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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors describe a method to detect Cytosine methylation in the context of plants, where cytosine 

methylation occurs not only in CpG sites, but also in CHG and CHH trinucleotides. Existing 

(methylated) base callers have not been optimized for this context. They authors showcase the 

method in three plant models, and train and test their caller using bisulphite sequencing data. 

They show that their method can produce data similar to bisulphite sequencing and detects 

methylation in sites that are not mappable using short read sequencing. 

The detection of DNA modifications in a context unbiased manner is a very relevant research question. 

Research that helps improve models in this regard are very important and relevant for the Nanopore 

community. 

Major concerns: 

- The authors show that the denoising method improves performance by improving the correct 

labelling of the samples. While this might be true, the approach itself looks like a self-fulfilling 

prophecy, as the same samples that are re-labelled are going to be used for training. A simulation 

experiment should be done to show that indeed the denoising method works as intended, this can be 

easily done by having a ground-truth dataset and purposely misslabelling several samples and 

evaluating whether the method would correct such misslabellings. 

- Nanopore sequencing combined with Deepsignal-plant detects many novel methylated sites in repeat 

regions. However there is no control to establish whether these calls are accurate or false positives. It 

could very well be possible that the kmers in repeat regions are significantly different from those in 

mappable regions, on which the algorithm was trained. The authors could show that there is 

significant overlap between the kmers in repeat regions, and the kmers used for training. If this 

overlap is not significant, this issue could for example be addressed by using synthetic controls, to 

validate that the model calls methylation correctly in previously unmappable regions. 

- The strategy employed to detect methylated cytosines uses a segmentation approach. This type of 

models was used in the past for basecalling, but nowadays state of the art basecallers do not require 

segmented data for prediction (eg. Chiron, Guppy, Bonito, Megalodon, ...). In this regard, it feels like 

this strategy is a step back regarding the technological advances of the past years. 

-- Because of this, authors are bound to sample raw data datapoints for each base if there are more 

than their network input size allows. 

-- This approach is also bound by the tool Tombo, future changes in the tool might affect performance 

of the models. This might also require re-training of the models for each Tombo version. 

-- Finally, this also forces the need of having a reference genome available. 

- The authors compare their model with Megalodon. While it is true that megalodon can be trained to 

detect base modifications, Megalodon's task is also to do regular basecalling. For this reason, 

Megalodon's task is far more complex than DeepSignal-plant, as the latest only has to work on 

methylation detection. 

-- It is mentioned that two Megalodon configurations are trained (methods section), but in the end 

only 3 models are trained. It is unclear which of the two configurations was used in the end. 

-- It is unclear if the authors also employed their denoising approach to improve the dataset during 

Megalodon training. 

-- It is unclear if the authors also employed their k-mer balancing approach for Megalodon training. 

-- For these reasons, I believe the comparison to be a bit unfair towards Megalodon. 



- The authors compare the output of their model to bisulphite sequencing and measure its 

performance using pearsson correlation. However, sensitivity and accuracy are also very relevant (ie. 

False positives and false negatives). Rather than stating that their model “outperforms Megalodon at 

all coverages”, it is relevant to know if it is either more accurate, more sensitive, or both. 

- It is unclear how the datasets were divided to properly perform cross-validation. Which data was 

used for training, validation and testing is very important in any machine learning task, over the whole 

manuscript it is very difficult to follow how this splitting of the data was done. I advise the authors to 

perform chromosomal cross-validation, where all chromosomes but (e.g.) two are used for training, 

one for validation and one for testing. This approach is easy to implement, understand, and avoids 

any potential information leakage between datasets. 

- In the Train models section it is mentioned: "The model parameters with the current best 

performance on the validation dataset are saved in every epoch". If the reported performance values 

are also based on this dataset there is an important leak of information in the cross-validation and the 

performance results could be overestimated. 

Minor concerns: 

- We highly recommend revising the document with the assistance of a native English speaker, the 

entire manuscript contains grammatical mistakes. Here are some examples of sentences that are 

grammatically wrong, very difficult to read or where it is unclear what is meant: 

-- We develop a denoising process to train the tool to achieve high correlations with bisulfite 

sequencing for the detection of three contexts of 5mCs in plants. 

-- Therefore, the detection of genome-wide CHG and CHH methylation is the same important as the 

detection of CpG methylation in plants. 

-- The statistic method using the early version of Pacbio SMRT data to detect 5mCs exists low signal-

to-noise ratio problem. 

-- ..., which makes DNA degradation and amplification biases be avoided. 

-- Furthermore, we find that the types of differentially methylated cytosines in repeat pairs show 

species-specific. 

-- The differentially methylated repeat pairs in two replicates of O. sativa show great inconsistency, 

which implies that the differentially methylated repeat pairs are stable in spices. 

-- Because fully methylated cytosines are much less than fully unmethylated cytosines, especially for 

CHH, it is difficult to collect positive training samples and results in an unbalanced training dataset. 

- Along the manuscript, the following notation is used several times "~116× coverage of reads". This 

is used to mention the amount of data used for training and validation in several places. However, it is 

unclear what the authors mean by this and it is difficult to really understand how much data is used in 

each case. Probably they indicate mean or median genome coverage, but this is not specified. 

- A cytosine is either methylated, or unmethylated. There is no such thing as more or less methylated 

cytosines, instead there are cytosines that are more frequently methylated in an overall population, or 

less frequently methylated in a population. Aside from that, a region can be highly methylated, if 

multiple cytosines are methylated. However, a single cytosine can not be highly or lowly methylated. 

In several places, this is ambiguously phrased, for example: 

“This may be due to the relatively less methylated sites and k-mers of CHH motif in A. thaliana 

(Supplementary Tables 3-4).” 

“Megalodon tends to underpredict highly and intermediately methylated cytosines,” 

- Some parameters of the model are poorly explained in the main text; for example: 

“For each targeted 5mC site, DeepSignal-plant constructs four k-length features of the k-mer” 



It is only apparent from figure 1 what those features are (signal, length, SD and base). 

- The overview from figure 1 is not comprehensible without prior knowledge of deep-learning 

algorithms. Terms such as softmax, full connection or bidirectional long short-term memory layer are 

not commonly known by biologists. It may be appropriate to include 1-sentence introduction to these 

concepts. 

- The authors state that they train 3 different models, one for each methylation context. It would be 

nice to see if the three models could be combined into 1 for several reasons: 

-- Effect on performance, it could be that the information from one context is relevant to predict 

methylation on another context. This could potentially improve performance. 

-- Using the models in a real-life application, one would require to detect methylation 3 times on one 

dataset, that is of course more computationally expensive than just running a single model. 

- In Algorithm 2 the number of epochs (E) is mentioned as a parameter, but such parameter is not in 

the description of the algorithm itself. 

- In Suppl.Fig.3 the diagram indicates that the samples are balanced and then the denoising 

procedure is done. Since the denoising procedure will change the label of some samples, the datasets 

might be slightly unbalanced again. Perhaps doing a second round of balance should be done after the 

denoising. 

