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I. Theoretical modelling 

We first show how to parameterize a 3-port nonreciprocal element and obtain its scattering-

wave model. The 3-port nonreciprocal elements, shown in Fig. 1a and b of the main text, are 

modelled as lossless 3-port scatterers with C3 symmetry, whose non-reciprocity results from 

Zeeman-like splitting coming from an external time-odd bias1–3. Using temporal coupled mode 

theory2, their scattering is represented by an asymmetrical scattering matrix S0, given by    

,   (S1)  

where 𝐼  is a 3 by 3 identity matrix, 𝜅 = $2/3 , and θ=2π/3, while 𝜔)  and 𝜔*  represent the 

eigenvalues of the right-handed and left-handed eigenmodes of the cavity, respectively. Zeeman-

like splitting assumes that these two eigenvalues originate from a linear lifting of the two 

degenerate modes of the cavity by an external magnetic bias, originally at resonant frequency 𝜔+.  

𝛾) and 𝛾* are the inverse of their corresponding decay times to the three ports connected to the 

outer links, namely waveguides. Without loss, the scattering matrix S0 is unitary. Due to C3 

symmetry, we obtain the equality 𝛾) = 𝛾* = 𝛾 .  In the above expression, despite being an 

important parameter for the cavity, 𝛾  just introduces a scaling factor to all the frequency 

parameters (𝜔, 𝜔) and 𝜔*). In order to show a general parameterization, we transform 𝜔) and 

𝜔* into two angle variables ξ and η, by standard normalizations and arctangent transformations: 
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ξ and η are defined in (-π/2, π/2) with a periodicity of π, and characterize the deviation of the 

angular frequency 𝜔  from the right- and left-handed eigenvalues 𝜔)  and 𝜔* , respectively. 

Specifically, the condition ξ = η corresponds to the reciprocal case, with 𝜔) = 𝜔*, while ξ = -η 

represents the operation at the resonant frequency 	𝜔 = 𝜔+, with the largest non-reciprocity2. With 

the parameters (ξ, η), the scattering matrix in Eq. (S1) is rewritten as: 

  . (S3) 

As shown in Eq. (S3), the individual reflection coefficient |𝑅| of the nonreciprocal scatterers is a 

function of ξ and η, expressed as |𝑅| = 0−1 + 4
5
cos 𝜉 𝑒;< + 4

5
cos 𝜂 𝑒;>0.  

Having established the general scattering-wave model of C3 symmetric unitary 3-port 

scatterers, we now derive the eigenequation Eq. (1) in the main text, which determines the bulk 

band structures. We give the detailed schematic of the unit cell of the periodic nonreciprocal 

network and signal labelling convention in Extended Data Fig. 1. Here, 𝑆@ and 𝑆A are the scattering 

matrices of the two nonreciprocal elements A and B, respectively, governed by the 

parameterization Eq. (S3). In the following derivations, elements A and B are the same, while the 

total phase delay between two nonreciprocal elements is φ. For a full description, in a unit cell of 

a honeycomb lattice with index n, the scattering waves are labelled and arranged into three vectors: 

|𝑎C >, |𝑏C >, and	|𝑐C >, which all contain six complex wave amplitudes and represent scattering 

waves amplitudes propagating out, in and between the nonreciprocal elements, respectively. Based 

on the scattering matrices of nonreciprocal element A and B, we relate |𝑎C > with |𝑐C > by a 

unitary matrix 𝑆HIHJHCKL , expressed as 
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 , (S4) 

in which  𝑃+ = 𝑈O4𝑈O5𝑈PQ𝑈QR𝑰R, 𝑰R is a 6 by 6 identity matrix, and 𝑈;T  is a special permutation 

matrix which leads the interchange between i th row and j th rows of a matrix A when A is pre-

multiplied by 𝑈;T . Therefore, 𝑃+ is also a permutation matrix, hence unitary. Here, 𝑆HIHJHCKL  is a 

function of (ξ, η), but not of the lattice index n, due to periodicity. With Bloch theory, Eq. (S4) can 

be written in momentum space as 𝑆HIHJHCKL|𝑐(𝒌) >=	 |𝑎(𝒌) >.  

