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mouse mesoscale cortical maps using machine learning



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In this work Xiao and colleagues present a software package they have written to automatically 

delineate regions of dorsal cortex and align them to an atlas. I should preface my comments by 

stating that there is the possibility that I am quite fundamentally misunderstanding what the authors 

have done here (in which case I apologize, but would recommend to substantially rewrite the paper). I 

agreed to review the paper, having read the abstract, assuming the authors had developed a method 

to segment cortical areas based on calcium activity data (i.e. using the temporal activity patterns to 

delineate area boundaries). Having read the full paper, I am under the impression that they only use a 

single image per mouse and simply align this to an atlas (i.e. perform a slightly distorted affine 

transformation on a single image). The former would have been interesting an innovative. The latter is 

technically trivial and not worth writing a paper about. Having said that, I assume, if the software 

package is professionally written and supported, it will find use (on account of being useful, but not 

because it is innovative or interesting). 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors report an automated pipeline to register videos of brain activity measured with widefield 

calcium imaging to the Allen Institute's mouse brain atlas. The problem of cross-modality registration, 

in this case, activity to architecture, is important. The authors report two approaches: atlas-to-brain 

and brain-to-atlas. Having performant activity-to-architecture registration pipelines is valuable to 

neuroscience and data analysis communities. The authors have described their pipeline in detail and 

also provided useful video walk-throughs. Overall, I recommend publication after following 

improvements in a) comparing the pipeline with relevant literature and b) evaluating the accuracy of 

the registration. 

 

1. Authors have missed an important brain-to-atlas registration pipeline published in Nature 

Communications (https://www.nature.com/articles/ncomms11879, 

https://github.com/brainglobe/brainreg). This pipeline may be useful for registration of calcium 

activity as well. The discussion should compare design choices between brainreg and mesonet 

pipelines. 

 

2. Validating the accuracy of cross-modality registration methods is particularly challenging. I 

appreciated that the authors employed sensory inputs (a biological control) to validate their pipeline. 

However, it is not clear how plotting the DF/F signal quantifies the accuracy of registration. If the 

registration was erroneous by approximately half the size of the activated brain region, this analysis 

will not indicate. Authors need to augment their biological 'positive control' with image-based 

quantitative metrics. For example, stimuli are expected to activate a fairly large area of brain and their 

approximate sizes may be established. In that case, spatial correlation of DF/F signal around the 

identified landmarks is a useful metric of registration. 

 

3. Likewise, it was difficult to assess the quality of registration with brain-to-atlas approach. The 

images in panel A are too small to see how raw, synthetic, and transformed data compare. Although 

clustering of activity motifs improves as registration progresses, there is no quantitative metric. The 

interpretation of quality depends on how many motifs were used for clustering and how the output is 

plotted. A metric such as Silhouette score is necessary. Silhouette score, for example, can clarify if the 

data suggests that 7 clusters provide the optimal clustering. 

 

-- Shalin B. Mehta 

 



 

 

Reviewer #3: 

Remarks to the Author: 

 

The paper presents an open-source suite to automatically estimate the location of brain areas from 

mesoscale imaging datasets. The authors combine two supervised learning methods to perform such 

alignment. The former is used to estimate 9 landmarks, and the latter to segment cortical boundaries. 

These features are then used to estimate affine transforms and warping to align each brain to a 

popular atlas. The authors use imaging of animals during sensory stimulation to show that the 

alignment consistently capture the relevant brain areas. 

 

Major comments 

 

Novelty. The papers combines a set of existing methods, and no new biological result is presented. 

Therefore, it seems that the originality is limited and the contributions mainly consists in the 

deployment of a software package that automates some of these steps. 

 

Relevance. It has not been demonstrated by the authors that this precision is required when aligning 

the brains to an atlas. This might not be the case both because of the anatomical variability and 

because of the low resolution associated with this imaging technique. Most methods seem to rely on 

the alignment procedure as a rough initialization (see ref 10 for example, and works referred in it). 

Spatiotemporal factorization methods are a more reliable representation of functionally clustered 

areas. It is possible that there is an added advantage to it, but it should be demonstrated. 

 

Claims. The authors claim this is a big data problem. However, in the reviewer’s mind the current 

formulation only involves ~400 images, which do not seem to constitute such a computational 

challenge. There are also other unsubstantiated claims in the text (see minor comments). 

 

Paper organization. The reviewer finds that the paper can be greatly improved in terms of clarity, 

precision, organization and writing. Concepts are scattered and not well explained in multiple points of 

the manuscript. English is often redundant and grammatically incorrect. Many sentences are difficult 

to parse. 

 

Minor comments 

58 — 61: not clear 

77 — 83: not clear 

86: not clear 

90 — 91: not clear 

96 — 97: not clear 

Fig 2. A. It is probably not relevant depicting the whole neural network since it is exactly the one from 

DLC, not a contribution of the paper. A more parsimonious representation could work too. Same for 

Figure 3A. 

Fig 2 B. The loss does not seem something needed in the main text, The reviewer suggests to move it 

to the supplement. 

Fig 2 C. Colors are not explained, and crosses are used instead of filled circles in the “All” image. On 

my screen the colors of the brains look different. Not sure this is a local problem for me. 

 

Have you tried Otsu’s with in-painted plus closure? 

 

“It is expected that the sensory stimulation paradigms activate the same analogous areas of the 

cortex across different mice while cortical mapping is relative (ΔF/F) and not dependent on the basal 

level of fluorescence” -> not clear 

 



Figure 5. These are all very qualitative arguments and images. It does not demonstrate that MesoNet 

achieves better results than other methods. Some more quantitative measure would help make th 

author's point better. 

 

We found that the brain-to-atlas approach yielded fewer clusters (8 clusters (Fig. 6B(iii))) for 

transformed datasets than synthetic mis-aligned data (12 clusters (Fig. 6B(ii)), which misclassify 

some motif patterns as novel clusters because the spatial pattern is changed after rotation and 

resizing when quantified using the Phenograph classification method (Fig. 6B, 184 C). 

—> The reviewer is not familiar with the clustering algorithm used, but the image (Fig 6Bii) seems to 

indicate that the number of clusters is smaller for the synthetic data. Perhaps printing the point cloud 

with an alpha value of about 0.2 might help better visualize the point the authors are trying to make? 

 

 

241—247: what are the authors exactly implying with post-hoc fine tuning? 

251-254: The reviewer consider that we really do not know how to modify nor what is the effect of 

modifying such hyper-parameters, besides trial and error of course. 