-- A similar diagram for the training of Megalodon would make things clear in the comparison of the 

training of the two approaches. 

- Hyperparameter optimization is a bit lacking. There is optimization on the length of the k-mers. The 

number of signals is not optimized, as a value is chosen based on a distribution. There is no mention 

on the optimization on the number of layers, learning rate, number of hidden dimensions, etc. The 

amount of hidden units in the layers is not mentioned at all. Reproducing the same model architecture 

is not possible without looking at the code. 

- There is no mention regarding how fast can their models predict 5mC. This can be an important 

factor, especially since one has to basecall the data 3 times (one for each 5mC context). 

- The authors move to the analysis of repeat pairs, but there is no explanation why repeat pairs are 

interesting or relevant to the field. Readers are left guessing why it is of importance to detect 

(differential) methylation in this context. 

Regarding their github page: 

- The code files in general lack comments 

- The readme file looks very complete and descriptive, the authors have done a considerable effort 

here. Well done. 

Reviewer #2 (Remarks to the Author): 

In this manuscript, the authors developed deepsignal-plant, a deep learning tool for detection of DNA 

modification. There are many good tools for DNA methylation detection of CpG context from nanopore 

sequencing data, such as deepsignal developed by the authors previously and nanopolish. However, 

only a few tools which can detect CHG and CHH contexts are available. Their deepsignal-plant can 

detect methylation of those contexts. They performed Nanopore sequencing and bisulfite sequencing 

of A. thaliana and O. sativa and trained a bidirectional recurrent neural network (BRNN) with LSTM 

utilizing these data. Per site methylation rate predicted by deepsignal-plant showed higher pearson’s 



correlations with bisulfite sequencing than Megalodon. They also performed the cross-species 

evaluation of methylation calling using nanopore sequencing data and bisulfite sequencing data of B. 

nigra. Furthermore, they indicated that deepsignal-plant could cover the regions which bisulfite 

sequencing couldn’t cover, and analyzed the differential methylation between repeat pair, which has 

same sequence but locate in different genomic coordinates. 

Although there are some concerns as below, I assume that deepsignal plant is useful for plant 

research community. 

Major 

1. I believe the primary advantage of methylation calling from nanopore sequencing is that nanopore 

sequencing can determine the methylation patterns on long single DNA molecules. Therefore, it is 

important to evaluate the accuracy and the sensitivity at read level, as described in their previous 

paper (Ref. 1). 

2. I could not understand the meaning of UpSet plots in Figures 4c, 4d and Supplementary Figure 21b. 

The detailed explanation about these figures should be added to Result section and Figure Legends. 

3. I understand that genomic DNA of mammalian cells except for cells in early development and 

neural cells is rarely methylated in CHH and CHG contexts. However, some CHH and CHG sites are 

methylated. Although the deep learning-based tools might have a dependency on the datasets for its 

accurate detection, deepsignal-plant would be helpful for researchers of boarder research areas if it 

can be used also for mammalian dataset. Therefore, it is worth to evaluate whether deepsignal-plant 

can be used for mammalian dataset or not. 

Minor 

1. In this manuscript, there are many mistakes of tense and spelling (e.g. “sequence”->“sequenced” 

and “develop”->“developed” on page 2, “unmethylated 5mC” -> “unmethylated 5C” or “unmethylated 

C” on page 7). So, I strongly think that this manuscript should get English proofreading. 

2. Many deep learning-based tools requires computational resources with high performance which it is 

not easy for many researchers to access. It is helpful to indicate the requirement of computational 

environment and the runtime for performing the deepsignal-plant. 

3. In Method section of Bisulfite sequencing, the detailed information about the experiment for library 

preparation is not described. The authors should add the information about Bisulfite conversion kit and 

library preparation kit used for bisulfite sequencing. 

4. It is shown that EM-seq can more uniformly cover the entire of genome, compared with bisulfite 

sequencing (ref. 2). It might be better to compare with EM-seq in the regard with covered sites, in 

addition to bisulfite sequencing. 

5. In Figure 2, if training model by a combination of A. thaliana and O. , the author should state the 

fact more clearly. I think that the fact is important information to evaluate the performance of 

deepsignal-plant. 

6. Though the definition of repeat pairs was described in Method section, it should be described also in 

Result section for readers. 

7. In Figure 4ab, Supplementary Figure 21a and 22, they showed ratio of differentially methylated 

cytosines in repeat pairs, as label of x-axis. However, I assumed that x-axis means difference of 

methylation ratio between repeat pair. If wrong, they should explain the meaning in more detail in 

Result section and Legends. 

The authors should add the explanation about dash lines (10%?) to Figure Legends. 



Reference 

1. Ni P, Huang N, Zhang Z, Wang DP, Liang F, Miao Y, Xiao CL, Luo F, Wang J. DeepSignal: detecting 

DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics. 2019 

Nov 1;35(22):4586-4595. 

2. Feng S, Zhong Z, Wang M, Jacobsen SE. Efficient and accurate determination of genome-wide DNA 

methylation patterns in Arabidopsis thaliana with enzymatic methyl sequencing. 

Epigenetics Chromatin. 2020 Oct 7;13(1):42. 

Reviewer #3 (Remarks to the Author): 

In this manuscript, the authors present a new tool, which they call "DeepSignal-plant", for the 

detection of cytosine DNA methylation in any context (i.e. CG, CHG and CHH, where H=A, T or C) 

using ONT (Nanopore) sequencing reads. So far, most cytosine methylation callers developed for 

Nanopore reads detect CG methylation only, the sole context of cytosine methylation in most 

mammalian cell types, including germ cells. However, plants methylate cytosines in all three contexts, 

which all contribute to the epigenetic control of transposable element (TE) and other repeat sequences 

and there many other groups of eukaryotes where non-CG methylation also plays important roles. 

Thus, being able to call reliably methylation at CHG and CHH in addition to CG sites using Nanopore 

sequencing reads is crucial for methylome studies in non-mammalian organisms. 

The authors mainly focus on two plant species A. thaliana and 0. sativa to carry out an in-depth 

evaluation of the performance of DeepSignal-plant. They first generate using the same DNA samples 

whole-genome bisulfite sequencing data, the gold standard for the detection of cytosine methylation in 

any context, and Nanopore sequencing data. Based on these two sources of data, they establish a 

carefully designed Nanopore data set for the training of a deep learning model, which they then 

evaluate using multiple comparisons with results obtained using BSseq. 

Although this reviewer has no expertise in deep learning, the methodology presented as well as the 

numerous evaluation steps carried out appear properly justified and sound. In addition, the authors 

show that compared to Megalodon, recently developed by ONT and the only other existing tool that 

can detect methylated cytosines in all contexts, DeepSignal-plant is significantly better at calling CHH 

methylation and more consistent overall. 

In sum, DeepSignal-plant fills an important gap in our ability to analyze cytosine methylation in all 

sequence contexts using Nanopore sequencing. For this reason, it should be of broad interest. 