To form the Bloch eigenproblem, we use the phase delay relation induced by the links between 

the nonreciprocal elements, and form a relation between |𝑎(𝒌) >	and	|𝑐(𝒌) >,  

 ,  (S5) 

where	𝛬(𝒌) = 𝑑𝑖𝑎𝑔(𝑒;𝒌∙𝜶𝟐 , 𝑒;𝒌∙𝜶𝟏, 1,1, 𝑒*;𝒌∙𝜶𝟐 , 𝑒*;𝒌∙𝜶𝟏) is also unitary. Substituting Eq. (S5) into 

Eq. (S4), we finally arrive the eigenequation Eq. (1) of the main text 

 ,  (S6) 

where 𝑆(𝒌) = 𝛬*O(𝒌)	𝑆HIHJHCKL  is unitary, due to the unitarity of 𝑆HIHJHCKL	  and 𝛬(𝒌), which 

guarantees real-valued 𝜑(𝒌), as 𝑒*;a(𝒌) is the eigenvalue of 𝑆(𝒌). Explicitly, the formula for 𝑆(𝒌) 

is the matrix product: 

 ,                   (S7) 
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where 𝑅 = −1 + 4
5
cos 𝜉 𝑒;< + 4

5
cos 𝜂 𝑒;> , 𝑇 = 4

5
(𝑒*;

c
de cos 𝜉 𝑒;< + 𝑒;

c
decos 𝜂 𝑒;>) , and 𝐷 =

4
5
(𝑒;

c
de cos 𝜉 𝑒;< + 𝑒*;

c
decos 𝜂 𝑒;>). 

 

II. Simulation method of arbitrary finite nonreciprocal networks 

Consider an arbitrary network with 𝑁h  input/output ports and consisting of 𝑁HIHJHCKL  

nonreciprocal elements and links connecting them. We stress that this arbitrary network does not 

have to be uniform. In this part, we elaborate the simulation method for arbitrary finite 

nonreciprocal networks based on the scattering matrix method. We will show that this method can 

provide: the scattering matrix SNr regarding these Nr ports, and the field map across the network 

upon known excitations at the Nr ports. 

We first introduce a new building block (Fig. S1a), composed of one 3-port nonreciprocal 

element and three phase links. For a building block with index n, we describe its wave scattering 

property by a unitary scattering matrix 𝑆C, expressed as 

          ,                                                           (S8) 

where 	|𝑑C >≡ [𝑑OC, 𝑑4C, 𝑑5C] and 	|𝑒C >≡ [𝑒OC, 𝑒4C, 𝑒5C] represent wave amplitudes, defined at 

the three ports, in/out the building block, respectively. Therefore, there are totally 𝑁HIHJHCKL  

building blocks inducing	𝑁 = 3𝑁HIHJHCKL  corresponding ports in the nonreciprocal network. In the 

following, we focus on the wave amplitude and scattering matrix regarding these 𝑁 building-block 

ports. Following this way, the whole network is described by a unitary scattering matrix 𝑆l =

𝑑𝑖𝑎𝑔[𝑆O, … , 𝑆lnonpnqrs], expressed as 

 . (S9) 

n n nS d e=

N N N
S d e=
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Fig. S1|Building block and port labelling used when simulating arbitrarily-shaped finite 
nonreciprocal networks. a, The individual non-reciprocal element is described by its scattering 
matrix 𝑆. The purple and pink arrows represent input and output wave amplitudes, denoted	|𝑑 > 
and |𝑒 >, respectively. b, We classify each inner and outer ports of the finite networks as either 
link, full-reflection, or input/output types, and store this information in a connectivity matrix. The 
panel shows an example based on the Switzerland-shaped network used in the main text. 