256-257: in which point of the test this is demonstrated? 

 

(LocaNMF) -> LocalNMF 

 

285-186 -> this claim is not supported 

 

The discussion seems long and repetitive 

 

333-349: why different font? 

 

English needs to be checked. Example: 430-432. But more issues in the text and above. 
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Reviewers' Comments: 

 
Reviewer #1 (Expertise: Neuroimaging):           
 
In this work Xiao and colleagues present a software package they have written to automatically 
delineate regions of dorsal cortex and align them to an atlas. I should preface my comments by 
stating that there is the possibility that I am quite fundamentally misunderstanding what the 
authors have done here (in which case I apologize, but would recommend to substantially rewrite 
the paper). I agreed to review the paper, having read the abstract, assuming the authors had 
developed a method to segment cortical areas based on calcium activity data (i.e. using the 
temporal activity patterns to delineate area boundaries). Having read the full paper, I am under 
the impression that they only use a single image per mouse and simply align this to an atlas (i.e. 
perform a slightly distorted affine transformation on a single image). The former would have 
been interesting an innovative. The latter is technically trivial and not worth writing a paper 
about. Having said that, I assume, if the software package is professionally written and 
supported, it will find use (on account of being useful, but not because it is innovative or 
interesting). 

Response: initially, our intention was to align mesoscale GCaMP data based on both its 
functional activity pattern as well as brain and skull landmarks. Since the landmark based 
alignment procedure worked relatively well we had focused on that for the first submission of 
the paper. We do agree that there could be scenarios where landmarks were obscured, or where 
users would want to double-check data sets using a functional alignment. Here the spatial-
temporal properties of the GCaMP signal would need to be taken into consideration. We now 
extend our MesoNet pipeline by adding three options of additional functional alignment steps.  

First, we combined anatomical landmarks (predicted by DeepLabCut) with functional sensory 
maps (tail, visual, whisker stimulation) to align the reference atlas to brain image (sensory map 
based pipeline, Fig. 7a). Second, we developed a motif matching procedure to produce motif 
based functional maps (MBFMs) using the spatial-temporal activity patterns in calcium imaging 
data detected by seqNMF. The MBFMs were then used to train a U-Net model to directly predict 
anatomical atlas (MBFM-U-Net pipeline, Fig. 7b). Third, we take advantage of the MBFMs to 
train an unsupervised machine learning model VoxelMorph 1, to generate a deformation field for 
image registration (VoxelMorph pipeline, Fig. 7c). We are pleased to report that all of these three 
approaches achieve good performance for image alignment, and are now included as additional 
pipelines of MesoNet (Fig. 7, Supplementary Fig. 2, 4 and 5, and Supplementary Videos 1, 4, 5, 
and 6). 

We now mention functional alignment in the abstract: “This anatomical alignment approach was 
extended by adding three functional alignment approaches that use sensory maps or spatial-
temporal activity motifs.” (pg. 2 line 22-24).  

We further discuss the functional alignment approaches. We have added to (pg. 9 line 175-230). 
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“Alignment using spatial-temporal functional cortical activity signals. An advantage of 
MesoNet is that most alignment can be performed using only a single raw fluorescent image (9 
landmarks plus U-Net). MesoNet alignment is mostly dependent on cortical bone and brain edge 
markers and does not take into consideration internal functional boundaries. While this approach 
does show good correspondence with the location of expected sensory signals (Fig. 4), it would 
be advantageous to also make use of functional maps to reduce variability that exists between 
mouse lines with respect to neuro-anatomical and skull-based landmarks. Previously, we and 
others 2–4 have used regional correlations of GCaMP signals during spontaneous activity to 
establish brain functional networks that correspond to underlying anatomical projections. While 
correlations yield robust maps, they do require placement of seed locations and some underlying 
assumptions of anatomical mapping4.  
 
As a more reliable approach, we have employed a convolutional non-negative matrix 
factorization method (seqNMF)5,6 to recover stereotyped cortical activity motifs as a means of 
establishing functional maps. To perform seqNMF motif recovery an averaged mask (15 mice) 
was applied to limit the motif analysis from areas inside the brain window (brains roughly pre-
aligned). One can also first do a brain-to-atlas alignment using MesoNet if the brains were 
significantly rotated or shifted between the experiments. As shown in Fig. 6, this approach can 
recover at least 6 major spatial-temporal activity motifs from each brain. This approach generates 
motif patterns that only require spontaneous activity and could therefore, be more advantageous 
than sensory modality mapping that requires specialized forms of stimulation (Fig. 7a). To create 
an aggregate picture of motif boundaries, we scaled each motif to its maximal value and then 
created a summed maximal intensity projection (Fig. 7b, c).  
 
Like previous projections of seed pixel maps gradients4, projection of motifs led to the definition 
of functional “firewall” boundaries that reflect weighted activity transitions between major 
cortical groups of areas. Importantly, these firewalls were relatively stable across different 
animals (Supplementary Fig. 4) where functional resting state GCaMP activity was observed and 
can be used to create animal-specific motif based functional maps (MBFMs) (Fig. 7b, c). These 
MBFMs provide an opportunity to predict anatomical atlas (cortical overlay as the output of 9 
landmarks plus U-Net in Fig. 4a) directly from another pre-trained U-Net model (Fig. 7b) that 
we call the MBFM-U-Net model. 
 
MBFM can be combined with a deformable approach, such as VoxelMorph1 (Fig. 7c, 
Supplementary Fig. 2e) to deform the template MBFM (Fig. 7d) so that its consensus internal 
structure would fit each mouse example. As the template MBFM is aligned with a reference atlas 
(Fig. 7d), so the deformation field predicted from VoxelMorph can be applied to the reference 
atlas to fit the functional regions in the input MBFM (atlas-to-brain). To check the performance 
of these mouse specific MBFM based alignments, we compared the predicted location of sensory 
regions for sensory map based (Fig. 7a), MBFM-U-Net (Fig. 7b), and Voxelmorph (Fig. 7c) 
pipelines. The accuracy of the prediction was then evaluated by measuring the Euclidean 
distance between the centroids of sensory stimulation induced activation and predicted atlas ROI 
centroids (Fig. 7e, f).  All the three pipelines yielded similar distances to anatomical sensory map 
centres, although the VoxelMorph pipeline performed worse (in the barrel cortex BCS1 center, 
Fig. 7f).  
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The VoxelMorph pipeline’s performance was improved by first applying a brain-to-atlas 
transformation to the MBFMs (Fig. 7f, BCS1). We further evaluated the performance of these 
pipelines by calculating the correlation coefficient between manually painted retrosplenial 
regions (RSP, ground truth, RSP consistently has clear boundaries in GCaMP functional data, 
Fig. 7d, e, Supplementary Fig. 1c) and predicted RSP regions. In this case, VoxelMorph 
performed significantly better than other pipelines as it was able to warp brain areas to fit 
functional boundaries in MBFMs (Fig. 7g, Supplementary Video 1). We suggest that, under 
certain conditions, there may be unique advantages to employing additional, computationally 
more-intensive steps such as Voxelmorph. These conditions might include analyses of specific 
lines of mice in which phenotypes affect neuroanatomical borders, or conditions such as lesions 
that may make alignment to the consensus atlas more challenging." 
 
