiZx X ;) 1 ZL X1, | T is the identity matrix. Similarly we have,
Y —P,~ (I-P,)(Y - P), (4.15)
where Py = W,CyZ,(ZLCT, WZ.C))"1ZLCY,. Then we have ZLCT, W, (I - P,)T = 0.
Since C = [G,X] and Z, = {Z¢ D (@Zf;lz@))}ﬂ, then CjsZ, can be written as [G s Zs, XprZ7].
Because ZLCY, W (I — P2)T = 0, then
ZIGIL,W.I1I-Py)T =0,
23X, W, (I-Py)" =o0. (4.16)
Through central limit theorem,

Ue, N)T,U.(#)T)T % N(0, %), (4.17)
where ¥ are the covariance matrix. To prove the independence between Ug, () and U, (F), we
only need to prove cov{Usg,(X), U, ()} = 0. Hence

cov{Ug,;(N), Uu(7)} = cov{ZF G}, (I = P1)(Y — P), ZI' GT,(I1- P,)(Y — P)}
=Z{ G, I-P)W,I1-P2)" Gy Z,
=P, W.(I-Py)TGyZ,

—0. (4.18)

5. COMPUTATION TIME SIMULATIONS

We compared the computation time of analyzing 1,000 SNPs for five different methods: FTOP,
MTOP, standard logistic regression, FTOP with only complete data and polytomous logistic re-
gression. The methods were split into two groups: 1. Methods working on all the data consisted
of MTOP, FTOP, standard logistic regression. 2. Methods working on complete data consisted
of FTOP with complete data and polytomous model. To have a fair comparison with the polyto-

mous model, FTOP with complete data was implemented using the Wald test so that the MLE



8 H. ZHANG AND OTHERS

estimation time is included. We generated the data based on the four and six tumor character-
istics setting described in Section 3.2.1 in the main manuscript. The total sample size was set
to be 5,000, 25,000, 50,000 and 100,000. The cases with complete data were respectively around
30% and 23% for the four and six tumor characteristics settings. We performed 1,000 indepen-
dent simulations to calculate the averaged processing time for each method. All analyses were
implemented in R version 3.6.0. MTOP, FTOP were implemented in TOP package version 1.0.8.
Standard logistic regression was carried out in stats package version 3.6.1. (R Core Team, 2019).
Polytomous model used nnet package 7.3.12 (Venables and Ripley, 2013). The polytomous model
in R was implemented in two steps. The first step used multinom function to fit the model. The
second step used vcov function to get the covariance matrix of the estimates. Around 30% com-
putation time was in the second step which could be potentially due to inefficient implementation
of vcov function in R.

Supplementary Figure 1 presents the log of averaged computation times (s) for 1000 SNPs.
Standard logistic regression had the smallest computation time among all the methods since
standard logistic regression didn’t include any tumor marker data in the analysis. FTOP was
significantly faster compared to MTOP, since FTOP only needed to estimate parameters for all
the covariates under the null hypothesis for one time. FTOP was 32-71 fold computationally
faster than MTOP under different simulation settings. FTOP with only complete data was 2-14
fold computationally faster than the polytomous model under different simulation settings. More
discussion about the computation complexity of MTOP and FTOP could be found in Section 5

of the main manuscript.

6. BIAS EVALUATION

We conducted simulations to evaluate whether removing the rare subtypes with less than 10 cases

would bias the estimates. Similar setting as Section 3 in the main manuscript, we simulated the
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data mimicking the PBCS. Under the four tumor characteristics setting, the effect sizes were
0.08, 0.08, 0.05, 0.05, 0.05 for baseline effect, ER, PR, HER2, and grade main effect, respectively.
Under the six tumor characteristics setting, two additional tumor characteristics were simulated
with an effect as 0.05. For each simulation, we removed subtypes with less than 10 cases, just as
in our previous simulations and real data analysis. We generated 10,000 simulation replicates to
evaluate the bias of the two-stage model estimate after removing the rare subtypes.

As Supplementary Table 3 shows, the estimates were unbiased in both four and six tumor
characteristics settings. Since removing the rare subtypes didn’t involve the genetic effects, the

estimates were unbiased.