The manuscript in its present forms suffers from poor English, especially in the Introduction and need 

therefore careful language editing prior to being accepted for publication. Also, some of the 

methodology is difficult to follow for non-specialists. For instance, what does BRNN do; and what is the 

difference between signal features and inception blocks? 

Other points: 

In the introduction, there is some confusion in the way DNA methylation in A. thaliana is described: 

here it is the overall methylation level of CG, CHG and CHH sites that is reported, not the percentage 

of CGs, CHGs and CHHs that are methylated (at some level) across the genome. Lister et al, Cell 2008 

should also be cited (in addition to ref 9). The sentences that follow on 

the different roles for CG, CHG and CHH methylation are also confusing and some of the statements 

are wrong. 

We have pair sequenced...: replace with 'We have performed in parallel BSseq and Nanopore 

sequencing... 

In the last paragraph of the penultimate Results section, the sentence "Furthermore, the majority of 

those 5mCs are..." is unclear. 

First sentence of the last Results section: replace "repeat pairs..." with "located within segmental 



duplications...". 



Summary 
We appreciate the valuable comments and suggestions from the editor and reviewers. 
Based on the suggestions and comments from editor and reviewers, we revised our 
paper. We addressed those comments and suggestions carefully and included a 
point-by-point response below. We completely rewrote some paragraph and 
significant changes were highlighted by color. 
 
Answers to Reviewer #1 
 
Reviewer #1 (Remarks to the Author): 
 
The authors describe a method to detect Cytosine methylation in the context of plants, 
where cytosine methylation occurs not only in CpG sites, but also in CHG and CHH 
trinucleotides. Existing (methylated) base callers have not been optimized for this 
context. They authors showcase the method in three plant models, and train and test 
their caller using bisulphite sequencing data. 
They show that their method can produce data similar to bisulphite sequencing and 
detects methylation in sites that are not mappable using short read sequencing. 
 
The detection of DNA modifications in a context unbiased manner is a very relevant 
research question. Research that helps improve models in this regard are very 
important and relevant for the Nanopore community. 
Authors' Response. Thanks for the comments. 
 
 
Major concerns: 
 
- The authors show that the denoising method improves performance by improving the 
correct labelling of the samples. While this might be true, the approach itself looks 
like a self-fulfilling prophecy, as the same samples that are re-labelled are going to be 
used for training. A simulation experiment should be done to show that indeed the 
denoising method works as intended, this can be easily done by having a ground-truth 
dataset and purposely misslabelling several samples and evaluating whether the 
method would correct such misslabellings. 
Authors' Response. Thanks for the above concern and suggestion! We perform the 
suggested simulation experiment using our A. thaliana sequencing data as follows: 

(1) We first establish ground-truth datasets. Based on bisulfite sequencing, we 
select cytosines with methylation frequencies equal to 1 and 0. Then for each motif, 
we extracted corresponding true-positive and true-negative samples of the selected 
sites from Nanopore reads. We generate 9,388,125, 972,099, and 309,301 
true-positive samples for CpG, CHG, and CHH, respectively. To establish a 
ground-truth dataset for each motif, we use the balancing method to generate balanced 
positive and negative training samples. (2) For each motif, we randomly change the 
labels of the certain number of negative samples from 0 (negative) to 1 (positive) in 



the ground-truth dataset and remove the same number of true-positive samples with 
the mislabeld samples, to generate datasets with different mislabeled ratios (0%, 5%, 
10%, 15%, and 20%). For example, in a dataset with a 10% mislabeled ratio, 10% of 
positive samples are mislabeled samples (i.e., false-positive samples), while the total 
number of positive samples are still 9,388,125, 972,099, and 309,301 for CpG, CHG, 
and CHH, respectively. Then, we evaluate the denoising method using the datasets. 
We repeat 5 times the mislabeling-denoising experiment for each mislabel ratio. 

The results show that, although a small portion of true-positive samples are 
removed, most of the mislabeled samples are removed by the denoising method. For 
example, in the datasets with a 10% mislabeled ratio, 15.3% (CG), 17.8% (CHG), 
35.4% (CHH) true-positive samples are removed, while 96.9% (CG), 97.5% (CHG), 
94.8% (CHH) mislabeled samples are removed. 

We add a new paragraph in the revised manuscript and a section in Supplementary 
Note 1 to describe the simulation experiments. 
 
- Nanopore sequencing combined with Deepsignal-plant detects many novel 
methylated sites in repeat regions. However there is no control to establish whether 
these calls are accurate or false positives. It could very well be possible that the 
kmers in repeat regions are significantly different from those in mappable regions, on 
which the algorithm was trained. The authors could show that there is significant 
overlap between the kmers in repeat regions, and the kmers used for training. If this 
overlap is not significant, this issue could for example be addressed by using synthetic 
controls, to validate that the model calls methylation correctly in previously 
unmappable regions. 
Authors' Response. Thanks for the above concern and suggestion. As suggested, we 
analyze the k-mers (k=13) in the training dataset, and in the regions of A. thaliana, O. 
sativa (sample1 and sample2) which can only be covered by Nanopore sequencing for 
each motif. The result shows that 91.5%-97.0% CpG k-mers, 91.9%-94.8% CHG 
k-mers, and 80.3%-85.1% CHH k-mers in the previously unmappable regions are in 
the training dataset, which indicates that DeepSignal-plant could detect 5mC 
methylation accurately in those regions. 

We have added this analysis in Supplementary Table 8 of the revised manuscript. 
 
- The strategy employed to detect methylated cytosines uses a segmentation approach. 
This type of models was used in the past for basecalling, but nowadays state of the art 
basecallers do not require segmented data for prediction (eg. Chiron, Guppy, Bonito, 
Megalodon, ...). In this regard, it feels like this strategy is a step back regarding the 
technological advances of the past years. 
-- Because of this, authors are bound to sample raw data datapoints for each base if 
there are more than their network input size allows. 
-- This approach is also bound by the tool Tombo, future changes in the tool might 
affect performance of the models. This might also require re-training of the models for 
each Tombo version. 
-- Finally, this also forces the need of having a reference genome available. 



Authors' Response. We agree that DeepSignal-plant uses a segmentation approach 
for methylation calling, while basecalling tools (such as Chiron, Guppy, and Bonito) 
use Seq2Seq approaches to translate raw current signal sequences to nucleotide 
sequences. However, our results showed that the segmentation approach can achieve 
higher performance in 5mC methylation prediction, especially for the CHH (Fig. 2), 
which have a low methylation level in the genome and basecalling based methods 
could not optimize the methylation prediction for those sites. 
 

If the number of raw signals is more than m (m=16 by default, which is larger than 
number of raw signals of 91.4% bases in our tests), DeepSignal-plant samples raw 
signals for each base. We have also performed hyperparameter tuning on m 
(Supplementary Fig. 30). 
 

