${\bf Supplementary\ Information\ for\ ``Magnetic\ Topological\ Quantum\ Chemistry''}$

${\bf Contents}$

1. Introduction to the Supplementary Notes 2. Introduction to the Magnetic Space Groups 3. Type-I SSGs: Ordinary (Fedorov) Groups (230 MSGs) 4. Type-II SSGs: Gray (Nonmagnetic) Groups (230 MSGs) 5. Type-I'II SSGs: Black and White Groups without Black and White Bravais Lattices (674 MSGs) 6. Type-I'N SSGs: Black and White Groups with Black and White Bravais Lattices (674 MSGs) 7. Introduction to the Site-Symmetry Groups and Wyckoff Positions of the MSGs 8. Site-Symmetry Groups of the Magnetic Space Groups 9. Wyckoff Positions in Magnetic Space Groups 10. Wyckoff Positions in Magnetic Subgroups of Type-II LG p41' 11. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 13. Small and Full Coreps and the Congregos and Wyckoff Positions in Magnetic Subgroups of Type-II LG p41' 12. Little (CO)Groups, Momentum Stars, and the MKVEC Tool 13. Small and Full Coreps and the Congregos and the MKVEC Tool 14. Small and Full Coreps and the Congregos Properties of Properties (14 MSGs) 15. Small and Full Coreps at the S Point in Type-IV MSG 25.63 Pcnm2 16. Compatibility Relations in the MSGs and the MCOMPREL Tool 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 18. Magnetic Atomic Orbitals in Type-II Single MPG 9.1.29 4 19. Coreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.1.29 4 10. Coreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.3.31 4' 11. Coreps and Magnetic Atomic Orbitals in Type-II Single SPG 9.2.30 4' 12. Coreps and Magnetic Atomic Orbitals in Type-II Single SPG 9.2.30 4' 14. Sexeptional Cases in the MSGs 15. Statistics for the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 16. Throduction to Symmetry-Indicated Magnetic Topological Bands 17. Diagnosing Band Topology from Symmetry Eigenvalues 18. Symmetry-Based Indicator (SI) Groups and Formulas in Type-II Obology in the 34 Minimal Double SSGs 19. Double SIs in Type-I Double MSG 31. P2 10. Double SIs in Type-I Double MSG 31. P2 11. Double SIs in Type-I Double MSG 31. P4	Su	pplementary Notes	2
3. Type-I SSGs: Ordinary (Fedorov) Groups (230 MSGs) 4. Type-II SSGs: Gray (Nonmagnetic) Groups (230 SSGs) 5. Type-III SSGs: Black and White Groups without Black and White Bravais Lattices (674 MSGs) 6. Type-IV SSGs: Black and White Groups without Black and White Bravais Lattices (617 MSGs) 7. Introduction to the Site-Symmetry Groups and Wyckoff Positions of the MSGs 8. Site-Symmetry Groups of the Magnetic Space Groups 9. Wyckoff Positions in Magnetic Subgroups of Type-II IG p41' 11. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 13. Small and Full Coreps and IC Coreps of the Little Groups and Full Coreps of the MSGs 13. Small and Full Coreps and the Contents State of the MSGs 14. Small and Full Coreps and the Contents State of the MSGs 15. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 P4' 16. Small and Full Coreps at the S Point in Type-IV MSG 25.63 Pcmm2 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 18. Magnetic Atomic Orbitals in the MSGs and the MCOMPREL Tool 19. Irreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.1.29 4 10. Coreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.1.29 4 11. Coreps and Admic Orbitals in Type-II Single SPG 9.2.30 4t' 12. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the Content State of Magnetic Atomic Orbitals in Type-II Single SPG 9.2.30 4t' 17. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MBANDREP Tool 18. Exceptional Cases in the MSGs 19. Statistics for the MEBRs and the MBANDREP Tool 20. Exceptional Cases in the MSGs 21. Diagnosing Band Topology from Symmetry Eigenvalues 22. Symmetry-Based Indicator (SI) Groups and Formulas in Type-II Orbitals MSG 3.1 P2 23. Ombule SIs in Type-I Double MSG 8.3 P2 24. Double SIs in Type-I Double MSG 8.3 P2 25. Double SIs in Type-I Double MSG 8.3 P2 26. Double SIs in Type-I Double MSG 8.3 P2 27. Double SIs in Type-I Double MSG 8.3 P2 28. Double SIs in Type-I Double MSG 8.3 P4/m 29. Double SIs in Ty	1.	Introduction to the Supplementary Notes	2
4. Type-II SSGs: Gray (Nonmagnetic) Groups (230 SSGs) 5. Type-III SSGs: Black and White Groups without Black and White Bravais Lattices (674 MSGs) 6. Type-IV SSGs: Black and White Groups with Black and White Bravais Lattices (517 MSGs) 7. Introduction to the Site-Symmetry Groups and Wyckoff Positions of the MSGs 8. Site-Symmetry Groups of the Magnetic Space Groups 9. Wyckoff Positions of the Magnetic Space Groups 10. Wyckoff Positions of the Magnetic Space Groups 11. Wyckoff Positions of the Magnetic Space Groups 12. Little (Co)Croups, Momentum Stars, and the MKVEC Tool 13. Small and Full Coreps and the COREPRESENTATIONS Tool 14. Small and Full Coreps and the COREPRESENTATIONS Tool 14. Small and Full Coreps at the X and X A Points in Type-III MSG 75.3 P4' 15. Small and Full Coreps at the S Point in Type-IV MSG 25.63 Pcmm2 16. Compatibility Relations in the MSGs and the MCOMPREL Tool 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 18. Magnetic Atomic Orbitals and the COREPRESENTATIONS TO Tool 19. Irreps and Magnetic Atomic Orbitals in Type-III Single MPG 91.29 4 20. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 91.29 4 21. Coreps and Atomic Orbitals in Type-III Single MPG 93.31 4' 22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MBANDREP Tool 23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 24. Exceptional Cases in the MSGs 25. Statistics for the MEBRs and the MEANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SIs in Type-I Double MSG 31. P2 20. Double SIs in Type-I Double MSG 31. P2 21. Double SIS in Type-I Double MSG 33. P4 22. Double	2.	Introduction to the Magnetic Space Groups	3
5. Type-III SSGs: Black and White Groups without Black and White Bravais Lattices (674 MSGs) 6. Type-IV SSGs: Black and White Groups with Black and White Bravais Lattices (517 MSGs) 7. Introduction to the Site-Symmetry Groups and Wyckoff Positions of the MSGs 8. Site-Symmetry Groups of the Magnetic Space Groups 9. Wyckoff Positions in Magnetic Subgroups of Type-II LG pH' 11. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 13. United Positions in Magnetic Subgroups of Type-II LG pH' 12. Little (Co)Groups, Momentum Stars, and the MKVEC Tool 13. Small and Full Coreps and the Coreptesentations Tool 14. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 P4' 15. Small and Full Coreps at the S Point in Type-IV MSG 25.63 Pcmm2 16. Compatibility Relations in the MSGs and the MCOMPREL Tool 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 18. Magnetic Atomic Orbitals and the COREPTESENTATIONSPG Tool 19. Irreps and Magnetic Atomic Orbitals in Type-II Singles MPG 9.3.24 4' 20. Coreps and Magnetic Atomic Orbitals in Type-II Singles MPG 9.3.31 4' 21. Coreps and Atomic Orbitals in Type-II Singles MPG 9.3.31 4' 22. Locticus Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 24. Exceptional Cases in the MSGs 25. Statistics for the MEBRs and the MBANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 P2 30. Minimal Double SIs in the 1,651 Double MSG 3.1 P2 41. Double SIs in Type-I Double MSG 3.1 P2 42. Double SIs in Type-I Double MSG 3.1 P2 43. Double SIs in Type-I Double MSG 3.1 P4 44. Double SIs in Type-I Double MSG 3.1 P4 45. Double SIs in Type-I Double MSG 3.3 P4 46. Double SIs in Type-I Double MSG 3.3 P4 47. Double SIs in Ty	3.	Type-I SSGs: Ordinary (Fedorov) Groups (230 MSGs)	4
6. Type-IV SSGs: Black and White Groups with Black and White Bravatis Lattices (517 MSGs) 7 7. Introduction to the Site-Symmetry Groups and Wyckoff Positions of the Msgnetic Space Groups 8 9. Wyckoff Positions of the Magnetic Space Groups 10 10. Wyckoff Positions of the Magnetic Space Groups 11 11. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 13 12. Little (Co)Groups, Momentum Stars, and the MKVEC Tool 14 13. Small and Full Coreps at the X and XA Points in Type-II MSG 75.3 P4' 25 15. Small and Full Coreps at the X and XA Points in Type-II MSG 75.3 P4' 26 16. Compatibility Relations in the MSGs and the MCOMPREL Tool 33 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41 18. Magnetic Atomic Orbitals and the COREPRESENTATIONSPG Tool 41 19. Irreps and Magnetic Atomic Orbitals in Type-II Single MPG 91.29 4 45 10. Coreps and Adapted Atomic Orbitals in Type-II Single MPG 93.31 4' 46 21. Cordeps and Adapted Atomic Orbitals in Type-II Single MPG 93.34 4' 46 22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 49 23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 58<	4.	Type-II SSGs: Gray (Nonmagnetic) Groups (230 SSGs)	
7. Introduction to the Site-Symmetry Groups and Wyckoff Positions of the MSGs 8 8. Site-Symmetry Groups of the Magnetic Space Groups 10. Wyckoff Positions of the Magnetic Space Groups 110. Wyckoff Positions in Magnetic Subgroups of Type-IL G $p4'$ 12. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 13. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 14. Small and Full Coreps and the COREPRESENTATIONS Tool 14. Small and Full Coreps and the COREPRESENTATIONS TOOl 14. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 $P4'$ 25. In Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 $P4'$ 26. Compatibility Relations in the MSGs and the MCOMPREL Tool 33. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41. Coreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.1.29 4 45. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.31 $4'$ 46. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.34 $4'$ 47. 22. Inchesing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 49. Coreps and Atomic Orbitals in Type-II Single SPG 9.2.30 $44'$ 47. 22. Inchesing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 49. Exceptional Cases in the MSGs 55. Statistics for the MEBRs and the MBANDREP Tool 54. Exceptional Cases in the MSGs 55. Statistics for the MEBRs and the MBANDREP Tool 55. Statistics for the MEBRs and the MBANDREP Tool 55. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 63. Minimal Double SIs in Type-I Double MSG 31. $P2$ 65. Minimal Double SIs in Type-I Double MSG 31. $P2$ 66. Minimal Double SIs in Type-I Double MSG 31. $P2$ 76. Double SIs in Type-I Double MSG 31. $P2$ 77. Double SIs in Type-I Double MSG 31. $P4$ 78. Double SIs in Type-I Double MSG 31. $P4$	5.	Type-III SSGs: Black and White Groups without Black and White Bravais Lattices (674 MSGs)	6
8. Sixte-Symmetry Groups of the Magnetic Space Groups 9. Wyckoff Positions of the Magnetic Space Groups 10. Wyckoff Positions in Magnetic Subgroups of Type-II LG $p41'$ 11. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 13. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 14. Small and Full Coreps and the COREPRESENTATIONS Tool 15. Small and Full Coreps and the COREPRESENTATIONS Tool 16. Compatibility Relations in the MSGs and the MCOMPREL Tool 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 18. Magnetic Atomic Orbitals and the COREPRESENTATIONSPG Tool 19. Irreps and Magnetic Atomic Orbitals in Type-III Single MPG 91.29 4 20. Coreps and Atomic Orbitals in Type-III Single MPG 91.29 4 21. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 93.31 4' 22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 24. Exceptional Cases in the MSGs 25. Statistics for the MEBRs and the MBANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 20. Double SIs in Type-I Double MSG 3.1 $P2$ 31. Double SIs in Type-I Double MSG 3.1 $P2$ 42. Double SIs in Type-I Double MSG 3.1 $P2$ 43. Double SIs in Type-I Double MSG 3.1 $P2$ 44. Double SIs in Type-I Double MSG 3.1 $P2$ 45. Double SIs in Type-I Double MSG 3.1 $P2$ 46. Double SIs in Type-I Double MSG 3.3 $P2$ 47. Double SIs in Type-I Double MSG 3.3 $P2$ 48. Double SIs in Type-I Double MSG 3.3 $P2$ 49. Double SIs in Type-I Double MSG 3.3 $P2$ 40. Double SIs in Type-I Double MSG 3.3 $P2$ 41. Double SIs in Type-I Double MSG 3.3 $P2$ 42. Double SIs in Type-I Double MSG 3.3 $P2$ 43. Double SIs in Type-I Double MSG 3.3 $P2$ 44. Double SIs in Type-I Do	6.	Type-IV SSGs: Black and White Groups with Black and White Bravais Lattices (517 MSGs)	7
9. Wyckoff Positions of the Magnetic Space Groups 10. Wyckoff Positions in Magnetic Subgroups of Type-II LG $p41'$ 11. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 13. Little (Co)Groups, Momentum Stars, and the MKVEC Tool 14. Small and Full Coreps and the CorePRESENTATIONS Tool 15. Small and Full Coreps and the COREPRESENTATIONS Tool 16. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 $P4'$ 17. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 $P4'$ 18. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 $P4'$ 19. Compatibility Relations in the MSGs and the MCOMPREL Tool 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 18. Magnetic Atomic Orbitals and the COREPRESENTATIONSPG Tool 19. Irreps and Magnetic Atomic Orbitals in Type-II Single MPG $9.1.29$ 4 20. Coreps and Magnetic Atomic Orbitals in Type-II Single MPG $9.3.31$ $4'$ 21. Coreps and Atomic Orbitals in Type-III Single SPG $9.2.30$ $41'$ 22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 24. Exceptional Cases in the MSGs 25. Statistics for the MEBRs and the MSANDREP Tool 26. Introduction to Symmetry- Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 20. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 32. Double SIs in Type-I Double MSG 3.1 $P2$ 33. Double SIs in Type-I Double MSG 3.1 $P2$ 44. Double SIs in Type-I Double MSG 3.1 $P2$ 45. Double SIs in Type-I Double MSG 3.1 $P2$ 46. Double SIs in Type-I Double MSG 3.1 $P2$ 47. Double SIs in Type-I Double MSG 3.1 $P2$ 48. Double			8
10. Wyckoff Positions in Magnetic Subgroups of Type-II LG p41' 12. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 13. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 14. Introduction to the Small and Full Coreps and the Corepressentations fool 20. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 P4' 25. Instant and Full Coreps at the X and XA Points in Type-III MSG 75.3 P4' 25. Instant and Full Coreps at the X Foint in Type-IV MSG 25.63 P _C mm2 29. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41. Introduction to the Ilementary Band Corepresentations of the MSGs (MEBRs) 42. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4' 45. Introduction Corbitals in Type-III Single SPG 9.3.30 4' 47. Introduction Corporated Atomic Orbitals in Type-III Single SPG 9.3.30 4' 47. Introduction Corporated Cases in the MSGS 48. Exceptional Cases and Introduction to the MBANDREP Tool 49. Exceptional Cases in the MSGs 55. Statistics for the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 54. Exceptional Cases in the MSG 55. Statistics for the MEBRs and the MBANDREP Tool 58. Introduction to Symmetry-Indicated Magnetic Topological Bands 58. Symmetry-Based Indicator (St) Groups and Formulas from the Smith Normal Form 63. Double SI Group and Formulas in Type-I Double MSG 3.1 P2 65. Introduction to Symmetry Eigenvalues 62. Introduction to Symmetry Eigenvalues 63. Introduction to Symmetry Eigenvalues 63. Introduction to Symmetry Eigenvalues 64. Introduction to Symmetry Eigenvalues 65. Introduction to Symmetry-	8.	Site-Symmetry Groups of the Magnetic Space Groups	8
11. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs 12. Little (Co)Groups, Momentum Stars, and the MKVEC Tool 13. Small and Full Coreps and the COREPRESENTATIONS Tool 14. Small and Full Coreps at the X and X A Points in Type-III MSG 75.3 P4′ 15. Small and Full Coreps at the X point in Type-IV MSG 25.63 Pc.mm2 16. Compatibility Relations in the MSGs and the MCOMPREL Tool 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 18. Magnetic Atomic Orbitals and the COREPRESENTATIONSPG Tool 19. Irreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.1.29 4 10. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4′ 11. Inducing Band Corepresentations from Magnetic Atomic Orbitals in Type-II Single MPG 9.3.31 4′ 12. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 24. Exceptional Cases in the MSGs 25. Statistics for the MEBRs and the MBANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 31. P2 20. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 30. Minimal Double SIs in Type-I Double MSG 31. P2 31. Double SIs in Type-I Double MSG 31. P2 32. Double SIs in Type-I Double MSG 31. P2 33. Double SIs in Type-I Double MSG 31. P2 34. Double SIs in Type-I Double MSG 31. P2 35. Double SIs in Type-I Double MSG 31. P2 36. Double SIs in Type-I Double MSG 31. P2 37. Double SIs in Type-I Double MSG 31. P2 38. Double SIs in Type-I Double MSG 31. P3 39. Double SIs in Type-I Double MSG 31. P3 40. Double SIs in Type-I Double MSG 31. P3 41. Double SIs in Type-I Double MSG 31. P3 42. Double SIs in Type-I Double MSG 31. P3 43. Double SIs in Type-I Double MSG 31.3 P4 44. Double SIs in Type-I Doub	9.	Wyckoff Positions of the Magnetic Space Groups	10
12. Little (Co)Groups, Momentum Stars, and the MKVEC Tool1413. Small and Full Coreps at the Corepresentations Tool2014. Small and Full Coreps at the S Point in Type-II MSG 75.3 $P4'$ 2515. Small and Full Coreps at the S Point in Type-IV MSG 25.63 P_{Cmm2} 2916. Compatibility Relations in the MSGs and the MCOMPREL Tool3317. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs)4118. Magnetic Atomic Orbitals and the Corepresentations of the MSGs (MEBRs)4119. Irreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.1.29 44520. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 $4'$ 4621. Coreps and Atomic Orbitals in Type-III Single SPG 92.30 $41'$ 4722. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool4923. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool5424. Exceptional Cases in the MSGs5555. Statistics for the MEBRs and the MBANDREP Tool5826. Introduction to Symmetry-Indicated Magnetic Topological Bands6127. Diagnosing Band Topology from Symmetry Eigenvalues6228. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form6339. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 656531. Double SIs in Type-I Double MSG 24.4 $P1$ 72b. Double SIs in Type-I Double MSG 31.0 $P2$ 72c. Double SIs in Type-I Double MSG 31.0 $P2$ 76d. Double SIs in Type-I Double MSG 37.1 $P4$ 80f. Double	10.	Wyckoff Positions in Magnetic Subgroups of Type-II LG p41'	12
13. Small and Full Coreps and the COREPRESENTATIONS Tool 14. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 $P4'$ 25. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 $P4'$ 26. Compatibility Relations in the MSGs and the MCOMPREL Tool 37. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 38. Magnetic Atomic Orbitals and the COREPRESENTATIONSPG Tool 49. Irreps and Magnetic Atomic Orbitals in Type-I Single MPG 9.1.29 4 40. Coreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.3.31 $4'$ 41. Coreps and Atomic Orbitals in Type-II Single MPG 9.3.31 $4'$ 42. Loreps and Atomic Orbitals in Type-II Single MPG 9.3.31 $4'$ 43. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 44. Exceptional Cases in the MSGs 45. Statistics for the MEBRs and the MBANDREP Tool 46. Introduction to Symmetry-Indicated Magnetic Topological Bands 46. Introduction to Symmetry-Indicated Magnetic Topological Bands 47. Diagnosing Band Topology from Symmetry Eigenvalues 48. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 49. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 50. Minimal Double SIs in the 1,651 Double SSGs 51. Double SIs in Type-I Double MSG 3.1 $P2$ 52. Double SIs in Type-I Double MSG 3.1 $P2$ 53. Double SIs in Type-I Double MSG 3.1 $P2$ 54. Double SIs in Type-I Double MSG 3.1 $P2$ 55. Double SIs in Type-I Double MSG 3.1 $P2$ 66. Double SIs in Type-I Double MSG 3.1 $P2$ 67. Double SIs in Type-I Double MSG 3.1 $P2$ 68. Double SIs in Type-I Double MSG 3.1 $P2$ 69. Double SIs in Type-I Double MSG 3.1 $P2$ 60. Double SIs in Type-I Double MSG 3.1 $P2$ 61. Double SIs in Type-I Double MSG 4.249 $Pmmm$ 62. Double SIs in Type-I Double MSG 8.8.14 $P4$ 63. Double SIs in Type-I Double MSG 8.8.14 $P4$ 64. Double SIs in Type-I Double MSG 8.8.14 $P4$ 65. Double SIs in Type-I Double MSG 8.8.14 $P4$ 67. Double SIs in Type-I Double MSG 18.3.3 $P4$ 68. Double SIs in Type-I Double MSG 18.3.3 $P4$ 69. Double SI	11.	Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs	13
14. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 $P4'$ 25. Small and Full Coreps at the S Point in Type-IV MSG 25.63 P_{Cmm2} 29. 16. Compatibility Relations in the MSGs and the MCOMPREL Tool 33. 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41. Magnetic Atomic Orbitals and the COREPRESENTATIONSPG Tool 41. Irreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.1.29 4 45. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 $4'$ 46. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.31 $4'$ 47. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.31 $4'$ 47. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.31 $4'$ 48. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.31 $4'$ 49. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 30. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 31. Exceptional Cases in the MSGs 32. Statistics for the MEBRs and the MBANDREP Tool 33. Introduction to Symmetry-Indicated Magnetic Topological Bands 40. Diagnosing Band Topology from Symmetry Eigenvalues 40. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 40. Minimal Double SIs in the 1,651 Double SSGs 41. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 42. Double SIs in Type-I Double MSG 3.1 $P2$ 43. Double SIs in Type-I Double MSG 3.1 $P2$ 44. Double SIs in Type-I Double MSG 3.1 $P2$ 45. Double SIs in Type-I Double MSG 47.249 P mm 46. Double SIs in Type-I Double MSG 47.249 P mm 47. Double SIs in Type-I Double MSG 47.249 P mm 48. Double SIs in Type-I Double MSG 48.14 P 4 48. Separation of the MSG 3.34 P 4 48. Separation of the MSG 3.35 P 4 48. Double SIs in Type-I Double MSG 43.1 P 3 49. Double SIs in Type-I Double MSG 43.1 P 3 40. Double SIs in Type-I Double MSG 44.31 P 3 41. Double SIs in Type-I Double MSG 44.31 P 3 42. Double SIs in Type-I Double MSG 16.10.9 P 6 43. Double SIs in Type-I Doubl	12.	Little (Co)Groups, Momentum Stars, and the MKVEC Tool	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.	Small and Full Coreps and the Corepresentations Tool	20
16. Compatibility Relations in the MSGs and the MCOMPREL Tool 17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs) 41. Magnetic Atomic Orbitals and the Corepresentations of the MSGs (MEBRs) 41. Irreps and Magnetic Atomic Orbitals in Type-I Single MPG 9.1.29 4 42. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4' 43. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.31 4' 44. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.31 4' 45. Coreps and Atomic Orbitals in Type-III Single MPG 9.3.31 4' 46. Coreps and Atomic Orbitals in Type-III Single SPG 9.2.30 41' 47. Coreps and Atomic Orbitals and the MSITESYM Tool 48. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 49. Exceptional Cases in the MSGs 40. Exceptional Cases in the MSGs 41. Exceptional Cases in the MSGs 42. Exceptional Cases in the MSGs 43. Introduction to Symmetry-Indicated Magnetic Topological Bands 44. Exceptional Band Topology from Symmetry Eigenvalues 45. Exceptional Band Topology from Symmetry Eigenvalues 46. Experimental Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 46. Double SI Group and Formulas in Type-I Double MSG 3.1 P^2 47. Diagnosing Band Topology from Symmetry Eigenvalues 48. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 49. Double SIs in Type-I Double MSG 2.4 P^2 40. Double SIs in Type-I Double MSG 3.1 P^2 41. Double SIs in Type-I Double MSG 3.1 P^2 42. To Double SIs in Type-I Double MSG 3.1 P^2 43. Double SIs in Type-I Double MSG 47.249 P mmm 44. Double SIs in Type-I Double MSG 47.249 P mmm 45. Double SIs in Type-I Double MSG 81.33 P^2 46. Double SIs in Type-I Double MSG 81.33 P^2 47. Double SIs in Type-I Double MSG 83.43 P^4 /m 48. Signet Administration of the MSG 183.89 P^4 /mmm 49. Double SIs in Type-I Double MSG 83.43 P^4 /mm 49. Double SIs in Type-I Double MSG 147.13 P^3 40. Double SIs in Type-I Double MSG 147.13 P^3 41. Double SIs in Type-I Double MSG 147.13 P			
17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs)4118. Magnetic Atomic Orbitals and the COREPRESENTATIONSPG Tool4119. Irreps and Magnetic Atomic Orbitals in Type-II Single MPG 9.1.29 44520. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4'4621. Coreps and Atomic Orbitals in Type-III Single MPG 9.2.30 41'4722. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool4923. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool5424. Exceptional Cases in the MSGs5555. Statistics for the MEBRs and the MBANDREP Tool5826. Introduction to Symmetry-Indicated Magnetic Topological Bands6127. Diagnosing Band Topology from Symmetry Eigenvalues6228. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form6329. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 6530. Minimal Double SIs in the 1,651 Double SSGs6831. Double SIs in Type-I Double MSG 2.4 $P\bar{1}$ 72b. Double SIs in Type-I Double MSG 3.1 $P2$ 76c. Double SIs in Type-I Double MSG 3.1 $P2$ 76d. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 76d. Double SIs in Type-I Double MSG 75.1 $P4$ 80f. Double SIs in Type-I Double MSG 83.33 $P\bar{4}$ 82h. Double SIs in Type-I Double MSG 84.51 $P4_2/m$ 83j. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ 85k. Double SIs in Type-I Double MSG 143.1 $P3$ 80m. Double SIs in Type-I Double MSG 14			
18. Magnetic Atomic Orbitals and the COREPRESENTATIONSPG Tool 19. Irreps and Magnetic Atomic Orbitals in Type-I Single MPG 9.1.29 4 20. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4′ 21. Coreps and Atomic Orbitals in Type-III Single SPG 9.2.30 41′ 22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 43. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 24. Exceptional Cases in the MSGs 25. Statistics for the MEBRs and the MBANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 P^2 30. Minimal Double SIs in the 1,651 Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 32. Double SIs in Type-I Double MSG 2.4 P^{T} 33. Double SIs in Type-I Double MSG 10.42 P^{T} 34. Double SIs in Type-I Double MSG 10.42 P^{T} 35. Double SIs in Type-I Double MSG 47.249 P^{T} 36. Double SIs in Type-I Double MSG 47.249 P^{T} 37. Double SIs in Type-I Double MSG 47.249 P^{T} 38. Double SIs in Type-I Double MSG 75.1 P^{T} 49. Double SIs in Type-I Double MSG 83.43 P^{T} 40. Double SIs in Type-I Double MSG 81.33 P^{T} 41. Double SIs in Type-I Double MSG 83.43 P^{T} 42. Buble SIs in Type-I Double MSG 83.43 P^{T} 43. Double SIs in Type-I Double MSG 83.43 P^{T} 44. Buble SIs in Type-I Double MSG 83.43 P^{T} 45. Double SIs in Type-I Double MSG 83.43 P^{T} 46. Double SIs in Type-I Double MSG 83.43 P^{T} 47. Double SIs in Type-I Double MSG 83.43 P^{T} 48. Double SIs in Type-I Double MSG 83.43 P^{T} 48. Double SIs in Type-I Double MSG 83.43 P^{T} 48. Double SIs in Type-I Double MSG 168.109 P^{T} 49. Double SIs in Type-I Double MSG 168.109 P^{T} 40. Double SIs in Type-I Double MSG 168.109 P			
19. Irreps and Magnetic Atomic Orbitals in Type-I Single MPG 9.1.29 4 20. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4′ 21. Coreps and Atomic Orbitals in Type-II Single SPG 9.2.30 41′ 22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 33. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 44. Exceptional Cases in the MSGS 45. Statistics for the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 46. Introduction to Symmetry-Indicated Magnetic Topological Bands 47. Diagnosing Band Topology from Symmetry Eigenvalues 48. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 48. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 48. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 49. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 40. Minimal Double SIs in the 1,651 Double SSGs 40. Double SIs Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 40. Double SIs in Type-I Double MSG 2.4 $P\bar{1}$ 41. Double SIs in Type-I Double MSG 3.1 $P2$ 42. Double SIs in Type-I Double MSG 3.1 $P2$ 43. Double SIs in Type-I Double MSG 77.249 $Pmmm$ 44. Double SIs in Type-I Double MSG 77.13 $P42$ 45. Double SIs in Type-I Double MSG 77.13 $P42$ 46. Double SIs in Type-I Double MSG 88.43 $P4/m$ 47. Double SIs in Type-I Double MSG 88.43 $P4/m$ 48. Si in Double SIs in Type-I Double MSG 88.451 $P42/m$ 48. Double SIs in Type-I Double MSG 88.81 $P42/m$ 48. Double SIs in Type-I Double MSG 88.81 $P42/m$ 48. Double SIs in Type-I Double MSG 183.39 $P4/mmm$ 48. Double SIs in Type-I Double MSG 183.19 $P4/mmm$ 48. Double SIs in Type-I Double MSG 183.19 $P4/mmm$ 48. Double SIs in Type-I Double MSG 185.10 $P6$ 49. Double SIs in Type-I Double MSG 175.137 $P6/mmm$ 40. Double SIs in Type-I Double MSG 176.143 $P63/mmm$ 41. Double SIs in Type-I Double MSG 176.143 $P63/mmm$ 42. Double SIs in Type-I Double MSG 176.143 $P63/mmm$ 43. Doubl			41
20. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4′ 21. Coreps and Atomic Orbitals in Type-II Single SPG 9.2.30 41′ 22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 43. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 54. Exceptional Cases in the MSGs 55. Statistics for the MEBRs and the MBANDREP Tool 58. Introduction to Symmetry-Indicated Magnetic Topological Bands 61. Introduction to Symmetry-Indicated Magnetic Topological Bands 62. Introduction to Symmetry-Indicated Magnetic Topological Bands 63. Diagnosing Band Topology from Symmetry Eigenvalues 64. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 65. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 66. Minimal Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 67. Minimal Double SIs in the 1,651 Double SSGs 68. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 68. Double SIs in Type-I Double MSG 3.1 $P2$ 69. Double SIs in Type-I Double MSG 3.1 $P2$ 60. Double SIs in Type-I Double MSG 3.1 $P2$ 61. Double SIs in Type-I Double MSG 3.1 $P2$ 62. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 63. Double SIs in Type-I Double MSG 77.13 $P4$ 64. Double SIs in Type-I Double MSG 77.13 $P4$ 65. Double SIs in Type-I Double MSG 81.33 $P4$ 66. Double SIs in Type-I Double MSG 81.33 $P4$ 67. Double SIs in Type-I Double MSG 88.81 $I4$ 1/ $I4$ 88. Machine MSG 88.81 $I4$ 1/ $I4$ 89. Double SIs in Type-I Double MSG 143.1 $P3$ 80. Double SIs in Type-I Double MSG 147.13 $P3$ 81. Double SIs in Type-I Double MSG 168.109 $P6$ 82. Double SIs in Type-I Double MSG 175.137 $P6/m$ 83. Double SIs in Type-I Double MSG 175.137 $P6/m$ 84. Double SIs in Type-I Double MSG 175.137 $P6/m$ 85. Double SIs in Type			
21. Coreps and Atomic Orbitals in Type-II Single SPG $9.\overline{2}.30 41'$ 22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 43. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 54. Exceptional Cases in the MSGs 55. Statistics for the MEBRs and the MBANDREP Tool 58. Introduction to Symmetry-Indicated Magnetic Topological Bands 61. Introduction to Symmetry-Indicated Magnetic Topological Bands 62. Introduction to Symmetry-Indicated Magnetic Topological Bands 63. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 63. Double SI Group and Formulas in Type-I Double MSG $3.1 P2$ 65. Minimal Double SIs in the 1.651Double SSGs 68. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 68. Double SIs in Type-I Double MSG $2.4 P\overline{1}$ 69. Double SIs in Type-I Double MSG $3.1 P2$ 60. Double SIs in Type-I Double MSG $3.1 P2$ 61. Double SIs in Type-I Double MSG $3.1 P2$ 62. Double SIs in Type-I Double MSG $3.1 P2$ 63. Double SIs in Type-I Double MSG $3.1 P2$ 64. Double SIs in Type-I Double MSG $3.1 P2$ 65. Double SIs in Type-I Double MSG $3.1 P2$ 66. Double SIs in Type-I Double MSG $3.1 P2$ 67. Double SIs in Type-I Double MSG $3.1 P2$ 68. Double SIs in Type-I Double MSG $3.1 P2$ 69. Double SIs in Type-I Double MSG $3.1 P4$ 61. Double SIs in Type-I Double MSG $3.1 P4$ 62. Double SIs in Type-I Double MSG $3.1 P4$ 63. Double SIs in Type-I Double MSG $3.1 P4$ 64. Double SIs in Type-I Double MSG $3.1 P4$ 65. Double SIs in Type-I Double MSG $3.1 P4$ 67. Double SIs in Type-I Double MSG $3.1 P4$ 68. Double SIs in Type-I Double MSG $3.1 P4$ 69. Double SIs in Type-I Double MSG $3.1 P4$ 60. Double SIs in Type-I Double MSG $3.1 P4$ 61. Double SIs in Type-I Double MSG $3.1 P4$ 62. Double SIs in Type-I Double MSG $3.1 P4$ 63. Double SIs in Type-I Double MSG $3.1 P4$ 64. Double SIs in Type-I Double MSG $3.1 P4$ 65. Double SIs in Type-I Double MSG $3.1 P$			
22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool 23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 24. Exceptional Cases in the MSGs 25. Statistics for the MEBRs and the MBANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 30. Minimal Double SIs in the 1,651 Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 31. Double SIs in Type-I Double MSG 2.4 $P\bar{1}$ 32. Double SIs in Type-I Double MSG 3.1 $P2$ 33. A Double SIs in Type-I Double MSG 3.1 $P2$ 34. Double SIs in Type-I Double MSG 3.1 $P2$ 35. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 36. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 37. Pouble SIs in Type-I Double MSG 47.13 $P4$ 38. Double SIs in Type-I Double MSG 83.3 $P4$ 39. Double SIs in Type-I Double MSG 83.3 $P4/m$ 30. Double SIs in Type-I Double MSG 83.3 $P4/m$ 31. Double SIs in Type-I Double MSG 83.43 $P4/m$ 32. Double SIs in Type-I Double MSG 83.1 $P4/m$ 33. Double SIs in Type-I Double MSG 83.31 $P4/m$ 34. Bouble SIs in Type-I Double MSG 83.31 $P4/m$ 36. Double SIs in Type-I Double MSG 83.31 $P4/m$ 37. Double SIs in Type-I Double MSG 84.51 $P4/m$ 38. Bouble SIs in Type-I Double MSG 83.33 $P4/mmm$ 39. Double SIs in Type-I Double MSG 84.51 $P4/m$ 39. Double SIs in Type-I Double MSG 143.1 $P3$ 39. Double SIs in Type-I Double MSG 147.13 $P3$ 39. Double SIs in Type-I Double MSG 168.109 $P6$ 30. Double SIs in Type-I Double MSG 175.137 $P6/m$ 41. Double SIs in Type-I Double MSG 175.137 $P6/m$ 42. Double SIs in Type-I Double MSG 176.143 $P6/m$ 43. Double SIs in Type-I Double MSG 176.143 $P6/m$ 44. Double SIs in Type-I Double MSG 176.143 $P6/m$ 45. Double SIs in Type-I Double MSG 176.143 $P6/m$ 46. Double SIs in Type-I Double MSG 176.143 $P6/m$ 47. Double			
23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool 24. Exceptional Cases in the MSGs 55. Statistics for the MEBRs and the MBANDREP Tool 25. Statistics for the MEBRs and the MBANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 30. Minimal Double SIs in the 1,651 Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 31. Double SIs in Type-I Double MSG 3.1 $P2$ 32. Topology in the 34 Minimal Double SSGs 33. Double SIs in Type-I Double MSG 3.1 $P2$ 34. Pi 45. Double SIs in Type-I Double MSG 3.1 $P2$ 46. Double SIs in Type-I Double MSG 3.1 $P2$ 47. Topology in the 34 Minimal Double SSGs 48. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 49. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 40. Double SIs in Type-I Double MSG 77.13 $P42$ 41. Buble SIs in Type-I Double MSG 81.33 $P4$ 42. Buble SIs in Type-I Double MSG 81.33 $P4$ 43. Double SIs in Type-I Double MSG 81.33 $P4$ 44. Buble SIs in Type-I Double MSG 88.451 $P42/m$ 45. Double SIs in Type-I Double MSG 88.81 $P42/m$ 46. Double SIs in Type-I Double MSG 88.81 $P42/m$ 47. Double SIs in Type-I Double MSG 88.81 $P42/m$ 48. Souble SIs in Type-I Double MSG 88.81 $P42/m$ 48. Souble SIs in Type-I Double MSG 123.339 $P42/mmm$ 48. Souble SIs in Type-I Double MSG 147.13 $P3/m$ 49. Double SIs in Type-I Double MSG 147.13 $P3/m$ 40. Double SIs in Type-I Double MSG 147.13 $P3/m$ 41. Double SIs in Type-I Double MSG 175.137 $P6/m$ 42. Double SIs in Type-I Double MSG 175.137 $P6/m$ 43. Double SIs in Type-I Double MSG 176.143 $P6/m/m$ 44. Double SIs in Type-I Double MSG 176.143 $P6/m/m/m$ 45. Double SIs in Type-I Double MSG 176.143 $P6/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m$			
24. Exceptional Cases in the MSGs 25. Statistics for the MEBRs and the MBANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 30. Minimal Double SIs in the 1,651 Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 31. Double SIs in Type-I Double MSG 2.4 PI b. Double SIs in Type-I Double MSG $3.1 P2$ c. Double SIs in Type-I Double MSG $3.1 P2$ 76. c. Double SIs in Type-I Double MSG $47.249 Pmmm$ 77. d. Double SIs in Type-I Double MSG $47.249 Pmmm$ 78. Double SIs in Type-I Double MSG $47.249 Pmmm$ 79. Double SIs in Type-I Double MSG $47.249 Pmmm$ 80. Double SIs in Type-I Double MSG $47.249 Pmmm$ 81. Double SIs in Type-I Double MSG $48.34 P4/m$ 82. Double SIs in Type-I Double MSG $48.34 P4/m$ 83. Double SIs in Type-I Double MSG $48.34 P4/m$ 85. Double SIs in Type-I Double MSG $48.51 P4_2/m$ 86. Double SIs in Type-I Double MSG $48.51 P4_2/m$ 87. Double SIs in Type-I Double MSG $44.1 P3$ 88. Double SIs in Type-I Double MSG $44.1 P3$ 89. Double SIs in Type-I Double MSG $44.1 P3$ 80. Double SIs in Type-I Double MSG $44.1 P3$ 81. Double SIs in Type-I Double MSG $44.1 P3$ 82. Double SIs in Type-I Double MSG $44.1 P3$ 83. Double SIs in Type-I Double MSG $44.1 P3$ 84. Double SIs in Type-I Double MSG $44.1 P3$ 85. Double SIs in Type-I Double MSG $44.1 P3$ 86. Double SIs in Type-I Double MSG $44.1 P3$ 87. Double SIs in Type-I Double MSG $44.1 P3$ 88. Double SIs in Type-I Double MSG $44.1 P3$ 89. Double SIs in Type-I Double MSG $44.1 P3$ 89. Double SIs in Type-I Double MSG $44.1 P3 P6/m$ 89. Double SIs in Type-I Double MSG $44.1 P6/m$ 89. Double SIs in Type-I Double MSG $44.1 P6/m$ 89. Double SIs in Type-I Double MSG $44.1 P6/m$ 89. Double SIs in Type-I Double MSG $44.1 P6/m$ 89. Double SIs in Type-I Double MSG $44.1 P6/m$ 89. Double SIs in Type-I			
25. Statistics for the MEBRs and the MBANDREP Tool 26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 30. Minimal Double SIs in the 1,651 Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 31. Double SIs in Type-I Double MSG $2.4 \ P\bar{1}$ b. Double SIs in Type-I Double MSG $3.1 \ P2$ c. Double SIs in Type-I Double MSG $3.1 \ P2$ c. Double SIs in Type-I Double MSG $3.1 \ P2$ d. Double SIs in Type-I Double MSG $3.1 \ P2$ c. Double SIs in Type-I Double MSG $3.1 \ P2$ d. Double SIs in Type-I Double MSG $3.1 \ P2$ e. Double SIs in Type-I Double MSG $3.1 \ P2$ d. Double SIs in Type-I Double MSG $3.1 \ P2$ e. Double SIs in Type-I Double MSG $3.1 \ P2$ f. Double SIs in Type-I Double MSG $3.1 \ P2$ g. Double SIs in Type-I Double MSG $3.1 \ P2$ h. Double SIs in Type-I Double MSG $3.1 \ P4$ h. Double SIs in Type			
26. Introduction to Symmetry-Indicated Magnetic Topological Bands 27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 39. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 65. Minimal Double SIs in the 1,651 Double SSGs 68. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs a. Double SIs in Type-I Double MSG 2.4 $P\overline{1}$ b. Double SIs in Type-I Double MSG 3.1 $P2$ c. Double SIs in Type-I Double MSG 3.1 $P2$ d. Double SIs in Type-I Double MSG 10.42 $P2/m$ d. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 77. e. Double SIs in Type-I Double MSG 75.1 $P4$ f. Double SIs in Type-I Double MSG 77.13 $P4_2$ g. Double SIs in Type-I Double MSG 81.33 $P\overline{4}$ h. Double SIs in Type-I Double MSG 81.33 $P\overline{4}$ h. Double SIs in Type-I Double MSG 88.43 $P4/m$ i. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ 83. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ 84. Double SIs in Type-I Double MSG 123.339 $P4/mmm$ 85. Double SIs in Type-I Double MSG 143.1 $P3$ m. Double SIs in Type-I Double MSG 143.1 $P3$ m. Double SIs in Type-I Double MSG 147.13 $P\overline{6}$ p. Double SIs in Type-I Double MSG 168.109 $P6$ o. Double SIs in Type-I Double MSG 175.137 $P6/m$ q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ q. Double SIs in Type-I Double MSG 191.233 $P6/m$ p. Double SIs in Type-I Double MSG 191.233 $P6/m$ p. Double SIs in Type-I Double MSG 191.233 $P6/m$ p. Double SIs in Type-I Double MSG 191.233 $P6/m$ p. Double SIs in Type-I Double MSG 191.233 $P6/m$ p. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ p. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ p. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ p. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ p. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ p. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ p. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ p. Double SIs in Type-II Double MSG 191.233 $P6/mmm$ p. Double SIs in Type-II Double MSG 191.233 $P6/mmm$			
27. Diagnosing Band Topology from Symmetry Eigenvalues 28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 39. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 30. Minimal Double SIs in the 1,651 Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 31. Double SIs in Type-I Double MSG 2.4 $P\bar{1}$ 51. Double SIs in Type-I Double MSG 3.1 $P2$ 62. Double SIs in Type-I Double MSG 3.1 $P2$ 63. Double SIs in Type-I Double MSG 3.1 $P2$ 64. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 65. Double SIs in Type-I Double MSG 47.249 $Pmmm$ 67. Pouble SIs in Type-I Double MSG 75.1 $P4$ 68. Double SIs in Type-I Double MSG 77.13 $P42$ 69. Double SIs in Type-I Double MSG 81.33 $P\bar{4}$ 60. Double SIs in Type-I Double MSG 88.34 $P4/m$ 61. Double SIs in Type-I Double MSG 88.31 $P4/m$ 62. Double SIs in Type-I Double MSG 88.81 $P4/m$ 63. Double SIs in Type-I Double MSG 88.81 $P4/m$ 64. Double SIs in Type-I Double MSG 88.81 $P4/m$ 65. Double SIs in Type-I Double MSG 88.81 $P4/m$ 67. Double SIs in Type-I Double MSG 88.81 $P4/m$ 68. Double SIs in Type-I Double MSG 143.1 $P3$ 69. Double SIs in Type-I Double MSG 143.1 $P3$ 60. Double SIs in Type-I Double MSG 147.13 $P\bar{3}$ 61. Double SIs in Type-I Double MSG 168.109 $P6$ 62. Double SIs in Type-I Double MSG 174.133 $P\bar{6}$ 63. Double SIs in Type-I Double MSG 174.133 $P\bar{6}$ 64. Double SIs in Type-I Double MSG 175.137 $P6/m$ 65. Double SIs in Type-I Double MSG 175.137 $P6/m$ 67. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-II Double MSG 191.233 $P6/mmm$ 69. Double SIs in Type-II Double MSG 191.233 $P6/mmm$ 69.			
28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form 29. Double SI Group and Formulas in Type-I Double MSG 3.1 $P2$ 30. Minimal Double SIs in the 1,651 Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs 31. Double SIs in Type-I Double MSG 2.4 $P\overline{1}$ 52. Double SIs in Type-I Double MSG 3.1 $P2$ 63. Double SIs in Type-I Double MSG 3.1 $P2$ 64. Double SIs in Type-I Double MSG $10.42 P2/m$ 65. Double SIs in Type-I Double MSG $47.249 Pmmm$ 76. Double SIs in Type-I Double MSG $47.249 Pmmm$ 77. Pouble SIs in Type-I Double MSG $47.249 Pmmm$ 88. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 80. Double SIs in Type-I Double MSG $47.249 Pmmm$ 81. Double SIs in Type-I Double MSG $47.249 Pmmm$ 82. Double SIs in Type-I Double MSG $47.249 Pmmm$ 83. Double SIs in Type-I Double MSG $47.249 Pmmm$ 84. Double SIs in Type-I Double MSG $47.249 Pmmm$ 85. Double SIs in Type-I Double MSG $47.249 Pmmm$ 86. Double SIs in Type-I Double MSG $47.249 Pmmm$ 87. Double SIs in Type-I Double MSG $47.249 Pmmm$ 88. Double SIs in Type-I Double MSG $47.249 Pmmm$ 88. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmmm$ 89. Double SIs in Type-I Double MSG $47.249 Pmmmm$ 89. Double SIs in T			
29. Double SI Group and Formulas in Type-I Double MSG $3.1\ P2$ 30. Minimal Double SIs in the $1,651$ Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs a. Double SIs in Type-I Double MSG $2.4\ P\bar{1}$ b. Double SIs in Type-I Double MSG $3.1\ P2$ c. Double SIs in Type-I Double MSG $3.1\ P2$ c. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 76 d. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 77 e. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 78 f. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 79 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 80 f. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 81 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 82 h. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 83 i. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 84 j. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 85 j. Double SIs in Type-I Double MSG $48.51\ P42/m$ g. Double SIs in Type-I Double MSG $48.51\ P42/m$ 86 k. Double SIs in Type-I Double MSG $47.13\ P3$ m. Double SIs in Type-I Double MSG $47.13\ P3$ m. Double SIs in Type-I Double MSG $47.13\ P3$ n. Double SIs in Type-I Double MSG $47.13\ P6$ p. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6/m$ q. Double SIs in Type-I Double MSG $47.13\ P6$			
30. Minimal Double SIs in the 1,651 Double SSGs 31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs a. Double SIs in Type-I Double MSG 2.4 $P\bar{1}$ b. Double SIs in Type-I Double MSG 3.1 $P2$ c. Double SIs in Type-I Double MSG $0.42 P^2/m$ d. Double SIs in Type-I Double MSG $0.42 P^2/m$ d. Double SIs in Type-I Double MSG $0.42 P^2/m$ e. Double SIs in Type-I Double MSG $0.42 P^2/m$ f. Double SIs in Type-I Double MSG $0.42 P^2/m$ g. Double SIs in Type-I Double MSG $0.42 P^2/m$ f. Double SIs in Type-I Double MSG $0.42 P^2/m$ g. Double SIs in Type-I Double MSG $0.42 P^2/m$ h. Double SIs in Type-I Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Double MSG $0.42 P^2/m$ s. Double SIs in Type-II Doubl			
31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs a. Double SIs in Type-I Double MSG $2.4\ P\bar{1}$ 52 b. Double SIs in Type-I Double MSG $3.1\ P2$ c. Double SIs in Type-I Double MSG $10.42\ P2/m$ 64. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 67 e. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 67 f. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 68 f. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 79 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 80 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 81 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 82 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 83 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 84 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 85 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 87 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 88 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 89 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 89 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 89 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 89 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 99 g. Double SIs in Type-I Double MSG $47.49\ Pmmm$ 99 g. Dou			
a. Double SIs in Type-I Double MSG $2.4\ P\bar{1}$ b. Double SIs in Type-I Double MSG $3.1\ P2$ c. Double SIs in Type-I Double MSG $10.42\ P2/m$ d. Double SIs in Type-I Double MSG $47.249\ Pmmm$ e. Double SIs in Type-I Double MSG $75.1\ P4$ f. Double SIs in Type-I Double MSG $75.1\ P4$ g. Double SIs in Type-I Double MSG $77.13\ P4_2$ g. Double SIs in Type-I Double MSG $77.13\ P4_2$ h. Double SIs in Type-I Double MSG $77.13\ P4_2$ h. Double SIs in Type-I Double MSG $77.13\ P4_2$ g. Double SIs in Type-I Double MSG $77.13\ P4_2$ h. Double SIs in Type-I Double MSG $77.13\ P4_$			
b. Double SIs in Type-I Double MSG $3.1\ P2$ c. Double SIs in Type-I Double MSG $10.42\ P2/m$ d. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 77 e. Double SIs in Type-I Double MSG $75.1\ P4$ f. Double SIs in Type-I Double MSG $77.13\ P4_2$ g. Double SIs in Type-I Double MSG $81.33\ P\overline{4}$ h. Double SIs in Type-I Double MSG $83.43\ P4/m$ i. Double SIs in Type-I Double MSG $84.51\ P4_2/m$ j. Double SIs in Type-I Double MSG $88.81\ I4_1/a$ 8. Double SIs in Type-I Double MSG $88.81\ I4_1/a$ 8. Souble SIs in Type-I Double MSG $123.339\ P4/mmm$ 8. Double SIs in Type-I Double MSG $143.1\ P3$ 9. Double SIs in Type-I Double MSG $147.13\ P\overline{3}$ 9. Double SIs in Type-I Double MSG $168.109\ P6$ 9. Double SIs in Type-I Double MSG $174.133\ P\overline{6}$ 9. Double SIs in Type-I Double MSG $175.137\ P6/m$ 9. Double SIs in Type-I Double MSG $175.137\ P6/m$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 9. Double SIs in Type-I Double MSG $191.233\ P6/mmm$	31.		
c. Double SIs in Type-I Double MSG $10.42\ P2/m$ d. Double SIs in Type-I Double MSG $47.249\ Pmmm$ 77 e. Double SIs in Type-I Double MSG $75.1\ P4$ f. Double SIs in Type-I Double MSG $77.13\ P4_2$ g. Double SIs in Type-I Double MSG $81.33\ P\overline{4}$ h. Double SIs in Type-I Double MSG $83.43\ P4/m$ i. Double SIs in Type-I Double MSG $84.51\ P4_2/m$ j. Double SIs in Type-I Double MSG $88.81\ I4_1/a$ 88 k. Double SIs in Type-I Double MSG $88.81\ I4_1/a$ 88 l. Double SIs in Type-I Double MSG $143.1\ P3$ 90 m. Double SIs in Type-I Double MSG $143.1\ P3$ 90 n. Double SIs in Type-I Double MSG $147.13\ P\overline{3}$ 90 n. Double SIs in Type-I Double MSG $175.137\ P6/m$ 91 o. Double SIs in Type-I Double MSG $175.137\ P6/m$ 92 p. Double SIs in Type-I Double MSG $176.143\ P6_3/m$ 94 r. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 95 s. Double SIs in Type-II Double MSG $191.233\ P6/mmm$			
d. Double SIs in Type-I Double MSG 47.249 $Pmmm$ e. Double SIs in Type-I Double MSG 75.1 $P4$ f. Double SIs in Type-I Double MSG 77.13 $P4_2$ g. Double SIs in Type-I Double MSG 81.33 $P\overline{4}$ h. Double SIs in Type-I Double MSG 83.43 $P4/m$ i. Double SIs in Type-I Double MSG 84.51 $P4_2/m$ g. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ 85 j. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ 86 k. Double SIs in Type-I Double MSG 123.339 $P4/mmm$ 88 l. Double SIs in Type-I Double MSG 143.1 $P3$ 90 m. Double SIs in Type-I Double MSG 147.13 $P\overline{3}$ 90 n. Double SIs in Type-I Double MSG 168.109 $P6$ 91 o. Double SIs in Type-I Double MSG 174.133 $P\overline{6}$ 92 p. Double SIs in Type-I Double MSG 175.137 $P6/m$ 93 q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 94 r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\overline{1}1'$			
e. Double SIs in Type-I Double MSG 75.1 $P4$ f. Double SIs in Type-I Double MSG 77.13 $P4_2$ g. Double SIs in Type-I Double MSG 81.33 $P\overline{4}$ h. Double SIs in Type-I Double MSG 83.43 $P4/m$ i. Double SIs in Type-I Double MSG 84.51 $P4_2/m$ j. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ 86 k. Double SIs in Type-I Double MSG 123.339 $P4/mmm$ 88 l. Double SIs in Type-I Double MSG 143.1 $P3$ 90 m. Double SIs in Type-I Double MSG 147.13 $P\overline{3}$ 90 n. Double SIs in Type-I Double MSG 168.109 $P6$ 91 o. Double SIs in Type-I Double MSG 174.133 $P\overline{6}$ 92 p. Double SIs in Type-I Double MSG 175.137 $P6/m$ 93 q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 94 r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\overline{1}1'$			
f. Double SIs in Type-I Double MSG 77.13 $P4_2$ g. Double SIs in Type-I Double MSG 81.33 $P\overline{4}$ h. Double SIs in Type-I Double MSG 83.43 $P4/m$ i. Double SIs in Type-I Double MSG 84.51 $P4_2/m$ g. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ k. Double SIs in Type-I Double MSG 123.339 $P4/mmm$ l. Double SIs in Type-I Double MSG 143.1 $P3$ m. Double SIs in Type-I Double MSG 147.13 $P\overline{3}$ n. Double SIs in Type-I Double MSG 168.109 $P6$ o. Double SIs in Type-I Double MSG 174.133 $P\overline{6}$ p. Double SIs in Type-I Double MSG 175.137 $P6/m$ q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ s. Double SIs in Type-I Double MSG 191.233 $P6/mmm$		v ÷	
g. Double SIs in Type-I Double MSG 81.33 $P\overline{4}$ h. Double SIs in Type-I Double MSG 83.43 $P4/m$ i. Double SIs in Type-I Double MSG 84.51 $P4_2/m$ g. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ 86 k. Double SIs in Type-I Double MSG 123.339 $P4/mmm$ 87 l. Double SIs in Type-I Double MSG 143.1 $P3$ 88 m. Double SIs in Type-I Double MSG 147.13 $P\overline{3}$ 99 n. Double SIs in Type-I Double MSG 168.109 $P6$ 0. Double SIs in Type-I Double MSG 174.133 $P\overline{6}$ 90 p. Double SIs in Type-I Double MSG 175.137 $P6/m$ 91 q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 92 p. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\overline{1}1'$ 97		· · · · · · · · · · · · · · · · · · ·	
h. Double SIs in Type-I Double MSG $83.43\ P4/m$ i. Double SIs in Type-I Double MSG $84.51\ P4_2/m$ g. Double SIs in Type-I Double MSG $88.81\ I4_1/a$ k. Double SIs in Type-I Double MSG $123.339\ P4/mmm$ l. Double SIs in Type-I Double MSG $143.1\ P3$ m. Double SIs in Type-I Double MSG $147.13\ P\bar{3}$ n. Double SIs in Type-I Double MSG $168.109\ P6$ o. Double SIs in Type-I Double MSG $174.133\ P\bar{6}$ p. Double SIs in Type-I Double MSG $175.137\ P6/m$ q. Double SIs in Type-I Double MSG $176.143\ P6_3/m$ r. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ gs. Double SIs in Type-II Double MSG $191.233\ P6/mmm$			
i. Double SIs in Type-I Double MSG $84.51\ P4_2/m$ j. Double SIs in Type-I Double MSG $88.81\ I4_1/a$ 86 k. Double SIs in Type-I Double MSG $123.339\ P4/mmm$ 88 l. Double SIs in Type-I Double MSG $143.1\ P3$ 90 m. Double SIs in Type-I Double MSG $147.13\ P\bar{3}$ 90 n. Double SIs in Type-I Double MSG $168.109\ P6$ 91 o. Double SIs in Type-I Double MSG $174.133\ P\bar{6}$ 92 p. Double SIs in Type-I Double MSG $175.137\ P6/m$ 93 q. Double SIs in Type-I Double MSG $176.143\ P6_3/m$ 94 r. Double SIs in Type-I Double MSG $191.233\ P6/mmm$ 95 s. Double SIs in Type-II Double SG $2.5\ P\bar{1}1'$			
j. Double SIs in Type-I Double MSG 88.81 $I4_1/a$ 86 k. Double SIs in Type-I Double MSG 123.339 $P4/mmm$ 88 l. Double SIs in Type-I Double MSG 143.1 $P3$ 90 m. Double SIs in Type-I Double MSG 147.13 $P\overline{3}$ 90 n. Double SIs in Type-I Double MSG 168.109 $P6$ 91 o. Double SIs in Type-I Double MSG 174.133 $P\overline{6}$ 92 p. Double SIs in Type-I Double MSG 175.137 $P6/m$ 93 q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 94 r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\overline{1}1'$ 97			
k. Double SIs in Type-I Double MSG 123.339 $P4/mmm$ l. Double SIs in Type-I Double MSG 143.1 $P3$ m. Double SIs in Type-I Double MSG 147.13 $P\bar{3}$ n. Double SIs in Type-I Double MSG 168.109 $P6$ o. Double SIs in Type-I Double MSG 174.133 $P\bar{6}$ p. Double SIs in Type-I Double MSG 175.137 $P6/m$ q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$ 97		· · · · · · · · · · · · · · · · · · ·	
l. Double SIs in Type-I Double MSG 143.1 $P3$ 90 m. Double SIs in Type-I Double MSG 147.13 $P\bar{3}$ 90 n. Double SIs in Type-I Double MSG 168.109 $P6$ 91 o. Double SIs in Type-I Double MSG 174.133 $P\bar{6}$ 92 p. Double SIs in Type-I Double MSG 175.137 $P6/m$ 93 q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 94 r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$ 97			
m. Double SIs in Type-I Double MSG 147.13 $P\bar{3}$ 90 n. Double SIs in Type-I Double MSG 168.109 $P6$ 91 o. Double SIs in Type-I Double MSG 174.133 $P\bar{6}$ 92 p. Double SIs in Type-I Double MSG 175.137 $P6/m$ 93 q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 94 r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$ 97		V -	
n. Double SIs in Type-I Double MSG 168.109 $P6$ o. Double SIs in Type-I Double MSG 174.133 $P\bar{6}$ p. Double SIs in Type-I Double MSG 175.137 $P6/m$ q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ q. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$			
o. Double SIs in Type-I Double MSG 174.133 $P\bar{6}$ 92 p. Double SIs in Type-I Double MSG 175.137 $P6/m$ 93 q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 94 r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$ 97			
p. Double SIs in Type-I Double MSG 175.137 $P6/m$ 93 q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 94 r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$ 97			
q. Double SIs in Type-I Double MSG 176.143 $P6_3/m$ 94 r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$ 97			
r. Double SIs in Type-I Double MSG 191.233 $P6/mmm$ 95 s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$ 97			
s. Double SIs in Type-II Double SG $2.5~P\bar{1}1'$			