7. POWER SIMULATION WITH 5,000 SUBJECTS

Additional simulations for global association tests with 5,000 subjects were also considered for a
larger effect size. We set 3,, as 0.25 for the scenario I, when there was no heterogeneity between
tumor markers. The case-case parameter for ER (951)) as 0.25 for scenario II, when heterogeneity
was only driven by ER. The case-case parameter for ER (9%1)) as 0.25, and the other case-
case parameters were set to follow a normal distribution with mean 0 and variance 4.0 x 1074,
when there were multiple tumor markers driving the heterogeneity. Similar to the low effect
size simulations, standard logistic regression had the highest power when there presented no
heterogeneity across subtypes.similar to the lower effect size simulations, MTOP had the highest
power when there were heterogeneous associations (Supplementary Figure 2). The power of FTOP

with only complete data and polytomous model were almost 0 under this case.
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Table 1: The correlations of ER, PR, HER2, and grade

Correlation ER PR HER2 Grade

ER 1 0.61 -0.16 -0.39
PR 0.61 1 -0.17  -0.32
HER2 -0.16  -0.17 1 0.20
Grade -0.39 -0.32 0.20 1

Table 2: The frequencies of the joint distribution of ER (positive vs. negative), PR (positive vs.
negative), HER2(positive vs. negative), and grade (ordinal 1, 2, 3). Within the table, ”-” and
”+” represent negative and positive, respectively.

ER PR HER2 Grade Frequency (%)
- - 1 0.38
2.42
0.21
15.04
0.09
0.24
0.02
0.87
2.64
5.87
0.71
32.74
1.31
1.37
0.16
3.89
9.50
3.02
0.69
10.30
3.75
1.39
0.28
3.11

4 4
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Table 3: The bias of the estimates from the two-stage polytomous model using the EM algorithm
with 10° randomly simulated samples. T5 and T6 represent the two additional binary tumor
characteristics simulated other than ER, PR, HER2 and grade in the six tumor characteristics
setting.

Sample Size ER PR HER2 Grade Th T6
Four tumor characteristics
25,000 —2x107% 1x1073 1x1073 0.00
50,000 0.00 0.00 0.00 0.00
100,000 0.00 0.00 0.00 0.00
Six tumor characteristics
25,000 0.00 —2x107% —4x1073 —1x10"% 0.00 0.00
50,000 0.00 0.00 0.00 0.00 0.00 0.00
100,000 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Sample size of four tumor characteristics in Polish Breast Cancer Study

ER PR HER2 Grade
Positive 1,316 1,056 1,246 Gradel 356
Negative 594 847 254  Grade 2 968
Missing 168 157 578  Grade3 554
Missing 200
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Four tumor markers included in the analysis
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Fig. 1: The log of computing time(s) for 1,000 SNPs. The computation time for MTOP, FTOP,
standard logistic regression, the two-stage model with only complete data and polytomous model
were estimated using 1,000 random samples. In the first row, four tumor markers were included
in the analysis. Three binary tumor markers and one ordinal tumor marker defined 24 cancer
subtypes. In the second row, two extra binary tumor markers were included in the analysis. The
six tumor markers defined 96 subtypes. Around 77% cases would be incomplete.
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Four tumor markers included in the analysis

No Heterogeneity One Marker Drove the Heterogeneity Multiple Markers Drove the Heterogneity
Heterogenous pattern

Six tumor markers included in the analysis

‘ —— [
No Heterogeneity One Marker Drove the Heterogeneity Multiple Markers Drove the Heterogneity
Heterogeneity pattern
Method . FTOP MTOP Stanadrd logistic regression Two-stage model with only complete data . Polytomous model

Fig. 2: Global association test power simulations using MTOP, FTOP, standard logistic regres-
sion, FTOP with only complete data and polytomous model with 5,000 subjects. For the figure
in the first row, four tumor markers were included in the analysis. Three binary tumor markers
and one ordinal tumor marker defined 24 cancer subtypes. Around 70% cases were incomplete.
For the three figures in the second row, two extra binary tumor markers were included in the
analysis. The six tumor markers defined 96 subtypes. Around 77% cases were incomplete. We
generated 2 x 10° random simulation replicates. The power was estimated by controlling the type
I error a < 5.0 x 1078, The power for FTOP with complete data and polytomous model were
almost 0.
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Four tumor markers included in the analysis

One Marker Drove the Heterogeneity Multiple Markers Drove the Heterogneity
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Method [l FTop [l MTOP ~ FTOP with only complete data