We agree that once the algorithm (dynamic time warpping) for re-sequiggle in 
tombo changes significantly, we need to re-train the models of DeepSignal-plant. In 
this study, we use the newest version of tombo (v1.5.1) for re-squiggle. Using 20× 
(mean genome coverage) A. thaliana Nanopore data, we assess the re-squiggle results 
of two early versions of tombo (v1.0, v1.2). We find that compared to tombo v1.5.1, 
tombo v1.0 and v1.2 show a larger percentage of failed reads in the re-squiggle 
process. We also use DeepSignal-plant to call methylation from the re-squiggle results 
of these three tombo versions. As shown in the following figure, the effect of the 
re-squiggle tool on the performance of DeepSignal-plant is limited. We will regularly 
maintain DeepSignal-plant, and update the pre-trained models once we need to. 

 
Fig. R1 Comparison of different versions of tombo. a: Percentage of failed reads in 
re-squiggle process. b: Performance of DeepSignal-plant on the results of different 
tombo versions. We compare cytosines with at least 5× coverage reads after the 
resquiggle process of all tombo versions. 
 

DeepSignal-plant needs a publicly available reference genome, or an assembly 
genome of the corresponding species/sample for calling 5mC methylation status, 
since the reference genome allows the better alignment of signals to the base, then 
results in high accuracy prediction. 



 
- The authors compare their model with Megalodon. While it is true that megalodon 
can be trained to detect base modifications, Megalodon's task is also to do regular 
basecalling. For this reason, Megalodon's task is far more complex than 
DeepSignal-plant, as the latest only has to work on methylation detection. 
-- It is mentioned that two Megalodon configurations are trained (methods section), 
but in the end only 3 models are trained. It is unclear which of the two configurations 
was used in the end. 
-- It is unclear if the authors also employed their denoising approach to improve the 
dataset during Megalodon training. 
-- It is unclear if the authors also employed their k-mer balancing approach for 
Megalodon training. 
-- For these reasons, I believe the comparison to be a bit unfair towards Megalodon. 
Authors' Response. We agree that Megalodon’s task is more complex than 
DeepSignal-plant. Besides modified base calling, Megalodon is also capable of 
sequence variant calling, whereas DeepSignal-plant is only designed for methylation 
calling. 
 

The two configuration files res_dna_r941_prom_modbases_5mC_CpG_v001.cfg 
and res_dna_r941_min_modbases-all-context_v001.cfg are two pre-trained model 
files which are got from Megalodon. In the revised manuscript, we have trained a 
single model for 5mC detection for Megalodon, rather than training 3 models (one for 
each motif). To train the new 5mC model, we used 
res_dna_r941_min_modbases-all-context_v001.cfg as the initial model. We have 
re-written the Methods-Retrain Megalodon section. 
 

Megalodon employs a Seq2Seq model in Guppy for methylation status prediction 
(Supplementary Note 5 and Supplementary Fig. 4b). First, to train the Seq2Seq model, 
mapping between consecutive raw signal sequences and nucleotide sequences, rather 
than discrete sites with corresponding features and labels, are needed. Second, the 
training process of Megalodon allows to leverage cytosines of all methylation status 
for annotation, which gives better performance than just selecting unmethylated and 
fully methylated cytosines for annotation [1]. In summary, training the Seq2Seq 
model of Megalodon/Guppy does not need discrete samples that are labeled as 
positive (1) or negative (0). Therefore, we could not employ the denoising and k-mer 
balancing approaches for Megalodon training. 
 
References 
[1] Oxford Nanopore Technologies. Megalodon. 
https://nanoporetech.github.io/megalodon/modbase_training.html. Accessed 25 June 
2021. 
 
- The authors compare the output of their model to bisulphite sequencing and measure 
its performance using Pearson correlation. However, sensitivity and accuracy are 

https://nanoporetech.github.io/megalodon/modbase_training.html
https://nanoporetech.github.io/megalodon/modbase_training.html


also very relevant (ie. False positives and false negatives). Rather than stating that 
their model “outperforms Megalodon at all coverages”, it is relevant to know if it is 
either more accurate, more sensitive, or both. 
Authors' Response. Thanks for your suggestion. We evaluate DeepSignal-plant and 
Megalodon at read level using A. thaliana, O. sativa (sample1 and sample2) and B. 
nigra data. For each species, we selected cytosines with 1 and 0 methylation 
frequency based on bisulfite sequencing. Then we extract corresponding positive and 
negative samples of the selected sites from Nanopore reads for evaluation. The results 
show that DeepSignal-plant gets higher sensitivities than Megalodon for all motifs of 
all species. DeepSignal-plant also gets higher accuracies than Megalodon, except for 
the CpG motif of B. nigra (0.9257 vs 0.9394). 

In the revised manuscript, we have added and discussed the results in 
Supplementary Table 7 and the Results section. 
 
- It is unclear how the datasets were divided to properly perform cross-validation. 
Which data was used for training, validation and testing is very important in any 
machine learning task, over the whole manuscript it is very difficult to follow how this 
splitting of the data was done. I advise the authors to perform chromosomal 
cross-validation, where all chromosomes but (e.g.) two are used for training, one for 
validation and one for testing. This approach is easy to implement, understand, and 
avoids any potential information leakage between datasets. 
Authors' Response. Thanks for the above concern and suggestion. In our original 
analysis, we use read-based-independent validation, in which ~500× (mean genome 
coverage) Nanopore reads of A. thaliana and ~115× reads of O. sativa (sample1) are 
used for training, while ~100× reads of A. thaliana, ~100× reads of O. sativa 
(sample1), ~100× reads of O. sativa (sample2), and ~78× reads of B. nigra are used 
for testing. To train a model of DeepSignal-plant, we extract samples from the reads 
used for training, of which 99% samples were used for model training, 1% samples 
were used for model validation. In the revised manuscript, we made this clearer in 
Evaluation of DeepSignal-plant using Nanopore data of A. thaliana and O. sativa of 
the Results section, Methods section, and Supplementary Table 10. 
  In the revised manuscript, using A. thaliana data (~500× training reads and ~20× 
randomly selected testing reads), we perform a cross-chromosomal validation as 
suggested. We divide reads based on the chromosomes that they are mapped to. Then 
we extract samples from the reads aligned to chr1-3 for model training, and extract 
samples from the reads aligned to chr4 for model validation. The reads aligned to chr5 
are used for testing. In this chromosomal cross-validation, DeepSignal-plant got high 
correlations with bisulfite sequencing. We have added this analysis in the Evaluation 
of DeepSignal-plant using Nanopore data of A. thaliana and O. sativa of Results 
section and Supplementary Fig. 7 of the revised manuscript. 
 