u. Double SIs in Type-II Double SG $87.76\ I4/m1'$	98
v. Double SIs in Type-II Double SG 175.138 $P6/m1'$	98
w. Double SIs in Type-II Double SG 176.144 $P6_3/m1'$	99
x. Double SIs in Type-III Double MSG 27.81 $Pc'c'2$	99
y. Double SIs in Type-III Double MSG 41.215 $Ab'a'2$	100
z. Double SIs in Type-III Double MSG $54.342 \ Pc'c'a$	102
aa. Double SIs in Type-III Double MSG 56.369 $Pc'c'n$	102
bb. Double SIs in Type-III Double MSG $60.424 \ Pb'cn'$	103
cc. Double SIs in Type-III Double MSG 83.45 $P4'/m$	103
dd. Double SIs in Type-III Double MSG 103.199 $P4c'c'$	105
ee. Double SIs in Type-III Double MSG 110.249 $I4_1c'd'$	106
ff. Double SIs in Type-III Double MSG 130.429 $P4/nc'c'$	106
gg. Double SIs in Type-III Double MSG 135.487 $P4'_2/mbc'$	107
hh. Double SIs in Type-III Double MSG 184.195 $P6c'c'$	108
32. Summary of the Double SIs in the Minimal Double SSGs	109
33. Introduction to Non-Axionic Spinful Magnetic HOTIs	111
34. Symmetry-Enhanced Fermion Doubling Theorems for Non-Axionic Magnetic HOTIs	111
35. Tight-Binding Models and Boundary States for Non-Axionic Magnetic HOTIs	113
36. Guide to the Larger Supplementary Tables	123
37. Exceptional Composite Band Coreps Induced from Maximal Site-Symmetry Groups	123
38. Maximum and Minimum Dimensions of the Single- and Double-Valued MEBRs	157
39. Minimal SSG Dependencies for the Double SIs in the 1,651 Double SSGs	169
Supplementary References	175

Supplementary Notes

1. Introduction to the Supplementary Notes

In this supplement, we provide proofs and tables that extend Topological Quantum Chemistry (TQC)¹⁻⁶ to the magnetic space groups (MSGs), to develop a complete theory of Magnetic Topological Quantum Chemistry (MTQC). MTQC provides, for the first time, a predictive, position-space formulation of the characteristics of band structures - including stable and fragile topology - in all translationally invariant crystalline solids that are characterized by mean-field theory with a static background magnetic field. Most relevant to the physical systems studied in this work, MTQC provides tools for characterizing the symmetry and topology of electronic states in solid-state materials with lattice-commensurate magnetism. We begin in Supplementary Note (SN) 2 by precisely defining the MSGs, drawing connection where possible to the more familiar nonmagnetic space groups (SGs). We then discuss in SN 8 the Wyckoff positions of the MSGs, whose sites are left invariant under the symmetries of site-symmetry groups that are necessarily isomorphic to crystallographic magnetic point groups (MPGs)⁷⁻¹⁹. Next, in SN 11, we introduce crystal momentum k in the MSGs, and discuss how spatial and magnetic symmetries are represented in momentum space. To enumerate the set of symmetry-independent k points in each MSG and SG, we have implemented the MKVEC tool (further detailed in SN 12), which is now available on the Bilbao Crystallographic Server (BCS)^{13,14}. In SN 13, we then describe how, in this work, we have for the first time derived the complete set of irreducible [small] little group and full [space group] (co)representations [(co)reps] of the MSGs, which can now be accessed on the BCS^{13,14} through the Corepresentations tool [further detailed in SN 14 and 15]. Lastly, by combining the results of SN 12 and 13, we then in SN 16 derive the compatibility relations between small (co)reps in the MSGs, which we have made accessible through the MCOMPREL tool on the BCS.