Fig. 3: Global heterogeneity test power simulations result using FTOP, MTOP, and FTOP with
only complete data. For the two figures in the first row, four tumor markers were included
in the analysis. Three binary tumor markers and one ordinal tumor marker defined 24 cancer
subtypes. Around 70% cases would be incomplete. For the two figures in the second row, two extra
binary tumor markers were included in the analysis. The six tumor markers defined 96 subtypes.
Around 77% cases would be incomplete. The total sample size was 25,000, 50,000 and 100,000.
We generated 2 x 10° random simulation replicates. The power was estimated by controlling the
type I error a < 5.0 x 1078, The power for FTOP with complete data was almost 0.
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Individual tumor marker heterogeneity test

Missing rate of ER = 0.17 Missing rate of ER = 0.3 Missing rate of ER = 0.5

03 03
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| J 00 I— | 00 —— ‘

25000 50000 1e+05 25000 50000 1e+05 25000 50000 1e+05
Sample size Sample size Sample size
Method [l FTOP with all markers [ Polytomous model only uses ER

Fig. 4: Individual tumor marker heterogeneity test power simulation results using FTOP with all
the markers, polytomous model with only ER. Four tumor markers were included to generate the
datasets. Three binary tumor markers and one ordinal tumor marker defined 24 cancer subtypes.
The missing rate for ER was 0.17, 0.30 and 0.50. The effect of ER was 0.08, and the effects of PR,
HER2 and grade were 0. The total sample size was 25,000, 50,000 and 100,000. We generated
2 x 10° independent simulations replicates. The power was estimated by controlling the type I
error a < 5.0 x 1078,
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Fig. 5: Type I error of individual tumor marker heterogeneity test for PR, HER2, and grade
using FTOP with all the four markers, the polytomous model with only one marker at a time.
Four tumor markers were included to generate the datasets. Three binary tumor marker and one
ordinal tumor marker defined 24 cancer subtypes. The missing rate for ER was 0.17, 0.30 and
0.50. The effect of ER was 0.08, and the effects of PR, HER2 and grade were 0. The total sample
size was 25,000, 50,000 and 100,000. We generated 2 x 10° independent simulations replicates.
The type I error was evaluated at 1.0 x 10~3 level given the number of simulation replicates. The
red dashed line showed the corrected type I error.
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a.) MTOP global test for association b.) FTOP global test for association
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Fig. 6: QQ plot of genome-wide association analysis with PBCS using MTOP, FTOP, standard
logistic regression, the polytomous model. MTOP and FTOP used additive structure. MTOP
assumed baseline and ER effects as fixed effects, and all the other effects were assumed as random
effects. PBCS had 2,078 invasive breast cancer and 2,219 controls. In total, 7,017,694 SNPs on
22 auto chromosomes with MAF more than 5% were included in the analysis. ER, PR, HER2,
and grade were used to define breast cancer subtypes.
Global test for association used MTOP. Baseline effect, ER and grade effects were modelled as fixed effects.
12 - All other terms were modelled as random effects.
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Fig. 7: Manhattan plot and QQ plot of genome-wide association analysis with PBCS using MTOP
with additive structure. The baseline effect, ER and grade effects were modeled as fixed effects.
PBCS had 2,078 invasive breast cancer cases and 2,219 controls. In total, 7,017,694 SNPs on 22
auto chromosomes with MAF more than 5% were included in the analysis. ER, PR, HER2, and
grade were used to define breast cancer subtypes.
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Global test for association used MTOP with pairwise interactions. Baseline effect, ER were modelled as fixed
effects. All other terms were modelled as random effects.
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Fig. 8: Manhattan plot and QQ plot of genome-wide association analysis with PBCS using MTOP
with pairwise interactions. Baseline effect and ER, effect were modeled as fixed effects. All the
other effects were modeled as random effects. PBCS had 2,078 invasive breast cancer cases and
2,219 controls. In total, 7,017,694 SNPs on 22 auto chromosomes with MAF more than 5% were
included in the analysis. ER, PR, HER2, and grade were used to define breast cancer subtypes.

Global test for association used FTOP with pairwise interactions.
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Fig. 9: Manhattan plot and QQ plot of genome-wide association analysis with PBCS using FTOP
with pairwise interactions. PBCS has 2,078 invasive breast cancer cases and 2,219 controls. In
total, 7,017,694 SNPs on 22 auto chromosomes with MAF more than 5% were included in the
analysis. ER, PR, HER2, and grade were used to define breast cancer subtypes.