 

To push forward the analysis, we label all 𝑁 building-block ports as either link, full-reflection, 

or input/output types, as shown in Fig. S1b for the Switzerland-shaped network used in the main 

text. To be more specific, link-type ports are shared by two adjacent building blocks, thus with 

connection conditions. To extract the scattering matrix 𝑆h for the 𝑁h input/outer ports, at which 

the input and output wave amplitudes are 	|𝑑 >h  and 	|𝑒 >h , respectively, we label the other 

𝑁H = 𝑁 −𝑁h ports (full-reflection and link types) as eliminated ports, whose input and output 

wave amplitudes are still monitored, as 	|𝑑 >H  and	|𝑒 >H, respectively,  

 . (S10) 

With the above labels, 𝑆l  can be partitioned into blocks of 𝑆lh  𝑆lH, 𝑆Hh, and 𝑆hH  based on the 

dimensions of 	|𝑑 >h and 	|𝑑 >H, as  
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For such 𝑁H eliminated ports, apart from the scattering matrix in Eq. (S11), they are also subject 

to either connection conditions or full-reflection conditions, forming another equation: 

 . (S12) 

Combing Eq. (S9) with Eq. (S12), we get the scattering matrix 𝑆h mapping 	|𝑑 >h to 	|𝑒 >h, as 

 . (S13) 

Having achieved the first goal of this method, namely getting the scattering matrix, we now 

derive the information about how wave propagate in the finite network under known excitations 

	|𝑑 >;CtuK  at the 𝑁h  input/outer ports. It is worth noting that Eq. (S9) and Eq. (S12) are 

independent, while Eq. (S13) is obtained from these two equations. We firstly combine Eq. (S12) 

and Eq. (S13) to an extended matrix equation involving 𝑆v, a matrix with the same dimension than 

the matrix 𝑆l, expressed as: 

 . (S14) 

We then perform the difference between Eq. (S14) and Eq. (S9), yielding 

  .                                                      (S15) 

When a nontrival solution of 	|𝑑 >l is required in Eq. (S15), we need to know the Kernel4 of 𝑆l −

𝑆v. This Kernel dimension must equal the number of input/output ports 𝑁h, as Eq. (S14) shares the 

redundancy information of 𝑁h dimensions with Eq. (S9). We then assume that a basis of the Kernel 

is 𝑉 = [𝑣O,⋯ , 𝑣lz], of 𝑁  by 𝑁h  size. It is worthy to note that for a known excitation of the 

input/output ports 	|𝑑 >;CtuK, the nontrivial solution	|𝑑 >l must be in the Kernel. Thus, we have 

 , (S16) 

where |𝑓 > is the expansion coefficient of 	|𝑑 >l in basis of V. In addition, as the solution 	|𝑑 >l 

contains the input amplitudes of all the ports, the input amplitudes of 𝑁h outer ports in	|𝑑 >l must 

e e e
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be the same with	|𝑑 >;CtuK. Following this idea, 𝑉 is then partitioned into blocks of 𝑉O (𝑁h by 𝑁h 

matrix) and 𝑉4 (𝑁 −𝑁h by 𝑁h matrix). We can determine |𝑓 > by the scattering matrix equation 

regarding 𝑁h outer ports, following 

 . (S17) 

Substituting Eq. (S17) into Eq. (S16), we finally get the wave propagation solution  |𝑑 >l as  

 . (S18) 

 

 
Fig. S2|Comparison between 2-port transport properties and the ribbon band structures, 
obtained from the semi-analytical model. We plot the transmission between Geneva and Davos 
through the Switzerland-shaped network as a function of φ, and compare it with the ribbon band 
structure. We assume a uniform distribution for the phase delay φ. a, case of the anomalous phase 
in Fig. 1c. b, case of the Chern phase shown in Fig. 1c. When φ falls in a topological band gap, 
transmission is mediated by the edge modes and reach high values. Conversely, if φ belongs to a 
trivial band gap, transmission is impeded. Finally, if φ falls in a bulk band, the transmission 
fluctuates with φ, depending on the excited bulk modal superposition interference at the output 
port. 