Having established position- and momentum-space characterizations of the MSGs, we then in SN 17 complete the theory of MTQC by enumerating the magnetic elementary band (co)representations [MEBRs] $^{1-6,11,12,20-22}$, which represent all possible [magnetic] trivial atomic limits. To obtain the MEBRs, we first in SN 18 introduce the minimal magnetic atomic orbitals [e.g. $p_x + ip_y$] that correspond to the (co)reps of the magnetic site-symmetry groups, which are isomorphic to MPGs. In SN 18, we additionally detail the CorepresentationsPG tool on the BCS, which we have implemented for this work to provide access to the (co)reps of the magnetic site-symmetry groups of the MSGs. Next, in SN 22, we establish the central machinery of MTQC through which band (co)representations [band (co)reps] in momentum space are induced from site-symmetry (co)reps in position space. We also introduce and detail in SN 18 the MSITESYM tool, through which users may access the small (co)reps subduced from each band (co)rep of each SSG. Finally, in SN 23, we complete the derivation of MTQC by enumerating the MEBRs. In SN 25, we additionally

detail the MBANDREP tool on the BCS, which we have developed for this work to compute and display both the elementary and non-elementary [i.e. composite] band (co)reps of the MSGs.

The theory of MTQC uniquely enables us to, for the first time, enumerate all of the symmetry-based indicators of band topology (SIs) $^{22-31}$ [i.e. generalized Fu-Kane-like symmetry-eigenvalue topological indices 32] for the doublevalued (co)reps of the 1,651 spinful [double] magnetic and nonmagnetic space groups [SSGs]. Specifically, a (co)rep is respectively defined as single- or double-valued if the matrix representatives of time-reversal and rotation symmetries in the (co)rep square to plus or minus the identity³³. Double groups have both single- and double-valued (co)reps, whereas single groups only have single-valued (co)reps. Electronic [fermionic] states in solid-state materials are generically characterized by double-valued (co)reps of double symmetry groups, though in the absence of spin-dependent interactions [e.g. spin-orbit coupling (SOC)], spin-degenerate electronic states may be labeled with single-valued (co)reps. In SN 26, we compute the SI groups and formulas for all symmetry-indicated, spinful, mean-field topological phases in the 1,651 double SSGs. We specifically demonstrate in SN 30 how the SI calculation can be reduced by recognizing that the SIs in all 1,651 double SSGs are dependent on the SIs in a considerably smaller subset of minimal double SSGs. Through the minimal SI calculation, which is provided in explicit detail in SN 31, we discover several novel, helical, magnetic higher-order topological crystalline insulators (HOTIs)^{24–28,34–39} whose bulk response theories do not correspond to axion electrodynamics^{28,38,40-60}. The non-axionic magnetic HOTIs discovered in this work are further detailed in SN 33. Lastly, in SN 36, we provide larger supplementary tables containing additional data generated for this work.

2. Introduction to the Magnetic Space Groups

In this section, we list the basic group theoretic properties of the magnetic space groups (MSGs). To begin, it was established in Supplementary References (SRefs.) 61,62 (and translated into English in SRef. 63) that the Hamiltonians of 3D, periodic systems (*i.e.* crystalline solids) without particle-hole symmetry are invariant under the symmetries contained in at least one of the 1,651 Shubnikov space groups (SSGs). All of the SSGs contain the group of fundamental lattice translations:

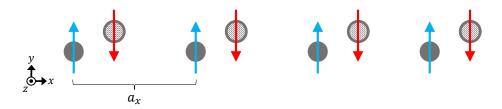
$$G_T = T_a \otimes T_b \otimes T_c, \tag{1}$$

where T_i is the group comprised of the set of lattice translations t_i^n , where $n \in \mathbb{Z}$ and:

$$t_i = \{ E | \mathbf{t}_i \}, \tag{2}$$

where E is the identity operation. Throughout this work, we will employ a notation [Supplementary Equation (SEq.) (2)] in which t_i is the symmetry operation of a translation by the vector \mathbf{t}_i . In SEq. (1), the generating translations $t_{a,b,c}$ must be linearly independent, but are not necessarily orthogonal (though $t_{a,b,c}$ are indeed both linearly independent and orthogonal in many SSGs).

The 1,651 SSGs subdivide into four types, which are distinguished by their antiunitary symmetries ^{33,61-64}. Of the four types of SSGs, the 1,421 Types-I, III, and IV SSGs characterize magnetic crystals (i.e. crystals with latticecommensurate magnetic order); hence, in this work, we interchangeably denote Type-I, III, and IV SSGs as MSGs or SSGs. Conversely, the 230 Type-II SSGs exclusively characterize nonmagnetic crystals; hence, in this work, we interchangeably refer to Type-II SSGs as SGs or SSGs. Unlike in other recent works on magnetic symmetry and topology^{65,66}, we will not refer to the 230 Type-II groups as MSGs, to avoid employing terminology in which the Type-II SSGs are "nonmagnetic magnetic SGs." All SSGs (MSGs and SGs) are given in the notation established in SRef. 67 and reproduced on the Bilbao Crystallographic Server (BCS)^{13,14}. Because the set of possible G_T in SEq. (1) coincides with the 14 3D nonmagnetic (gray) Bravais lattices, then all 1,651 SSGs can be characterized by the 14 Bravais lattices. However, as we will detail in SN 6, the Type-IV groups – which contain elements of the form $\mathcal{T}(t_i/2)$ where \mathcal{T} is the operation of time-reversal – are also frequently characterized using the 22 "black and white" Bravais lattices that account for the relative positions of localized spins (or classical magnetic moments) [c.f. Chapter 7 in SRef. 33]. In this work, we will refer to all 1,651 SGs by their nonmagnetic (gray) Bravais lattice (i.e., the Bravais lattice of their primitive, or "magnetic" unit cell). This choice of Bravais lattice is naturally incorporated into the numbering and notation of Belov, Nerenova, and Smirnova⁶⁷ (labeled as the "BNS setting" on the BCS), which we will employ throughout this work. For generality and connection with other works, we also note that on the BCS, information about the SSGs can alternatively be obtained in the convention of Opechowski and Guccione⁶⁸ (labeled as the "OG setting" on the BCS); we will not employ, or further discuss, the OG setting in this work.


It is important to highlight the distinction between MSGs and phenomenological descriptions of magnetic order. Specifically, while all magnetic crystals with Type-IV MSGs are antiferromagnets (see SN 6), there are both ferromagnets and antiferromagnets with Type-I or Type-III MSGs³³ (SN 3 and 5, respectively). For each of the three types of

MSGs, we will below provide representative examples of quasi-1D chains with symmetry-allowed magnetic ordering, including phenomenologically distinct magnetic order in crystals with the same Type-I or Type-III MSG (see SN 3 and 5, respectively). Each of the quasi-1D chains shown below is invariant under a crystallographic magnetic rod group (MRG)^{10,33,69-71} M_{RG} , i.e. a subperiodic group with 3D symmetry operations and 1D translations. Each MRG is isomorphic to an SSG M under the addition of in-plane lattice translations, where the group-subgroup relations between M_{RG} and M depend on the details of the additional translations. For example, when translations in the xy-plane are added to Type-I MRG $(p4_2cm)_{RG}$, the resulting MSG is either Type-I MSG 101.179 $P4_2cm$ or Type-I MSG 105.211 $P4_2mc$, depending on whether the shortest lattice translations are respectively added in the x and y or $x \pm y$ directions^{69,70}. In this work, we will refer to quasi-1D chains and rods using the terminology established in SRefs. 28,38,71 in which a chain or rod with the translation symmetry $t_c = \{E|c\}$ is termed c-directed. The symbols for the MRGs referenced in this work are given in the convention employed by Litvin in SRef. 10.

3. Type-I SSGs: Ordinary (Fedorov) Groups (230 MSGs)

Supplementary Figure 1: A ferromagnetic chain with MRG $(p1)_{RG}$, which is generated by $\{E|1\}$ (t_x) where E is the identity operation, and is isomorphic after the addition of perpendicular lattice translations $(e.g.\ t_y)$ and t_z to Type-I MSG 1.1 P1. There are two atoms within each unit cell, where the right-most atom in each cell (hashed circle) exhibits a weaker y-directed magnetic moment than the left-most atom (solid circle), lies away from $x = a_x/2$, and is displaced from the xy-plane $(z \neq 0)$ for the hashed atoms). If there was just one atom in each unit cell, if the solid and hashed atoms were moved to be coplanar, or if the magnetic moments were tuned to be the same magnitude, then the chain would respect additional symmetries, such as $\{m_z \times \mathcal{T}|0\}$.

Supplementary Figure 2: An antiferromagnetic chain with MRG $(p1)_{RG}$, which is generated by $\{E|1\}$, and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 1.1 P1. The solid and hashed circles represent magnetic atoms with distinct chemical environments [e.g. atoms of the same species with different oxidation states or on-site (chemical) potentials] and equal and opposite magnetic moments. The right-most atom in each cell (i.e. the hashed atom with a red magnetic moment) lies away from $x = a_x/2$ and z = 0, such that the solid and hashed atoms are neither equally spaced nor coplanar. If the chemical environments of the solid and hashed atoms were tuned to be equivalent, if the solid and hashed atoms were moved to be coplanar, or if the atoms were shifted to be separated by a distance $a_x/2$ in the x-direction, then the chain would have additional symmetries. For example, if the local chemical environment (i.e. hoppings and on-site potentials) of the solid and hashed atoms were made equivalent, then the chain would respect $\{m_z \times \mathcal{T}|0\}$ symmetry (as well as additional symmetries), and if the atoms tuned to lie in equivalent chemical environments and shifted to be equally spaced and coplanar, then the chain would respect both $\{C_{2z}|0\}$ and $\{m_y \times \mathcal{T}|1/2\}$ symmetry (as well as additional symmetries).

Each Type-I SSG M_I is exclusively characterized by a set of unitary symmetry operations. The simplest Type-I SSG – MSG 1.1 P1 – is isomorphic to G_T [SEq. (1)], and is a common subgroup of all 1,651 SSGs. The Type-I MSGs have historically been termed the *ordinary groups*³³, because Type-I magnetic symmetry groups do not contain antiunitary symmetries that relate classical magnetic moments at different positions in a crystal. Type-I MSGs can characterize a variety of magnetic configurations³³. For example, Type-I MSG 1.1 P1 can characterize crystals with either ferromagnetism [Supplementary Figure (SFig.) 1] or antiferromagnetism (SFig. 2).

4. Type-II SSGs: Gray (Nonmagnetic) Groups (230 SSGs)

Each Type-II SSG M_{II} takes the form:

$$M_{II} = G \cup \{\mathcal{T}|000\}G = G \cup \mathcal{T}G,\tag{3}$$

where G is isomorphic to a Type-I SSG. Because each Type-II SSG contains the element $\{\mathcal{T}|000\}$, then no position in the unit cell of a crystal with a Type-II SSG can host a local magnetic moment. Therefore, crystals invariant under Type-II SSGs are necessarily \mathcal{T} -symmetric. The Type-II MSGs have historically been termed the gray groups³³, because Type-II groups do not admit the presence of localized magnetic moments, due to $\{\mathcal{T}|000\}$ symmetry at each point in each unit cell. Unlike the symbols of the Type-I SSGs, the symbols of Type-II, III, and IV SSGs contain primes, which denote antiunitary group elements. Because we are discussing both MSGs and (nonmagnetic) SGs in this work, we will employ the notation of SRef. 10 in which the symbols of \mathcal{T} -symmetric groups M_{II} are followed by 1' to emphasize that $\{\mathcal{T}|000\} \in M_{II}$. For example, in this work, the symbol P4/mmm refers to Type-I MSG 123.339, whereas the symbol P4/mmm1' refers to Type-II SSG 123.340 (which is frequently denoted in other works¹⁻⁶ using only the simplified expression "space group 123 P4/mmm").

Given a group G and a subgroup H of G, we will find it useful to define the *index* of H in G. Here and throughout this work, we will use cosets to precisely define the group-subgroup index. Specifically, given a group G and a subgroup H, we can define the coset of H represented by an element $g \in G$ as:

$$gH \equiv \{gh|h \in H\}. \tag{4}$$

By construction, SEq. (4) implies that every element $g \in G$ is in one (and only one) coset gH. By definition, G may be decomposed into cosets with respect to H by the set difference $G \setminus H$:

$$G = H \cup g_1 H \cup g_2 H \cup \dots, \tag{5}$$

such that:

$$G \setminus H = \{g | g \in G, g \notin H\} = g_1 H \cup g_2 H \cup \dots, \tag{6}$$

where g_iH are (unique) cosets of H defined by $g_iH \neq g_jH$ for $g_{i,j} \in G$, $g_{i,j} \notin H$. If G and H are groups, $E \in G$ and $E \in H$ where E is the identity element, implying that $G \setminus H$ is not a group, because $E \notin G \setminus H$. Similarly, there does not exist a case in which $g_i = E$ in SEq. (6), as this would imply that $G \setminus H = H$. We emphasize that the choice of each g_i in SEq. (6) is not unique; there are generically multiple, equivalent ways of expressing the decomposition of $G \setminus H$ into cosets of H. SEq. (6) implies that:

$$G = H \cup (G \setminus H) = H \cup g_1 H \cup g_2 H \cup ..., \tag{7}$$

from which we define the quotient:

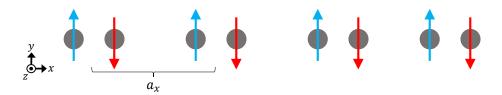
$$G/H = \{H, g_1 H, g_2 H, \dots\}.$$
(8)

We briefly pause to note that, if H is additionally a *normal* subgroup of G, such that gH = Hg, then we can define a group operation on cosets:

$$g_1 H g_2 H = g_1 g_2 H. \tag{9}$$

Finally, using SEq. (8), we establish the definition of the index [G:H] of the subgroup H of G as:

$$[G:H] = |G/H| = |G|/|H|, \tag{10}$$


where |G|, |H|, and |G/H| are respectively the number of elements in G, H, and G/H [equal to one plus the number of coset representatives g_i in SEq. (6)]. It is important to note that |G| (|H|) in SEq. (10) is necessarily infinite if G (|H|) is an infinite group. However, if G and H are both infinite, then the index |G| = |G|/|H| may still be finite.

It is worth noting that all 1,421 MSGs are index-2 subgroups of 230 Type-II SSGs. For the previous Type-I groups in SN 3, this follows directly from SEq. (3), and for the Type-III and Type-IV groups, this will respectively be proved in SN 5 and 6.

5. Type-III SSGs: Black and White Groups without Black and White Bravais Lattices (674 MSGs)

Supplementary Figure 3: A ferromagnetic chain with MRG $(pm'mm')_{RG}$, which is generated by $\{E|1\}$, $\{C_{2x} \times \mathcal{T}|0\}$, $\{C_{2y}|0\}$, and $\{\mathcal{I}|0\}$, and is isomorphic after the addition of perpendicular lattice translations to Type-III MSG 47.252 Pm'm'm. The primes in the symbol $(pm'mm')_{RG}$ indicate that the MRG contains the symmetries $\{m_x \times \mathcal{T}|0\}$ and $\{m_z \times \mathcal{T}|0\}$. In the decomposition in SEq. (11), $M_{III} = (pm'mm')_{RG}$, $G = (pmmm)_{RG}$ [isomorphic to Type-I MSG 47.249 Pmmm after the addition of perpendicular lattice translations], and $H = (p12/m1)_{RG}$ [isomorphic to Type-I MSG 10.42 P2/m after the addition of perpendicular lattice translations].

Supplementary Figure 4: An antiferromagnetic chain with MRG $(pmmm')_{RG}$, which is generated by $\{E|1\}$, $\{C_{2x} \times \mathcal{T}|0\}$, $\{C_{2y} \times \mathcal{T}|0\}$, and $\{\mathcal{I} \times \mathcal{T}|0\}$, and is isomorphic after the addition of perpendicular lattice translations to Type-III MSG 47.251 Pm'mm. The prime in the symbol $(pmmm')_{RG}$ indicates that the MRG contains $\{m_z \times \mathcal{T}|0\}$ symmetry. The red and blue magnetic moments are equal in magnitude and opposite in direction, and are related by the operation of $\{C_{2z}|0\}$ about the midpoints between adjacent atoms. In the decomposition in SEq. (11), $M_{III} = (pmmm')_{RG}$, $G = (pmmm)_{RG}$ [isomorphic to Type-I MSG 47.249 Pmmm after the addition of perpendicular lattice translations], and $H = (pmm2)_{RG}$ [isomorphic to Type-I MSG 25.57 Pmm2 after the addition of perpendicular lattice translations].

Each Type-III SSG M_{III} takes the form:

$$M_{III} = H \cup \mathcal{T}(G \setminus H),\tag{11}$$

where G and H are isomorphic to Type-I SSGs, $H \subset G$, and $G \setminus H$ is a set that contains no elements of the form $\{E|\mathbf{t}\}$, where E is the identity operation and \mathbf{t} is a translation. Hence, $G \setminus H$ in SEq. (11) does not include the identity element $\{E|\mathbf{0}\}$, though $G \setminus H$ is free to contain elements of the form $\{f|\mathbf{0}\}$ where f is a unitary rotation or rotoinversion. Because $G \setminus H$ does not contain pure translations, then it follows that H is a subgroup of G with the same Bravias lattice. Following arguments recently presented in SRef. 72, we will demonstrate that H is an index-2 subgroup of G. To establish that [G:H]=2, we will first show that H is an index-2 subgroup of M_{III} . We begin by noting that, given an antiunitary symmetry $g_A \in \mathcal{T}(G \setminus H)$:

$$g_A = \mathcal{T} \times g,\tag{12}$$

where g is a unitary symmetry $g \in G$, $g \notin H$. Hence, g_A^2 is a unitary symmetry operation $g_A^2 \in M_{III}$, implying that:

$$g_A^2 \in H, \ g_A^2 \notin \mathcal{T}(G \setminus H).$$
 (13)

SEqs. (11), (12), and (13) imply that:

$$M_{III} = q_A M_{III} = q_A H \cup q_A \mathcal{T}(G \setminus H), \tag{14}$$

such that:

$$\mathcal{T}(G \setminus H) = q_A H,\tag{15}$$

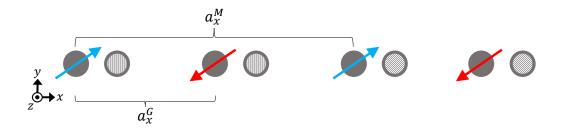
implying that H is an index-2 subgroup of M_{III} . SEq. (14) also implies through SEqs. (11) and (12) that:

$$|H| = |\mathcal{T}(G \setminus H)| = |G \setminus H|,\tag{16}$$

establishing that H is also an index-2 subgroup of G:

$$G = H \cup gH,\tag{17}$$

such that $gH = G \setminus H$, consistent with SEqs. (12) and (15). Finally, to see that M_{III} is an index-2 subgroup of a Type-II SSG (specifically $M_{II} = G \cup \mathcal{T}G$), we consider the effects of restoring \mathcal{T} symmetry to SEq. (11):


$$M_{III} \cup \mathcal{T}M_{III} = H \cup \mathcal{T}(G \setminus H) \cup \mathcal{T}H \cup (G \setminus H)$$

$$= G \cup \mathcal{T}G$$

$$= M_{II}.$$
(18)

Like the previous Type-I MSGs in SN 3, Type-III MSGs can characterize both ferromagnetic (SFig. 3) and antiferromagnetic (SFig. 4) crystals. The symbols for Type-III MSGs contain primes that denote which symmetry operations are formed from the combination of \mathcal{T} and a unitary element of $G \setminus H$ [SEq. (11)]. The Type-III MSGs have historically been termed the black and white groups without black and white Bravais lattices, because Type-III groups contain antiunitary symmetries that relate classical magnetic moments at different positions in a crystal, but do not contain the antiferromagnetic translation symmetry $t_0\mathcal{T}$ common to Type-IV MSGs that generates the black and white Bravais lattices (see SN 6 and Chapter 7 in SRef. 33.) Representative examples demonstrating the usage of primes in Type-III magnetic group symbols are presented in SFigs. 3 and 4.

6. Type-IV SSGs: Black and White Groups with Black and White Bravais Lattices (517 MSGs)

Supplementary Figure 5: An antiferromagnetic chain with MRG $(p_a1)_{RG}$, which is generated by $\{\mathcal{T}|1/2\}$ $(t_{a_x^M/2}\mathcal{T})$, and is isomorphic after the addition of perpendicular lattice translations to Type-IV MSG 1.3 P_S1 . The red and blue magnetic moments on the atoms labeled with solid circles are equal in magnitude and opposite in direction. The two nonmagnetic atoms (hashed circles) in each magnetic unit cell are displaced out of the xy-plane, breaking additional symmetries such as $\{m_z \times \mathcal{T}|0\}$. In terms of the black and white Bravais lattices historically employed to characterize (antiferro)magnetic structures 33 , the atoms with blue magnetic moments can be taken to occupy white sites, whereas the atoms with red (time-reversed) magnetic moments can be taken to occupy black sites. Throughout this work, we will only use the more familiar gray (nonmagnetic) Bravais lattices to characterize magnetic symmetry groups, because the black and white Bravais lattices add an additional level of complexity that does not factor into any of the group-theoretic calculations that comprise MTQC. Further discussion and a complete enumeration of the black and white Bravais lattices is provided in Chapter 7 in SRef. 33. In the antiferromagnetic chain in this figure, the blue and red magnetic moments are related by $t_{a_x^M/2}\mathcal{T}$. The primitive (magnetic) unit cell of the spin chain has a length a_x^M , whereas the nonmagnetic unit cell, which is realized by restoring \mathcal{T} symmetry [SEq. (22)], has a shorter length $a_x^G = a_x^M/2$. In the decomposition in SEq. (19), $M_{IV} = (p_a 1)_{RG}$, $H = (p1)_{RG}$ with the lattice constant $H = a_x^M = a_x^M/2$, and $H = (p1)_{RG}$ with the lattice constant $H = a_x^M/2$, and $H = (p1)_{RG}$ with the lattice constant $H = a_x^M/2$.

Each Type-IV SSG M_{IV} takes the form:

$$M_{IV} = H \cup \mathcal{T}t_0H,\tag{19}$$

in which H is isomorphic to a Type-I SSG and t_0 is a translation whose length is half that of either $t_{a,b,c}$, t_a+t_b , t_a+t_c , t_b+t_c , or $t_a+t_b+t_c$, where $t_{a,b,c}$ are the primitive lattice translations in H^{33} . The fractional lattice translations

 t_0^n where $n \mod 2 = 1$ relate positions of alternating color (classical spin orientation) in the black and white Bravais lattice of M_{IV} (see Chapter 7 in SRef. 33), whereas the full lattice translations $t_{a,b,c}$ relate positions with the same color in the nonmagnetic (gray) Bravais lattice of M_{IV} . Hence, historically³³, the Type-IV MSGs have been termed the black and white groups with black and white Bravais lattices. As previously with the Type-III groups [see the text surrounding SEq. (12)], we can show that H is an index-2 subgroup of M_{IV} . To demonstrate that $[M_{IV}:H]=2$, we first rearrange SEq. (19) into the same form as SEq. (11):

$$M_{IV} = H \cup \mathcal{T}(G \setminus H), \tag{20}$$

for which, by construction:

$$G = H \cup t_0 H, \tag{21}$$

such that G is isomorphic to a Type-I SSG with the gray Bravais lattice given by ignoring the colors of the black and white Bravais lattice of M_{IV} (see SFig. 5). To show that M_{IV} is an index-2 subgroup of a Type-II group, we again restore \mathcal{T} symmetry [see SEq. (18)]:

$$M_{IV} \cup \mathcal{T}M_{IV} = H \cup \mathcal{T}t_0H \cup \mathcal{T}H \cup t_0H$$

$$= G \cup \mathcal{T}G$$

$$= M_{II}, \tag{22}$$

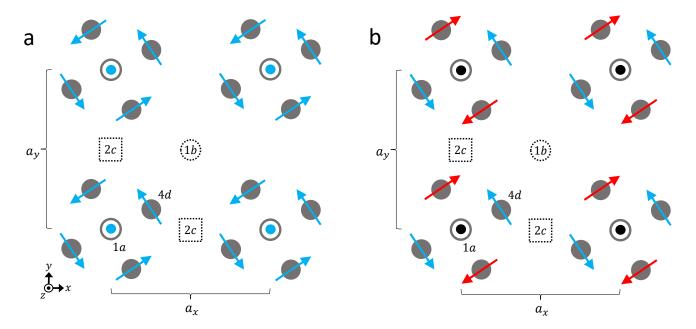
where G is given in SEq. (21). As shown in the text following SEq. (10), SEq. (21) also implies that H is an index-2 subgroup of the Type-I MSG G.

Physically, SEq. (22) implies that the process of "turning off" the magnetism in a crystal with a Type-IV SSG (MSG) M_{IV} generates a nonmagnetic crystal that is invariant under a Type-II group M_{II} with a smaller unit cell than the magnetic unit cell of M_{IV} (SFig. 5), and with the same gray Bravais lattice as G in SEq. (21) (as opposed to the gray Bravais lattice of H). Unlike the previous Type-I and Type-III MSGs in SN 3 and 5, respectively, Type-IV MSGs necessarily characterize crystals with net-zero magnetic moments, because the operation of $t_0 \mathcal{T} \in M_{IV}$ [SEq. (19)] relates the spin configuration of one half of the primitive (magnetic) unit cell to its time-reverse in the other half. The symbols for Type-IV MSGs contain subscripts that denote the direction of t_0 , and therefore specify the gray (nonmagnetic) Bravais lattice of G in SEqs. (21) and (22).

7. Introduction to the Site-Symmetry Groups and Wyckoff Positions of the MSGs

Next, we will discuss the position-space action of the symmetries of the MSGs. In SN 8, we will introduce the site-symmetry (stabilizer) groups of the MSGs, and in SN 9, we will discuss how the Wyckoff positions of the MSGs are related to those of the \mathcal{T} -symmetric SGs.

Throughout the text below, we will provide representative 2D atomic and spin configurations highlighting properties of the site-symmetry groups and Wyckoff positions of the MSGs. The 2D magnetic structures shown in this section each respect the symmetries of a magnetic layer group (MLG) M_{LG} – a subperiodic group with 3D symmetry operations and 2D translations 10,39,69,70,73,74 . Each MLG is isomorphic to (at least one) MSG M modulo out-of-plane lattice translations. Specifically, taking the in-plane translations to be elements of $T_{x,y}$ ($T_{a,b}$), and taking $t_c \in T_c$ (T_z) to be a lattice translation in the z (out-of-plane) direction:


$$M = M_{LG} \cup t_c M_{LG}. \tag{23}$$

In this work, the symbols of MLGs are given in the convention employed by Litvin in SRef. 10.