We have quantitatively evaluated the accuracy of these approaches and discussed the pros and 
cons. We have added to pg. 15 line 304-331:   
 
“The VoxelMorph1 pipeline offers an unsupervised machine learning method for the prediction 
of local deformation between pairs of images. We find that VoxelMorph provides a useful 
secondary alignment method - based on functional map features - which supplements our 
anatomical landmark-based alignment approach, improving its alignment with functional data. 
As such, we provide VoxelMorph as an optional add-in to the MesoNet pipeline. 
 

For increased flexibility in registering different types of brain imaging data, MesoNet allows 
users to employ a landmark-based pipeline that relies on affine transformations to anatomical 
landmarks and/or functional sensory peak activations (Fig. 7a); a MBFM-U-Net-based pipeline 
that relies on a segmentation model predicting anatomical atlas from MBFMs (Fig. 7b); and a 
VoxelMorph-based pipeline that relies on model-based local deformation of the MBFM and the 
reference atlas (Fig. 7c). The anatomical landmark approach is most useful when landmarks are 
visible in the brain imaging data (our pipeline is flexible to employ a different number of 
landmarks to align the brain), as well as when brain images are rotated or shifted. However, its 
registration procedure is linear and therefore may be coarse when not used in combination with 
non-linear alignment methods. The sensory map based approach has the advantage of being able 
to utilize ground truth sensory induced activation areas, but this approach relies on experimental 
expertise and is highly susceptible to errors in the placement of the stimulation devices. The 
MBFM-U-Net approach is most useful for well-formed data with distinct functional features, but 
non-distinct anatomical landmarks. However, the model training of MBFM-U-Net is supervised 
and needs a well aligned label for each brain image, and its effectiveness may reduce if contrast 
and image features differ significantly from the training dataset. The VoxelMorph approach 
provides an unsupervised and deformable approach to align functional brain maps but it is less 
robust to larger rotations or shifts in cortical position in the frame (Supplementary Fig. 5). In 
order to address each dataset’s individual strengths and weaknesses, MesoNet allows anatomical 
and functional approaches to be combined. A first brain-to-atlas alignment using a landmark-
based pipeline combined with VoxelMorph could be a better option to align and deform an 
anatomical atlas to functional maps (Fig. 7g, Supplementary Video 1). ” 
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Reviewer #2 (Expertise: Machine learning + (neuro-)imaging): 
 
The authors report an automated pipeline to register videos of brain activity measured with 
widefield calcium imaging to the Allen Institute's mouse brain atlas. The problem of cross-
modality registration, in this case, activity to architecture, is important. The authors report two 
approaches: atlas-to-brain and brain-to-atlas. Having performant activity-to-architecture 
registration pipelines is valuable to neuroscience and data analysis communities. The authors 
have described their pipeline in detail and also provided useful video walk-throughs. Overall, I 
recommend publication after following improvements in a) comparing the pipeline with relevant 
literature and b) evaluating the accuracy of the registration. 
 
1. Authors have missed an important brain-to-atlas registration pipeline published in Nature 
Communications 
(https://www.nature.com/articles/ncomms11879, https://github.com/brainglobe/brainreg). This 
pipeline may be useful for registration of calcium activity as well. The discussion should 
compare design choices between brainreg and mesonet pipelines. 
 
Response: we appreciate the reviewers’ suggestion of the brainreg software and the citation to 
the 2016 Nature Communications paper. Given the strong similarities in registration schemes, we 
have now included this paper in the discussion section. In order to fully evaluate the similarities 
and differences between MesoNet’s and brainreg’s approaches, we integrated the NiftyReg 
reg_aladin affine registration (the first and primary step of the brainreg pipeline, Niedworok et 
al., 2016) into our pipeline and evaluated the results. We found that NiftyReg - and, by 
extension, the brainreg pipeline - operates on and transforms 3D .nifti volumes as opposed to 
individual brain images, resulting in severe inconsistencies in extracting reasonably aligned data 
as output from this method. Furthermore, the unique vasculature of each mouse’s brain that is 
present in calcium imaging data, combined with a lack of large-scale, clearly defined anatomical 
features beyond the stereotaxic landmarks that we already use, renders it difficult to register with 
brainreg’s symmetric block-matching approach - which relies on locating corresponding points 
between an averaged template and any given image. Additionally, although brainreg further 
incorporates the reg_f3d (fast free-form deformation) registration method from NiftyReg as a 
further step, this method is based on similar feature-matching principles as the symmetric block-
matching approach 8. Lastly, recognizing the importance of local deformation techniques in 
improving image registration, we have integrated the VoxelMorph pipeline into MesoNet, 
including weights from a custom-trained VoxelMorph model that will be included with the 
software package.  We conclude that brainreg is better suited to aligning images with highly 
distinct corresponding features - for example, histological sections of the brain, which have very 
distinct anatomical features and limited between-animal variance. In contrast, MesoNet is better 
suited to aligning images with limited anatomical commonalities and large differences in setup 
and image quality, such as functional calcium imaging. We further discuss the philosophy of this 
approach in the revised discussion section, as follows and repeated above (pg. 13 line 278-302):   

“Other pipelines have been developed to facilitate automatic registration of various types of 
brain imaging data based on common features between images1,9; however, these pipelines are 
primarily oriented towards aligning images with distinct anatomical features that remain 
relatively consistent across images. To evaluate the utility of these pipelines for functional 
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calcium images - which are often lacking in highly distinct anatomical features - we evaluated 
brainreg9 and VoxelMorph1 pipelines as add-ins for MesoNet.  
 