1
1 input

f V d-=

1
1N input

d VV d-=



 9 

 
Fig. S3|Comparison between 2-port transport properties and the ribbon band structures, 
obtained from experimental measurements. The considered scenario is the same as Fig. S2. a, 
Case of the anomalous phase. b, Case of the Chern phase. The behaviour is consistent with the 
predictions of Fig. S2, despite small deviations that can be attributed to the slight breaking of C3 
symmetry and unitarity in the experiment. 
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III. Examples of disorder realisations for phase-link delays and scattering matrices 

 

Fig. S4|Effect of phase delay disorder on the anomalous (a) and Chern (b) edge mode 
transmission. We consider the same hexagonal network as in Fig. 3a (left) of the main text, but 
now each phase link has a different delay. In both panels, the top row shows the numerically 
predicted field map, and the bottom row provides information about the considered particular 
disorder realization. The left column shows the perfectly ordered system, the middle column shows 
a realization of random phase delays with strength of fluctuations 𝛿a = 𝜋/4, and the last column 
is the fully disordered case, 𝛿a = 2𝜋. Only the anomalous edge mode in panel a survives full 
random phase disorder. 
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Fig. S5|Effect of scattering matrix disorder on the Chern edge mode transmission. We 
consider the same hexagonal network as in Fig. 3a (left) of the main text, but now each scatterer 
has a different scattering matrix. The left column shows the perfectly ordered system, the middle 
column shows a realization of random scattering disorder filling 50% of the Chern phase, and the 
right column shows a realization with 100% disorder, namely with scattering matrices anywhere 
inside the Chern phase. a, b, Repartition of the scattering matrices within the Chern phase (bottom 
right red triangle). The color map shows the corresponding reflection (panel a) and non-reciprocal 
isolation (panel b) values. c, Corresponding field maps, showing the sensitivity of Chern edge 
modes to scattering disorder. 
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Fig. S6|Effect of scattering matrix disorder on the anomalous edge mode transmission. Same 
as Fig. S5 but the study is performed for the anomalous phase (top left blue triangle). Unlike the 
Chern one, the anomalous edge mode transmission is very robust even for fully random scattering 
matrix disorder. 

 

IV. Discussion of the measured amplitudes of the scattering parameters in Extended 

Data Fig. 4 

As shown in Extended Data Fig. 4d, between Chern-phase network 1 (N1) and network 2 (N2), 

there are considerable differences from 3.5 GHz to 3.9 GHz for transmission from port 1 to port 2 

(S21, left), transmission from port 1 to port 3 (S31, mid), and reflection at port 2 (S22, right). 

These differences imply that Chern phases are not robust against strong perturbations of phase 

links. To be more specific, regarding N1, we see a high S21 and a low S31 denoting an edge mode 

from port 1 to port 2. Conversely, regarding N2, a low S21 and a high S31 imply a change of its 
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wave propagation path due to the perturbation of phase links in the bottom part. The high S22 

(around -1 dB) of N2 indicates a trivial band gap for the bottom part of N2.  

In Extended Data Fig. 4e, between anomalous-phase network 1 (N1) and network 2 (N2), in 

contrast to panel d, there are little differences of S parameter (S21, left; S31, mid; S22, right) 

between N1 and N2 under anomalous phases. It provides an additional evidence of the superior 

robustness of anomalous phases over Chern phases. 

 

V. Mapping of the honeycomb lattice to an oriented graph 

There exists a formal connection between a honeycomb lattice of circulators with bidirectional 

links and a Kagome network with oriented links. In the honeycomb circulator network, the 

scattering events occur at the non-ideal circulators through the scattering matrix S0, while no 

backscattering occurs along the non-reciprocal links. We can equivalently consider the circulators 

as perfect, with the wave scattering events occurring along the links. 

Such a mapping is displayed in Fig. S7 where we have highlighted the different paths of the 

transmitted waves with different colors (these paths are defined only for the perfect circulator 

case). The resulting network is a Kagome lattice with oriented links inherited from the circulators. 

The scattering parameters entering the 𝑆HIHJHCKL  matrices are now combined to enter three 2x2 

scattering matrices nodes S1, S2 and S3, thus preserving the six degrees of freedoms per unit cell 

that yield six bands. 

Importantly, this Kagome network is known to display trivial, Chern and anomalous phases5,6. 