8. Site-Symmetry Groups of the Magnetic Space Groups

In this section, we will define the *site-symmetry group* $M_{\mathbf{q}}$ at a point \mathbf{q} in crystal that is invariant under an SSG M. To begin, M is composed of unitary symmetry operations:

$$g_{U,i} = \{h_i | \mathbf{t}_i\},\tag{24}$$

Supplementary Figure 6: (a) A magnetic crystal with Type-I magnetic layer group $(MLG)^{10,39,69,70,73,74}$ p4, which is generated by $\{E|10\}$ and $\{C_{4z}|00\}$, and is isomorphic after the addition of t_z to Type-I MSG 75.1 P4. The atoms on the 1a sites in (a) exhibit an additional magnetic moment in the $+\hat{z}$ direction (blue dot), which we have chosen in order to break $\{m_z \times \mathcal{T}|00\}$ symmetry 74 to simplify the symmetry analysis performed in this section. (b) A magnetic crystal with Type-III MLG p4', which is generated by $\{E|10\}$ and $\{C_{4z} \times \mathcal{T}|00\}$, and is isomorphic after the addition of t_z to Type-III MSG 75.3 P4'. The red magnetic moments in (b) have the same magnitudes as the blue magnetic moments; they are only colored in red to emphasize that the red moments in (b) are related to the blue moments by the antiunitary symmetry operation ($\{C_{4z} \times \mathcal{T}|00\}$). The atoms on the 1a sites in (b) do not exhibit a magnetic moment, and instead are displaced out of the xy-plane in the $+\hat{z}$ direction, which we have indicated with black dots. We have chosen to displace the atoms at the 1a position in each unit cell in (b) out of the xy-plane in order to break $\{m_z|00\}$ symmetry, such that the MLGs in (a) and (b) share the same "unprimed" Type-I MLG G = p4 [see the text surrounding SEq. (34)]. The 1a and 1b site-symmetry groups in (a) are isomorphic to Type-I MPG 9.1.29 4, which is generated by C_{4z} , whereas the 1a and 1b site-symmetry groups in (b) are isomorphic to Type-III MPG 9.3.31 4', which is generated by $C_{4z} \times \mathcal{T}$. Nevertheless, in both (a) and (b), the 2c site-symmetry groups are isomorphic to Type-I MPG 3.1.6 2, which is generated by C_{2z} . In both (a) and (b), magnetic moments additionally occupy the 4d (general) position, where the site-symmetry groups at 4d in both (a) and (b) are isomorphic to Type-I MPG 1.1.1 1, the trivial MPG. The MLGs in (a) and (b) [p4 and p4', respectively] are also isomorphic to magnetic wallpaper groups $^{39,73-75}$

and antiunitary symmetry operations:

$$g_{A,j} = \{h_j \times \mathcal{T} | \mathbf{t}_j\},\tag{25}$$

where each $h_{i,j}$ is a unitary symmetry operation that is either the identity, a rotation, or a rotoinversion. Given a point **q** in an infinite crystal, the action of $g_{U,i}$ and $g_{A,j}$ on **q** is given by:

$$g_{U,i}\mathbf{q} = h_i\mathbf{q} + \mathbf{t}_i, \ g_{A,j}\mathbf{q} = h_j\mathbf{q} + \mathbf{t}_j, \tag{26}$$

in which only $h_{i,j}$ and $\mathbf{t}_{i,j}$ act on \mathbf{q} , because \mathcal{T} , by definition, leaves spatial coordinates invariant³³. As defined in SRef. 1, a site-symmetry group $M_{\mathbf{q}}$ is spanned by the set of unitary and antiunitary symmetry operations $g \in M$ that return a site \mathbf{q} in an infinite crystal (i.e. a point in position space) to itself in the same unit cell:

$$g\mathbf{q} = \mathbf{q},\tag{27}$$

for all $g \in M_{\mathbf{q}}$. Hence, the site-symmetry group $M_{\mathbf{q}}$ of \mathbf{q} is finite a subgroup of the SSG M:

$$M_{\mathbf{q}} \subset M,$$
 (28)

in which $M_{\mathbf{q}}$ does not contain elements of the form $\{E|\mathbf{t}\}$ or $\{\mathcal{T}|\mathbf{t}\}$, where E is the identity operation and \mathbf{t} is a translation. Later, in SN 9, we will reintroduce the Wyckoff positions of M containing \mathbf{q} , as defined in SRef. 2.

In SEq. (28), $M_{\bf q}$ is necessarily isomorphic to one of the 122 crystallographic Shubnikov point groups (SPGs)^{7–18}, which are listed in the MPOINT (http://www.cryst.ehu.es/cryst/mpoint.html) and Corepresentations PG tools on the BCS, in which the SPGs are numbered according to the convention established by Litvin in SRef. 10. The SPGs divide into 32 Type-I magnetic point groups (MPGs), 32 Type-II (nonmagnetic) SPGs, and 58 Type-III MPGs, where the type of an SPG is defined the same way as the type of an SSG [SN 3 and SEqs. (3) and (11), and (11)]. We emphasize that, unlike in the MSGs, which subdivide into Types-I, III, and IV, there are only Type-I and Type-III MPGs. Specifically, there are no Type-IV MPGs, because point groups, unlike space groups, cannot contain operations of the form $\{\mathcal{T}|\mathbf{t}\}\$ [SEq. (19)], as $\{\mathcal{T}|\mathbf{t}\}\$ does not fix any point in position space [SEq. (26)]. Following the discussions in SN 3 and 5, all Type-I and Type-III MPGs are subgroups of Type-II SPGs. For all 122 SPGs, the group-subgroup relations are provided by Ascher and Janner in SRef. 76, and can be inferred by using the KSUBGROUPSMAG tool on the BCS (http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_k.pl)¹⁵⁻¹⁸ on pairs of SSGs that are isomorphic to SPGs modulo integer lattice translations. For example, to see that Type-III MPG 9.3.31 4' and Type-I MPG 9.1.29 4 are both index-2 subgroups of Type-II SPG 9.2.30 41', one can choose the "List of subgroups" option in KSUBGROUPSMAG for Type-II SG 75.2 P41' while specifying the magnetic wavevector $\mathbf{k} = \mathbf{0}$. Documentation and further examples of the output of KSUBGROUPSMAG are provided in Refs 18,77. For this work, we define Type-I MPG 1.1.1 1 as both the trivial MPG and the trivial SPG, as its only generator is the identity operation E, and because Type-I MPG 1.1.1 1 is the common subgroup of all MPGs and SPGs.

It is important to highlight that all site-symmetry groups in MSGs (i.e. Type-I, III, and IV SSGs) are isomorphic to MPGs (i.e. Type-I and III SPGs), and correspondingly, that all site-symmetry groups in Type-II (nonmagnetic) SSGs are isomorphic to Type-II SPGs. To show this, we first consider the Type-II SSGs. Because all Type-II SSGs contain the element $\{\mathcal{T}|\mathbf{0}\}$, which fixes all points in space, then all site-symmetry groups in Type-II SSGs also necessarily contain $\{\mathcal{T}|\mathbf{0}\}$, and are therefore isomorphic to Type-II SPGs. Conversely, because MSGs (i.e. Type-I, III, and IV SSGs) do not contain $\{\mathcal{T}|\mathbf{0}\}$, then none of their site-symmetry groups contain $\{\mathcal{T}|\mathbf{0}\}$ (though they are free to contain antiunitary operations such as $\{C_{4z} \times \mathcal{T}|\mathbf{0}\}$; hence, the site-symmetry groups in MSGs are isomorphic to either Type-I or Type-III MPGs. In Type-I MPGs, as Type-I MSGs do not contain antiunitary symmetry elements (SN 3). However, in each of the Type-III and Type-IV MSGs, site-symmetry groups can be isomorphic to either Type-I or Type-III MPGs. For example, in SFig. 6(a,b), we depict atomic and spin configurations that respect the symmetries of Type-I MLG p4 and Type-III MLG p4', respectively [see the text surrounding SEq. (23) for the definition of an MLG]. In p4, the 1a and 1b site-symmetry groups are isomorphic to Type-I MPG 9.1.29 4, whereas in p4', the 1a and 1b site-symmetry groups are isomorphic to Type-I MPG 3.1.6 2.

9. Wyckoff Positions of the Magnetic Space Groups

In this section, we will next reintroduce the Wyckoff positions of the MSGs. First, we will below precisely define a Wyckoff position. Then, in SN 10, we will apply the definitions and relations established below to illustrative 2D examples of MLGs derived from the Type-II layer group (LG) p41'.

To begin, as discussed in SRef. 1, the Wyckoff positions of an SSG M are defined using the orbits of symmetry sites. We first select a site \mathbf{q}_{α} in a crystal that is invariant under an SSG M. As defined in the text surrounding SEq. (27), the site-symmetry group $M_{\mathbf{q}_{\alpha}}$ contains all of the symmetries $g \in M$ that return \mathbf{q}_{α} to itself. However, there also generically exist symmetries:

$$\tilde{g}_i \in M, \ \tilde{g}_i \notin M_{\mathbf{q}_{\alpha}}$$
 (29)

that act to send \mathbf{q}_{α} to other points $\mathbf{q}_{\alpha'}$ in the crystal, where $\mathbf{q}_{\alpha'}$ may or may not lie in the same unit cell as \mathbf{q}_{α} . We next define the set of symmetries:

$$\{\tilde{g}\} = M \setminus M_{\mathbf{q}_{\alpha}}.\tag{30}$$

Acting with all of the $\tilde{g}_i \in \{\tilde{g}\}$ on \mathbf{q}_{α} generates an infinite number of sites $\{\tilde{g}_i\mathbf{q}_{\alpha}\}$, because M includes lattice translations and $M_{\mathbf{q}_{\alpha}}$ does not. Additionally, it is possible for two elements $\tilde{g}_{i,j} \in \{\tilde{g}\}$ to map \mathbf{q}_{α} to the same point. For example, if $\mathbf{q}_{\alpha} = (x, y, 0)$, $\tilde{g}_i = \{C_{2z}|000\}$, and $\tilde{g}_j = \{\mathcal{I}|000\}$, then $\tilde{g}_i\mathbf{q}_{\alpha} = \tilde{g}_j\mathbf{q}_{\alpha} = (-x, -y, 0)$. Continuing to employ the previous definition from $\mathrm{TQC^{1-6}}$, we define the orbit of \mathbf{q}_{α} to be the infinite subset of unique points $\{\tilde{g}_i\mathbf{q}_{\alpha}\} \cup \mathbf{q}_{\alpha}$. We then define the Wyckoff orbit indexed by \mathbf{q}_{α} as the finite set of points in the orbit – including \mathbf{q}_{α} itself – that lie in the same unit cell as \mathbf{q}_{α} . In this work, we will summarize the Wyckoff orbit containing \mathbf{q}_{α} using the notation $\{\mathbf{q}_{\alpha}\}$, for simplicity. In the Wyckoff orbit of \mathbf{q}_{α} , the index α runs from 1 to n, where n – which is termed the multiplicity of the Wyckoff orbit – is the number of unique sites \mathbf{q}_{α} in the orbit of \mathbf{q}_{α} that lie in the same unit cell as \mathbf{q}_{α} plus one for \mathbf{q}_{α} itself. Given a site-symmetry group $M_{\mathbf{q}_{\alpha}}$, all of the other site-symmetry groups in the Wyckoff

orbit of \mathbf{q}_{α} are given by:

$$M_{\mathbf{q}_{\beta}} = \tilde{g}_{\alpha\beta} M_{\mathbf{q}_{\alpha}} \tilde{g}_{\alpha\beta}^{-1}, \tag{31}$$

where $\tilde{g}_{\alpha\beta}$ is a symmetry in $M \setminus M_{\mathbf{q}_{\alpha}}$ [SEq. (29)] for which:

$$\tilde{g}_{\alpha\beta}\mathbf{q}_{\alpha} = \mathbf{q}_{\beta},\tag{32}$$

where \mathbf{q}_{β} is in same Wyckoff orbit as \mathbf{q}_{α} . Hence, all of the site-symmetry groups $M_{\mathbf{q}_{\beta}}$ in the same Wyckoff orbit as $M_{\mathbf{q}_{\alpha}}$ are isomorphic and conjugate to $M_{\mathbf{q}_{\alpha}}$, and to each other. Lastly, we define the Wyckoff position containing \mathbf{q}_{α} as the set of Wyckoff orbits with the same multiplicity in which the coordinates of the sites in the orbit $\{\mathbf{q}_{\alpha}\}$ can be smoothly deformed into each other without changing the Wyckoff orbit multiplicity. For example, in Type-I MSG 2.4 $P\bar{1}$, which is generated by $\{\mathcal{I}|\mathbf{0}\}$ and 3D lattice translation, the sites [(0,0,0.1),(0,0,-0.1)] and [(0,0,0.2),(0,0,-0.2)] define distinct Wyckoff orbits. Nevertheless, in MSG 2.4 $P\bar{1}$, the two Wyckoff orbits [(0,0,0.1),(0,0,-0.1)] and [(0,0,0.2),(0,0,-0.2)] represent different parameter choices for the same Wyckoff position [(x,y,z),(-x,-y,-z)] (labeled the 2i position on the BCS). The coordinates, multiplicities, and site-symmetry groups of the Wyckoff positions of all 1,651 SSGs have previously been made accessible through the MWYCKPOS tool on the BCS (http://www.cryst.ehu.es/cgi-bin/cryst/programs/magget_wp.pl)^{15-18}.

Next, to further determine the maximal Wyckoff positions – which we will later find to be important in calculating the magnetic elementary band (co)representations (SN 17) – we follow the definition established in SRef. 2. First, we recognize that, for each Wyckoff position in the SSGs, there is a set of coordinates that defines the locations of atoms (magnetic atomic orbitals, see SN 18) occupying the Wyckoff position. In high-symmetry Wyckoff positions, some or all of the coordinates have fixed values (e.g. 0 or 1/2), whereas in other, lower-symmetry positions, the coordinates have free values (e.g. z) that represent distinct Wyckoff orbits in the same Wyckoff position [see the text following SEq. (32)]. For example, in the output of MWYCKPOS on the BCS¹⁵⁻¹⁸ for Type-III MSG 10.45 P2/m', the 1a position lies at (0,0,0) and has a site-symmetry group isomorphic to Type-III MPG 5.4.15 2/m', whereas the 2i position has sites at (0, y, 0) and (0, -y, 0), each of which has a site-symmetry group isomorphic to Type-I MPG 3.1.6 2. As an intermediate step towards defining a maximal Wyckoff position, we first establish a definition for connected Wyckoff positions. We define two Wyckoff positions to be connected if the coordinates of one of the sites in the lower-symmetry Wyckoff position [e.g. (0,y,0)] in the 2i position in the previous example in MSG 10.45 P2/m'can be adjusted to coincide with the coordinates of the higher-symmetry Wyckoff position [e.q. the 1a position at (0,0,0) in the previous example in MSG 10.45 P2/m']. From this, we define a maximal Wyckoff position to be a Wyckoff position that is not connected to a Wyckoff position with a higher-symmetry site-symmetry group (i.e. the site-symmetry group of a maximal Wyckoff position must be a larger supergroup of the site-symmetry group of any Wyckoff position to which it is connected). This definition of a maximal Wyckoff position is identical to the previous definition established in SRefs. 1,2 for the Type-I MSGs and Type-II SSGs; in this work, we have applied the earlier definition to the Type-III and Type-IV MSGs by incorporating the action of the antiunitary symmetries $g_{A,j}$ in Type-III and Type-IV MSGs [see SN 5 and 6 and the text surrounding SEq. (26)]. Specifically, in both this work and in TQC, the set of site-symmetry groups in the maximal Wyckoff positions in an SSG M coincide with the set of maximal site-symmetry subgroups of M. In this work, the only distinction from the earlier discussion of Wyckoff positions in SRefs. 1,2 is the incorporation of the action of antiunitary symmetries through SEq. (26).

We will now discuss the relationship between the Wyckoff positions in the MSGs and the Wyckoff positions in the more familiar Type-II (nonmagnetic) SSGs. First, the Wyckoff positions of the Type-I and Type-III MSGs can straightforwardly be obtained from the Wyckoff positions of the Type-II SSGs. For the Type-I MSGs, this follows directly from the definition of a Type-II SSG (SN 4). Specifically, in a Type-II SSG $M_{II} = G \cup TG$ [SEq. (3)], all of the site-symmetry groups $M_{II,q}$ take the form:

$$M_{II,\mathbf{q}} = G_{\mathbf{q}} \cup \mathcal{T}G_{\mathbf{q}}.\tag{33}$$

In each Wyckoff position indexed by a site \mathbf{q} in a crystal invariant under M_{II} , the multiplicity of the Wyckoff position of \mathbf{q} is only determined by the unitary symmetries g of the Type-I subgroup G of M_{II} , because \mathcal{T} symmetry acts as the identity on \mathbf{q} [see SEq. (26) and the surrounding text]. Therefore, in a Type-I MSG G, all of the Wyckoff positions have the same multiplicities and coordinates as the Wyckoff positions in $M_{II} = G \cup \mathcal{T}G$ [SEq. (3)], and all of the site-symmetry groups $G_{\mathbf{q}}$ are isomorphic to the unitary subgroups of $M_{II,\mathbf{q}}$ [SEq. (33)].

Conversely, in a Type-III MSG $M_{III} = H \cup \mathcal{T}(G \setminus H)$ [SEq. (11)], the site-symmetry groups $M_{III,\mathbf{q}}$ can be isomorphic to either Type-I and Type-III MPGs, as previously discussed in SN 8. Nevertheless, we will show below that the multiplicities of the Wyckoff positions in M_{III} are still inherited from the "unprimed" Type-I group G in the definition of M_{III} [SEq. (11)]. Specifically, in this work, we define G to be the "unprimed" group of M_{III} , because G and M_{III} share the same symbols if primes are neglected (i.e., under transforming group elements of the form

 $g' = \{h \times \mathcal{T} | \mathbf{t}\} \to \{h | \mathbf{t}\}\)$. To show this, we first note that, because \mathcal{T} symmetry acts as the identity on spatial coordinates, then:

$$\mathcal{T}\mathbf{q} = \mathbf{q},\tag{34}$$

for all \mathbf{q} in the 1,651 SSGs. Consequently, in a Type-III MSG M_{III} , only the unitary parts $\{h|\mathbf{t}\}$ of the unitary and antiunitary symmetries in M_{III} can act to send \mathbf{q} to other positions [see SEq. (26) and the surrounding text]. As shown in SN 5, the unitary parts of the unitary and antiunitary symmetries in M_{III} comprise the unprimed Type-I MSG G of M_{III} . Additionally, as shown in SEq. (18), the unprimed group G of M_{III} is also the maximal unitary subgroup of the Type-II SSG $M_{III} \cup \mathcal{T} M_{III}$ (i.e. $M_{III} \cup \mathcal{T} M_{III} = G \cup \mathcal{T} G$). Lastly, as shown in the text surrounding SEq. (33), the Wyckoff positions of G are identical to the Wyckoff positions of $G \cup \mathcal{T} G$ [though the site-symmetry groups $G_{\mathbf{q}}$ are the unitary subgroups of the site-symmetry groups $M_{II,\mathbf{q}}$ in $G \cup \mathcal{T} G$]. From this, we conclude that the Type-I (unprimed) MSG G, the Type-II SSG $M_{III} \cup \mathcal{T} M_{III}$, and the Type-III MSG M_{III} all share the same Wyckoff-position multiplicities and coordinates. It therefore follows that each site-symmetry group $M_{III,\mathbf{q}} \subset M_{III}$ is an index-2 subgroup of $M_{II,\mathbf{q}} = G_{\mathbf{q}} \cup \mathcal{T} G_{\mathbf{q}}$ where:

$$M_{II,\mathbf{q}} \subset (M_{III} \cup \mathcal{T}M_{III}).$$
 (35)

Specifically, $M_{III,\mathbf{q}}$ is either a Type-I site-symmetry group:

$$M_{III,\mathbf{q}} = G_{\mathbf{q}},\tag{36}$$

or a Type-III site-symmetry group:

$$M_{III.\mathbf{q}} = H_{\mathbf{q}} \cup \mathcal{T}(G_{\mathbf{q}} \setminus H_{\mathbf{q}}),$$
 (37)

where $H_{\mathbf{q}}$ is a site-symmetry group in the Type-I (maximal unitary) subgroup H of M_{III} [see SEq. (11) and the surrounding text]. We will shortly provide in SN 10 an example demonstrating the relationship between $G_{\mathbf{q}}$, $M_{II,\mathbf{q}}$, and $M_{III,\mathbf{q}}$ in a Type-III magnetic symmetry group.

Unlike in Type-I and Type-III MSGs, the Wyckoff positions in Type-IV MSGs have more complicated dependencies on the Wyckoff positions in the Type-II SSGs. This complication arises because the operation of $t_0\mathcal{T}$ in SEq. (19) enlarges the magnetic unit cell of a crystal with a Type-IV MSG (i.e. a_x^M in SFig. 5) relative to the nonmagnetic unit cell of its Type-II supergroup (i.e. a_x^G in SFig. 5). Hence, the primitive cell of a Type-IV MSG is always larger than the primitive cell of its Type-II supergroup). Therefore, there is no corresponding notion of an "unprimed" group for the Type-IV MSGs. Instead the multiplicities, coordinates, and site-symmetry groups in Type-IV MSGs must be determined by composing the elements of the site-symmetry groups of the unitary subgroup H in SEq. (19) with the antiunitary (antiferromagnetic) translation symmetry $t_0\mathcal{T}$. An example demonstrating the composition of the unitary site-symmetry group symmetries in H with $t_0\mathcal{T}$ in a Type-IV MSG will later be provided in SN 24.

10. Wyckoff Positions in Magnetic Subgroups of Type-II LG p41'

To demonstrate how the site-symmetry groups in Type-I and Type-III MSGs derive from those in Type-II SSGs, we will in this section analyze the examples of Type-II LG $M_{II} = p41'$ and its Type-I and Type-III magnetic subgroups Type-I MLG G = p4 and Type-III MLG $M_{III} = p4'$, respectively [SFig. 6(a,b), respectively]. M_{II} is generated by $\{C_{4z}|00\}$, $\{T|00\}$, and the lattice translation $\{E|10\}$. Using MWYCKPOS on the BCS^{15–18} for Type-II SG 75.2 P41', which is isomorphic to p41' modulo T_z [i.e. after the addition of out-of-plane lattice translations, see the text surrounding SEq. (23)], we obtain the coordinates of the highest-symmetry (fourfold-symmetric) maximal Wyckoff positions of p41' (1a and 1b) and the SPGs isomorphic to the fourfold-symmetric maximal site-symmetry groups:

$$\mathbf{q}_{1a} = (0,0), \ M_{II,1a} = 41' = 4 \cup (\mathcal{T})4,
\mathbf{q}_{1b} = (1/2,1/2), \ M_{II,1b} = 41' = 4 \cup (\mathcal{T})4,$$
(38)

where the symbols 41' and 4 respectively refer to Type-II SPG 9.2.30 41' and Type-I MPG 9.1.29 4. There is also a lower-symmetry maximal Wyckoff position in Type-II MLG p41 in which the site-symmetry groups do not contain fourfold rotation symmetry (2c). The coordinates and site-symmetry-group-isomorphic SPGs of the 2c position in Type-II MLG p41' are given by:

$$\mathbf{q}_{2c} = \{(1/2, 0), (0, 1/2)\}, M_{IL, 2c} = 21' = 2 \cup (\mathcal{T})2,$$
 (39)

where the symbols 21' and 2 respectively refer to Type-II SPG 3.2.7 21' and Type-I MPG 3.1.6 2.

As defined in SEq. (3), the layer group $M_{II} = p41'$ admits a decomposition:

$$p41' = p4 \cup (\mathcal{T})p4,\tag{40}$$

where p4, which is generated only by $\{C_{4z}|00\}$ and $\{E|10\}$, is the maximal unitary subgroup of M_{II} . An atomic and spin configuration with MLG p4 is shown in SFig. 6(a). Using MWYCKPOS on the BCS^{15–18} for MSG 75.1 P4, which is isomorphic to p4 modulo T_z , we obtain the coordinates and site-symmetry-group-isomorphic MPGs of the maximal Wyckoff positions of p4:

$$\mathbf{q}_{1a} = (0,0), \ G_{1a} = 4,$$

$$\mathbf{q}_{1b} = (1/2, 1/2), \ G_{1b} = 4,$$

$$\mathbf{q}_{2c} = \{(1/2, 0), \ (0, 1/2)\}, \ G_{2c} = 2.$$
(41)

where the symbols 4 and 2 respectively refer to Type-I MPG 9.1.29 4 and Type-I MPG 3.1.6 2. As discussed in the text following SEq. (33), we observe that each site-symmetry group $G_{\bf q}$ in p4 [SEq. (41)] is equivalent to the unitary subgroup of the site-symmetry group $M_{II,{\bf q}}$ of p41' [SEq. (38)].

Next, we perform the analogous analysis of the Wyckoff positions and site-symmetry groups in Type-III MLG $M_{III} = p4'$, which is generated by $\{C_{4z} \times \mathcal{T}|00\}$ and $\{E|10\}$. As discussed in the text surrounding SEq. (11), $M_{III} = p4'$ admits a decomposition:

$$p4' = p2 \cup \mathcal{T}[(p4) \setminus (p2)], \tag{42}$$

in which p2 is the Type-I MLG generated by $\{E|10\}$, $\{E|01\}$, and $\{C_{2z}|00\} = (\{C_{4z} \times \mathcal{T}|00\})^6$, where the exponent of 6 is necessary to account for the possibility that p4' is a double group (see SN 1 and SRef. 33). Because p4 is the unitary subgroup of p41', the SSG that results from restoring \mathcal{T} symmetry to p4' [SEqs. (18) and (42)], then we refer to p4 as the "unprimed" group of p4' [see SEq. (34) and the surrounding text]. An atomic and spin configuration with MLG p4' is shown in SFig. 6(b). Using MWYCKPOS on the BCS^{15–18} for MSG 75.3 P4', which is isomorphic to p4' modulo T_z , we obtain the coordinates and site-symmetry-group-isomorphic MPGs of the maximal Wyckoff positions of p4':

$$\mathbf{q}_{1a} = (0,0), \ M_{III,1a} = 4' = 2 \cup \mathcal{T} [(4) \setminus (2)],$$

$$\mathbf{q}_{1b} = (1/2,1/2), \ M_{III,1b} = 4' = 2 \cup \mathcal{T} [(4) \setminus (2)],$$

$$\mathbf{q}_{2c} = \{(1/2,0), \ (0,1/2)\}, \ M_{III,2c} = G_{2c} = 2,$$

$$(43)$$

where the symbols 4', 2, and 4 respectively refer to Type-III MPG 9.3.31 4', Type-I MPG 3.1.6 2, and Type-I MPG 9.1.29 4. It is important to emphasize that MLGs p2 and p4' do not share the same Bravais lattices: the Bravis lattice of p2 is oblique, whereas the Bravis lattice of p4' is square. In p2, the sites $\mathbf{q}_{1b}^{p2}=(0,1/2)$ and $\mathbf{q}_{1c}^{p2}=(1/2,0)$ each lie in distinct, multiplicity-1, maximal Wyckoff positions. Conversely, in p4', the symmetry element $\{C_{4z}\times \mathcal{T}|00\}$ relates $\mathbf{q}_{1b}^{p2}=(0,1/2)$ and $\mathbf{q}_{1c}^{p2}=(1/2,0)$, causing the two sites to merge into a single, multiplicity-2, maximal Wyckoff position in p4' [\mathbf{q}_{2c} in SEq. (43)]. All of the site-symmetry groups of p4' are index-2 subgroups of the site-symmetry groups in SEq. (43) are isomorphic to Type-III MPGs ($M_{III,1a}$ and $M_{III,1b}$), whereas others are isomorphic to Type-I MPGs (G_{2c}). Crucially, for the site-symmetry groups $M_{III,q}$ in SEq. (43) that are isomorphic to Type-III MPGs, the "unprimed" site-symmetry groups $G_{\mathbf{q}}$ [i.e. the site-symmetry groups that result from disregarding \mathcal{T} symmetry, see SEq. (34) and the surrounding text] are still isomorphic to the unitary subgroups of the nonmagnetic site-symmetry groups $M_{III,q}$ of p41' [SEqs. (38) and (39)]. Specifically, at the 1a and 1b positions of p4', the site-symmetry groups 4. Correspondingly, Type-I MPG 9.1.29 4 is also the unitary subgroup of Type-II SPG 41', to which the 1a and 1b site-symmetry groups of MLG p41' are isomorphic [SEq. (38)].

11. Introduction to the Small Coreps of the Little Groups and Full Coreps of the MSGs

In this section, we will establish the analogous momentum-space description $^{1-6,33,78}$ of the MSGs, after having previously established a position-space description of the MSGs in SN 2 and 7. To begin, for an infinite crystal that is invariant under an SSG G, the translation group G_T [SEq. (1)] is a subgroup of G, where G_T is generated by a set

of three linearly-independent primitive translation operations:

$$t_a = \{E|\mathbf{t}_a\}, \ t_b = \{E|\mathbf{t}_b\}, \ t_c = \{E|\mathbf{t}_c\}.$$
 (44)

The shape of the unit (primitive) cell, and the (gray) Bravais lattice of G, are determined by the relative lengths and directions of $\mathbf{t}_{a,b,c}$. Because the crystal is periodic and infinite, then it admits a reciprocal, Fourier-transformed description that is also periodic and infinite. In reciprocal space, coordinates are indexed by crystal momentum \mathbf{k} , and the shapes of the reciprocal cells [i.e. Brillouin zones (BZs)] are determined by the primitive reciprocal lattice vectors $\mathbf{K}_{a,b,c}$, which are defined for a d-dimensional crystal as a set of d vectors $\{\mathbf{K}_i\}$ that satisfy:

$$\mathbf{t}_i \cdot \mathbf{K}_j = 2\pi \delta_{ij}. \tag{45}$$

As previously with the Bravais lattice vectors, the primitive reciprocal lattice vectors $\mathbf{K}_{a,b,c}$ of a 3D crystal must be linearly independent, but are not necessarily orthogonal (though $\mathbf{K}_{a,b,c}$ are indeed both linearly independent and orthogonal in many SSGs). We note that, in some tools on the BCS, both \mathbf{t}_i and \mathbf{K}_j are expressed in reduced, dimensionless units in which factors of the Bravais lattice constants a,b,c and BZ length $[2\pi$ in SEq. (45)] are suppressed (*i.e.*, units in which $|\mathbf{t}_{a,b,c}| = |\mathbf{K}_{a,b,c}| = 1$). However, throughout this work, unless we are discussing the specific output of tools on the BCS, we will maintain the factor of 2π in SEq. (45), though, like on the BCS, we will employ reduced units in which a,b,c=1 (*i.e.*, units in which $|\mathbf{t}_{a,b,c}|=1$ and $|\mathbf{K}_{a,b,c}|=2\pi$).