The brainreg pipeline offers a series of automated registration and segmentation steps suited to 
anatomical brain slice data9. As brainreg currently only operates on 3D volumes of anatomical 
brain images from specific online sources, we instead adapted its symmetric block-matching 
registration algorithm7,9 to our input data.  This was accomplished by taking one 512x512 8-bit 
calcium image stack (repeated 10x) into a NIFTI volume after all MesoNet registration steps, 
and attempting to register it to a template averaged calcium image in the same fashion. This 
procedure, closely mirroring a key stage of the brainreg pipeline, did not produce consistent 
transformations - especially for images that were angled or lacking features that were present in 
the template image (e.g. the olfactory bulb). From these results, we determined that the feature-
matching procedure utilized by brainreg requires a close correspondence in features between 
images. Such anatomical features are present and consistent across many types of histological 
brain slice data, but not in functional data such as that derived from mesoscale calcium images. 
Furthermore, vasculature - a highly visible feature across many calcium imaging datasets - is 
mostly unique across mice, providing further visual differentiation between images that 
challenges feature-matching approaches to image registration. As such, brainreg is primarily 
useful for registering anatomical images - such as histological brain slices - whereas MesoNet 
offers a novel approach to robust functional image registration, even for images with limited 
anatomical correspondence to a template.” 
 
2. Validating the accuracy of cross-modality registration methods is particularly challenging. I 
appreciated that the authors employed sensory inputs (a biological control) to validate their 
pipeline. However, it is not clear how plotting the DF/F signal quantifies the accuracy of 
registration. If the registration was erroneous by approximately half the size of the activated 
brain region, this analysis will not indicate. Authors need to augment their biological 'positive 
control' with image-based quantitative metrics. For example, stimuli are expected to activate a 
fairly large area of brain and their approximate sizes may be established. In that case, spatial 
correlation of DF/F signal around the identified landmarks is a useful metric of registration. 

Response: we agree with the reviewer’s comment regarding the DF/F signals with sensory 
mapping. We had included these signals to show the brains aligned using MesoNet could be used 
to develop temporal profiles for specific regions of Interest. We did not mean to imply that this 
was necessarily a way of checking alignment. In response to reviewer #1, we now include a 
scheme to make use of the peak activation of sensory maps as functional landmarks to further 
align the atlas (Fig. 7a). We choose to use the peak activation of sensory maps to avoid the 
variability of the shape and size of sensory map patterns in different mice caused by slightly 
different stimulation setups and individual responsiveness to sensory stimuli (Fig. 4c and 
Supplementary Fig. 3). We do confirm that the sensory map centers are in the expected locations 
based on the atlas (Fig. 4c, Fig. 7f, Supplementary Fig. 3 and Supplementary Fig. 4).  

We have added to pg. 15 line 319-321:  “The sensory map based approach has the advantage of 
being able to utilize ground truth sensory induced activation areas, but this approach relies on 
experimental expertise and is highly susceptible to errors in the placement of the stimulation 
devices.” 
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We also include a new alignment pipeline using spatial-temporal functional cortical activity 
signals that provide a means of functional activity registration. We now make it clear in the 
revised manuscript that any plots of DF/F are meant to show the utility of the system and not 
alignments.   

We have added to the “Alignment using spatial-temporal functional cortical activity signals.” 
section (pg. 9 line 175-230). 

 
3. Likewise, it was difficult to assess the quality of registration with brain-to-atlas approach. The 
images in panel A are too small to see how raw, synthetic, and transformed data compare. 
Although clustering of activity motifs improves as registration progresses, there is no 
quantitative metric. The interpretation of quality depends on how many motifs were used for 
clustering and how the output is plotted. A metric such as Silhouette score is necessary. 
Silhouette score, for example, can clarify if the data suggests that 7 clusters provide the optimal 
clustering. 
 
-- Shalin B. Mehta 

Response: we appreciate the reviewer mentioning the difficulty of assessing the brain-to-atlas 
approach. We have now quantified the performance of brain-to-atlas MesoNet by comparing 
MesoNet with manual labelled alignment. We are pleased to report that MesoNet shows high 
quality of brain-to-atlas alignment.  

We have added to pg. 8 line 147-152: “To further quantify the performance of brain-to-atlas 
alignment, we compared MesoNet with manual labelled alignment by calculating the Euclidean 
distance between the landmarks of the anterior tip of the interparietal bone and cross point 
between the median line and the line which connects the left and right frontal pole, and angle of 
the midline compared to the ground truth common atlas. MesoNet performs significantly better 
than manual labelled alignment in both comparisons (Fig. 5c, d).” 

We appreciate the reviewers’ suggestion of quantification of clustering. We have now done this 
and report silhouette scores for these figures (Fig. 6b). Importantly, the brain to atlas 
transformation leads to the best performance regarding clustering of activity motifs. We also 
provide high resolution images for all the figures. 
 
We have added to pg. 9 line 170-173:  “We further quantified the clusters by calculating 
silhouette score, showing a better separation after brain-to-atlas transformation. The silhouette 
score calculated from raw data was 0.43, from mis-aligned synthetic data was 0.39 and the score from 
brain-to-atlas transformed data was the highest at 0.48, indicating clusters with the least overlap.” 
 

Reviewer #3 (Expertise: Neuroimaging): 
 
The paper presents an open-source suite to automatically estimate the location of brain areas 
from mesoscale imaging datasets. The authors combine two supervised learning methods to 
perform such alignment. The former is used to estimate 9 landmarks, and the latter to segment 
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cortical boundaries. These features are then used to estimate affine transforms and warping to 
align each brain to a popular atlas. The authors use imaging of animals during sensory 
stimulation to show that the alignment consistently capture the relevant brain areas. 
 
Major comments 
 
Novelty. The papers combines a set of existing methods, and no new biological result is 
presented. Therefore, it seems that the originality is limited and the contributions mainly consists 
in the deployment of a software package that automates some of these steps. 

Response: our goal was to present an open source alignment tool geared towards mesoscale 
functional images. We agree that our intention was not to present a series of novel experimental 
results but to have a robust tool.  We have now extended the manuscript and its novelty based on 
the suggestion of yourself and reviewer 1. This extension includes using brain functional activity 
motifs for part of the alignment process. In this way, users would have the ability to perform a 
supplemental alignment based on functional data, or could do this if they did not have the 
structural landmarks for some reason. We now include this as a new figure (Figure 7) and an 
additional component of the software. This additional procedure was adapted from the 
VoxelMorph1 pipeline, which we have integrated into MesoNet. VoxelMorph provides an 
unsupervised and deformable approach to align and deform an anatomical atlas to functional 
maps. 

Another novelty of MesoNet is the automatic brain region delimitation using U-Net. We now 
further developed U-Net to directly predict anatomical atlas from functional motif data, not only 
delimitate the boundary of the brain from raw image. 