- In the Train models section it is mentioned: "The model parameters with the current 
best performance on the validation dataset are saved in every epoch". If the reported 
performance values are also based on this dataset there is an important leak of 



information in the cross-validation and the performance results could be 
overestimated. 
Authors' Response. As mentioned above, for the Nanopore data of A. thaliana and O. 
sativa (sample1), we first divide the reads into two groups: reads for training, and 
reads for testing, respectively. To train a model of DeepSignal-plant, we extract 
samples from the reads used for training. The extracted samples are processed by the 
balancing and denoising method and then divided into training dataset and validation 
dataset at a ratio of 99:1. After training, we evaluate the model using the reads for 
testing. All Nanopore reads of O. sativa (sample2) and B. nigra were used only for 
testing. 
  We have made this clear in the Methods section of the revised manuscript. 
 
Minor concerns: 
 
- We highly recommend revising the document with the assistance of a native English 
speaker, the entire manuscript contains grammatical mistakes. Here are some 
examples of sentences that are grammatically wrong, very difficult to read or where it 
is unclear what is meant: 
-- We develop a denoising process to train the tool to achieve high correlations with 
bisulfite sequencing for the detection of three contexts of 5mCs in plants. 
-- Therefore, the detection of genome-wide CHG and CHH methylation is the same 
important as the detection of CpG methylation in plants. 
-- The statistic method using the early version of Pacbio SMRT data to detect 5mCs 
exists low signal-to-noise ratio problem. 
-- ..., which makes DNA degradation and amplification biases be avoided. 
-- Furthermore, we find that the types of differentially methylated cytosines in repeat 
pairs show species-specific. 
-- The differentially methylated repeat pairs in two replicates of O. sativa show great 
inconsistency, which implies that the differentially methylated repeat pairs are stable 
in spices. 
-- Because fully methylated cytosines are much less than fully unmethylated cytosines, 
especially for CHH, it is difficult to collect positive training samples and results in an 
unbalanced training dataset. 
Authors' Response. We have read the paper carefully and corrected all orthographic 
and grammatical mistakes accordingly. 
 
- Along the manuscript, the following notation is used several times "~116× coverage 
of reads". This is used to mention the amount of data used for training and validation 
in several places. However, it is unclear what the authors mean by this and it is 
difficult to really understand how much data is used in each case. Probably they 
indicate mean or median genome coverage, but this is not specified. 
Authors' Response. We apologize for the confusion. By using “×” we mean “mean 
genome coverage”. We have emphasized this in the revised manuscript. 
 



- A cytosine is either methylated, or unmethylated. There is no such thing as more or 
less methylated cytosines, instead there are cytosines that are more frequently 
methylated in an overall population, or less frequently methylated in a population. 
Aside from that, a region can be highly methylated, if multiple cytosines are 
methylated. However, a single cytosine can not be highly or lowly methylated. In 
several places, this is ambiguously phrased, for example: 
“This may be due to the relatively less methylated sites and k-mers of CHH motif in A. 
thaliana (Supplementary Tables 3-4).” 
“Megalodon tends to underpredict highly and intermediately methylated cytosines,” 
Authors' Response. Thanks for pointing this out. We have read the manuscript 
carefully and corrected all relative sentences. 
 
- Some parameters of the model are poorly explained in the main text; for example: 
“For each targeted 5mC site, DeepSignal-plant constructs four k-length features of 
the k-mer” 
It is only apparent from figure 1 what those features are (signal, length, SD and base). 
Authors' Response. We have re-written the description of the model to make it 
clearer in The DeepSignal-plant algorithm and training process of Results section of 
the revised manuscript. 
 
- The overview from figure 1 is not comprehensible without prior knowledge of 
deep-learning algorithms. Terms such as softmax, full connection or bidirectional 
long short-term memory layer are not commonly known by biologists. It may be 
appropriate to include 1-sentence introduction to these concepts. 
Authors' Response. Thanks for the suggestion. We have added more descriptions of 
the neural network units (softmax, full connection and bidirectional long short-term 
memory layer) in the caption of Fig. 1. 
 
- The authors state that they train 3 different models, one for each methylation context. 
It would be nice to see if the three models could be combined into 1 for several 
reasons: 
-- Effect on performance, it could be that the information from one context is relevant 
to predict methylation on another context. This could potentially improve 
performance. 
-- Using the models in a real-life application, one would require to detect methylation 
3 times on one dataset, that is of course more computationally expensive than just 
running a single model. 
Authors' Response. Thanks for the suggestion! We combine the training datasets of 3 
motifs and train only one 5mC model of DeepSignal-plant as suggested. The 5mC 
model outperformed the original three models for CpG/CHH/CHG detection. We also 
train a 5mC model of Megalodon, which also got higher performances for CHG and 
CHH: 



 
Fig. R2 Comparison of motif-specific models and motif-combined models of 
DeepSignal-plant and Megalodon on 20× A. thaliana reads. Models of 
DeepSignal-plant and Megalodon were trained using combined reads of A. thaliana 
and O. sativa. 

We have then used the one 5mC model for downstream analysis. In the revised 
manuscript, we add Supplementary Fig. 6, update Fig. 2, Fig. 3a-b, Fig. 4, 
Supplementary Fig. 8-15, Supplementary Fig. 17, Supplementary Fig. 21, 
Supplementary Fig. 24-28, Supplementary Table 5, 6 and 9, and the relevant 
discussion. 
 
- In Algorithm 2 the number of epochs (E) is mentioned as a parameter, but such 
parameter is not in the description of the algorithm itself. 
Authors' Response. We have added E in line 6 and line 8 of Algorithm 2. 
 
- In Suppl.Fig.3 the diagram indicates that the samples are balanced and then the 
denoising procedure is done. Since the denoising procedure will change the label of 
some samples, the datasets might be slightly unbalanced again. Perhaps doing a 
second round of balance should be done after the denoising. 
-- A similar diagram for the training of Megalodon would make things clear in the 
comparison of the training of the two approaches. 
Authors' Response. Thanks for your suggestion. In the denoising method, we 
balance the samples after each iteration of the denoising procedure (line 15, 
Algorithm 2). We made this clearer in Denoise training samples of Methods section. 

We have added a diagram for the training of Megalodon in Supplementary Fig. 4b. 
A detailed description of training and methylation calling using Megalodon is in 
Supplementary Note 5. 
 
- Hyperparameter optimization is a bit lacking. There is optimization on the length of 
the k-mers. The number of signals is not optimized, as a value is chosen based on a 
distribution. There is no mention on the optimization on the number of layers, 



learning rate, number of hidden dimensions, etc. The amount of hidden units in the 
layers is not mentioned at all. Reproducing the same model architecture is not 
possible without looking at the code. 
Authors' Response. Using A. thaliana data, we perform hyperparameter tuning on 
the number of signals, the number of layers, learning rate, the number of hidden units 
in BiLSTM as suggested. The analysis is added in Supplementary Fig. 30-31, 
Supplementary Table 11, and Supplementary Note 3. 
 