In particular, it was shown that the existence of the anomalous phase is homotopically related to a 

critical symmetry point, called phase rotation symmetric point, where the bands are perfectly flat 

and equidistant in quasi-energy. Such remarkable points are reached when the scattering nodes S1, 
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S2 and S3 are perfect transmitters so that the Kagome network decomposes into isolated identical 

loops. One of such configurations consists of isolated hexagons, that corresponds to the green 

points of the phase diagram in Fig. 2c for the original honeycomb lattice of circulators. This 

unambiguously proves that the topological phase surrounding those special points is anomalous. 

For completeness, we provide the band gap map of the network together with the values of the 

homotopy invariant 𝑊� in Fig. S8. 

 

 

 

Fig. S7|Mapping of the honeycomb lattice to an oriented Kagome graph. 
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Fig. S8|Band gap map of the network. The white areas represent bulk bands. The blue areas 
represent band gaps with values of the homotopy invariant 𝑊𝜓 = 1, whereas red areas correspond 
to band gaps with a zero value of 𝑊𝜓. 𝑅 is the reflection coefficient of the individual circulators. 
 

 

VI. Robustness comparisons with other Chern phases 

Here, we further verify the superior transmission robustness of anomalous phase by extra 

comparisons with other Chern phases characterized by various types of band structures. Our extra 

study shows that even by working with Chern phases with less trivial band gaps or more edge 

states in the topological gaps, we cannot reach the same level of robustness than the anomalous 

phase. For easy reference, we note M the number of trivial band gaps of a band structure. 

 We firstly study the case of Chern phase with a single trivial band gap (𝑀=1), which is less 

than the number of trivial band gaps of the Chern phase shown in the main text (𝑀=2). In our 

network, such a phase cannot be directly obtained, because the matrix 𝑆(𝒌) satisfies the relation 

𝑃𝑆(𝒌)𝑃† = −𝑆(𝒌) , where 𝑃 = 𝑑𝑖𝑎𝑔(𝑰5×5,−𝑰5×5) . The relation implies that the bulk band 

structures have π-translation symmetry, forcing the gaps to close and open by pairs. This π-
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translation symmetry can be broken if we introduce an extra unitary 2-port reciprocal scatterer in 

the middle of the connecting links.  

 

Fig. S9|Effect of the number of trivial band gaps (noted M) on the robustness of the edge 
mode transmission to phase link disorder. a, Ribbon band structures. We compare the case of 
the anomalous phase (left), in which all band gaps exhibit edge modes, to the case of a Chern phase 
with a single trivial gap (M=1, center), which is the most favorable scenario for Chern. For a 
complete comparison, we also take the case M=3 (right). The case M=2 is already studied in the 
main text (Fig. 3c left). b, Transmission statistics (average, Q1 and Q3) for the three cases for 1000 
realizations of random disorder. 
 
 

Specifically, by setting the reflection of this extra scatterer to 0, we recover the previous 

network discussed in the main text. However, playing with the reflection level of this extra 

scatterer allows us to extend our parameter space and reach the cases where 𝑀  is even. We 

generate the cases 𝑀=0, 1, and 3 with their ribbon band structures shown in Fig. S9. The phase 

𝑀=0 is the anomalous phase, and 𝑀=2 is the Chern phase already reported in Fig. 2a in the main 
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text. Next, we perform a statistical transmission analysis on a finite network with 1000 different 

realizations of phase link disorder, with range up to 2π. Panel b shows the results. Clearly, even 

the 𝑀=1 case, despite having a small trivial band gap (its size is around π/6), is largely affected by 

the disorder. 𝑀=3 is worse than the case	𝑀=2 presented in the main text, as expected.  

 

 

Fig. S10|Effect of the number of Chern edge modes on the transmission robustness. a, Band 
structures. We compare three different Chern phases with one (left), two (center) and three edge 
modes (right) in the non-trivial gaps. b, Transmission averages for 1000 realizations of random 
phase disorder. As for transmission between two antennas in a multimode environment, the input 
power has to split over the various transmission channels which interfere at the output. Disorder 
creates random interferences between the different channels at the output, which is statistically 
detrimental to transmission. 
 