We have added to pg. 23 line 500-521:  

“Alternative pipelines. Depending on the format and contents of the data, one can select from 
different registration strategies to the one described above. If the brain images used do not have 
clearly defined anatomical landmarks (which are necessary for the landmark-based affine 
transformation), three strategies are available. First, the alignment approach can leverage cross-
image commonalities in sensory-related activity. In our sensory map-based pipeline, MesoNet 
can detect four unilateral or bilateral activation peaks of calcium images and use these peaks as 
control points in a non-linear piecewise affine transformation implemented in scikit-image10 
(PiecewiseAffineTransform). This additional step allows sensory stimulation activation (e.g. of 
tail, whiskers, and visual field; Fig. 4c) to be used for registration based on functional and not 
just anatomical information in the data (Fig. 7a). 
 
Second, one can train a U-Net model on a set of motif-based functional maps (MBFMs, see 
“Generation of MBFM”) and label images (we used manually modified output masks from 9 
landmarks plus U-Net MesoNet as label images, Fig. 4a), and then use this MBFM-U-Net model 
to directly predict the anatomical atlas on a new set of MBFMs. Third, one can train an 
unsupervised VoxelMorph model1 on a set of MBFMs. After training, the VoxelMorph model 
can predict a deformation field between pairs of images. The deformation field can be used to 
transform template MBFM to each input MBFM. Specifically, using VoxelMorph terminology 
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the input MBFM is fixed, and the template MBFM is the moving image (Supplementary Fig. 2e, 
Supplementary Fig. 5). As the template MBFM is aligned with the reference atlas (Fig. 7d), we 
can apply the same deformation field to transform the reference atlas to fit the input MBFM. The 
deformation field is also exported for optional re-use in other analyses.” 
 
Relevance. It has not been demonstrated by the authors that this precision is required when 
aligning the brains to an atlas. This might not be the case both because of the anatomical 
variability and because of the low resolution associated with this imaging technique. Most 
methods seem to rely on the alignment procedure as a rough initialization (see ref 10 for 
example, and works referred in it). Spatiotemporal factorization methods are a more reliable 
representation of functionally clustered areas. It is possible that there is an added advantage to it, 
but it should be demonstrated. 

Response: we agree that wide field imaging does not require extremely high precision for 
alignment but there are reasons for doing this as a preliminary step. We also acknowledge that 
the 9 landmarks we have selected represent skull features and brain margins but not necessarily 
functional regions. We have evidence that cortical maps can also be precise at the mm scale and 
studies in the visual system report transitions occurring over 0.1 mm scales11,12. 

We have added to pg. 12 line 250-252: “The high precision of the image registration is required 
in some conditions such that cortical maps can be precise at the mm scale. Furthermore, studies 
in the visual system report transitions occurring over 0.1 mm scales11,12.” 

We agree that spatiotemporal factorization methods are a more reliable representation of 
functionally clustered areas. We now add a functional alignment method based on data derived 
from spatiotemporal factorization methods such as seqNMF. 

We have added to pg. 9 line 187-189: “As a more reliable approach, we have employed a 
convolutional non-negative matrix factorization method (seqNMF)5,6 to recover stereotyped 
cortical activity motifs as a means of establishing functional maps.” 

We also demonstrated that brain-to-atlas transformation leads to better performance regarding 
clustering of activity motifs in Fig. 6. In some cases, brain-to-atlas alignment may improve the 
performance of functional alignment pipelines. For example, we found rotated or shifted input 
images may reduce the performance of the VoxelMorph model (supplementary Fig. 5). On the 
other hand, applying a brain-to-atlas first to the input image may improve the performance of 
VoxelMorph (Fig. 7f, BCS1). 

We have added to pg. 15 line 325-327: “The VoxelMorph provides an unsupervised and 
deformable approach to align functional brain maps but it is less robust to larger rotations or 
shifts in cortical position in the frame (Supplementary Fig. 5).” 
 
And pg. 11 line 220-221: “The VoxelMorph pipeline’s performance was improved by first 
applying a brain-to-atlas transformation to the MBFMs (Fig. 7f, BCS1).” 
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Claims. The authors claim this is a big data problem. However, in the reviewer’s mind the 
current formulation only involves ~400 images, which do not seem to constitute such a 
computational challenge. There are also other unsubstantiated claims in the text (see minor 
comments). 
 

Response: we thank the reviewers for their suggestion. While ~400 images is not big data, 
manual alignment of the images will still require substantial labor and expertise. Fortunately, 
most alignment procedures in MesoNet can be made with only a single image (with the 
exception of functional map add-ons). We tested MesoNet on 400 brain images. It takes about 13 
minutes to align all the brains, including automatic brain region delimitation and export .mat files 
of brain region ROIs for each image. This helps to analyse high throughput data generation 
platforms such as the recent automatic self-imaging home cage. 

We have added to pg. 3 line 37-41: “Automatic registration and segmentation of brain imaging 
data can greatly improve the speed and precision of data analysis and does not require an expert 
anatomist. This is particularly crucial when using high-throughput neuroimaging approaches, 
such as automated mesoscale mouse imaging15, where the amount of data generated greatly 
exceeds the capacity of manual segmentation.” 
 
We thank the reviewers for their suggestion, we agree that many speculative claims in the paper 
are not supported so we have now revised or removed them. 

 
Paper organization. The reviewer finds that the paper can be greatly improved in terms of clarity, 
precision, organization and writing. Concepts are scattered and not well explained in multiple 
points of the manuscript. English is often redundant and grammatically incorrect. Many 
sentences are difficult to parse. 

Response: we thank the reviewers for their suggestion and have revised and simplified the text to 
improve clarity and organization.  

 
Minor comments 
58 — 61: not clear 

Response: we have revised this text. 

We have added to pg. 4 line 54-56: “For the brain-to-atlas approach, our system automatically 
registers cortical images to a common coordinate framework using predicted cortical 
landmarks.” 

 
77 — 83: not clear 

Response: we have revised this text. 
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We have added to pg. 5 line 76-79: “While we see brain-to-atlas scaling as being the most 
appropriate method for aggregating experiments, MesoNet can handle special cases such as 
brains that have been imaged at different angles or brains that are partly out of frame, and will 
return a set of best fit regions of interest that can be matched with known anatomical regions by 
users.” 

 
86: not clear 

Response: we have revised and integrated this to the text above. 

 
90 — 91: not clear 

Response: we have revised this text. 