- There is no mention regarding how fast can their models predict 5mC. This can be 
an important factor, especially since one has to basecall the data 3 times (one for 
each 5mC context). 
Authors' Response. We evaluated the running time and peak memory of three main 
steps in the pipeline of DeepSignal-plant: (1) Basecall using Guppy; (2) Re-squiggle 
using Tombo; (3) Call methylation using DeepSignal-plant. The data used for 
evaluation include 100× (mean genome coverage) A. thaliana Nanopore reads, 100× 
O. sativa (sample1) Nanopore reads, 100× O. sativa (sample2) Nanopore reads, and 
78× B. nigra Nanopore reads. We processed all data at a server with 40 CPU 
processors (Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz), 256 GB RAM, and a 
12GB TITAN X (Pascal) GPU. 

We add this analysis in Supplementary Note 4 and Supplementary Table 12 of the 
revised manuscript. 
 
- The authors move to the analysis of repeat pairs, but there is no explanation why 
repeat pairs are interesting or relevant to the field. Readers are left guessing why it is 
of importance to detect (differential) methylation in this context. 
Authors' Response. Thanks for your concern. By analyzing differential methylation 
in repeats, we hope that novel insights could be provided to the correlation between 
duplicate gene transcription and methylation signatures [1]. Furthermore, as 
paralogous sequence variants (PSVs) have been proved to be capable of resolving 
segmental duplications [2], we hope that the differential methylation between repeat 
pairs could also be helpful to resolve collapsed regions of segmental duplications in 
de novo assemblies of plants. 
 
Reference: 
[1] Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, 
Diekhans M, Sulovari A, Munson KM, Lewis AM, Hoekzema K. Segmental 
duplications and their variation in a complete human genome. bioRxiv. 2021 Jan 1. 
[2] Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, 
Graves-Lindsay TA, Wilson RK, Chaisson MJ, Eichler EE. Long-read sequence and 
assembly of segmental duplications. Nature methods. 2019 Jan;16(1):88-94. 
 
Regarding their github page: 
- The code files in general lack comments 
 



- The readme file looks very complete and descriptive, the authors have done a 
considerable effort here. Well done. 
Authors' Response. Thanks for the comments. We have revised the code files and 
added more comments. 
 
 
Answers to Reviewer #2 
 
Reviewer #2 (Remarks to the Author): 
 
In this manuscript, the authors developed deepsignal-plant, a deep learning tool for 
detection of DNA modification. There are many good tools for DNA methylation 
detection of CpG context from nanopore sequencing data, such as deepsignal 
developed by the authors previously and nanopolish. However, only a few tools which 
can detect CHG and CHH contexts are available. Their deepsignal-plant can detect 
methylation of those contexts. They performed Nanopore sequencing and bisulfite 
sequencing of A. thaliana and O. sativa and trained a bidirectional recurrent neural 
network (BRNN) with LSTM utilizing these data. Per site methylation rate predicted 
by deepsignal-plant showed higher pearson’s correlations with bisulfite sequencing 
than Megalodon. They also performed the cross-species evaluation of methylation 
calling using nanopore sequencing data and bisulfite sequencing data of B. nigra. 
Furthermore, they indicated that deepsignal-plant could cover the regions which 
bisulfite 
sequencing couldn’t cover, and analyzed the differential methylation between repeat 
pair, which has same sequence but locate in different genomic coordinates. 
Although there are some concerns as below, I assume that deepsignal plant is useful 
for plant research community. 
Authors' Response. Thanks for the positive comments. 
 
Major 
1. I believe the primary advantage of methylation calling from nanopore sequencing 
is that nanopore sequencing can determine the methylation patterns on long single 
DNA molecules. Therefore, it is important to evaluate the accuracy and the sensitivity 
at read level, as described in their previous paper (Ref. 1). 
 
Authors' Response. Thanks for your suggestion. As suggested, we evaluate 
DeepSignal-plant and Megalodon at read level using A. thaliana, O. sativa (sample1 
and sample2), and B. nigra data. For each species, we select cytosines with 1 and 0 
methylation frequency based on bisulfite sequencing. Then we extract corresponding 
positive and negative samples of the selected sites from Nanopore reads for evaluation. 
The results show that DeepSignal-plant gets higher accuracies than Megalodon, 
except for the CpG motif of B. nigra (0.9257 vs 0.9394). DeepSignal-plant also gets 
higher sensitivities than Megalodon for all motifs of all species, while Megalodon got 
higher specificities. 



In the revised manuscript, we have added and discussed the results in 
Supplementary Table 7 and the Results section. 
 
2. I could not understand the meaning of UpSet plots in Figures 4c, 4d and 
Supplementary Figure 21b. The detailed explanation about these figures should be 
added to Result section and Figure Legends. 
Authors' Response. In this study, suppose the methylation frequencies of a cytosine 
in the same relative position of the repeat pair are rmet1 and rmet2, the cytosine is said 
to be differentially methylated if |rmet1-rmet2|>=0.5. A repeat pair is said to be 
differentially methylated if there are at least 10% cytosines (or CpG sites, CHG sites, 
CHH sites independently) that are differentially methylated in the repeat pair. For 
each species/sample, we generate four sets of differentially methylated repeat pairs 
based on cytosines, CpGs, CHGs and CHHs, respectively. Then, we compare the 
intersection of the differentially methylated repeat pairs among the four sets using 
UpSet plot. 
  In each UpSet plot, circles below in each column indicate sets that are part of the 
intersection (i.e., corresponding one segment in a Venn diagram). The up bars indicate 
the size of each intersection. The left bars indicate the total size of each set. 
  We have added more explanation in the Results section and caption of the figures 
(Fig. 4c-d and Supplementary Fig. 24b) in the revised manuscript. 
 
3. I understand that genomic DNA of mammalian cells except for cells in early 
development and neural cells is rarely methylated in CHH and CHG contexts. 
However, some CHH and CHG sites are methylated. Although the deep 
learning-based tools might have a dependency on the datasets for its accurate 
detection, deepsignal-plant would be helpful for researchers of boarder research 
areas if it can be used also for mammalian dataset. Therefore, it is worth to evaluate 
whether deepsignal-plant can be used for mammalian dataset or not. 
Authors' Response. Thanks for the suggestion. We will find biologist collaborators 
who can provide mammalian samples for us to sequene. We will add the results to our 
GitHub site in the future. 
 
Minor 
1. In this manuscript, there are many mistakes of tense and spelling (e.g. 
“sequence”->“sequenced” and “develop”->“developed” on page 2, “unmethylated 
5mC” -> “unmethylated 5C” or “unmethylated C” on page 7). So, I strongly think 
that this manuscript should get English proofreading. 
Authors' Response. Thanks for pointing out the mistakes! We have used the “present 
tense” in the manuscript and make it consistent. We have corrected the mistakes 
accordingly and revised the whole manuscript. 
 