Similar to the Wyckoff positions in real space, there are also sets of k points in momentum space that are related by the symmetries of the SSG G. These k points subdivide into distinct sets, known as momentum stars, which we will rigorously define in SN 12. For this work, we have specifically implemented the MKVEC tool on the BCS, through which users can access the momentum stars of the SSGs; examples of the output of MKVEC are provided in SN 12. As we will discuss in SN 12, MKVEC subsumes the earlier KVEC tool (https://www.cryst.ehu.es/cryst/get_ kvec.html)^{13,14,79}, which was only capable of generating the momentum stars of the 230 Type-I (unitary) MSGs. Additionally at each point k in the first BZ, energy states (Bloch wavefunctions) can be labeled by the irreducible "small" (co)reps of the little group 33,80,81 $G_{\mathbf{k}}$, which are defined in SN 13. One of the largest obstacles in constructing MTQC was the previous absence of a complete tabulation of the single-valued (spinless) and double-valued (spinful) small coreps of the little groups of all 1,651 SSGs. Specifically, we cannot calculate the MEBRs (further detailed in SN 17), without a complete tabulation of the full (space group) coreps, which are induced from the small coreps at each of the k points in a momentum star^{2,14,82}. Previously, Miller and Love in SRef. 78 computed the single- and double-valued irreducible small (co)reps of the little groups of each MSG at high-symmetry points and along highsymmetry lines, but not along high-symmetry planes or in the BZ interior, which are required to complete the insulating compatibility relations for each MSG (SN 16) and to compute the MEBRs (SN 17). Additionally, the magnetic small (co)reps computed in SRef. 78 are not publicly available, are displayed in difficult-to-read tables outputted directly from computer code, and are hence difficult to verify. For this work, building on a prescription outlined by Bradley and Cracknell in SRef. 33, we have performed the first ever complete tabulation of the over 100,000 single- and doublevalued small coreps at all k points and full coreps in all momentum stars of all 1,651 SSGs, which we have made freely accessible through the newly available Corepresentations tool on the BCS. Representative examples of the output of Corepresentations are provided in SN 14 and 15. Combined with the small and full coreps previously calculated for the Type-I and II SSGs for TQC¹⁻⁶, which can still be obtained through the REPRESENTATIONS DSG tool on the BCS (http://www.cryst.ehu.es/cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg), the tools documented in this section represent the completion of over 70 years 33,61-63,78 of group-theoretic efforts to exhaustively enumerate the coreps of the 1,651 SSGs.

Additionally, using the small coreps of the little groups of the SSGs, we can further derive the compatibility relations $^{3,4,83-86}$ that constrain the coreps at adjacent $\bf k$ points throughout the BZ. For this work, we have implemented a new tool – MCOMPREL – through which the compatibility relations between pairs of $\bf k$ points in any of the 1,651 SSGs can be obtained, including, for the first time, the Type-III and Type-IV MSGs. In SN 16, we detail the methodology employed to implement MCOMPREL, as well as outline some of the subtleties that arise when calculating compatibility relations in the MSGs.

12. Little (Co)Groups, Momentum Stars, and the MKVEC Tool

In this section, we will introduce the concepts of little groups, little co-groups, and momentum stars. We will then demonstrate how the little (co)groups and momentum stars of all 1,651 SSGs can be obtained using the newly available $\underline{\mathsf{MKVEC}}$ tool on the BCS. To begin, we define two points \mathbf{k} and \mathbf{k}' to be equivalent if:

$$\mathbf{k} - \mathbf{k}' = \mathbf{K}_{\nu},\tag{46}$$

where \mathbf{K}_{ν} is an integer-valued linear combination of the reciprocal lattice vectors $\mathbf{K}_{a,b,c}$ defined in SEq. (45). In this work, we will employ a condensed notation in which two equivalent points \mathbf{k} and \mathbf{k}' satisfy:

$$\mathbf{k} \equiv \mathbf{k}'. \tag{47}$$

Through SEqs. (46) and (47), we establish a definition of *inequivalent* k points in which two points k and k' are inequivalent if:

$$\mathbf{k} - \mathbf{k}' \neq \mathbf{K}_{\nu},$$
 (48)

for all possible linear combinations of reciprocal lattice vectors \mathbf{K}_{ν} . We summarize SEq. (48) with a condensed notation in which two inequivalent points \mathbf{k} and \mathbf{k}' satisfy:

$$\mathbf{k} \not\equiv \mathbf{k}'.$$
 (49)

Consider a symmetry:

$$g = \{\tilde{R}|\mathbf{v}\},\tag{50}$$

where g is an element of an SSG G. In this work, \tilde{R} denotes an operator, whereas $P_{\tilde{R}}$ denotes the 3×3 matrix representation of the action of the unitary part of \tilde{R} on coordinates in the basis of reciprocal lattice vectors. Hence, \tilde{R} is basis-independent, where as $P_{\tilde{R}}$ is basis-dependent. We note that in earlier works^{14,33}, symmetry actions have been formulated in terms of $P_{\tilde{R}}$, rather than \tilde{R} , requiring the introduction of distinct symmetry actions for unitary and antiunitary symmetries g. As an example of \tilde{R} and $P_{\tilde{R}}$, consider $h = \{m_z \times T | \mathbf{0}\}$, for which $\tilde{R} = m_z \times T$ and $P_{\tilde{R}} = \text{diag}(1,1,-1)$ in the coordinate basis (x,y,z). At each of the \mathbf{k} points in the first BZ of G, the symmetry operations g act on \mathbf{k} as:

$$g\mathbf{k} = \tilde{R}\mathbf{k},\tag{51}$$

where the tilde on \tilde{R} is used to indicate that \tilde{R} can be either a unitary symmetry of the form $\tilde{R} = R$ or an antiunitary symmetry of the form $\tilde{R} = R \times \mathcal{T}$. In this work, we define two points \mathbf{k} and \mathbf{k}' to be dependent if:

$$\mathbf{k}' \equiv g\mathbf{k},$$
 (52)

for any symmetry $g \in G$. Given a point \mathbf{k} , we then define the subgroup $G_{\mathbf{k}} \subseteq G$, as the group of symmetries $g \in G_{\mathbf{k}}$ that act to return \mathbf{k} to itself modulo reciprocal lattice vectors:

$$g\mathbf{k} \equiv \mathbf{k}.$$
 (53)

Specifically, if \tilde{R} is unitary ($\tilde{R} = R$), then SEq. (53) is satisfied if:

$$\tilde{R}\mathbf{k} = R\mathbf{k} \equiv \mathbf{k},\tag{54}$$

and if \tilde{R} is antiunitary ($\tilde{R} = R \times T$), then SEq. (53) is satisfied if:

$$\tilde{R}\mathbf{k} = -R\mathbf{k} \equiv \mathbf{k}.\tag{55}$$

 $G_{\mathbf{k}}$ is defined as the little group³³ of \mathbf{k} . Because Bravais lattice translations $\{E|\mathbf{t}_{a,b,c}\}$ leave \mathbf{k} points invariant [SEqs. (51)], then $G_{\mathbf{k}}$ necessarily contains the group of lattice translations G_T [SEq. (1)] at any point \mathbf{k} ; hence, $G_{\mathbf{k}}$ is isomorphic to an SSG. We may also define a little co-group $\bar{G}_{\mathbf{k}}$, which is given by the (Shubnikov) point group of $G_{\mathbf{k}}$. Because translation operations \mathbf{v} leave \mathbf{k} points invariant [SEq. (51)], then symmetries with and without translations [e.g. twofold screw symmetry $\{C_{2z}|00\frac{1}{2}\}$ and twofold rotation symmetry $\{C_{2z}|000\}$, respectively] have the same action on \mathbf{k} points. However, as we will shortly discuss in SN 13, the momentum-space [small] (co)reps of $G_{\mathbf{k}}$, conversely, can differ depending on whether $G_{\mathbf{k}}$ contains symmetries with or without fractional lattice translations \mathbf{v} [e.g. in nonsymmorphic and symmorphic symmetry groups, respectively]³³.

In general, given an SSG G and little group $G_{\mathbf{k}} \subseteq G$, if $G \neq G_{\mathbf{k}}$, then there exists a set of symmetry elements in the subset:

$$\tilde{q} \in G \setminus G_{\mathbf{k}},$$
 (56)

for which:

$$\tilde{g}\mathbf{k} \not\equiv \mathbf{k}.$$
 (57)

SEqs. (56) and (57) define a set of m \mathbf{k} points $\{\mathbf{k}_{\gamma}\}$ in the first BZ consisting of \mathbf{k} and all \mathbf{k}' that are dependent on each other and on \mathbf{k} [defined in SEq. (52)], where the index γ of \mathbf{k}_{γ} runs from 1 to m. The set of points $\{\mathbf{k}_{\gamma}\}$ is known as the momentum star of \mathbf{k} in G, for which m indicates the number of inequivalent \mathbf{k} points in the star. m can alternatively be defined as the number of \mathbf{k} points in the orbit of \mathbf{k} , in analogy to the discussion of Wyckoff positions and symmetry sites in SN 9. In this work, to distinguish orbits in position space from symmetry-related \mathbf{k} points in momentum space, we will refer to m as the number of arms in the star of \mathbf{k} , following the convention of SRefs. 33,79. From SEqs. (56) and (57), it follows that, for a point $\mathbf{k}' \equiv \tilde{g}\mathbf{k}$,

$$G_{\mathbf{k}'} = \tilde{g}G_{\mathbf{k}}\tilde{g}^{-1},\tag{58}$$

such that $G_{\mathbf{k}'}$ is isomorphic (and in fact conjugate) to $G_{\mathbf{k}}$. Continuing to follow the definitions for position-space

List of k-vector types of the Magnetic Space Group P21' (No. 3.2)

Unitary subroup: P2 (No. 3) in its standard setting.

	coordinates of the vectors of the star	magnetic little co-group	k-vector type of the unitary subgroup	coordinates of the vectors of the star in the unitary subgroup	unitary little co-group	
GM	(0,0,0)	21'	GM	(0,0,0)	2	
Α	(1/2,0,1/2)	21'	Α	(1/2,0,1/2)	2	
В	(0,0,1/2)	21'	В	(0,0,1/2)	2	
С	(1/2,1/2,0)	21'	С	(1/2,1/2,0)	2	
D	(0,1/2,1/2)	21'	D	(0,1/2,1/2)	2	
Е	(1/2,1/2,1/2)	21'	Е	(1/2,1/2,1/2)	2	
Υ	(1/2,0,0)	21'	Υ	(1/2,0,0)	2	
Z	(0,1/2,0)	21'	Z	(0,1/2,0)	2	
LD	(0,v,0)	2	LD	(0,v,0)	2	
LD	(0,-v,0)	۷	LE	(0,-v,0)]	
U	(1/2,v,1/2)	2	U	(1/2,v,1/2)	2	
U	(-1/2,-v,-1/2)	۷	UA	(-1/2,-v,-1/2)] ~	
V	(0,v,1/2)	2	V	(0,v,1/2)	2	
V	(0,-v,-1/2)	2	VA	(0,-v,-1/2)	2	
W	(1/2,v,0)	2	W	(1/2,v,0)	2	
VV	(-1/2,-v,0)	2	WA	(-1/2,-v,0)	2	
F	(u,0,w),(-u,0,-w)	2'	F	(u,0,w),(-u,0,-w)	1	
G	(u,1/2,w),(-u,1/2,-w)	2'	G	(u,1/2,w),(-u,1/2,-w)	1	
GP	(u,v,w),(-u,v,-w)	1	GP	(u,v,w),(-u,v,-w)	1	
GP	(-u,-v,-w),(u,-v,w)	1	GQ	(-u,-v,-w),(u,-v,w)	1	

Supplementary Figure 7: The output of the MKVEC tool on the BCS for Type-II SSG 3.2 P21'. MKVEC, which we introduce in this work, outputs the momentum stars of all 1,651 SSGs, representing an extension of the earlier KVEC tool, which was only capable of generating the momentum stars of the 230 Type-I (unitary) MSGs. From left to right, the columns in the output of MKVEC list the name ("k-vector type") of each momentum star indexed by a point \mathbf{k} in the first BZ of the specified SSG G, the coordinates of the arms of the star containing \mathbf{k} in the standard setting (conventional cell), the little co-group $\bar{G}_{\mathbf{k}}$, the name of the vectors in the star of \mathbf{k} in the unitary subgroup H of G (SN 2), the coordinates of the arms of the star(s) in H that combine to form the star of \mathbf{k} in G, and the Type-I (unitary) magnetic little co-group $\bar{H}_{\mathbf{k}}$ of \mathbf{k} in H. For the labels and coordinates of the arms of each star, we have employed the convention of Stokes, Campbell, and Cordes⁸² to be consistent with the ISOTROPY Software Suite, which was developed by Stokes, Hatch, and Campbell. In the example of SSG 3.2 P21' shown in this figure, the unitary subgroup H of G is isomorphic to Type-I MSG 3.1 P2. In H = P2, there are more momentum stars (right-most three columns) than in G = P21' (left-most three columns), due to the absence of $\{\mathcal{T}|\mathbf{0}\}$ symmetry in H. For example, in H — which is generated by $\{C_{2y}|\mathbf{0}\}$ and lattice translation symmetry, LD (0,v,0) and LE (0,-v,0) are distinct, multiplicity-1 momentum stars; however, in G, LD and LE merge into a single multiplicity-2 momentum star (also named LD) [(0,v,0),(0,-v,0)].

quantities established in SN 9, we define two momentum stars respectively indexed by arms at \mathbf{k} and \mathbf{k}' to be connected if the coordinates of any of the arms in the star of \mathbf{k} [e.g. the coordinate v in the LD star with two arms at (0, v, 0) and (0, -v, 0) in SSG 3.2 P21'] can be adjusted to coincide with the coordinates of any of the arms in the star of \mathbf{k}' [e.g. the Γ point (0,0,0) in SSG 3.2 P21', which is the only arm in its star], or vice versa. From this, we then further define a maximal momentum star as a momentum star indexed by an arm at \mathbf{k} (also known as a \mathbf{k} vector of maximal symmetry^{1-5,87}) for which all connected momentum stars indexed by arms at \mathbf{k}' have little groups $G_{\mathbf{k}'}$ that are proper subgroups of $G_{\mathbf{k}}$:

$$G_{\mathbf{k}'} \subset G_{\mathbf{k}},$$
 (59)

for all \mathbf{k}' connected to \mathbf{k} . We emphasize that a maximal momentum star may still have arms that lie along high-symmetry lines or planes, rather than high-symmetry \mathbf{k} points; for example, there are maximal momentum stars with arms lying along lines and planes in SSGs that are respectively isomorphic to magnetic $\mathrm{rod}^{10,33,69-71}$ and wallpaper^{39,73,74} groups modulo translations [see the text following SEq. (2) and the text surrounding SEq. (23)]. Because SEqs. (56), (57), (58), and (59) are closely related to the definitions for real-space Wyckoff positions (SN 9), then the momentum stars are sometimes also known as the "momentum-space Wyckoff positions" of G (see SRefs. 79,88 and the KVEC tool on the BCS for more information).

Prior to the completion of this work, the momentum stars and little (co)groups of the Type-I MSGs were made available on the BCS through the KVEC tool⁷⁹. However, the earlier tool – KVEC – only incorporated the action of unitary crystal symmetries. In this work, we introduce a new tool – MKVEC – which additionally incorporates the action of the antiunitary symmetries present in Type-II, III, and IV SSGs (SN 2). As an example, consider the lowest-symmetry momentum stars (general momentum-space Wyckoff positions⁷⁹) in Type-I MSG 3.1 P2 and Type-II SSG 3.2 P21' [SFig. 7]. MSG 3.1 P2 is generated by $\{C_{2y}|\mathbf{0}\}$ and 3D lattice translations, whereas SSG 3.2 P21' is generated by $\{C_{2y}|\mathbf{0}\}$, $\{\mathcal{T}|\mathbf{0}\}$, and 3D lattice translations. In MSG 3.1 P2, the lowest-symmetry star sits at generic momenta in the BZ interior, and has two arms that lie at \mathbf{k} and $C_{2y}\mathbf{k}$ [SEq. (51)]. Conversely, in SSG 3.2 P21', the lowest-symmetry star (GP in SFig. 7) has four arms, which lie at \mathbf{k} , $C_{2y}\mathbf{k}$, $\mathcal{T}\mathbf{k}$, and $C_{2y}\mathcal{T}\mathbf{k}$.

In SFig. 8, we also show the output of MKVEC for the more complicated example of Type-III MSG 75.3 P4′. To explain the output of MKVEC in SFig. 8, we must first define additional terminology. First, in many cases, there exist multiple symmetry groups that are isomorphic to the same SSG. For example, the MSG generated by:

$$\{C_{2v}|\mathbf{0}\}, \{E|100\}, \{E|010\}, \{E|001\},$$
 (60)

is isomorphic to the symmetry group generated by:

$${C_{2z}|\mathbf{0}}, {E|100}, {E|010}, {E|001}.$$
 (61)

Furthermore, the symmetry groups generated by the elements in SEqs. (60) and (61) are both isomorphic to Type-I MSG 3.1 P2. In BCS applications, unless otherwise specified, all of the properties associated to a symmetry group are generated in a standard setting in which the choice of rotation axes and mirror planes is fixed throughout the BCS. For each symmetry group on the BCS, the standard setting is chosen to be the setting of the symmetry group in the International Tables for Crystallography (SRefs. 69,70). For example, unless otherwise specified, the properties of Type-I MSG 3.1 P2 are provided on the BCS in the (standard) setting in which MSG 3.1 P2 is generated by $\{C_{2y}|\mathbf{0}\}$ and 3D lattice translations [SEq. (60)]. In the nomenclature of this work and the BCS, the symmetry group generated by $\{C_{2z}|\mathbf{0}\}$ and lattice translation [SEq. (61)] is termed a non-standard setting of MSG 3.1 P2. Next, given an SSG G, we define the Bravais class of G to be the highest-symmetry, symmorphic³³, Type-II SSG with the same gray (nonmagnetic) Bravais lattice as G (see SN 2). As discussed in SFig. 8, MKVEC compares the momentum stars of G to the momentum stars of the Bravais class of G, and, when there is a discrepancy, outputs an additional table [the lower table in SFig. 8] indicating the specific parameters for which the momentum stars in G coincide with the momentum stars in the Bravais class of G.

Having established definitions for standard and non-standard SSG settings and Bravais classes [SEq. (61) and the surrounding text], we will now analyze the output of MKVEC for Type-III MSG 75.3 P4' in SFig. 8. G = P4' is generated by:

$$\{C_{4z} \times \mathcal{T} | \mathbf{0}\}, \{E | 100\}, \{E | 001\},$$
 (62)

such that the unitary subgroup H of G is generated by $\{C_{2z}|\mathbf{0}\}$ and 3D lattice translations, and is therefore isomorphic to Type-I MSG 3.1 in a non-standard (z-oriented) setting [SEq. (61)]. Unlike in the previous example in SFig. 7, there are two complications that we must consider in generating the momentum stars of the Type-III MSG G = P4' from the momentum stars of a unitary (Type-I) MSG, whose momentum stars were previously computed for the

earlier BCS tool KVEC^{13,14,79}. First, in the standard setting, MSG 3.1 P2 is generated by $\{C_{2y}|\mathbf{0}\}$ and 3D lattice translations [SEq. (60)], as opposed to the unitary subgroup H of G = P4', which is isomorphic to MSG 3.1 P2 in a non-standard setting [see the text following SEq. (62)]. To begin to generate the momentum stars in G, we first employ a transformation matrix P to convert the \mathbf{k} points in the standard (y-oriented) setting of MSG 3.1 P2 into the non-standard (z-oriented) basis of H:

$$\mathbf{k}_H = P\mathbf{k}_{P2},\tag{63}$$

where P is the 3×3 matrix in the left three columns of the gray box at the top of SFig. 8. Next, we account for the difference in Bravais lattice between G and H. Specifically, G = P4' has a primitive tetragonal Bravais lattice, whereas H has a primitive monoclinic Bravais lattice. Because of this, high-symmetry \mathbf{k} points (lines) that were independent in H [e.g. (0,1/2,w) and (1/2,0,-w) in the upper table in SFig. 8] become merged by the symmetry $\{C_{4z} \times \mathcal{T} | \mathbf{0}\} \in G$ into the same star in G [e.g. W in the left-most column of the upper table in SFig. 8].

The need for a transformation matrix P [SEq. (63) and SFig. 8] and the difference in Bravais lattice lead to a potential ambiguity in the momentum-star labeling, namely whether we should employ the labels of an MSG (here 75.3 P4') or those of the unitary subgroup [here 3.1 P2 in the non-standard (z-oriented) setting, see the text surrounding SEq. (60)]. We note that this ambiguity does not arise in all MSGs, or at all \mathbf{k} points – a point \mathbf{k} in an MSG G only carries a labeling ambiguity if the \mathbf{k} point has a different label in the Bravais lattice of G than in the Bravais lattice of the unitary subgroup G of G. In the new tools on the BCS created for this work, we resolve a \mathbf{k} -point labeling ambiguity by continuing to label the \mathbf{k} point using the momentum stars of G, while labeling the little group (small) coreps at \mathbf{k} (which we will shortly introduce in SN 13) with both the momentum star labels in G and with the momentum star labels of the unitary (and possibly rotated) subgroup G (see SFig. 9 for an example of magnetic small corep labeling on the BCS).

List of k-vector types of the Magnetic Space Group P4' (No. 75.3)

Unitary subroup: P2 (No. 3). Transformation matrix to the standard setting:

$$\left(\begin{array}{ccccccc} 1 & 0 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \\ 0 & -1 & 0 & & 0 \end{array}\right)$$

	coordinates of the vectors of the star	magnetic little co-group	k-vector type of the unitary subgroup	coordinates of the vectors of the star in the unitary subgroup	unitary little co-group
Α	(1/2,1/2,1/2)	4'	E	(1/2,-1/2,1/2)	2
GM	(0,0,0)	4'	GM	(0,0,0)	2
LD	(0,0,w)	2	LD	(0,-w,0)	2
M	(1/2,1/2,0)	4'	Α	(1/2,0,1/2)	2
V	(1/2,1/2,w)	2	U	(1/2,-w,1/2)	2
Z	(0,0,1/2)	4'	Z	(0,-1/2,0)	2
GP	(u,v,w),(-u,-v,w)	1	GP	(u,-w,v),(-u,-w,-v)	1
GP	(-v,u,w),(v,-u,w)	1	GQ	(-v,-w,u),(v,-w,-u)	1
W	(0,1/2,w)	2	V	(0,-w,1/2)	2
VV	(1/2,0,-w)	2	W	(1/2,w,0)	2
WA	(1/2,0,-w)	2	W	(1/2,w,0)	2
VVA	(0,1/2,w)	2	V	(0,-w,1/2)	2

Other labels used in this Bravais class but that are particular cases of vectors of the previous list in this specific magnetic group

k-vector type	coordinates of a representative vector of the star	more general k-vector type	coordinates of the more general k-vector type	specific values of the coordinates	k-vector type of the unitary subgroup	coordinates of the vectors of the star in the unitary subgroup	specific values of the coordinates in the unitary subgroup
R	(0,1/2,-1/2)	W	(0,1/2,w)	w → -1/2	D	(0,1/2,1/2)	
X	(0,1/2,0)	W	(0,1/2,w)	$W \rightarrow 0$	В	(0,0,1/2)	
RA	(1/2,0,1/2)	WA	(1/2,0,-w)	w → -1/2	С	(1/2,-1/2,0)	
XA	(1/2,0,0)	WA	(1/2,0,-w)	$W \rightarrow 0$	Υ	(1/2,0,0)	
DT	(0,v,0)	GP	(u,v,w)	$u \rightarrow 0, w \rightarrow 0$	F	(u,0,w)	$u \rightarrow 0, w \rightarrow v$
DU	(v,0,0)	GP	(u,v,w)	$u \rightarrow v, v \rightarrow 0, w \rightarrow 0$	F	(u,0,w)	$u \rightarrow v, w \rightarrow 0$
S	(u,u,-1/2)	GP	(u,v,w)	v → u,w → -1/2	G	(u,1/2,w)	w→u
SA	(u,-u,1/2)	GP	(u,v,w)	v → -u,w → 1/2	G	(u,-1/2,w)	w → -u
SM	(u,u,0)	GP	(u,v,w)	$v \rightarrow u, w \rightarrow 0$	F	(u,0,w)	w → u
SN	(u,-u,0)	GP	(u,v,w)	v → -u,w → 0	F	(u,0,w)	w → -u
Т	(u,1/2,-1/2)	GP	(u,v,w)	v → 1/2,w → -1/2	G	(u,1/2,w)	w → 1/2
TA	(1/2,-u,1/2)	GP	(u,v,w)	$u \rightarrow 1/2, v \rightarrow -u, w \rightarrow 1/2$	G	(u,-1/2,w)	u → 1/2,w → -u
U	(0,v,-1/2)	GP	(u,v,w)	u → 0,w → -1/2	G	(u,1/2,w)	$u \rightarrow 0, w \rightarrow v$
UA	(v,0,1/2)	GP	(u,v,w)	$u \rightarrow v, v \rightarrow 0, w \rightarrow 1/2$	G	(u,-1/2,w)	$u \rightarrow v, w \rightarrow 0$
Υ	(u,1/2,0)	GP	(u,v,w)	v → 1/2,w → 0	F	(u,0,w)	w → 1/2
YA	(1/2,-u,0)	GP	(u,v,w)	$u \rightarrow 1/2, v \rightarrow -u, w \rightarrow 0$	F	(u,0,w)	u → 1/2,w → -u
В	(0,v,w)	GP	(u,v,w)	u → 0	GP	(u,v,w)	$u \rightarrow 0, v \rightarrow -w, w \rightarrow v$
BA	(v,0,-w)	GP	(u,v,w)	$u \rightarrow v, v \rightarrow 0, w \rightarrow -w$	GP	(u,v,w)	$u \rightarrow v, v \rightarrow w, w \rightarrow 0$
С	(u,u,w)	GP	(u,v,w)	v → u	GP	(u,v,w)	$V \rightarrow -W, W \rightarrow U$
CA	(u,-u,-w)	GP	(u,v,w)	$V \rightarrow -u, W \rightarrow -W$	GP	(u,v,w)	$V \rightarrow W, W \rightarrow -U$
D	(u,v,0)	GP	(u,v,w)	w → 0	F	(u,0,w)	$W \rightarrow V$
Е	(u,v,1/2)	GP	(u,v,w)	w → 1/2	G	(u,-1/2,w)	$W \rightarrow V$
F	(u,1/2,w)	GP	(u,v,w)	v → 1/2	GP	(u,v,w)	$V \rightarrow -W, W \rightarrow 1/2$
FA	(1/2,-u,-w)	GP	(u,v,w)	$u \rightarrow 1/2, v \rightarrow -u, w \rightarrow -w$	GP	(u,v,w)	$u \rightarrow 1/2, v \rightarrow w, w \rightarrow -u$

Supplementary Figure 8: The output of the MKVEC tool on the BCS for Type-III MSG 75.3 P4'. Unlike the previous example of SSG 3.2 P21' in SFig. 7, G = P4' and the unitary subgroup H of G have different Bravais lattices. Additionally, the unitary subgroup H is generated by $\{C_{2z}|\mathbf{0}\}$ and 3D lattice translation [SEq. (61)], and is therefore isomorphic to Type-I 3.1 P2 in a non-standard (z-oriented) setting that differs from the standard (y-oriented) setting used throughout the BCS [see SEq. (60) for the definitions of standard and non-standard settings. In MKVEC, we account for the difference in the orientation of the twofold rotation axis between H and the standard setting of MSG 3.1 P2 by using the 3×3 P matrix given by the left three columns of the gray box [SEq. (63)]. After using the P matrix to reorient the twofold rotation symmetry in MSG 3.1 P2 to align with the twofold axis in H, we then determine which of the momentum stars (e.g. GP and GQ) in MSG 3.1 P2 (the three right-most columns in the top table) merge into the same momentum star (e.g. GP) in MSG 75.3 P4' (the three left-most columns in the top table). MKVEC also refers to the Bravais classes, which are defined in the text following SEq. (61). For SSGs G with fewer momentum stars than in the Bravais class of G, MKVEC also outputs the bottom table, which lists additional k points that represent specific parameters for the same momentum stars in the top table chosen to coincide with distinct momentum stars in the Bravias class of G. For example, in some SSGs G – such as Type-III MSG 75.3 P4' in this figure – two k points represent different parameter choices for the same star [e.g. the X point at (0,1/2,0) and the R point at (0, 1/2, -1/2) in the lower table represent different parameter choices for the W star in the upper table, even though the two k points lie in distinct momentum stars in the Bravais class of G [which, for the example of Type-III MSG 75.3 P4', is the primitive tetragonal Type-II SSG 123.340 P4/mmm1']. To summarize, in Type-III MSG 75.3 P4', the R and X points and W lines are all mutually connected [defined in the text following SEq. (58)], and therefore appear as a single entry (W) in the top table, but the R and X points are not connected in the Bravais class of G (Type-II SSG 123.340 P4/mmm1'), and therefore appear as distinct entries (R and X) in the bottom table. Further details for obtaining the Bravais class of each SSG are provided in the documentation for MKVEC on the BCS.

13. Small and Full Coreps and the Corepresentations Tool

Having established the definitions of little (co)groups and momentum stars (SN 12), we will now in this section detail our tabulation of the small and full (co)reps of the MSGs. At each \mathbf{k} point in a crystal, the representations of the little group $G_{\mathbf{k}}$ can be used to characterize electronic (Bloch) wavefunctions 33,80,81,89 , superconducting- and magnetic-transition order parameters $^{90-93}$, magnons 94 , and Raman scattering tensors 95 . For the specific purposes of MTQC, we cannot derive the magnetic elementary band (co)representations without knowledge of the set of irreducible full [i.e. space group] (co)reps in each momentum star induced from the irreducible small (co)reps in one arm of the star (see SN 17). Therefore, before we can continue towards characterizing energy bands and enumerating band (co)representations across the SSGs, we must tabulate all of the small (co)reps [defined below] of each little group $G_{\mathbf{k}}$ of each \mathbf{k} point in each of the 1,651 SSGs, which we must then use to generate the irreducible full (co)reps in each momentum star of each SSG. Though a partial tabulation consisting of the magnetic small (co)reps at high-symmetry BZ points and along high-symmetry BZ lines was performed by Miller and Love in SRef. 78, we have in this work performed the first complete tabulation of the small (co)reps of $G_{\mathbf{k}}$ at all \mathbf{k} points for all 1,651 single and double SSGs.