We have added to pg. 5 line 81-83: “To transform a brain image to fit an atlas or rescale an atlas 
to the brain, the first step is to define the landmarks in a common coordinate system to align to 
the reference atlas.” 

 

96 — 97: not clear 

Response: we have revised and simplified this text. 

We have added to pg. 5 line 86-89: “We then averaged brain images (images are manually 
aligned during experiments, n = 12 mice) to determine anatomical structures that fit a reference 
atlas (Supplementary Fig. 1b, c). We selected 9 clearly defined landmarks28,29 and created a 
common coordinate system while setting the skull landmark Bregma as (0,0 mm) (Fig. 1b, c; 
Table 1).” 

 
Fig 2. A. It is probably not relevant depicting the whole neural network since it is exactly the one 
from DLC, not a contribution of the paper. A more parsimonious representation could work too. 
Same for Figure 3A. 

Response: we thank the reviewers for their suggestion, we have now moved the figure of the 
DLC neural network from Fig 2a, and the figure of U-Net neural network from Fig 3a to 
Supplementary Fig.2. 

  
Fig 2 B. The loss does not seem something needed in the main text, The reviewer suggests to 
move it to the supplement. 

Response: we thank the reviewers for their suggestion, we have now moved Fig. 2b to 
Supplementary Fig.2. 

 
Fig 2 C. Colors are not explained, and crosses are used instead of filled circles in the “All” 
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image. On my screen the colors of the brains look different. Not sure this is a local problem for 
me. 

Response: we thank the reviewers for their suggestion, we now make sure that colours are clearly 
indicated and change the colours of crosses in Fig 2a. 
 
Have you tried Otsu’s with in-painted plus closure? 

Response: we thank the reviewers for their suggestion. In our understanding, “in-painted plus 
closure” means using an in-painting method to close the output mask to remove artifacts, such as 
blood vessels. We tried this method and did not get better results than U-Net. 
 
“It is expected that the sensory stimulation paradigms activate the same analogous areas of the 
cortex across different mice while cortical mapping is relative (ΔF/F) and not dependent on the 
basal level of fluorescence” -> not clear 

Response: we thank the reviewers for their suggestion and have now clarified the text in the 
paper. 

We have added to pg. 7 line 125-127: “Cortical mapping is presented in terms of relative 
activation (ΔF/F) and is not strictly dependent on the basal level of GCaMP calcium-induced 
fluorescence.” 

 
Figure 5. These are all very qualitative arguments and images. It does not demonstrate that 
MesoNet achieves better results than other methods. Some more quantitative measure would 
help make th author's point better. 

Response: we thank the reviewers for their suggestion; we have now added a quantitative 
measurement and comparison of brain-to-atlas alignment in Fig 5c, d.  

We have added to pg. 8 line 147-152: “To further quantify the performance of brain-to-atlas 
alignment, we compared MesoNet with manual labelled alignment by calculating the Euclidean 
distance between the landmarks of the anterior tip of the interparietal bone and cross point 
between the median line and the line which connects the left and right frontal pole, and angle of 
the midline compared to the ground truth common atlas. MesoNet performs significantly better 
than manual labelled alignment in both comparisons (Fig. 5c, d).” 

 
We found that the brain-to-atlas approach yielded fewer clusters (8 clusters (Fig. 6B(iii))) for 
transformed datasets than synthetic mis-aligned data (12 clusters (Fig. 6B(ii)), which misclassify 
some motif patterns as novel clusters because the spatial pattern is changed after rotation and 
resizing when quantified using the Phenograph classification method (Fig. 6B, 184 C). 
—> The reviewer is not familiar with the clustering algorithm used, but the image (Fig 6Bii) 
seems to indicate that the number of clusters is smaller for the synthetic data. Perhaps printing 
the point cloud with an alpha value of about 0.2 might help better visualize the point the authors 
are trying to make? 
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Response: we thank the reviewers for their suggestion; we have now changed the alpha value to 
0.2. We further quantified the clusters by calculating the silhouette score, showing after brain-to-
atlas transformation the clusters are better separated.  

We have added to pg. 9 line 170-173: “We further quantified the clusters by calculating 
silhouette score, showing a better separation after brain-to-atlas transformation. The silhouette 
score calculated from raw data was 0.43; the score from mis-aligned synthetic data was 0.39; and 
the score from brain-to-atlas transformed data was the highest at 0.48, indicating a cluster with 
the least overlap.” 

 
241—247: what are the authors exactly implying with post-hoc fine tuning? 

Response: we thank the reviewers for their suggestion. We have now removed this text. 

 
251-254: The reviewer consider that we really do not know how to modify nor what is the effect 
of modifying such hyper-parameters, besides trial and error of course. 

Response: we thank the reviewers for their suggestion. We have now removed this text. 

 
256-257: in which point of the test this is demonstrated? 

Response: we thank the reviewers for their suggestion. We agree that this claim is not tested so 
we have now removed it. 
 
(LocaNMF) -> LocalNMF 

Response: LocaNMF is the name of the method introduced by Saxena et al. (2020). 
 
285-186 -> this claim is not supported 

Response: we thank the reviewers for their suggestion, we agree that this speculative claim is not 
supported so we have now removed it. 
 
The discussion seems long and repetitive 

Response: we have streamlined and organized the discussion section to flow more logically and 
avoid repetition. 
 
333-349: why different font? 

Response: we have converted all text in the document to Times New Roman. 
 

English needs to be checked. Example: 430-432. But more issues in the text and above. 
 
Response: we have clarified the language in pg. 21 line 454-457: “The three points that are used 
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are the ones that the model most accurately predicted (based on the output of the sigmoid 
activation function by TensorFlow via DeepLabCut22). If specific points were not chosen as part 
of the analysis, the first three points selected in each hemisphere are used for the 
transformation.” as well as throughout the paper. 
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Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

The authors now compare their pipeline with the brainReg, and point out that their pipeline works 

better for registering activity to atlas. The revision addresses this and other concerns I raised. I 

suggest publication. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors addressed in details many of my comments and I praise the introduction of the activity-

map based alignment. The novelty of the manuscript is still limited. However, the proposed set of 

approaches, if well organized and documented in a single software package, will represent a useful 

tool for the community. I would recommend publishing this article if the points below are meticulously 

addressed. 

 

1) I have found difficult to parse some portions of the manuscript. In particular, the new sections of 

the paper describing the functional alignment procedures. For instance, the authors write: 

 

56 "We extended this anatomical 

57 alignment approach with three options of functional alignment steps making use of functional 

58 sensory maps and spontaneous cortical activity motifs. The cortical activity motifs were used to 

59 generate functional maps (MBFMs) for the training of an unsupervised VoxelMorph model or 

60 another U-Net model (MBFM-U-Net) to directly predict the anatomical atlas from the spatial 

61 structure of functional activity." 