2. Many deep learning-based tools requires computational resources with high 
performance which it is not easy for many researchers to access. It is helpful to 
indicate the requirement of computational environment and the runtime for 



performing the deepsignal-plant. 
Authors' Response. Thanks for your suggestion. We evaluate the running time and 
peak memory of three main steps in the pipeline of DeepSignal-plant: (1) Basecall 
using Guppy; (2) Re-squiggle using Tombo; (3) Call methylation using 
DeepSignal-plant. The data used for evaluation include 100× (mean genome coverage) 
A. thaliana Nanopore reads, 100× O. sativa (sample1) Nanopore reads, 100× O. 
sativa (sample2) Nanopore reads, and 78× B. nigra Nanopore reads. We process all 
data at a server with 40 CPU processors (Intel(R) Xeon(R) CPU E5-2676 v3 @ 
2.40GHz), 256 GB RAM, and a 12GB TITAN X (Pascal) GPU. 

We add this analysis in Supplementary Note 4 and Supplementary Table 12 of the 
revised manuscript. 
 
3. In Method section of Bisulfite sequencing, the detailed information about the 
experiment for library preparation is not described. The authors should add the 
information about Bisulfite conversion kit and library preparation kit used for 
bisulfite sequencing. 
Authors' Response. We use TIANGEN DNA Bisulfite Conversion Kit (cat #: DP215, 
TIANGEN BIOTECH) and TruSeq DNA Methylation Kit (cat #: EGMK91324, 
Illumina) as bisulfite conversion kit and library preparation kit, respectively, for 
sequencing three technical replicates of A. thaliana and O. sativa (sample2). For O. 
sativa (sample1), the bisulfite conversion kit and library preparation kit are EZ DNA 
Methylation-Gold Kit (Zymo Research) and MGIEasy Whole Genome Bisulfite 
Sequencing Library Prep Kit (16 RXN) (BGI), respectively. We have added the 
information in the Method section of Bisulfite sequencing. 
 
4. It is shown that EM-seq can more uniformly cover the entire of genome, compared 
with bisulfite sequencing (ref. 2). It might be better to compare with EM-seq in the 
regard with covered sites, in addition to bisulfite sequencing. 
Authors' Response. Thanks for your suggestion. As suggested, we download 8 
EM-seq replicates of A. thaliana from ref. 2, which are about 370× (mean genome 
coverage) reads in total (Table R1). We also download the corresponding BS-seq data 
of the 8 replicates from ref. 2. We process the EM-seq and BS-seq data with Bismark 
(v0.20.0). For comparison, we counted all cytosines which are covered with at least 5 
reads in at least 1 replicate. 

We first compare the covered sites between the 8 EM-seq replicates and the 
corresponding BS-seq replicates from ref. 2 (Fig. R3a). The results show that the 
EM-seq replicates covered more cytosines than the BS-seq replicates. We then 
compare the cytosines covered by the EM-seq replicates, the 3 BS-seq replicates 
(~116×, ~131×, and ~116×, respectively) and the Nanopore data (Fig. R3b). From the 
results, we observe that Nanopore sequencing covered more cytosines than both 
BS-seq and EM-seq. 
Table R1. EM-seq and BS-seq replicates downloaded from ref. 2. 

ID replicate 
mean genome coverage 

EM-seq BS-seq 



SRR11906626 Flower-4-50ng-18PCR 58.9 22.8 
SRR11906602 Flower-3-50ng-18PCR 51.0 27.3 
SRR11906614 Flower-4-25ng-18PCR 49.1 23.4 
SRR11906590 Flower-3-25ng-18PCR 47.2 27.9 
SRR11906608 Flower-4-150ng-18PCR 47.0 28.9 
SRR11906584 Flower-3-150ng-18PCR 44.5 26.4 
SRR11906596 Flower-3-400ng-18PCR 39.4 34.9 
SRR11906620 Flower-4-400ng-18PCR 37.6 37.1 

 

 

Fig. R3 Comparison of cytosines covered by EM-seq, BS-seq and Nanopore 
sequencing. a: Comparison of cytosines covered by 8 EM-seq replicates and 8 BS-seq 
replicates from ref. 2. b: Comparison of cytosines covered by 8 EM-seq replicates 
from ref. 2, 3 BS-seq replicates and Nanopore sequencing data used in our work. 
 
5. In Figure 2, if training model by a combination of A. thaliana and O. , the author 
should state the fact more clearly. I think that the fact is important information to 
evaluate the performance of deepsignal-plant. 
Authors' Response. Thanks for the suggestion. In the revised manuscript, we have 
stated the fact more clearly in Comparison of DeepSiganl-plant to other tools for 5mC 
detection of the Results section, and the caption of Fig. 2. 
 
6. Though the definition of repeat pairs was described in Method section, it should be 
described also in the Result section for readers. 
Authors' Response. We have added the definition of repeat pairs in Differentially 
methylated cytosines in repeat pairs of Result section of the revised manuscript. 
 
7. In Figure 4ab, Supplementary Figure 21a and 22, they showed ratio of 
differentially methylated cytosines in repeat pairs, as label of x-axis. However, I 



assumed that x-axis means difference of methylation ratio between repeat pair. If 
wrong, they should explain the meaning in more detail in Result section and 
Legends. 
The authors should add the explanation about dash lines (10%?) to Figure Legends. 
Authors' Response. The label of x-axis “Ratio of differentially methylated cytosines” 
means the ratio of differentially methylated cytosines to total cytosines in one repeat 
pair. In the revised manuscript, we have added more description in Differentially 
methylated cytosines in repeat pairs of Results section and the legends of figures (Fig. 
4, Supplementary Fig. 24 and 25). 

We add dash lines in x=10%, as we treat repeat pairs in which there are at least 10% 
cytosines that are differentially methylated as differentially methylated repeat pairs. 
We have added an explanation of the dash lines in the legends of figures (Fig. 4, 
Supplementary Fig. 24 and 25). 
 
Reference 
1. Ni P, Huang N, Zhang Z, Wang DP, Liang F, Miao Y, Xiao CL, Luo F, Wang J. 
DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using 
deep-learning. Bioinformatics. 2019 Nov 1;35(22):4586-4595. 
2. Feng S, Zhong Z, Wang M, Jacobsen SE. Efficient and accurate determination of 
genome-wide DNA methylation patterns in Arabidopsis thaliana with enzymatic 
methyl sequencing. 
Epigenetics Chromatin. 2020 Oct 7;13(1):42. 
 