To begin, because $G_{\mathbf{k}}$ is isomorphic to an SSG [text following SEq. (53)], then $G_{\mathbf{k}}$ is an infinite group, and does not have a finite set of irreducible (co)reps. Historically, several methods have been employed to extract a physically meaningful finite set of (co)reps from $G_{\mathbf{k}}$. One option is to form a finite group from $G_{\mathbf{k}}$. If \mathbf{k} is an isolated high-symmetry point, then we can form the group:

$${}^{H}G_{\mathbf{k}} = G_{\mathbf{k}}/T_{\mathbf{k}},\tag{64}$$

where $T_{\bf k}$ is the group of translations $\{E|{\bf t}_{\mu}\}\in T_{\bf k}$ for which $\exp(-i{\bf k}\cdot{\bf t}_{\mu})=1$, and where we recall that / is the set quotient [SEq. (8)], as opposed to the set difference \ [SEq. (6)]. ${}^HG_{\bf k}$ is known as "Herring's little group" 33,96 . At high-symmetry ${\bf k}$ points in Type-I MSGs or Type-II SSGs, it is shown in SRef. 33 that ${}^HG_{\bf k}$ is either isomorphic to an abstract finite point group, or to the direct product of an abstract finite point group and a 3D group of lattice translations that is a subgroup of the lattice translations of $G_{\bf k}$. Hence, a finite number of coreps can be generated from ${}^HG_{\bf k}$ by either encountering the case in which ${}^HG_{\bf k}$ is already a finite group, or by taking ${}^HG_{\bf k}$ modulo the remaining integer lattice translations. The (co)reps of the abstract point subgroups of ${}^HG_{\bf k}$ for all of the ${\bf k}$ points in the single and double Type-I MSGs and Type-II SGs were exhaustively tabulated in SRef. 33. However, the abstract point subgroups of ${}^HG_{\bf k}$ for all of the ${\bf k}$ points in the single and double Type-III and Type-IV MSGs have not been calculated to date. Additionally, when generalizing to high-symmetry BZ lines and planes, we can no longer rely on SEq. (64), because $G_{\bf k}/T_{\bf k}$ cannot simply be reduced to a finite group by modding out lattice translations for values of ${\bf k}$ away from high-symmetry points; a more complicated procedure involving the central extension of the little co-group $\bar{G}_{\bf k}$ may instead be employed, as detailed in Chapter 5 of SRef. 33.

In this work, to avoid the complications involved with reducing $G_{\mathbf{k}}$ to a finite group, we will instead employ an alternative approach in which a finite set of (co)reps can be generated for each $G_{\mathbf{k}}$ in each SSG, regardless of whether \mathbf{k} is a high-symmetry BZ point. To begin, because $G_{\mathbf{k}}$ is a space group, then $G_{\mathbf{k}}$ can be expressed as a left coset decomposition with respect to the group of Bravais lattice translations G_T [SEq. (1)]:

$$G_{\mathbf{k}} = \bigcup_{i} g_{i} G_{T} = G_{T} \cup \bigcup_{g_{i} \notin G_{T}} g_{i} G_{T} = G_{T} \cup \{\tilde{R}_{1} | \mathbf{v}_{1}\} G_{T} \cup \{\tilde{R}_{2} | \mathbf{v}_{2}\} G_{T} + ...,$$

$$(65)$$

where the index i in SEq. (65) runs over a set of coset representatives $g_i = \{\tilde{R}_i | \mathbf{v}_i\}$ of $G_{\mathbf{k}}$ for which $g_i G_T \neq g_j G_T$ for $g_{i,j} \in G_{\mathbf{k}}$, such that each coset $g_i G_T$ is unique. In SEq. (65), we use the tilde symbol to emphasize that the symmetry operation \tilde{R}_i can be either unitary ($\tilde{R}_i = R_i$) or antiunitary ($\tilde{R}_i = R_i \times \mathcal{T}$). In the coset decomposition in SEq. (65), $g_i \neq \{E|\mathbf{0}\}$ in the second equality, because $\{E|\mathbf{0}\}\in G_T$. To motivate the coset decomposition in SEq. (65), we can compare $G_{\mathbf{k}}$ to $\bar{G}_{\mathbf{k}}G_T$, where $\bar{G}_{\mathbf{k}}$ is the little co-group $[i.e.\ \bar{G}_{\mathbf{k}}$ is the SPG obtained by setting all of the $\mathbf{v}_i \to \mathbf{0}$ in SEq. (65), see text following SEq. (55)]. First, we define a symmorphic SSG³³ to be an SSG G in which there exists a choice of origin for which each symmetry $g \in G$ takes the form $g = \{\tilde{R}|\mathbf{t}\}$, where $\{E|\mathbf{t}\}\in G_T$ (using the same origin for each symmetry g)^{33,69}. This implies that $G_{\mathbf{k}} = \bar{G}_{\mathbf{k}}G_T$ at all \mathbf{k} points. Hence, in symmorphic symmetry groups, we could in principle obtain a finite set of (co)reps of $G_{\mathbf{k}}$ by restricting consideration to the (co)reps of $\bar{G}_{\mathbf{k}}$. However, in an SSG that is not symmorphic (i.e. a nonsymmorphic SSG), there exist \mathbf{k} points at which $G_{\mathbf{k}} \neq \bar{G}_{\mathbf{k}}G_T$, providing an obstacle towards generically using $\bar{G}_{\mathbf{k}}$ to obtain finite sets of (co)reps of $G_{\mathbf{k}}$. For example, at $\mathbf{k} = (0, \pi, 0)$ in nonsymmorphic Type-I MSG 4.7 $P2_1$ — which is generated by screw symmetry $\{C_{2y}|0^{\frac{1}{2}}0\}$ and the lattice translations $\{E|100\}$ and $\{E|001\}$ — $G_{\mathbf{k}} \neq \bar{G}_{\mathbf{k}}G_T$. We further note that, because all Type-IV SSGs necessarily contain elements of the form $t_0 \mathcal{T} = \{\mathcal{T}|\mathbf{t}_0\}$ for which $\{E|\mathbf{t}_0\} \notin G_T$ (i.e. t_0 is a fractional lattice translation, see SN 6), then all Type-IV SSGs are nonsymmorphic.

Instead, we will show below that, unlike $\bar{G}_{\mathbf{k}}$, SEq. (65) will allow us to construct a prescription for obtaining a finite set of (co)reps at all \mathbf{k} points in both symmorphic and nonsymmorphic SSGs. First, we recognize that, even though $G_{\mathbf{k}}$ in SEq. (65) is an infinite group, the number of unique cosets g_iG_T of $G_{\mathbf{k}}$ is finite. This can be seen by recognizing that E and the finite set $\{\tilde{R}_i\}$ in SEq. (65) comprise the finite little co-group $\bar{G}_{\mathbf{k}}$. Next, we recall that $G_{\mathbf{k}}$ is isomorphic to an SSG, implying that, in principle, there exist infinitely many (co)reps of $G_{\mathbf{k}}$. We therefore impose an additional restriction to (co)reps σ of $G_{\mathbf{k}}$ (not necessarily irreducible) for which lattice translations $t_{\mu} = \{E | \mathbf{t}_{\mu}\}$ have the matrix representatives:

$$\Delta_{\sigma}(t_{\mu}) = e^{-i\mathbf{k}\cdot\mathbf{t}_{\mu}} \mathbb{1}_{\chi_{\sigma}(\{E|\mathbf{0}\})},\tag{66}$$

where $\mathbb{1}_{\chi_{\sigma}(\{E|\mathbf{0}\})}$ is the $\chi_{\sigma}(\{E|\mathbf{0}\})$ -dimensional identity matrix. SEq. (66) implies that, given two symmetries $g_i \in G_{\mathbf{k}}$ and $t_{\mu}g_i \in G_{\mathbf{k}}$ in the same coset g_iG_T , where $t_{\mu} = \{E|\mathbf{t}_{\mu}\}$ and $t_{\mu} \in G_T$, the matrix representatives $\Delta_{\sigma}(g_i)$ and $\Delta_{\sigma}(t_{\mu}g_i)$ in σ in SEq. (66) – which is termed a $small^{2,13,33,82}$ (co)rep of $G_{\mathbf{k}}$ – are related by an overall (Bloch) phase³³. Specifically:

$$\Delta_{\sigma}(t_{\mu}g_i) = e^{-i\mathbf{k}\cdot\mathbf{t}_{\mu}}\Delta_{\sigma}(g_i),\tag{67}$$

such that $\Delta_{\sigma}(t_{\mu}g_{i})$ and $\Delta_{\sigma}(g_{i})$ are unitarily equivalent. Using SEqs. (65), (66), and (67), we can then extract a finite set of irreducible small (co)reps from $G_{\mathbf{k}}$ by restricting focus to the indecomposable small (co)reps whose matrix representatives are not related by an overall phase, or any other unitary transformation. Specifically, we first define two (co)reps σ and σ' of a little group $G_{\mathbf{k}}$ to be *equivalent* if there exists a unitary matrix N that relates the matrix representatives $\Delta_{\sigma}(g)$ and $\Delta_{\sigma'}(g)$:

$$\Delta_{\sigma}(g) = N\Delta_{\sigma'}(g)N^{\dagger},\tag{68}$$

for all $g \in G_{\mathbf{k}}$ (in which the same matrix N is used for all $g \in G_{\mathbf{k}}$). Then, using SEq. (68), we define the irreducible small (co)reps of $G_{\mathbf{k}}$ as the finite set of inequivalent (co)reps of $G_{\mathbf{k}}$ that cannot be expressed as direct sums of each other and for which the matrix representatives of integer lattice translations take the form of SEq. (66). We further note that, at high-symmetry **k** points, the small (co)reps of $G_{\mathbf{k}}$ are equivalent to the (co)reps of ${}^{H}G_{\mathbf{k}}$ [modulo lattice translations, see the text following SEq. (64)], and, along high-symmetry BZ lines, the small (co)reps of $G_{\mathbf{k}}$ are equivalent to the (co)reps of the central extension of the little co-group $\bar{G}_{\mathbf{k}}$ (see Chapter 5 in SRef. 33 for a detailed discussion of the role of the central extension in the group theory of crystalline solids). For Type-I and Type-II SSGs, the little group small (co)reps were previously tabulated by Bradley and Cracknell³³, and were reconstructed in the REPRESENTATIONS DSG tool on the BCS for TQC¹⁻⁶. Conversely, there have been relatively few previous attempts to exhaustively tabulate the small coreps of the Type-III and Type-IV MSGs in an accessible form, though a partial tabulation consisting of the magnetic small (co)reps at high-symmetry BZ points and along high-symmetry BZ lines was performed by Miller and Love in SRef. 78 using little group decompositions of the form of SEq. (65). In this work, we have, for the first time, performed a complete tabulation of the small (co)reps of the little group $G_{\mathbf{k}}$ at each k point in each of the 1,651 SSGs, which we have made accessible through the Corepresentations tool on the BCS. Across all of the momentum stars of the 1,651 single and double SSGs, the completion of Corepresentations required the computation of over 100,000 single- and double-valued small (co)reps. In the text below, we will detail our methodology for tabulating the small (co)reps; in SN 14 and 15, we will additionally provide representative examples of the output of Corepresentations.

To complete our derivation of the little group small (co)reps, we return to the coset decomposition in SEq. (65). First, we recognize that, if $G_{\mathbf{k}}$ is isomorphic to a Type-I MSG, then its small (co)reps can already be obtained from either the tables in SRef. 33 or through the earlier REPRESENTATIONS DSG tool on the BCS¹⁻⁶, and no further calculations are required. Next, we consider the more complicated case in which $G_{\mathbf{k}}$ is isomorphic to a Type-II, III, or IV SSG. In this case, $G_{\mathbf{k}}$ necessarily contains antiunitary elements, and therefore admits a decomposition of the form:

$$G_{\mathbf{k}} = H_{\mathbf{k}} \cup \tilde{q}_A H_{\mathbf{k}},$$
 (69)

where $H_{\mathbf{k}}$ is the maximal unitary (index-2, see SN 4, 5, and 6) subgroup of $G_{\mathbf{k}}$, and \tilde{g}_A is an antiunitary symmetry operation of the form:

$$\tilde{g}_A = \{ R \times \mathcal{T} | \mathbf{v} \}, \tag{70}$$

where \tilde{g}_A is known as the "representative" antiunitary symmetry operation, R is a unitary point-group symmetry element (proper or improper rotation or the identity E), and either $\mathbf{v} = \mathbf{0}$ or \mathbf{v} is a fractional lattice translation.

As discussed earlier in SN 4, 5, and 6 and summarized in Supplementary Table 1, Type-II, III, and IV SSGs are distinguished by the form of R and \mathbf{v} in SEq. (70).

SSG Definitions in Terms of SEqs. (69) and (70)								
SSG Type Condition on R Condition on \mathbf{v}								
Type-II SSG	R = E	$\mathbf{v}=\mathbf{t}_{\mu}$						
Type-III MSG	$R \neq E$	No constraint						
Type-IV MSG	R = E	$\mathbf{v} eq \mathbf{t}_{\mu}, \mathbf{v}^2 = \mathbf{t}_{\mu}$						

Supplementary Table 1: Definitions of the SSGs with antiunitary symmetry operations (Types-II, III, and IV, respectively defined in SN 4, 5, and 6). E is the identity operation, and \mathbf{t}_{μ} is a Bravais lattice vector, such that $\{E|\mathbf{t}_{\mu}\}\in G_T$ [SEq. (1)].

Next, for each of the cosets on the right-hand side of SEq. (65) [including G_T itself], we choose one element to place into a set $\tilde{G}_{\mathbf{k}}$. In this work, we specifically choose the identity element $\{E|\mathbf{0}\}$ from G_T , and then, from each coset g_iG_T , we choose one element $g_i = \{\tilde{R}_i|\mathbf{v}_i\}$ for which each component of the translation \mathbf{v}_i is chosen to satisfy $|\mathbf{v}_i \cdot \mathbf{t}_{a,b,c}| < 1$ (in reduced units where the lattice constants a,b,c=1), such that either $\mathbf{v}=\mathbf{0}$ or \mathbf{v}_i is a specific fractional lattice translation for which $g_i = \{\tilde{R}_i|\mathbf{v}_i\}$ is an element of the little group $G_{\mathbf{k}}$. We note that, if $G_{\mathbf{k}}$ is isomorphic to a symmorphic SSG [defined in the text following SEq. (65)], then $\tilde{G}_{\mathbf{k}}$ becomes a finite group [specifically, $\tilde{G}_{\mathbf{k}} = \bar{G}_{\mathbf{k}}$ if $G_{\mathbf{k}}$ is symmorphic, where $\bar{G}_{\mathbf{k}}$ is the little co-group, see the text following SEq. (55)]. We note that, in this section, we will always consider the more general case in which $\tilde{G}_{\mathbf{k}}$ is a set, and not necessarily a group. Using $\tilde{H}_{\mathbf{k}}$ – the maximal unitary subset of $\tilde{G}_{\mathbf{k}}$ – we can re-express SEq. (65) for a Type-II, III, or IV little group $G_{\mathbf{k}}$ as:

$$G_{\mathbf{k}} = \tilde{G}_{\mathbf{k}} G_{\mathbf{k}} = \bigcup_{i} h_{i} G_{T} \cup \bigcup_{i} g_{A,i} G_{T} = \left(\tilde{H}_{\mathbf{k}} \cup \tilde{g}_{A} \tilde{H}_{\mathbf{k}} \right) G_{T}, \tag{71}$$

where \tilde{g}_A is the representative antiunitary symmetry operation in SEq. (70), and where the index i in SEq. (71) runs over all unique unitary (h_iG_T) and antiunitary $(g_{A,i}G_T)$ cosets of $G_{\mathbf{k}}$. Bradley and Cracknell outline a convention³³ for choosing \tilde{g}_A (for example, in Type-II little groups, the most natural choice is $\tilde{g}_A = \{T|\mathbf{0}\}$); however, below, we will employ a more general procedure that is independent of the form of \tilde{g}_A . Because all $g_{A,i} \in \tilde{g}_A \tilde{H}_{\mathbf{k}}$ in SEq. (71) are antiunitary, and therefore do not have well-defined characters in any small corep of $G_{\mathbf{k}}$ (where the character $\chi_{\sigma}(h)$ of a unitary symmetry h in the corep σ is defined³³ as $\text{Tr}[\Delta_{\sigma}(h)]$), then it is straightforward to see that the set of small coreps of $G_{\mathbf{k}}$ can only be formed from the small irreps of its unitary subgroup $H_{\mathbf{k}}$, which may become paired by the action of the elements $g_{A,i} \in \tilde{g}_A \tilde{H}_{\mathbf{k}}$. We note that it is not possible for the irreducible small coreps of $G_{\mathbf{k}}$ to be composed of more than two irreps of $H_{\mathbf{k}}$, because $H_{\mathbf{k}}$ is either isomorphic to $G_{\mathbf{k}}$ (i.e. $G_{\mathbf{k}}$ is isomorphic to a Type-I MSG, see SN 3), or $H_{\mathbf{k}}$ is an index-2 subgroup of $G_{\mathbf{k}}$ (i.e. $G_{\mathbf{k}}$ is isomorphic to a Type-II, III, or IV SSG, see SN 4, 5, and 6, respectively).

Given a small irrep σ of $H_{\mathbf{k}}$ with a matrix representative $\Delta_{\sigma}(h)$ for each symmetry $h \in \tilde{H}_{\mathbf{k}}$, we next define a matrix:

$$\bar{\Delta}_{\sigma}(h) = \left[\Delta_{\sigma}(\tilde{g}_A^{-1}h\tilde{g}_A)\right]^*. \tag{72}$$

As shown by Bradley and Cracknell³³, the small coreps $\tilde{\sigma}$ of $G_{\mathbf{k}}$ can only take one of three forms, which we designate as "types" (a), (b), and (c):

• Type (a): $\bar{\Delta}_{\sigma}(h)$ is equivalent to $\Delta_{\sigma}(h)$, such that $\Delta_{\sigma}(h) = N\bar{\Delta}_{\sigma}(h)N^{\dagger}$ for all $h \in \tilde{H}_{\mathbf{k}}$ [SEq. (68)]. Additionally, for coreps of type (a), the antiunitary matrix representative $\Delta_{\sigma}(\tilde{g}_A) = NK$, where K is complex conjugation, carries the property that $\Delta_{\sigma}(\tilde{g}_A^2) = [\Delta_{\sigma}(\tilde{g}_A)]^2 = NN^* = N^2$ [which is well defined, because $\tilde{g}_A^2 \in \tilde{H}_{\mathbf{k}}G_T$ in SEq. (71)]. For coreps of type (a), this implies that:

$$\tilde{\sigma} \equiv \sigma,$$
 (73)

such that the small corep $\tilde{\sigma}$ of $G_{\mathbf{k}}$ is equivalent to a small irrep σ of $H_{\mathbf{k}}$. However, because $G_{\mathbf{k}}$ and $H_{\mathbf{k}}$ are different symmetry groups, then the equivalence between $\tilde{\sigma}$ and σ is defined differently than the equivalence that we previously defined between (co)reps of the same symmetry group [see the text surrounding SEq. (68)]. Specifically, in this work, we define an irrep σ of a Type-I (unitary) symmetry group $H_{\mathbf{k}}$ and a corep $\tilde{\sigma}$ of an index-2 Type-II, III, or IV (antiunitary) supergroup $G_{\mathbf{k}}$ of $H_{\mathbf{k}}$ to be equivalent if there exists a unitary matrix N that relates the matrix representatives $\Delta_{\sigma}(h)$ and $\Delta_{\tilde{\sigma}}(h)$ by $\Delta_{\sigma}(h) = N\Delta_{\tilde{\sigma}}(h)N^{\dagger}$ for all of the unitary symmetries $h \in H_{\mathbf{k}}$, $h \in G_{\mathbf{k}}$ (where the same matrix N is used for all $h \in H_{\mathbf{k}}$, $h \in G_{\mathbf{k}}$). In nonmagnetic

(Type-II) SSGs, type (a) coreps are most familiarly encountered at \mathbf{k} points with real symmetry eigenvalues in the absence of SOC. For example, at $\mathbf{k} = \mathbf{0}$ in Type-II SSG 2.5 $P\bar{1}1'$ in the absence of SOC, which is generated by $\{\mathcal{I}|\mathbf{0}\}$, $\{\mathcal{T}|\mathbf{0}\}$, and 3D lattice translations, $G_{\mathbf{k}}$ has two, one-dimensional, single-valued small coreps that each correspond to a singly degenerate, \mathcal{T} -invariant Bloch state (per spin)³³. Type (a) coreps also exist in nonmagnetic SSGs G in the presence of SOC at \mathcal{T} -invariant \mathbf{k} points with complex-conjugate pairs of spinful symmetry eigenvalues that are already paired by unitary crystal symmetries in the unitary subgroup $H_{\mathbf{k}}$ of $G_{\mathbf{k}}$. For example, at $\mathbf{k} = \mathbf{0}$ in Type-II SSG 25.57 Pmm2 in the presence of SOC, which is generated by $\{m_x|\mathbf{0}\}$, $\{m_y|\mathbf{0}\}$, $\{\mathcal{T}|\mathbf{0}\}$, and 3D lattice translations, $G_{\mathbf{k}}$ has one, two-dimensional small corep that is equivalent to a two-dimensional small irrep σ of $H_{\mathbf{k}}$ with complex-conjugate pairs of $m_{x,y}$ eigenvalues due to the anticommutation relation $\{\Delta_{\sigma}(m_x), \Delta_{\sigma}(m_y)\} = 0$.

• Type (b): $\bar{\Delta}_{\sigma}(h)$ is equivalent to $\Delta_{\sigma}(h)$ for all $h \in \tilde{H}_{\mathbf{k}}$, where equivalence continues to be defined by SEq. (68). However, for coreps of type (b), $\Delta_{\sigma}(\tilde{g}_A^2) = NN^* = -N^2$, implying through Kramers' theorem that:

$$\tilde{\sigma} = \sigma \oplus \sigma \equiv \sigma \sigma,\tag{74}$$

such that the small corep $\tilde{\sigma}$ of $G_{\mathbf{k}}$ is formed from pairing two copies of the same small irrep σ of $H_{\mathbf{k}}$. We further note that, because \tilde{g}_A exchanges the two irreps σ that comprise $\tilde{\sigma}$ in SEq. (74), then the matrix representative $\Delta_{\sigma}(\tilde{g}_A)$ is itself undefined for a single irrep σ . Instead for coreps $\tilde{\sigma}$ of type (b), the antiunitary matrix representative $\Delta_{\tilde{\sigma}}(\tilde{g}_A)$ is only well-defined in the larger space of the two irreps σ in $\tilde{\sigma}$, in which the unitary part of $\Delta_{\tilde{\sigma}}(\tilde{g}_A)$ is block-off-diagonal. In nonmagnetic (Type-II) SSGs, type (b) coreps are most familiarly encountered at \mathbf{k} points with real symmetry eigenvalues in the presence of SOC. For example, at $\mathbf{k} = \mathbf{0}$ in Type-II SSG 2.5 $P\bar{1}1'$ in the presence of SOC, which is generated by $\{\mathcal{I}|\mathbf{0}\}$, $\{\mathcal{T}|\mathbf{0}\}$, and 3D lattice translations, $G_{\mathbf{k}}$ has two, two-dimensional, double-valued small coreps that each correspond to a doubly-degenerate (Kramers) pair of Bloch states with two parity (\mathcal{I}) eigenvalues of the same sign³³.

• Type (c): $\bar{\Delta}_{\sigma}(h)$ is not equivalent to $\Delta_{\sigma}(h)$ [i.e., there does not exist a matrix N that satisfies SEq. (68) for all of the symmetries $h \in \tilde{H}_{\mathbf{k}}$]. Instead, $\bar{\Delta}_{\sigma}(h)$ is equivalent to $\Delta_{\sigma'}(h)$, where σ' is a different small irrep of $H_{\mathbf{k}}$ than σ . This implies that:

$$\tilde{\sigma} = \sigma \oplus \sigma' \equiv \sigma \sigma',\tag{75}$$

such that the small corep $\tilde{\sigma}$ of $G_{\mathbf{k}}$ is formed from pairing two different small irreps σ and σ' of $H_{\mathbf{k}}$. Unlike in coreps of type (a) or type (b), there is no constraint on the form of the matrix representative $\Delta_{\sigma}(\tilde{g}_A^2)$ in coreps of type (c). However, like previously in SEq. (74), the unitary part of $\Delta_{\tilde{\sigma}}(\tilde{g}_A)$ for a type (c) corep $\tilde{\sigma}$ [SEq. (75)] is off-diagonal in the block basis of σ and σ' , and $\Delta_{\sigma}(\tilde{g}_A)$ cannot by itself be defined for a single irrep σ or σ' . In nonmagnetic (Type-II) SSGs, type (c) coreps are most familiarly encountered at \mathbf{k} points with complex symmetry characters in $H_{\mathbf{k}}$, whether or not SOC is taken into consideration. For example, at $\mathbf{k} = \mathbf{0}$ in Type-II SSG 6.19 Pm1' in the presence of SOC, which is generated by $\{m_y|\mathbf{0}\}$, $\{\mathcal{T}|\mathbf{0}\}$, and 3D lattice translations, $G_{\mathbf{k}}$ has one, two-dimensional, double-valued small corep that corresponds to a doubly-degenerate (Kramers) pair of Bloch states with a complex-conjugate $(\pm i)$ pair of m_y eigenvalues³³.

The above definitions seem to imply that the type of small corep $\tilde{\sigma}$ induced in $G_{\mathbf{k}}$ can only be determined through a careful selection of \tilde{g}_A in SEq. (71), followed by an exhaustive search for equivalence matrices N that satisfy SEq. (68). However, as shown by Bradley and Cracknell³³, we can also diagnose the type of the induced corep simply by calculating the modified Frobenius-Schur indicator^{97–99} [c.f. Eq. (7.3.48) in SRef. 33]:

$$J_{\sigma} = \sum_{i} \chi_{\sigma}(g_{A,i}^2),\tag{76}$$

where $\chi_{\sigma}(h)$ is the character of the unitary symmetry operation $h_i = g_{A,i}^2$, $h_i \in H_{\mathbf{k}}$ in the small irrep σ of $H_{\mathbf{k}}$ [which is equal to the trace of the matrix representative $\Delta_{\sigma}(h_i)$], and where the summation in SEq. (76) runs over all of the antiunitary coset representatives in SEq. (71) (*i.e.*, all of the distinct elements $g_{A,i} \in \tilde{g}_A \tilde{H}_{\mathbf{k}}$). Because σ in SEq. (76) is an irrep, J_{σ} can only assume one of three values^{33,97,98}:

$$J_{\sigma} = \begin{cases} |\tilde{H}_{\mathbf{k}}|, \ \sigma \text{ induces a small corep } \tilde{\sigma} \text{ of type (a) in } G_{\mathbf{k}} \\ -|\tilde{H}_{\mathbf{k}}|, \ \sigma \text{ induces a small corep } \tilde{\sigma} \text{ of type (b) in } G_{\mathbf{k}} \end{cases},$$

$$0, \ \sigma \text{ induces a small corep } \tilde{\sigma} \text{ of type (c) in } G_{\mathbf{k}}$$

$$(77)$$

where $|\tilde{H}_{\mathbf{k}}|$ is the number of elements [see the text following SEq. (8)] in the set $\tilde{H}_{\mathbf{k}}$ [SEq. (71)]. In a Type-II little group, $\tilde{g}_A H_{\mathbf{k}} = \{\mathcal{T}|\mathbf{0}\}H_{\mathbf{k}}$, such that:

$$J_{\sigma}^{II} = \operatorname{sgn}\left[\chi_{\sigma}(\mathcal{T}^2)\right] \sum_{i} \chi_{\sigma}(h_i^2), \tag{78}$$

where the summation in SEq. (78) runs over all of the unitary coset representatives in SEq. (71) (i.e., all of the elements $h_i \in \tilde{H}_{\mathbf{k}}$). We note that SEq. (78) is the well-established Herring test^{33,96} (i.e. the standard Frobenius-Schur indicator^{33,97,98}) for determining the "reality" of σ in a nonmagnetic (Type-II) symmetry group. However, for little groups that are isomorphic to Type-III and Type-IV MSGs, there is no analogous simple relationship between the reality of σ and the type of $\tilde{\sigma}$, and the more general formulas in SEqs. (76) and (77) must be employed to determine the type of $\tilde{\sigma}$. To confirm our complete calculation of all of the small coreps $\tilde{\sigma}$ of the SSGs, we have performed both of the independent analyses detailed in this section. Specifically, for all of the unitary subgroup small irreps σ and induced small coreps $\tilde{\sigma}$ of the little groups $G_{\mathbf{k}}$ at all \mathbf{k} points in all 1,651 single and double SSGs, we have checked for all possible equivalences between $\Delta_{\sigma}(h)$ and $\bar{\Delta}_{\sigma}(h)$ [SEq. (72) and the surrounding text], and we have confirmed that the results agree with the values of J_{σ} [SEqs. (76) and (77)]. We will shortly provide in SN 15 an example of the explicit computation of J_{σ} [SEq. (77)] in a magnetic little group.