 

- The authors introduce the word "functional map" without a citation or explanation. And the 

abbreviation MBFMs does not match what comes before the parenthesis! 

- The authors introduce VoxelMorph without any explanation (it is explained in details the discussion, 

not ideal), the sentences should be self-contained and explanatory. A reference is not enough in the 

reviewers mind. What is an unsupervised VoxelMorph model? The authors should introduce the 

intuition. 

- to predict the anatomical atlas -> what does this mean? Predict a deformation, a location? 

 

The reviewer suggests, when writing a paragraph or section, to start with the intuition, and go into the 

details, and then discuss the exceptions/alternatives. It is important to make sure the concepts are 

introduced in the right order. Mixing all this up makes it very difficult to follow. (Example lines 188-

198). 

 

 

2) The reviewer was not able to understand whether one needs to align brains with landmarks before 

aligning with the functional approaches? Maybe adding a flow diagram/cartoon explaining all the 

possible combinations of processing steps and the order in which they should be carried out might 

help. 

 

 

Minor comment 

 

244-245: functional repeated twice 



We outline reviewer/editor queries in blue, our response in black, and copied elements of the 
revised manuscript in red text below. 

EDITOR’s/REVIEWER’s SUMMARY COMMENTS 
 
You will see that the other two reviewers find that your revisions improved the manuscript, but a 
few important points remain to be addressed. Seeing as R1 had previously questioned the extent 
of the conceptual novelty, and this was reiterated by R2 in this round, we have agreed that the 
implementation of the analysis methods in an accessible and well-documented end-to-end 
package is an invaluable aspect of the work for Nature Communications. For that reason, we ask 
that you take the time during this revision to address R2's remaining comments, but also to 
thoroughly test and document your code so it can be an accessible tool for the community. This 
will -hopefully- maximize its utility and facilitate its adoption by a wide number of users later 
on. 
 
Response: We appreciate the reviewers’ emphasis on implementing an accessible and well-
documented end-to-end package. To this end, we have packaged MesoNet, accompanying pre-
trained models, sample data, and Matlab code for motif-based functional map (MBFM) into 
thoroughly documented Code Ocean capsules (Python: 10.24433/CO.1919930.v1 and Matlab: 
10.24433/CO.4985659.v1) that allow users to observe the code’s dependencies and operation 
and reproduce the paper results. Secondly, we added and thoroughly tested six end-to-end 
automated pipelines to enable users to quickly output results from input images (Supplementary 
Fig. 6 and Supplementary Video 10). We offered both an easy-to-use GUI and a powerful 
command-line interface (CLI), allowing users to integrate the toolbox with their own workflow. 
We also provide a step-by-step, customizable way to use MesoNet with an annotated Google 
Colab(https://colab.research.google.com/github/bf777/MesoNet/blob/master/mesonet_demo_col
ab.ipynb) that allows users to run MesoNet in a cloud environment using our sample data or their 
own data, enabling our package to be used without any installation or specialized computing 
resources on the part of the user. Additionally, we have thoroughly documented our code, both in 
docstrings embedded within functions as well as through an illustrated GitHub wiki 
(https://github.com/bf777/MesoNet/wiki) accompanying our code’s repository, the contents of 
which are also available in .pdf and .txt form in our main OSF repository at https://osf.io/svztu/. 
 
Reviewer #2 (Remarks to the Author): 
 
The authors now compare their pipeline with the brainReg, and point out that their pipeline 
works better for registering activity to atlas. The revision addresses this and other concerns I 
raised. I suggest publication. 
 
Response: We thank the reviewer for their support of our publication as well as for their 
feedback and suggestions, which helped enhance the depth of our publication. 



 
Reviewer #3 (Remarks to the Author): 
 
The authors addressed in details many of my comments and I praise the introduction of the 
activity-map based alignment. The novelty of the manuscript is still limited. However, the 
proposed set of approaches, if well organized and documented in a single software package, will 
represent a useful tool for the community. I would recommend publishing this article if the 
points below are meticulously addressed. 
 
Response: We appreciate the reviewer’s praise of our activity-map based alignment. We now 
provide additional figures, raw data repositories, example videos, and code that provide an end-
to-end, well-documented solution for mesoscale image alignment (see description of repositories 
above in EDITOR’s SUMMARY COMMENTS).  We anticipate that these features will make 
Mesonet both a novel and valuable research tool.  
 
Discussion of novelty. The most common method to segment the cortex is based on an anatomic 
reference atlas1. The advantage of this approach is the consistency across different studies and 
research groups, making it convenient to compare results from various studies. This consistency 
relies on the accurate annotation of the landmarks and overlay of the reference atlas, which 
requires substantial labor and expertise. We apply machine learning models to automate the 
registration and overlay of the reference atlas and the segmentation of brain regions on 
mesoscale wide-field images with high accuracy.  However, anatomical reference atlases may 
fail to track the dynamic organization of functional cortical modules in different sensory and 
cognitive processes, as well as the precise topography of brain parcellation. An alternative 
approach is to define cortical regions based on activity and generate unique atlas for individual 
animals. Previous methods include grouping pixels using clustering analyses2, 3 and extracting 
functional modules using non-negative matrix factorization4 or independent component 
analysis5. Compared with anatomical atlases, cortical segmentation derived from neural activity 
can more faithfully represent the functional organization of the cortex in individual animals. 
They may also detect neural dynamics localized in regions that do not correspond to standard 
areas in anatomic atlases. However, functional modules often vary across individual animals and 
different studies2, 3, 5  using different methods. Different research groups also use varied 
terminology to refer to regions in their functional atlases. All of these factors make it difficult to 
compare and interpret results across studies. To address this, we developed novel animal-specific 
motif-based functional maps (MBFMs) that represent cortical consensus patterns of regional 
activation that can be used for brain registration and segmentation. Furthermore, our automated 
pipelines can be combined to consider both anatomical consistency and individual functional 
variations to help better analyze regional brain activity data. Our open-source platform, 
MesoNet, allows researchers to register their functional maps to a common atlas framework 
based on cortical landmarks and will help comparisons across studies.  
 