 
Answers to Reviewer #3 
 
Reviewer #3 (Remarks to the Author): 
 
In this manuscript, the authors present a new tool, which they call "DeepSignal-plant", 
for the detection of cytosine DNA methylation in any context (i.e. CG, CHG and CHH, 
where H=A, T or C) using ONT (Nanopore) sequencing reads. So far, most cytosine 
methylation callers developed for Nanopore reads detect CG methylation only, the 
sole context of cytosine methylation in most mammalian cell types, including germ 
cells. However, plants methylate cytosines in all three contexts, which all contribute to 
the epigenetic control of transposable element (TE) and other repeat sequences and 
there many other groups of eukaryotes where non-CG methylation also plays 
important roles. Thus, being able to call reliably methylation at CHG and CHH in 
addition to CG sites using Nanopore sequencing reads is crucial for methylome 
studies in non-mammalian organisms. 
The authors mainly focus on two plant species A. thaliana and 0. sativa to carry out 
an in-depth evaluation of the performance of DeepSignal-plant. They first generate 
using the same DNA samples whole-genome bisulfite sequencing data, the gold 
standard for the detection of cytosine methylation in any context, and Nanopore 
sequencing data. Based on these two sources of data, they establish a carefully 



designed Nanopore data set for the training of a deep learning model, which they then 
evaluate using multiple comparisons with results obtained using BSseq. 
Although this reviewer has no expertise in deep learning, the methodology presented 
as well as the numerous evaluation steps carried out appear properly justified and 
sound. In addition, the authors show that compared to Megalodon, recently developed 
by ONT and the only other existing tool that can detect methylated cytosines in all 
contexts, DeepSignal-plant is significantly better at calling CHH methylation and 
more consistent overall. 
In sum, DeepSignal-plant fills an important gap in our ability to analyze cytosine 
methylation in all sequence contexts using Nanopore sequencing. For this reason, it 
should be of broad interest. 
Authors' Response. Thanks for the positive comments. 
 
The manuscript in its present forms suffers from poor English, especially in the 
Introduction and need therefore careful language editing prior to being accepted for 
publication. Also, some of the methodology is difficult to follow for non-specialists. 
For instance, what does BRNN do; and what is the difference between signal features 
and inception blocks? 
Authors' Response. Thanks for the suggestion. We have read the paper carefully and 
corrected all orthographic and grammatical mistakes accordingly. We made the 
methodology clearer in The DeepSignal-plant algorithm and training process of 
Results section, The framework of DeepSignal-plant of Methods section and 
Supplementary Note 2. 

A BRNN is a neural network model for sequential data. Each BRNN includes a 
forward RNN and a backward RNN to catch both forward and backward context. A 
RNN scans the sequence of data and encodes the sequential information into a latent 
representation. In DeepSignal-plant, BRNN is used to process sequence features and 
signal features of a cytosine. We add more description in the Model architecture of 
Method section. More detail about BRNN model is in Supplemental Note 2. 

Inception block is a neural network architecture which are composed of 
convolutional neural networks. Signal features of a cytosine are a k×m matrix (k=13, 
m=16) which contains signal values extracted from the corresponding Nanopore read 
of the cytosine. In DeepSignal [1], inception blocks are used to process signal features. 
In DeepSignal-plant, BRNN is used to process both signal features and sequence 
features, which reduce the model size to one-eighth of previous DeepSignal. In the 
revised manuscript, we have rewrote the sentence to make it clear as “By using 
BRNN to process both signal features and sequence features, the size of the 
DeepSignal-plant model is only one-eighth of the size of DeepSignal (Supplementary 
Table 2).” 

We also added more descriptions of the neural network units (softmax, full 
connection and BiLSTM) in the caption of Fig. 1. 
 
References 
[1] Ni P, Huang N, Zhang Z, Wang DP, Liang F, Miao Y, Xiao CL, Luo F, Wang J. 



DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using 
deep-learning. Bioinformatics. 2019 Nov 1;35(22):4586-4595. 
 
Other points: 
In the introduction, there is some confusion in the way DNA methylation in A. thaliana 
is described: here it is the overall methylation level of CG, CHG and CHH sites that 
is reported, not the percentage of CGs, CHGs and CHHs that are methylated (at some 
level) across the genome. Lister et al, Cell 2008 should also be cited (in addition to 
ref 9). The sentences that follow on 
the different roles for CG, CHG and CHH methylation are also confusing and some of 
the statements are wrong. 
Authors' Response. We apologize for the confusion. By using “overall methylation 
level”, we mean the percentage of cytosines that are methylated at read level, which is 
the number of methylated cytosines divided by the number of total cytosines in whole 
sequenced reads [1][2]. We have corrected the improper expression to “there are 24% 
CpG, 6.7% CHG and 1.7% CHH methylated at read level in Arabidopsis thaliana, 
while Beta vulgaris has 92.5% CpG, 81.2% CHG, and 18.8% CHH being methylated 
at read level”. We cited “Lister et al, Cell 2008” as suggested. 

We have re-written the sentences about the different roles of CG, CHG, and CHH 
methylation. 
 
References 
[1] Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, 
Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the 
Arabidopsis genome reveals DNA methylation patterning. Nature. 2008 
Mar;452(7184):215-9. 
[2] Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Do Kim K, Li Q, Rohr NA, 
Rambani A, Burke JM, Udall JA, Egesi C. Widespread natural variation of DNA 
methylation within angiosperms. Genome biology. 2016 Dec;17(1):1-9. 
 
We have pair sequenced...: replace with 'We have performed in parallel BSseq and 
Nanopore sequencing... 
 
In the last paragraph of the penultimate Results section, the sentence "Furthermore, 
the majority of those 5mCs are..." is unclear. 
 
First sentence of the last Results section: replace "repeat pairs..." with "located within 
segmental duplications...". 
Authors' Response. Thanks for pointing out the mistakes. We have corrected the 
mistakes accordingly. 
 
 
 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have done a tremendous job answering the questions. I have no further comments. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed most of my comments. The manuscript improved well. 

Minior point: 

I feel that the manuscript might need to be checked by a native English speaker, as there are still 

problems with the English language. For examples, I found some misspelling as follows: “sanple”-

>”sample” in Supplementary table 12, and “tRAN”-> “tRNA” in the Discussion section p.15 l.4. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed satisfactorily all of the points raised by me and the other reviewers. The 

revised version manuscript is much improved compared to the original submission. 



Summary 
We appreciate the valuable comments and suggestions from the editor and reviewers. 
Based on the suggestions and comments from the editor and reviewers, we revised our 
paper. We addressed those comments and suggestions carefully. 
 
 
Answers to Reviewer #1 
 
Reviewer #1 (Remarks to the Author): 

 

The authors have done a tremendous job answering the questions. I have no further 

comments. 

Authors' Response. We appreciate the reviewer for the positive and supportive comment. 

 

 

Answers to Reviewer #2 
 
Reviewer #2 (Remarks to the Author): 

 

The authors have addressed most of my comments. The manuscript improved well. 

Authors' Response. We appreciate the reviewer for the positive and supportive comment. 

 

Minior point: 

I feel that the manuscript might need to be checked by a native English speaker, as there are 

still problems with the English language. For examples, I found some misspelling as follows: 

“sanple”->”sample” in Supplementary table 12, and “tRAN”-> “tRNA” in the Discussion 

section p.15 l.4. 

Authors' Response. Thanks for the suggestion! We have corrected the typos accordingly and 

read the paper carefully to correct all orthographic and grammatical mistakes. 

 

 

Answers to Reviewer #3 
 

Reviewer #3 (Remarks to the Author): 

 

The authors have addressed satisfactorily all of the points raised by me and the other 

reviewers. The revised version manuscript is much improved compared to the original 

submission. 

Authors' Response. We appreciate the reviewer for the positive and supportive comment. 

 

 

 

 

 