In addition to calculating the small (co)reps of the little groups of the MSGs, we have also calculated, for the first time, the *full* (co)reps of each momentum star of each MSG. Whereas each small (co)rep is a representation of the little group $G_{\mathbf{k}}$ at a point \mathbf{k} , each full (co)rep is a representation of the entire SSG G in the momentum star indexed by \mathbf{k} (SN 12). To calculate the full (co)reps, we adapt the procedure employed in SRefs. 2,14,82 to the most general case of a magnetic or nonmagnetic SSG G. First, we recognize that, given a little group $G_{\mathbf{k}} \subseteq G$, there may exist a set of symmetries:

$$\tilde{g} \in G \setminus G_{\mathbf{k}},$$
 (79)

for which:

$$\tilde{g}\mathbf{k} \equiv \mathbf{k}' \not\equiv \mathbf{k},$$
 (80)

such that \mathbf{k} and \mathbf{k}' lie in different arms of the same momentum star in G. Because the little group $G_{\mathbf{k}'}$ is conjugate to $G_{\mathbf{k}}$ [SEq. (58)], then the (co)reps at \mathbf{k} and \mathbf{k}' are not independent. Specifically, if there exists a Bloch eigenstate at \mathbf{k} labeled by a (co)rep $\tilde{\sigma}_{\mathbf{k}}$ of $G_{\mathbf{k}}$, then there must also exist a Bloch eigenstate at \mathbf{k}' labeled by a (co)rep $\tilde{\sigma}_{\mathbf{k}'}$ of $G_{\mathbf{k}'}$. For $\tilde{\sigma}_{\mathbf{k}}$ and $\tilde{\sigma}_{\mathbf{k}'}$, the matrix representatives of each unitary symmetry $h \in \tilde{H}_{\mathbf{k}}$ and $\tilde{g}h\tilde{g}^{-1} \in \tilde{g}\tilde{H}_{\mathbf{k}}\tilde{g}^{-1}$ are related by the symmetries $\tilde{g} \in G \setminus G_{\mathbf{k}}$. If \tilde{g} is unitary, then:

$$\Delta_{\tilde{\sigma}_{\mathbf{k}'}}(\tilde{g}h\tilde{g}^{-1}) = \Delta_{\sigma_{\mathbf{k}}}(h), \tag{81}$$

and if \tilde{g} is antiunitary, then:

$$\Delta_{\tilde{\sigma}_{\mathbf{k}'}}(\tilde{g}h\tilde{g}^{-1}) = [\Delta_{\sigma_{\mathbf{k}}}(h)]^*. \tag{82}$$

Finally, we will use SEqs. (81) and (82) for each of the symmetries $\tilde{g} \in G \setminus G_{\mathbf{k}}$, to compute the matrix representatives of the full (co)rep $\tilde{\Sigma}_{\mathbf{k}}$ of G in the star indexed by \mathbf{k} . First, we define the full (co)rep of G in the star of \mathbf{k} to be:

$$\tilde{\Sigma}_{\mathbf{k}} = \bigoplus_{i=1}^{m} \tilde{\sigma}_{\mathbf{k}_{i}},\tag{83}$$

in which \mathbf{k}_i is the i^{th} arm of the multiplicity-m momentum star of \mathbf{k} . In SEq. (83), $\tilde{\Sigma}_{\mathbf{k}}$ is an $m \times \chi_{\tilde{\sigma}_{\mathbf{k}}}(\{E|\mathbf{0}\})$ -dimensional full (co)rep of G. The matrix representatives $\Delta_{\tilde{\Sigma}_{\mathbf{k}}}(h)$ of the unitary SSG symmetries $h \in G$ are not necessarily block-diagonal, because $\tilde{\sigma}_{\mathbf{k}}$ and $\tilde{\sigma}_{\mathbf{k}'}$ in SEqs. (81) and (82) may not be equivalent [defined in SEq. (68) and the surrounding text]. Instead we may choose a basis in which $\Delta_{\tilde{\Sigma}_{\mathbf{k}}}(h)$ is block-diagonal if the unitary symmetry $h \in H_{\mathbf{k}_i}$ for all of the points \mathbf{k}_i in the momentum star indexed by \mathbf{k} , and is otherwise not block-diagonal.

Rather than list the over 100,000 small and full (co)reps computed for this work in paper-format tables, we have implemented the Corepresentations tool on the BCS, through which the irreducible small and full (co)reps at any **k** point and in any momentum star in any SSG can respectively be accessed. Representative examples demonstrating the output of Corepresentations are provided below in SN 14 and 15.

14. Small and Full Coreps at the X and XA Points in Type-III MSG 75.3 P4'

In this section, we will determine the small coreps of the little group G_X of the X point in Type-III MSG 75.3 P4', as well as the full coreps induced in the momentum star of X consisting of X (which in some works is alternatively labeled as X' or Y) and XA (which in some works is alternatively labeled X). MSG 75.3 P4' is generated by:

$$\{C_{4z} \times \mathcal{T}|000\}, \{E|100\}, \{E|001\},$$
 (84)

and the maximal unitary subgroup H of G = P4' [see SEq. (11) and the surrounding text] is generated by:

$${C_{2z}|000}, {E|100}, {E|010}, {E|001}.$$
 (85)

Hence, H is isomorphic to Type-I MSG 3.1 P2 in a non-standard (z-oriented) setting [see the text surrounding SEq. (61) for the definitions of standard and non-standard symmetry-group settings]. SEqs. (84) and (85) imply the decomposition:

$$G = P4' = H \cup \{C_{4z} \times \mathcal{T} | 000\}H,\tag{86}$$

in which H is isomorphic to the z-oriented (non-standard) setting of Type-I MSG 3.1 P2.

The X point in G = P4' is one arm of a multiplicity-2 momentum star. In the convention of the BCS, the X point lies at:

$$\mathbf{k}_X = 2\pi(0, 1/2, 0),\tag{87}$$

where the other arm of the momentum star indexed by \mathbf{k}_X lies at:

$$\mathbf{k}_{XA} \equiv (C_{4z} \times \mathcal{T})\mathbf{k}_X \equiv 2\pi(1/2, 0, 0). \tag{88}$$

For all of the unitary elements $h \in H$:

$$h\mathbf{k}_X \equiv \mathbf{k}_X. \tag{89}$$

However, for all of the antiunitary elements $\tilde{g} \in \{C_{4z} \times \mathcal{T} | 000\}H$ in SEq. (86):

$$\tilde{q}\mathbf{k}_X \not\equiv \mathbf{k}_X.$$
 (90)

SEqs. (89) and (90) imply that the little group G_X is isomorphic to its maximal unitary subgroup H_X . In turn, H_X at the point $\mathbf{k}_X = (0, \pi, 0)$ in H is isomorphic to H_B at the point $\mathbf{k}_B = (0, 0, \pi)$ in Type-I MSG 3.1 P2 in its standard (y-oriented setting, see SFig. 8). Therefore, the small coreps of G_X are simply equivalent to the small irreps of H_X , which are equivalent to the small irreps of H_B in MSG 3.1 P2, where representation equivalence is defined in the text surrounding SEq. (68).

In SFigs. 9 and 10, we show the output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4', which has been split into two figures in order to preserve the legibility of the output text. First, in SFig. 9, we show the matrix representatives $\Delta_{\tilde{\sigma}_X}(h)$ of the symmetries $h \in \tilde{H}_X$ [SEq. (65)] in each of the small coreps $\tilde{\sigma}_X$ of H_X . Then, in SFig. 10, we show the matrix representatives $\Delta_{\tilde{\Sigma}_X}(g)$ of the symmetries $g \in G$ in each of the full coreps $\tilde{\Sigma}_X$ of G in the star indexed by \mathbf{k}_X [$\{\mathbf{k}_X, \mathbf{k}_{XA}\}$]. Specifically, as shown in SEq. (88), \mathbf{k}_X and \mathbf{k}_{XA} are related by the antiunitary symmetry $\{C_{4z} \times \mathcal{T}|000\}$, for which:

$$\{C_{4z} \times \mathcal{T}|000\}\{C_{2z}|000\}\{(C_{4z} \times \mathcal{T})^{-1}|000\} = \{C_{2z}|000\}. \tag{91}$$

SEqs. (82) and (91) imply that:

$$\Delta_{\tilde{\sigma}_{XA}}(h) = [\Delta_{\tilde{\sigma}_{X}}(h)]^*, \tag{92}$$

for each unitary symmetry $h \in \tilde{H}_X$ [see the text surrounding SEq. (71)], which is given by:

$$\tilde{H}_X = \left\{ \{ E|000 \}, \ \{ C_{2z}|000 \}, \ \{ \bar{E}|000 \}, \ \{ \bar{E}C_{2z}|000 \} \right\}.$$
 (93)

In SEq. (93), $\bar{E} = C_{1n}$ is the symmetry operation of 360° rotation about an arbitrary axis n, which distinguishes single-valued (spinless) and double-valued (spinful) (co)reps. Throughout the BCS, \bar{E} is also sometimes denoted with the Seitz symbol d1 , as it is in SFigs. 9 and 10.

SEqs. (92) and (93) imply that the full coreps $\tilde{\Sigma}_X$ consist of pairs of single-valued coreps at \mathbf{k}_X and \mathbf{k}_{XA} with the same real (spinless) C_{2z} eigenvalues [labeled $^*(X)B_1Y_1$ and $^*(X)B_2Y_2$ in SFig. 10], and pairs of double-valued coreps with opposite imaginary (spinful) C_{2z} eigenvalues [labeled $^*(X)\bar{B}_3\bar{Y}_4$ and $^*(X)\bar{B}_4\bar{Y}_3$ in SFig. 10]. Additionally, because the momentum star $\{\mathbf{k}_X,\mathbf{k}_{XA}\}$ is left invariant under all of the symmetries $g \in P4'$, then the matrix representatives $\Delta_{\bar{\Sigma}_X}(g)$ are well-defined for all of the symmetries $g \in P4'$. This implies that $\Delta_{\bar{\Sigma}_X}(g)$ is well defined for both the unitary symmetries $h \in G_X$, as well as the antiunitary symmetries $\tilde{g} \in P4' \setminus H$, where H is the maximal unitary subgroup of G = P4' [SEq. (86)], and where H is isomorphic to Type-I MSG 3.1 P2 in a non-standard (z-oriented) setting [see the text surrounding SEq. (61)].

For each full corep $\tilde{\Sigma}_{\mathbf{k}}$ of an SSG G in a momentum star indexed by an arm \mathbf{k} , Corepresentations outputs the matrix representative $\Delta_{\tilde{\Sigma}_{\mathbf{k}}}(g)$ for each of the unitary and antiunitary symmetries $g \in G$. For example, unlike the table in SFig. 9 for the small coreps of G_X , the table in SFig. 10 for the full coreps of G in the star of \mathbf{k}_X contains the antiunitary matrix representatives $\Delta_{\tilde{\Sigma}_X}(\{C_{4z} \times \mathcal{T}|000\})$. For each full corep $\tilde{\Sigma}_X$ and antiunitary symmetry $g_A \in G$, the full (co)rep table in Corepresentations displays the unitary part of the matrix representative $\Delta_{\tilde{\Sigma}_X}(g_A)$, which is colored in red to indicate that $\Delta_{\tilde{\Sigma}_X}(g_A)$ is antiunitary. In general, $\Delta_{\tilde{\Sigma}_K}(g)$ for each of the unitary and antiunitary symmetries $g \in G$ is block-diagonal if $g \in G_{\mathbf{k}_i}$ for all of the points \mathbf{k}_i in the momentum star indexed by \mathbf{k} , and is otherwise non-diagonal. For example, in SFig. 10, each $\Delta_{\tilde{\Sigma}_X}(g)$ is a 2×2 matrix, because each small corep $\tilde{\sigma}_X$ in SFig. 9 is one-dimensional. Additionally, in SFig. 10, each $\Delta_{\tilde{\Sigma}_X}(g)$ is diagonal for each symmetry $g \in G$, $g \notin G_X$ and $g \in G_{XA}$ [e.g. $\{C_{2z}|000\}$], but is non-diagonal for each symmetry $g \in G$, $g \notin G_X$ or $g \notin G_{XA}$ [e.g. $\{C_{4z} \times \mathcal{T}|000\}$].

Irreducible co-representations of the (Double) Magnetic Space Group *P*4' (No. 75.3) and wave-vector X:(0,1/2,0)

Unitary (Double) Space Group: *P*2 (No. 3). Transformation matrix to its standard setting:

$$\left(\begin{array}{ccccc} 1 & 0 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \\ 0 & -1 & 0 & & 0 \end{array}\right)$$

Coordinates of the wave-vector in the standard setting of the unitary subgroup: B:(0,0,1/2)

Magnetic little co-group of the wave-vector: 2

Little co-group of the wave-vector in the unitary subgroup: 2

Irreducible co-representations of the magnetic little group.

The matrices of the representations (the whole representation and the representation of the little group) with dimension smaller than 5 are given explicitly. When the dimension of the representation is larger than 5, only the non-zero elements are given using the following notation: (i;j)=x means that the (i,j) element of the matrix is x.

Matrix presentati		Seitz Symbol () (In red color the antiunitary operations)	(X)B ₁	(X)B ₂	(X)B ₃	$(X)\overline{\mathbb{B}}_4$
$ \left(\begin{array}{ccccc} 1 & 0 & 0 & t1 \\ 0 & 1 & 0 & t2 \\ 0 & 0 & 1 & t3 \end{array}\right) $	(1 0 0 0 1)	{1 t1,t2,t3}	e ^{iπt2}	e ^{iπt2}	e ^{iπt2}	e ^{iπt2}
$\left(\begin{array}{ccccc} -1 & 0 & 0 & & 0 \\ 0 & -1 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array}\right)$	(-i 0 0 i)	{2 ₀₀₁ 0,0,0}	1	-1	-i	i
$\left(\begin{array}{ccccc} 1 & 0 & 0 & & 0 \\ 0 & 1 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array}\right)$	(-1 0 0 -1)	{ ^d 1 0,0,0}	1	1	-1	-1
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	(i 0 0 -i)	{ ^d 2 ₀₀₁ 0,0,0}	1	-1	i	-i

Supplementary Figure 9: The output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4', part 1. Even though MSG 75.3 P4' contains antiunitary symmetries, the little group G_X at $\mathbf{k}_X = (0, \pi, 0)$ does not contain antiunitary symmetries, and is therefore isomorphic to H_X , its maximal unitary subgroup [see the text following SEq. (90)]. At the top of this figure, the 3×3 matrix in the left-most three columns of the gray box is the transformation matrix P that converts **k** points into the standard setting of the unitary subgroup. Specifically, in G = P4' [SEq. (84)], the unitary subgroup H [SEq. (85)] is isomorphic to Type-I MSG 3.1 P2 in a non-standard (z-oriented) setting [see the text surrounding SEq. (61)]; as discussed in SFig. 8 and in the text surrounding SEq. (63), the P matrix in the gray box allows quantities – such as momentum stars and small irreps – previously computed on the BCS for Type-I MSGs (here MSG 3.1 P2) to be transformed and adapted to the computation of the analogous quantities in SSGs with antiunitary symmetries (Type-II, III, and IV SSGs, see SN 4, 5, and 6, respectively). The table in this figure shows the matrix representatives of the small coreps $\tilde{\sigma}$ of the little group G_X , for which the coreps with (without) overbars are double- (single-) valued. Because G_X in P4' is isomorphic to G_B in Type-I MSG 3.1 P2, then the coreps in this figure are labeled $(X)B_i$, and the table in this figure contains the same entries as the table returned by Corepresentations for the B point in P2 [up to the orientation of the twofold axis, see the text following SEq. (90) and SFig. 8. We note that throughout this work, a translation t is represented at a crystal momentum k by $\exp(-i\mathbf{k}\cdot\mathbf{t})$ [i.e., in reduced units in which the lattice constants a, b, c = 1], whereas on the BCS, \mathbf{t} is represented at \mathbf{k} by the phase $\exp(2\pi i \mathbf{k} \cdot \mathbf{t})$ [i.e. with the opposite sign as employed in this work, and in different reduced units in which \mathbf{t} and \mathbf{k} are respectively expressed as multiples of the lattice and reciprocal lattice constants a, b, c and $2\pi/(a, b, c)$]. We additionally note that the output of Corepresentations for the X point in Type-III MSG 75.3 P4' contains an additional table, which is shown in SFig. 10.

The full corepresentation is induced from representations of the following two stars, related by the anti-unitary operations of the magnetic group

X:(0,1/2,0)

XA:(1/2,0,0)

Coordinates of the vectors of the stars in the standard setting of the unitary subgroup:

B:(0,0,1/2) Y:(1/2,0,0)

Irreducible full co-representations of the magnetic group.

Matrix presentation (In red color the antiunitary operations)			*(X)B ₁ Y ₁	*(X)B ₂ Y ₂	*(X)\overline{B}_3\overline{Y}_4	*(X)B̄ ₄ Ÿ̄ ₃
$\left(\begin{array}{ccccc} 1 & 0 & 0 & t1 \\ 0 & 1 & 0 & t2 \\ 0 & 0 & 1 & t3 \end{array}\right)$	(1 0 0 1)	{1 t1,t2,t3}	(e ^{iπt2} 0)	(e ^{iπt2} 0)	(e ^{iπt2} 0)	$\left(\begin{array}{cc} e^{i\pi t 2} & 0 \\ 0 & e^{i\pi t 1} \end{array}\right)$
$\left(\begin{array}{ccccc} -1 & 0 & 0 & & 0 \\ 0 & -1 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array}\right)$	(-i 0 0 i	{2 ₀₀₁ 0,0,0}	(1 0 0 1)	(-1 0 0 -1)	(-i 0 0 0 i)	(i 0 0 -i)
$\left(\begin{array}{ccccc} 1 & 0 & 0 & & 0 \\ 0 & 1 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array}\right)$	(-1 0 0 -1)	{ ^d 1 0,0,0}	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	(1 0 0 1)	(-1 0 0 -1)	(-1 0 0 -1)
$\left(\begin{array}{ccccc} -1 & 0 & 0 & & 0 \\ 0 & -1 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array}\right)$	(i 0 0 -i)	{ ^d 2 ₀₀₁ 0,0,0}	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	(-1 0 0 -1)	(i 0 0 -i)	(-i 0 0 i)
$\left[\left(\begin{array}{cccc} 0 & -1 & 0 & & 0 \\ 1 & 0 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array} \right)^{I} \right]$	$ \left(\begin{array}{cc} (1-i)\sqrt{2}/2 & 0 \\ 0 & (1+i)\sqrt{2}/2 \end{array} \right) $	{4 ^{'+} 001 0,0,0}		(0 -1) 1 0	(0 i 1 0)	(0 -i 0)
$\left[\left(\begin{array}{cccc} 0 & 1 & 0 & & 0 \\ -1 & 0 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array} \right)^{I} \right]$	$ \left(\begin{array}{cc} (1+i)\sqrt{2}/2 & 0 \\ 0 & (1-i)\sqrt{2}/2 \end{array} \right) $	{4 ^{'-} 001 0,0,0}		(0 1 -1 0)	(0 -1) -i 0	(0 -1) i 0
$\left[\left(\begin{array}{cccc} 0 & -1 & 0 & & 0 \\ 1 & 0 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array} \right)^{I} \right]$	$ \left(\begin{array}{cc} -(1-\mathrm{i})\sqrt{2}/2 & 0 \\ 0 & -(1+\mathrm{i})\sqrt{2}/2 \end{array} \right) $	{ ^d 4'+ ₀₀₁ 0,0,0}	(0 1 1 0)	(0 -1 1 0)	(0 -i	(0 i -1 0)
$\left[\left(\begin{array}{cccc} 0 & 1 & 0 & & 0 \\ -1 & 0 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \end{array} \right)^{\!\top} \right]$	$ \left(\begin{array}{ccc} -(1+i)\sqrt{2}/2 & 0 \\ 0 & -(1-i)\sqrt{2}/2 \end{array} \right) $	{ ^d 4 ^{'-} 001 0,0,0}		(0 1 -1 0)	(0 1 i 0)	(0 1) -i 0

Supplementary Figure 10: The output of the Corepresentations tool for the X point in Type-III MSG 75.3 P4' [SEq. (87)], part 2. The table shown in this figure contains the full (SSG) coreps of G=P4' in the star containing \mathbf{k}_X [$(0,\pi,0),(\pi,0,0)$], see SEqs. (87) and (88)]. For one coset representative in each of the little group cosets in SEq. (65), as well as the SSG symmetries $G \setminus G_X$ [SEq. (79) and the surrounding text], Corepresentations outputs the matrix representatives in each of the irreducible full (co)reps of G in the star indexed by a point \mathbf{k} . In the table shown in this figure, the matrix representatives of antiunitary symmetries g_A are labeled in red text, and the matrices listed for each full (co)rep $\tilde{\Sigma}_{\mathbf{k}}$ indicate the unitary part U of the antiunitary matrix representative $\Delta_{\tilde{\Sigma}}(g_A) = UK$, where K is complex conjugation. Each of the full coreps for G = P4' in the star of \mathbf{k}_X is labeled with both (X) as well as B_iY_j , to indicate that the small coreps in each arm \mathbf{k}_X and \mathbf{k}_{XA} in G are respectively equivalent to the small irreps at \mathbf{k}_B and \mathbf{k}_Y in Type-I MSG 3.1 P2 [see SFigs. 8 and 9 and the text surrounding SEqs. (63) and (61)]. For each $g \in G$, each $\Delta_{\tilde{\Sigma}_X}(g)$ shown in this figure is a 2 × 2 matrix, because each small corep $\tilde{\sigma}_X$ in SFig. 9 is one-dimensional. Additionally, each $\Delta_{\tilde{\Sigma}_X}(g)$ is diagonal for each symmetry $g \notin G_X$, $g \in G_{XA}$ [e.g. $\{C_{2z}|000\}$], but is non-diagonal for each symmetry $g \notin G_X$ or $g \notin G_X$ or $g \notin G_{XA}$ [e.g. $\{C_{4z} \times \mathcal{T}|000\}$].

15. Small and Full Coreps at the S Point in Type-IV MSG 25.63 P_Cmm2

In this section, we will determine the small coreps of the little group G_S of the S point in Type-IV MSG 25.63 P_Cmm2 . We will also show that the small coreps of G_S coincide with the full coreps induced in $G = P_Cmm2$ in the momentum star of S, because the S point in Type-IV MSG 25.63 P_Cmm2 is the only arm of a multiplicity-1 star (see SN 12 and the MKVEC tool for more information). To begin, MSG 25.63 P_Cmm2 is generated by:

$$M_x = \left\{ m_x \middle| 000 \right\}, \ M_y = \left\{ m_y \middle| 000 \right\}, \ \theta = \left\{ \mathcal{T} \middle| \frac{1}{2} \frac{1}{2} 0 \right\}, \ t_x = \{ E|100 \}, \ t_z = \{ E|001 \}.$$
 (94)

The S point in MSG 25.63 P_Cmm2 lies at:

$$\mathbf{k}_S = 2\pi(1/2, 1/2, 0). \tag{95}$$

Unlike in the previous example in SN 14, all of the symmetries in MSG 25.63 P_Cmm2 return \mathbf{k}_S to itself modulo reciprocal lattice vectors ($g\mathbf{k}_S \equiv \mathbf{k}_S$ for all $g \in P_Cmm2$). Therefore, the little group G_S is isomorphic to MSG 25.63 P_Cmm2 itself, and the set \tilde{G}_S [defined in the text surrounding SEq. (71)] is given by

$$G_S = \tilde{G}_S G_T = \left(\tilde{H}_S \cup \theta \tilde{H}_S\right) G_T. \tag{96}$$

with $\tilde{g}_A = \theta$. In SEq. (96), the maximal unitary subset of \tilde{G}_S is given by \tilde{H}_S [in the specific case of the S point in Type-IV MSG 25.63 P_Cmm2 , \tilde{H}_S is in fact a finite group, see the text preceding SEq. (71) for more information]:

$$\bar{H}_S = \left\{ \{ E|\mathbf{0} \}, \ \{ m_x | \mathbf{0} \}, \ \{ m_y | \mathbf{0} \}, \ \{ \bar{E}|\mathbf{0} \}, \ \{ \bar{E}m_x | \mathbf{0} \}, \ \{ \bar{E}m_y | \mathbf{0} \}, \ \{ \bar{E}C_{2z} | \mathbf{0} \} \right\},$$
(97)

where \bar{E} is defined in the text following SEq. (93). The symmetry operations in \tilde{H}_S in SEq. (97) satisfy:

$$m_{x,y}m_{y,x}m_{x,y}^{-1} = \bar{E}m_{y,x}, \ m_{x,y}C_{2z}m_{x,y}^{-1} = \bar{E}C_{2z}, \ m_{x,y}\bar{E}m_{x,y}^{-1} = C_{2z}\bar{E}C_{2z}^{-1} = \bar{E},$$

$$m_x m_y = C_{2z}, \ \bar{E}^2 = E, \ m_{x,y}^2 = C_{2z}^2 = \bar{E}.$$
(98)

Because all of the symmetries $h \in \tilde{H}_S$ are of the form $\{R|\mathbf{0}\}$, then SEqs. (97) and (98) imply that the small irreps of H_S are equivalent to the irreps of an abstract finite group [see SRef. 33 and the text following SEq. (64)] that is isomorphic⁷⁻¹⁸ to Type-I MPG 7.1.20 mm2, which has five irreps σ . In Supplementary Table 2, we reproduce the matrix representatives $\Delta_{\sigma}(h)$ of the small irreps of H_S from the output of the Corepresentations tool for the S point in Type-I MSG 25.57 Pmm2, which is the unitary subgroup of Type-IV MSG 25.63 P_Cmm2 (adjusting for the differences in convention between how translations are represented in this work and on the BCS, see SFig. 9). The five irreps in Supplementary Table 2 subdivide into four single-valued, one-dimensional irreps (S_{1-4}) that are distinguished by their spinless $m_{x,y}$ eigenvalues and one double-valued irrep (\bar{S}_5) that is two-dimensional because of the anticommutator $\{\Delta_{\bar{S}_5}(\{m_x|\mathbf{0}\}), \Delta_{\bar{S}_5}(\{m_y|\mathbf{0}\})\} = 0$.

To determine the type of the small corep $\tilde{\sigma}$ induced in G_S , we calculate the indicator $J_{\sigma} = \sum_i \chi_{\sigma}(g_{A,i}^2)$ [SEqs. (76) and (77)] for each irrep σ in Supplementary Table 2. Using SEq. (96), we determine that there are eight $g_{A,i}$ to consider:

$$g_{A,i} \in \theta \tilde{H}_S, \tag{99}$$

where θ is defined in SEq. (94), and where \tilde{H}_S is defined in SEq. (97) and in Supplementary Table 2. First, we use SEqs. (97) and (98) to determine that $\theta = t_x t_y \bar{E} \theta^{-1}$, $\bar{E}^2 = E$, and that $[\bar{E}, h_i] = 0$ for all $h_i \in \tilde{H}_S$, where $t_x = \{E|100\}$ and $t_y = \{E|010\}$. We then determine that, in the case of \tilde{G}_S in Type-IV MSG 25.63 P_Cmm2 , $\chi_{\sigma}(g_{A,i}^2)$ can be simplified as:

$$\chi_{\sigma}(g_{A,i}^2) = \chi_{\sigma}(\theta h_i \theta h_i) = \operatorname{sgn}\left[\chi_{\sigma}(\bar{E})\right] \chi_{\sigma}\left(\left[\theta h_i \theta^{-1} t_x t_y\right] h_i\right),\tag{100}$$

where $h_i \in \tilde{H}_S$ in SEq. (97). Next, we use SEq. (94) to obtain the relations:

$$\theta C_{2z}\theta^{-1}t_xt_y = \theta \{C_{2z}|000\}\theta^{-1}\{E|110\} = \{C_{2z}|110\}\{E|110\} = (t_xt_yC_{2z})t_xt_y = (C_{2z}t_x^{-1}t_y^{-1})t_xt_y = C_{2z}, \\
\theta M_x\theta^{-1}t_xt_y = \theta \{m_x|000\}\theta^{-1}\{E|110\} = \{m_x|100\}\{E|110\} = (t_xM_x)t_xt_y = (M_xt_x^{-1})t_xt_y = t_yM_x, \\
\theta M_y\theta^{-1}t_xt_y = \theta \{m_y|000\}\theta^{-1}\{E|110\} = \{m_y|010\}\{E|110\} = (t_yM_y)t_xt_y = (M_yt_y^{-1})t_xt_y = t_xM_y, \\
\theta \bar{E}\theta^{-1} = \theta \{\bar{E}|000\}\theta^{-1} = \{\bar{E}|000\} = \bar{E}. \tag{101}$$

SEqs. (100) and (101) imply that J_{σ} [SEq. (76)] can be further simplified before specifying a value of σ :

$$J_{\sigma} = \sum_{i} \chi_{\sigma}(g_{A,i}^{2}) = \operatorname{sgn}\left[\chi_{\sigma}(\bar{E})\right] \sum_{i} \chi_{\sigma}\left([\theta h_{i} \theta^{-1} t_{x} t_{y}] h_{i}\right)$$

$$= 2 \operatorname{sgn}\left[\chi_{\sigma}(\bar{E})\right] \left(\chi_{\sigma}(E) - \chi_{\sigma}(\bar{E})\right)$$

$$= 2\left[\chi_{\sigma}(\bar{E}) - \chi_{\sigma}(E)\right]. \tag{102}$$

Matrix Representatives $\Delta_{\sigma}(h)$ of the Small Irreps of H_S										
a	at the S point $[\mathbf{k}_S = (\pi, \pi, 0)]$ in Type-I MSG 25.57 Pmm2,									
the Unitary Subgroup of Type-IV MSG 25.63 P_Cmm2										
h	h S_1 S_2 S_3 S_4 \bar{S}_5									
$\boxed{\{E \mathbf{t}_1+\mathbf{t}_2+\mathbf{t}_3\}}$	$e^{-i\pi(\mathbf{t}_1+\mathbf{t}_2)}$	$e^{-i\pi(\mathbf{t}_1+\mathbf{t}_2)}$	$e^{-i\pi(\mathbf{t}_1+\mathbf{t}_2)}$	$e^{-i\pi(\mathbf{t}_1+\mathbf{t}_2)}$	$ \begin{pmatrix} e^{-i\pi(\mathbf{t}_1+\mathbf{t}_2)} & 0 \\ 0 & e^{-i\pi(\mathbf{t}_1+\mathbf{t}_2)} \end{pmatrix} $					
$\{C_{2z} 000\}$	1	1	-1	-1	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$					
$\{m_y 000\}$	1	-1	-1	1	$\left(egin{array}{cc} 0 & -i \ -i & 0 \end{array} ight)$					
$\{m_x 000\}$	1	-1	1	-1	$\begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$					
$\{ar{E} 000\}$	1	1	1	1	$\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$					
$\left\{ \bar{E}C_{2z} 000\right\}$	1	1	-1	-1	$ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) $					
$\{\bar{E}m_y 000\}$	1	-1	-1	1	$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$					
$\{\bar{E}m_x 000\}$	1	-1	1	-1	$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$					

Supplementary Table 2: The matrix representatives $\Delta_{\sigma}(h)$ of the small irreps σ of the little group H_S of the S point $[\mathbf{k}_S = (\pi, \pi, 0)]$ in Type-I MSG 25.57 Pmm2, the unitary subgroup of Type-IV MSG 25.63 P_Cmm2 . Because MSG 25.57 Pmm2 is a Type-I MSG (SN 3), then \tilde{H}_S is isomorphic to its maximal unitary subset. The values of $\Delta_{\sigma}(h)$ in this table have been reproduced from the output of the Corepresentations tool, and adapted to the notation employed throughout this work in which a translation \mathbf{t} is represented at a crystal momentum \mathbf{k} by $\exp(-i\mathbf{k} \cdot \mathbf{t})$ [i.e., in reduced units in which the lattice constants a, b, c = 1, see SFig. 9 for further details]. We note that in Corepresentations and in this table, the matrix representatives $\Delta_{\sigma}(h)$ are shown for each symmetry $h \in \tilde{H}_{\mathbf{k}}$ except for the element $\{E|000\}$ with $\exp(-i\mathbf{k}_S \cdot \mathbf{t}_{\mu}) = 1$ [see SEqs. (66) and (67)]; instead the first element h in this table, and in the output of Corepresentations, is chosen to be $\{E|\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3\}$, where $\mathbf{t}_{1,2,3}$ are respectively integer-valued multiples of the lattice vectors $\mathbf{t}_{x,y,z}$ (see SFigs. 9 and 11). We make this substitution of $\{E|\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3\}$ for $\{E|000\}$ to provide users with information regarding the representations (phases) of translations at \mathbf{k} (here specifically at \mathbf{k}_S [SEq. (95)]), which contribute towards determining the matrix representatives of all of the symmetries in $H_{\mathbf{k}}$ (as opposed to just the symmetries in $\tilde{H}_{\mathbf{k}}$), and towards determining the pairing of unitary subgroup small irreps into little group small coreps [see the text surrounding SEqs. (101) and (102), for example]. The overbar on $\sigma = \bar{S}_5$ is used to indicate that \bar{S}_5 is double-valued, whereas the irreps without overbars (S_{1-4}) are single-valued.