We have added and repeated above (pg. 15 line 325 - 332): “Overall, we apply machine learning 

models to automate the registration and overlay of the reference atlas and the segmentation of 

brain regions using mesoscale wide-field images with high accuracy. We developed novel 

animal-specific motif-based functional maps that represent cortical consensus patterns of 

regional activation that can be used for brain registration and segmentation. Our automated 

pipelines can be combined to consider both anatomical consistency and functional individual 

variations to help better analyze brain regional activity. Our open-source platform, MesoNet, 

allows researchers to register their functional maps to a common atlas framework based on 

cortical landmarks and will help comparisons across studies.” 

1) I have found difficult to parse some portions of the manuscript. In particular, the new sections 
of the paper describing the functional alignment procedures. For instance, the authors write: 
 
56 "We extended this anatomical 
57 alignment approach with three options of functional alignment steps making use of functional 
58 sensory maps and spontaneous cortical activity motifs. The cortical activity motifs were used 
to 
59 generate functional maps (MBFMs) for the training of an unsupervised VoxelMorph model or 
60 another U-Net model (MBFM-U-Net) to directly predict the anatomical atlas from the spatial 
61 structure of functional activity." 
 
- The authors introduce the word "functional map" without a citation or explanation. And the 
abbreviation MBFMs does not match what comes before the parenthesis! 
 
Response: We now define a functional map more clearly as a repeated spatial-temporal 
activation domain observed with a functional imaging indicator. Functional indicators can 
include but are not limited to genetically encoded calcium sensors. 
 
We have revised and clarified the language in pg. 4 line 56-68: “This alignment approach, while 

robust in the presence of anatomical landmarks, does not leverage regional patterns within 

functional calcium imaging data that are related to underlying structural connectivity2,30,31. We 

suggest that functional maps that represent specific spatio-temporal consensus patterns of 



regional activation observed using activity sensors such as GCAMP6 2,30,31 or potentially 

hemodynamic activation32,33 can also be used for atlas registration. As such, we extended this 

anatomical alignment approach with three pipelines that can use functional sensory maps or 

spontaneous cortical activity. Spontaneous cortical activity was assessed by recovering regional 

activity motifs34 and using them to generate motif-based functional maps (MBFMs). MBFMs 

can then be used to train a learning-based framework, VoxelMorph35 , which nonlinearly 

deforms the reference atlas to register it to the brain image.  A MBFM based U-Net model 

(MBFM-U-Net) can directly predict positions of anatomical brain regions from the spatial 

structure of MBFMs.” 

 

- The authors introduce VoxelMorph without any explanation (it is explained in details the 
discussion, not ideal), the sentences should be self-contained and explanatory. A reference is not 
enough in the reviewers mind. What is an unsupervised VoxelMorph model? The authors should 
introduce the intuition. 
 
Response: We thank the reviewers for their suggestions. We have now added context to 
introduce the intuition behind using VoxelMorph; we have also clarified the statement 
“unsupervised VoxelMorph model” and changed it to “learning-based framework.” Unlike 
traditional registration methods that optimize an objective function for each pair of images, 
which can be time-consuming for large datasets or rich deformation models, VoxelMorph builds 
on recent learning-based methods for fast, deformable, pairwise medical image registration. We 
say “unsupervised” because the model training of VoxelMorph not requiring any label data for 
the training set. 

We have added to pg. 10 line 211-215: “To supplement our anatomical landmark-based 

alignment approach, we capture local deformation using functional map features by integrating 

VoxelMorph35 as an optional add-in to the MesoNet pipeline (Fig. 7c, Supplementary Fig. 2e). 

VoxelMorph offers a learning-based approach that determines a deformation field that is 

required for the transformation and registration of image pairs such as MBFMs.” 

- to predict the anatomical atlas -> what does this mean? Predict a deformation, a location? 



 
Response: We thank the reviewer for their comment. We have revised and clarified the language 

in pg. 10 line 206-209: “These MBFMs provide an opportunity to predict brain regional 

boundaries (represented by a cortical overlay as the output of 9 landmarks plus U-Net in Fig. 4a) 

using another pre-trained MBFM based U-Net model (Fig. 7b) that we call the MBFM-U-Net 

model.” 

The reviewer suggests, when writing a paragraph or section, to start with the intuition, and go 
into the details, and then discuss the exceptions/alternatives. It is important to make sure the 
concepts are introduced in the right order. Mixing all this up makes it very difficult to follow. 
(Example lines 188-198). 
 
Response: We thank the reviewer for their suggestion and have revised and simplified the text to 
improve clarity and organization. We have clarified this section as the reviewer suggests, by 
starting with the intuition, the details, and then discuss the exceptions/alternatives. 

We have added to pg. 10 line 190-194: “As a potentially less-biased approach, we employ 

seqNMF34,46 (as in Fig. 6) to recover stereotyped cortical spatio-temporal activity motifs as a 

means of establishing functional maps. This approach generates motif patterns that only require 

spontaneous activity and would be advantageous over sensory modality mapping that requires 

specialized forms of stimulation and additional imaging trials (Fig. 4, Fig. 7a).” 

2) The reviewer was not able to understand whether one needs to align brains with landmarks 
before aligning with the functional approaches? Maybe adding a flow diagram/cartoon 
explaining all the possible combinations of processing steps and the order in which they should 
be carried out might help. 
 
Response: We thank the reviewer for their comment and suggestion. We now include 
Supplementary Fig. 6 outlining basic and combination pipelines to enable users to apply 
MesoNet to their data efficiently. For the VoxelMorph pipeline, we suggest aligning brains with 
landmarks before aligning with the motif-based functional maps (Supplementary Fig. 6f). We 
also discuss the advantages of the various methods and define scenarios where investigators 
would want to employ specific pipelines. 
 



We have revised and clarified the language in pg. 15 line 317-323: “The VoxelMorph approach 

provides a fast learning-based (unsupervised) framework for deformable registration, but it is 

less robust to larger rotations or shifts in cortical position in the frame (Supplementary Fig. 5). In 

order to address each dataset’s individual strengths and weaknesses, MesoNet allows anatomical 

and functional approaches to be combined. We suggest first applying brain-to-atlas alignment 

using a landmark-based pipeline then combining this with VoxelMorph as a better option to align 

and deform a reference atlas to functional maps (Supplementary Fig. 6f).”  

 

Minor comment 

 
244-245: functional repeated twice 
 
Response: We thank the reviewer for their comment and have removed the redundant second 
mention of “functional” before “brain images.” 
 
We have revised and clarified the language in pg. 12 line 252-253: “In order to carry out image 

registration, we leveraged multiple sources of anatomical and functional landmarks derived from 

brain images as well as skull junctions.” 
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