In addition, we considered the three cases shown in Fig. S10, whose band structures are 

characterized by Chern numbers with absolute values of 1, 2, and 3 respectively (to increase the 
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Chern numbers, we stacked several networks with Chern phases with 𝐶 = 1 together and coupled 

adjacent layers weakly with unitary directional couplers). The Chern gaps have, consequently, 1, 

2 and 3 edge modes per edge (the band structure is for a ribbon, as Fig. 2a in the main text, with 

edge modes at both top, in red, and bottom, in blue). Next, we consider the transmission averaged 

over 1000 realizations of phase link disorder for the three cases (panel b). We observe that an 

increase of the number of edge modes does not improve the transmission. This is actually expected: 

the input power has to split over the various available transmission channels. Each transmission 

channel will contribute to transport and undergo a different phase shift when disorder is imparted, 

before interfering at the output port. This interference is statistically detrimental to power 

transmission, a phenomenon known as multimode interference, as exploited for example in multi-

mode fiber optical sensors. 

Finally, we computed the average transmission for a fully-random phase-link disorder at each 

point of our phase diagram, i.e. for all possible tunings of the band structure (Fig. S11b). 

Intuitively, in the fully-random (2π strength) phase-link disorder, the value of the transmission 

depends on the ratio in amplitude between the bandwidths of all the bulk bands, the trivial gaps, 

and the gaps hosting chiral edge modes. In particular, by reducing the band widths, one increases 

the transmission, even for the Chern phase. 

Note that this mechanism is nonetheless more efficient for the anomalous phase than for the 

Chern phase. Indeed, the anomalous phases are related by a continuous deformation (that does not 

close a gap) to a phase-rotation symmetric point, where all the bulk bands are flat3. Owing to the 

topological nature of the Chern numbers and of the 𝑊� indices, the Chern phases in scattering 

networks cannot be continuously deformed to such a special point, otherwise the Chern numbers 

would be zero. Therefore, their band widths have a minimal finite value that always reduces the 
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transmission compared to the contribution of an edge mode. This favors the anomalous phases that 

can reach a perfect 𝑇=1 transmission even in the fully-random phase link disorder, by tuning the 

scattering parameters at the green points in Fig. S11a. 

Owing to this impossibility to flatten all the bulk bands, and of course to the existence of trivial 

gaps, it is thus clear that the optimized Chern phase - i.e. by fine tuning the scattering parameters 

to maximize the topological gaps and to minimize at the same time both the trivial gaps and the 

band widths- cannot reach the perfect transmission 𝑇=1 in the fully-random phase-link disorder 

configuration. 

This said, there is of course nothing that prevents a priori this optimized Chern phase to have 

a higher transmission than the worse fine-tuned 'anti-optimized' anomalous phase (i.e. with band 

widths as large as possible). The question is then: is this comparison, between the best optimized 

Chern phase and the worse 'anti-optimized' anomalous phase, representative of the average Chern 

and anomalous cases? 

Fig. S11b answers this question. In Fig. S11b, we find that the anomalous phases have a typical 

transmission much higher than the Chern ones, and that the average transmission (over scattering 

parameters of the phase diagram) of the anomalous regime is also mush higher than that of the 

Chern phase. We also find that there are very small regions where we can pick parameters so that 

the transmission of the anomalous phase is smaller than the highest possible transmission of the 

Chern phases. However, such regions only appear close to the transition lines where the gaps are 

small, and both the optimized Chern and 'anti-optimized' anomalous systems collapse to a nearly 

insulating phase. Elsewhere, when the gaps are well resolved, the transmission in the anomalous 

phase is close to 1 while the transmission in the Chern phase is close to 0. 
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Fig. S11|Average transmission in the fully disordered phase-link case for all possible 
networks in the parameter space. a, Reminder of the topological phase diagram for all possible 
S-matrix, parametrized by ξ and η. b, Corresponding averaged transmission in the fully-disordered 
case. The average transmission in the Chern phase is much lower than the average transmission in 
the anomalous phase. 
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