Remarkably, we find that SEq. (102) only depends on whether σ is single- or double-valued:

$$J_{\sigma} = \begin{cases} 0, & \text{for } \sigma = S_{1-4} \\ -|\tilde{H}_S|, & \text{for } \sigma = \bar{S}_5 \end{cases}$$
(103)

where $|\tilde{H}_S| = 8$ [SEq. (97)]. Using SEq. (77), we determine that the single-valued, one-dimensional irreps S_{1-4} induce paired, two-dimensional coreps of type (c) [SEq. (75)], whereas the double-valued, two-dimensional irrep \bar{S}_5 induces a paired, four-dimensional corep of type (b) [SEq. (74)].

To complete the calculation of the small coreps of G_S in Type-IV MSG 25.63 P_Cmm2 , we must determine which of the single-valued irreps S_{1-4} become paired into coreps of type (c). This can be accomplished by computing the matrix representative $\bar{\Delta}_{\sigma}(h) = \left[\Delta_{\sigma}(\tilde{g}_A^{-1}h\tilde{g}_A)\right]^*$ [SEq. (72)]. Choosing $g_A = \theta$ and using SEq. (101), we find that, for the single-valued irreps $\sigma = S_{1-4}$:

$$\bar{\Delta}_{\sigma}(C_{2z}) = \Delta_{\sigma}(C_{2z}) = \Delta_{\sigma'}(C_{2z}), \ \bar{\Delta}_{\sigma}(M_{x,y}) = -\Delta_{\sigma}(M_{x,y}) = \Delta_{\sigma'}(M_{x,y}). \tag{104}$$

Along with SEq. (103), which implies that \bar{S}_5 induces a paired corep of type (b), SEq. (104) implies that G_S in Type-IV MSG 25.63 P_Cmm^2 has three small coreps:

$$\tilde{\sigma} = S_1 S_2, \ S_3 S_4, \ \bar{S}_5 \bar{S}_5,$$
 (105)

where S_1S_2 and S_3S_4 are single-valued, two-dimensional coreps and $\bar{S}_5\bar{S}_5$ is a double-valued, four-dimensional corep. Below, we will shortly formulate a $k\cdot p$ Hamiltonian demonstrating that $\bar{S}_5\bar{S}_5$ corresponds to a 3D fourfold Dirac fermion^{74,100} that is enforced by spinful mirrors that anticommute with each other $\{\Delta_{\bar{S}_5\bar{S}_5}(M_x), \Delta_{\bar{S}_5\bar{S}_5}(M_y)\} = 0$, and with the matrix representative of $\{\Delta_{\bar{S}_5\bar{S}_5}(M_{xy}), \Delta_{\bar{S}_5\bar{S}_5}(\theta)\} = 0$.

In SFig. 11, we show the output of the Corepresentations tool for the S point in Type-IV MSG 25.63 P_Cmm2 , which agrees with the calculation performed in this section to obtain SEq. (105). As previously discussed in SFig. 9 and in the text surrounding SEq. (88), the table in SFig. 11 contains the matrix representatives of the small coreps $\tilde{\sigma}$ [SEq. (105)] of the little group G_S in Type-IV MSG 25.63 P_Cmm2 . We note that, like in SFig. 10, the Corepresentations tool also outputs a second table containing the matrix representatives of the full coreps in the momentum star indexed by \mathbf{k}_S [see SN 12 and the text surrounding SEqs. (83) and (95)]. However, because, \mathbf{k}_S in MSG 25.63 P_Cmm2 is the only arm of a multiplicty-1 momentum star (SN 12 and MKVEC), then the second table outputted by Corepresentations is identical to the table shown in SFig. 11. Therefore, for concision, we have omitted the second table outputted by Corepresentations.

We can gain some physical intuition for the small coreps $\tilde{\sigma}$ in SEq. (105) by forming a $k \cdot p$ Hamiltonian characterized by one of the $\tilde{\sigma}$. Focusing on the double-valued, four-dimensional corep $\tilde{\sigma} = \bar{S}_5 \bar{S}_5$, which characterizes spinful electronic states, we can re-express the symmetry representation of the generating elements of G_S in Supplementary Table 2 and SEq. (105) as acting on a four-band Hamiltonian $\mathcal{H}(\mathbf{q}) = \mathcal{H}(\mathbf{k} - \mathbf{k}_S)$:

$$M_x \mathcal{H}(q_x, q_y, q_z) M_x^{-1} = \tau^z \sigma^x \mathcal{H}(-q_x, q_y, q_z) \tau^z \sigma^x,$$

$$M_y \mathcal{H}(q_x, q_y, q_z) M_y^{-1} = \tau^z \sigma^y \mathcal{H}(q_x, -q_y, q_z) \tau^z \sigma^y,$$

$$\theta \mathcal{H}(q_x, q_y, q_z) \theta^{-1} = \tau^x \sigma^y \mathcal{H}^*(-q_x, -q_y, -q_z) \tau^x \sigma^y,$$
(106)

where τ^i and σ^j are 2×2 Pauli matrices, and where we have employed a shorthand in which $\tau^i \sigma^j = \tau^i \otimes \sigma^j$, $\tau^0 \otimes \sigma^j = \sigma^j$, and $\tau^i \otimes \sigma^0 = \tau^i$. We note that we have not included the generating translations of G_S in SEq. (106), because translations are represented as phases in momentum space, and therefore do not by themselves impose constraints on $\mathcal{H}(q_x, q_y, q_z)$. The symmetry representation in SEq. (106) admits a Hamiltonian:

$$\mathcal{H}(\mathbf{q}) = [v_{1x}\sigma^y + v_{2x}\tau^x\sigma^x]q_x + [v_{1y}\sigma^x + v_{2y}\tau^x\sigma^y]q_y + [v_{1z}\tau^z + v_{2z}\tau^x\sigma^z]q_z, \tag{107}$$

that characterizes a linearly dispersing, fourfold condensed matter Dirac fermion with non-degenerate bands away from $\mathbf{q} = \mathbf{0}$. Specifically, in the $q_z = 0$ plane, SEq. (107) coincides with the Hamiltonian of the 2D filling-enforced^{73,101} fourfold magnetic Dirac fermion introduced in SRef. 74. Most recently, the methods employed in this section – which we have adapted from SRefs. 74,100,102–107 – were used by the authors of SRef. 72 to construct a complete list of high-symmetry-point multifold fermions in the MSGs. Where there is overlap, the results of SRef. 72 agree with the output of the Corepresentations tool introduced in this work.

Irreducible co-representations of the (Double) Magnetic Space Group P_Cmm2 (No. 25.63)

and wave-vector S:(1/2,1/2,0)

Unitary (Double) Space Group: Pmm2 (No. 25) in its standard setting.

Coordinates of the wave-vector in the standard setting of the unitary subgroup: S:(1/2,1/2,0)

Magnetic little co-group of the wave-vector: mm21'

Little co-group of the wave-vector in the unitary subgroup: mm2

Irreducible co-representations of the magnetic little group.

The matrices of the representations (the whole representation and the representation of the little group) with dimension smaller than 5 are given explicitly.

When the dimension of the representation is larger than 5, only the non-zero elements are given using the following notation: (i;j)=x means that the (i,j) element of the matrix is x.

Matrix presentatio (In red color the antiunitary op	erations) (Ir	Geitz Symbol (In red color the antiunitary operations)	S ₁ S ₂	S ₃ S ₄	$\overline{S}_{\overline{5}}\overline{S}_{\overline{5}}$
$\left(\begin{array}{ccccc} 1 & 0 & 0 & t1 \\ 0 & 1 & 0 & t2 \\ 0 & 0 & 1 & t3 \end{array}\right)$	(1 0 0 1)	{1 t1,t2,t3}	$\left(\begin{array}{cc} e^{i\pi(t1+t2)} & 0 \\ 0 & e^{-i\pi(t1+t2)} \end{array}\right)$	$ \left(\begin{array}{cc} e^{i\pi(t1+t2)} & \theta \\ 0 & e^{-i\pi(t1+t2)} \end{array} \right) $	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	(-i 0 0 0 i)	{2 ₀₀₁ 0,0,0}	(1 0 0 1)	(-1 0 0 0 -1	$\left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{array}\right)$
$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	(0 -1) {1	{m ₀₁₀ 0,0,0}	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	(-1 0 0 1	0 -i 0 0 -i 0 0 0 0 0 0 -i 0 0 -i 0
$\left(\begin{array}{ccccc} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)^{\text{I}}$		{1 1/2,1/2,0}	(0 1 1 0)	(0 1 1 0)	0 0 -1 0 0 0 0 -1 1 0 0 0 0 1 0 0
$\left(\begin{array}{ccccc} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)^{\text{I}}$	(-i 0) {2'c		(0 1 1 0)	(0 -1) -1 0	$\left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)$
$\left(\begin{array}{ccccc} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 0 \end{array}\right)^{\text{I}}$	(0 -1) (mi	n ₀₁₀ 1/2,1/2,0}	(0 -1 1 0)	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	0 0 0 -i 0 0 -i 0 0 i 0 0 i 0 0 0

Supplementary Figure 11: The output of the Corepresentations tool for the S point in Type-IV MSG 25.63 P_Cmm2 . The table in this figure shows the matrix representatives of the small coreps $\tilde{\sigma}$ of the little group G_S [$\mathbf{k}_S = (\pi, \pi, 0)$], for which the coreps with (without) overbars are double- (single-) valued. As discussed in SFig. 9, throughout this work, a translation \mathbf{t} is represented at a crystal momentum \mathbf{k} by $\exp(-i\mathbf{k} \cdot \mathbf{t})$ [i.e., in reduced units in which the lattice constants a, b, c = 1], whereas on the BCS, \mathbf{t} is represented at \mathbf{k} by the phase $\exp(2\pi i\mathbf{k} \cdot \mathbf{t})$ [i.e. with the opposite sign as employed in this work, and in different reduced units in which \mathbf{t} and \mathbf{k} are respectively expressed as multiples of the lattice and reciprocal lattice constants a, b, c and $2\pi/(a, b, c)$]. In the table shown in this figure, the matrix representatives of antiunitary symmetries g_A are labeled in red text, and the matrices listed for each small corep $\tilde{\sigma}_S$ indicate the unitary part U of the antiunitary matrix representative $\Delta_{\tilde{\sigma}_S}(g_A) = UK$, where K is complex conjugation. We note that the output of Corepresentations for the S point in Type-IV MSG 25.63 P_Cmm2 also includes an additional table containing the matrix representatives of the full coreps in the momentum star containing \mathbf{k}_S (see SFig. 10). However, because, \mathbf{k}_S in MSG 25.63 P_Cmm2 is the only arm of a multiplicty-1 momentum star (SN 12 and MKVEC), then the second table outputted by Corepresentations is identical to the table shown in this figure; for concision have therefore omitted the second table outputted by Corepresentations.

16. Compatibility Relations in the MSGs and the MCOMPREL Tool

In this section, building upon the definition of the small coreps of the magnetic little groups established in SN 13, we will now discuss the concept of compatibility relations (defined in detail in the text below), which relate the coreps at different \mathbf{k} points throughout the BZ. To begin, at a given point \mathbf{k} in the first BZ of an SSG, the set of occupied Bloch eigenstates can be labeled by the small coreps of the little group $G_{\mathbf{k}}$. As shown in previous works^{1-6,11,12,20-22,83-86}, given knowledge of all of the coreps at \mathbf{k} , the possible coreps present at a point \mathbf{k}' that is connected to \mathbf{k} [defined in the text following SEq. (58)] can be inferred from the group-subgroup relations between $G_{\mathbf{k}}$ and $G_{\mathbf{k}'}$. In this section, we will review how the compatibility relations between the coreps at connected \mathbf{k} points throughout the BZ can be reformulated using the language of graph theory. Finally, we will conclude this section by discussing how the graph-theory interpretation of the compatibility relations can be exploited to determine if a given set of coreps at a small number of high-symmetry \mathbf{k} vectors [specifically, the arms of the maximal momentum stars, see the text surrounding SEq. (59)] are incompatible with the presence of an energy (band) gap at all \mathbf{k} points in the BZ.

To begin, consider two connected points \mathbf{k} and \mathbf{k}' for which the little group $G_{\mathbf{k}}$ is of higher symmetry than the little group $G_{\mathbf{k}'}$, such that $G_{\mathbf{k}'} \subset G_{\mathbf{k}}$. Next, consider a set of occupied Bloch eigenstates to be present at \mathbf{k} . The Bloch states at \mathbf{k} can be labeled with a small, generically-reducible corep $\tilde{\varsigma}_{\mathbf{k}}$ of $G_{\mathbf{k}}$:

$$\tilde{\varsigma}_{\mathbf{k}} = \bigoplus_{i} a_{i}^{\mathbf{k}} \tilde{\sigma}_{i,\mathbf{k}}, \tag{108}$$

where $\tilde{\sigma}_{i,\mathbf{k}}$ is the i^{th} small (irreducible) corep of $G_{\mathbf{k}}$ (SN 13). In SEq. (108), $a_i^{\mathbf{k}}$ is a non-negative integer¹⁰⁸, known as the *multiplicity* of $\tilde{\sigma}_{i,\mathbf{k}}$, that indicates the number of times that $\tilde{\sigma}_{i,\mathbf{k}}$ appears in the decomposition of $\tilde{\varsigma}_{\mathbf{k}}$. The multiplicities $\{a_i^{\mathbf{k}}\}$ are known as the *symmetry data* for each \mathbf{k} point, and the set $\{\tilde{\varsigma}_{\mathbf{k}}\}$ over all of the arms \mathbf{k} of the maximal momentum stars in an SSG [defined in the text surrounding SEq. (59)] is known as the *symmetry data vector*¹⁰⁹. In SEq. (108), each small corep $\tilde{\sigma}_{i,\mathbf{k}}$ can be further subduced onto the lower-symmetry little group $G_{\mathbf{k}'}$ of a point \mathbf{k}' that is connected to \mathbf{k} :

$$\tilde{\sigma}_{i,\mathbf{k}} \downarrow G_{\mathbf{k}'} = \bigoplus_{j} m_{i,j}^{\mathbf{k},\mathbf{k}'} \tilde{\sigma}_{j,\mathbf{k}'}, \tag{109}$$

where $\tilde{\sigma}_{j,\mathbf{k}'}$ is the j^{th} small (irreducible) corep of $G_{\mathbf{k}'}$ and $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ is the multiplicity of $\tilde{\sigma}_{j,\mathbf{k}'}$ in $\tilde{\sigma}_{i,\mathbf{k}} \downarrow G_{\mathbf{k}'}$. The values of $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ are known as the *compatibility relations*^{3,4,83–86} between $\tilde{\sigma}_{i,\mathbf{k}}$ and $\tilde{\sigma}_{j,\mathbf{k}'}$, and are required to be non-negative integers, because they originate from group-subgroup subduction [SEq. (109) and SRef. 108]. For future calculations, it will be useful to re-express SEqs. (108) and (109) as:

$$m^{\mathbf{k},\mathbf{k}'}\tilde{\mathbf{\zeta}}_{\mathbf{k}} = \tilde{\mathbf{\zeta}}_{\mathbf{k}'},$$
 (110)

in which $\tilde{\varsigma}_{\mathbf{k}}$ ($\tilde{\varsigma}_{\mathbf{k}'}$) is an $w \times 1$ - ($z \times 1$ -) dimensional column vector where w (z) is the number of small coreps of $G_{\mathbf{k}}$ ($G_{\mathbf{k}'}$). In the notation of SEq. (110), $\tilde{\varsigma}_{\mathbf{k}}$ and $\tilde{\varsigma}_{\mathbf{k}'}$ contain symmetry data [i.e. the multiplicities $a_i^{\mathbf{k}}$ in SEq. (108) and the corresponding multiplicities $a_j^{\mathbf{k}'}$ at \mathbf{k}'] indicating the number of Bloch wavefunctions that transform in the i^{th} (j^{th}) small corep $\tilde{\sigma}_{i,\mathbf{k}}$ ($\tilde{\sigma}_{j,\mathbf{k}'}$) of $G_{\mathbf{k}}$ ($G_{\mathbf{k}'}$) in an energetically isolated group of Bloch states at \mathbf{k} (\mathbf{k}'). Hence, in SEq. (110), $m^{\mathbf{k},\mathbf{k}'}$ is a $z \times w$ -dimensional matrix whose entries are the compatibility relations $m^{\mathbf{k},\mathbf{k}'}_{i,j}$ in SEq. (109).

If $G_{\mathbf{k}}$ and $G_{\mathbf{k}'}$ are Type-I little groups in a Type-I MSG (SN 3), then the compatibility relations $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ for any irrep pair $\tilde{\sigma}_{i,\mathbf{k}}$ and $\tilde{\sigma}_{j,\mathbf{k}'}$ at any pair of connected points \mathbf{k} and \mathbf{k}' can be obtained through the existing DCOMPREL program on the BCS (https://www.cryst.ehu.es/cgi-bin/cryst/programs/dcomprel.pl)¹⁻⁶. However, if $G_{\mathbf{k}}$ or $G_{\mathbf{k}'}$ is isomorphic to an SSG with antiunitary symmetries (Type-II, III, or IV, SN 4, 5, and 6, respectively), then we must perform several additional steps to determine $m_{i,j}^{\mathbf{k},\mathbf{k}'}$. Specifically, if $G_{\mathbf{k}}$ is isomorphic to a Type-II, III, or IV SSG, then, for each small corep $\tilde{\sigma}_{i,\mathbf{k}}$ of $G_{\mathbf{k}}$, we first calculate the subduction:

$$\tilde{\sigma}_{i,\mathbf{k}} \downarrow H_{\mathbf{k}} = \bigoplus_{l} b_{i,l}^{\mathbf{k}} \sigma_{l,\mathbf{k}},\tag{111}$$

where $H_{\mathbf{k}}$ is the maximal unitary subgroup of $G_{\mathbf{k}}$, $\sigma_{l,\mathbf{k}}$ is the l^{th} small irrep of $H_{\mathbf{k}}$, and where each coefficient $b_{i,l}^{\mathbf{k}} = 0$, 1, or 2, depending on whether $\tilde{\sigma}_{i,\mathbf{k}}$ is a type (a), (b), or (c) small corep [respectively defined in the text surrounding SEqs. (73), (74), and (75)]. Specifically, if $\tilde{\sigma}_{i,\mathbf{k}}$ is a type (a) [(b)] corep, then, for each value of i, $b_{i,l}^{\mathbf{k}} = 1$ [$b_{i,l}^{\mathbf{k}} = 2$] for one value of l, and $b_{i,l}^{\mathbf{k}} = 0$ for all of the other values of l at fixed i; conversely, if $\tilde{\sigma}_{i,\mathbf{k}}$ is a type (c) corep, then $b_{i,l}^{\mathbf{k}} = 1$

for two values of l, and $b_{i,l}^{\mathbf{k}} = 0$ for all of the other values of l at fixed i (see SN 13). This occurs because, if $G_{\mathbf{k}}$ is isomorphic to a Type-II, III, or IV SSG, then $H_{\mathbf{k}}$ is necessarily an index-2 subgroup of $G_{\mathbf{k}}$ (see SN 4, 5, and 6), and because $G_{\mathbf{k}} = H_{\mathbf{k}} \cup g_A H_{\mathbf{k}}$ where g_A is an antiunitary symmetry $g_A \in G_{\mathbf{k}}$, $g_A \notin H_{\mathbf{k}}$. Hence, as shown in SN 13, each of the small coreps $\tilde{\sigma}_{i,\mathbf{k}}$ of $G_{\mathbf{k}}$ is either equivalent to a small irrep $\sigma_{l,\mathbf{k}}$ of $H_{\mathbf{k}}$ such that $b_{i,l}^{\mathbf{k}} = 1$ for only one value of l for each i [type (a) corep, see SEq. (73)], $\tilde{\sigma}_{i,\mathbf{k}}$ is equivalent to the direct sum $\sigma_{l,\mathbf{k}} \oplus \sigma_{l,\mathbf{k}}$ such that $b_{i,l}^{\mathbf{k}} = 2$ for only one value of l for each i [type (b) corep, see SEq. (74)], or $\tilde{\sigma}_{i,\mathbf{k}}$ is equivalent to the direct sum $\sigma_{l1,\mathbf{k}} \oplus \sigma_{l2,\mathbf{k}}$ such that $b_{i,l}^{\mathbf{k}} = 1$ for only two values l = l1, l2 for each i [type (c) corep, see SEq. (75)]. The values of $b_{i,l}^{\mathbf{k}}$ in SEq. (111) can be obtained from the Corepresentations tool introduced in this work, which we previously detailed in SN 13. In the notation of SEq. (110), SEq. (111) can be re-expressed as:

$$b^{\mathbf{k}}\tilde{\varsigma}_{\mathbf{k}} = \varsigma_{\mathbf{k}},\tag{112}$$

in which $\varsigma_{\mathbf{k}}$ is an $x \times 1$ -dimensional column vector whose l^{th} entry is the multiplicity of $\sigma_{l,\mathbf{k}}$ in $\tilde{\varsigma}_{\mathbf{k}} \downarrow H_{\mathbf{k}}$, where x is the number of small irreps of $H_{\mathbf{k}}$, and where $b^{\mathbf{k}}$ is a $x \times w$ -dimensional matrix whose entries are $b^{\mathbf{k}}_{i,l}$ in SEq. (111). Next, for each small irrep $\sigma_{l,\mathbf{k}}$ of $H_{\mathbf{k}}$, we further subduce onto $H_{\mathbf{k}'}$, the maximal unitary subgroup of $G_{\mathbf{k}'}$:

$$\sigma_{l,\mathbf{k}} \downarrow H_{\mathbf{k}'} = \bigoplus_{s} n_{l,s}^{\mathbf{k},\mathbf{k}'} \sigma_{s,\mathbf{k}'}, \tag{113}$$

where $\sigma_{s,\mathbf{k}'}$ is the s^{th} small irrep of $H_{\mathbf{k}'}$ and $n_{l,s}^{\mathbf{k},\mathbf{k}'}$ is the multiplicity of $\sigma_{s,\mathbf{k}'}$ in $\sigma_{l,\mathbf{k}} \downarrow H_{\mathbf{k}'}$. As with $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ in SEq. (109), the values of $n_{l,s}^{\mathbf{k},\mathbf{k}'}$ in SEq. (113) are required to be non-negative integers, because they originate from group-subgroup subduction 108. Crucially, because $H_{\mathbf{k}}$ and $H_{\mathbf{k}'}$ are both isomorphic to Type-I MSGs, then the compatibility relations $n_{l,s}^{\mathbf{k},\mathbf{k}'}$ for all possible connected points \mathbf{k} and \mathbf{k}' in all 1,651 SSGs can be determined using the earlier DCOMPREL tool, which is documented in SRef. 3. Following SEq. (110), SEq. (113) can be re-expressed as:

$$n^{\mathbf{k},\mathbf{k}'} \mathbf{\varsigma}_{\mathbf{k}} = \mathbf{\varsigma}_{\mathbf{k}'},\tag{114}$$

in which $\varsigma_{\mathbf{k}'}$ is a $y \times 1$ -dimensional column vector whose s^{th} entry is the multiplicity of $\sigma_{s,\mathbf{k}'}$ in $\tilde{\varsigma}_{\mathbf{k}'} \downarrow H_{\mathbf{k}'}$, where y is the number of small irreps of $H_{\mathbf{k}'}$, and where $n^{\mathbf{k},\mathbf{k}'}$ is an $y \times x$ -dimensional matrix whose entries are the unitary subgroup compatibility relations $n_{l,s}^{\mathbf{k},\mathbf{k}'}$ in SEq. (113). As a last step towards calculating the compatibility relations $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ in SEq. (109), we calculate the subduction onto $H_{\mathbf{k}'}$ for each small corep $\tilde{\sigma}_{j,\mathbf{k}'}$ of $G_{\mathbf{k}'}$:

$$\tilde{\sigma}_{j,\mathbf{k}'} \downarrow H_{\mathbf{k}'} = \bigoplus_{s} c_{j,s}^{\mathbf{k}'} \sigma_{s,\mathbf{k}'}, \tag{115}$$

where $\sigma_{s,\mathbf{k}'}$ is the s^{th} small irrep of $H_{\mathbf{k}'}$, and where, as detailed in the text following SEq. (111), each coefficient $c_{j,s}^{\mathbf{k}'} = 0$, 1, or 2, depending on whether $\tilde{\sigma}_{j,\mathbf{k}'}$ is a type (a), (b), or (c) small corep [defined in the text surrounding SEqs. (73), (74), and (75), respectively]. As previously with $b_{i,l}^{\mathbf{k}}$ in SEq. (111), the values of $c_{j,s}^{\mathbf{k}'}$ in SEq. (115) can also be obtained from the Corepresentations tool introduced in this work (SN 13). Like SEq. (111), SEq. (115) can be re-expressed in the form of SEq. (112):

$$c^{\mathbf{k}'}\tilde{\mathbf{\varsigma}}_{\mathbf{k}'} = \mathbf{\varsigma}_{\mathbf{k}'},\tag{116}$$

where $c^{\mathbf{k}'}$ is a $y \times z$ -dimensional matrix whose entries are $c_{j,s}^{\mathbf{k}'}$ in SEq. (115). Finally, by combining SEqs. (110), (112), (114), and (116), we determine that:

$$c^{\mathbf{k}'}m^{\mathbf{k},\mathbf{k}'} = n^{\mathbf{k},\mathbf{k}'}b^{\mathbf{k}}. (117)$$

To solve for $m^{\mathbf{k},\mathbf{k}'}$ in SEq. (117), we need to obtain a left inverse for $c^{\mathbf{k}'}$ [i.e. a matrix $(c^{\mathbf{k}'})^{-1}$ for which $(c^{\mathbf{k}'})^{-1}c^{\mathbf{k}'} = \mathbb{1}_z$], where $(c^{\mathbf{k}'})^{-1}$ is guaranteed to exist (though not necessarily be unique), because of Frobenius reciprocity^{2,108}. Conversely, because $c^{\mathbf{k}'}$ in SEq. (116) is generically non-square and left-invertible, then a right inverse for $c^{\mathbf{k}'}$ does not generically also exist. Frobenius reciprocity specifically implies that we can obtain a left inverse for $c^{\mathbf{k}'}$ through induction:

$$\sigma_{s,\mathbf{k}'} \uparrow G_{\mathbf{k}'} = \bigoplus_{j} d_{s,j}^{\mathbf{k}'} \tilde{\sigma}_{j,\mathbf{k}'}, \tag{118}$$

where each coefficient $d_{s,j}^{\mathbf{k}'}=0$ or 1, independent of whether $\tilde{\sigma}_{j,\mathbf{k}'}$ is a type (a), (b), or (c) small corep [defined in the text surrounding SEqs. (73), (74), and (75), respectively]. Specifically, because $G_{\mathbf{k}'}=H_{\mathbf{k}'}\cup g_AH_{\mathbf{k}'}$ where g_A is an antiunitary symmetry, then regardless of the type of the corep $\tilde{\sigma}_{j,\mathbf{k}'}, d_{s,j}^{\mathbf{k}'}=1$ for one value of j, and $d_{s,j}^{\mathbf{k}'}=0$ for all other values of j at fixed s (see SN 13). We next re-express SEq. (118) in the form of an inverse of SEq. (116):

$$\left(c^{\mathbf{k}'}\right)^{-1} \varsigma_{\mathbf{k}'} = \tilde{\varsigma}_{\mathbf{k}'},\tag{119}$$

in which $(c^{\mathbf{k}'})^{-1}$ is the left inverse of $c^{\mathbf{k}'}$ and, crucially:

$$\left[\left(c^{\mathbf{k'}}\right)^{-1}\right]_{sj} = \frac{d_{s,j}^{\mathbf{k'}}}{\left[G_{\mathbf{k'}}:H_{\mathbf{k'}}\right]},\tag{120}$$

where $[G_{\mathbf{k'}}: H_{\mathbf{k'}}]$ is the index of the subgroup $H^{\mathbf{k'}}$ of $G^{\mathbf{k'}}$ [SEq. (10)], which is present in SEq. (120) because induction (\uparrow), unlike subduction (\downarrow), does not preserve dimensionality (i.e., the character of the identity element E)^{2,108}. Therefore, independent of the SSG (little group) type of $G_{\mathbf{k'}}$, $(c^{\mathbf{k'}})^{-1}$ in SEq. (119) is necessarily well-defined, and its entries [SEq. (120)] are non-negative, though they are not necessarily integers. Specifically, if $G_{\mathbf{k'}}$ is isomorphic to a Type-II, III, or IV SSG (SN 4, 5, and 6, respectively), then $G_{\mathbf{k'}}$ is necessarily an index-2 supergroup of $H_{\mathbf{k'}}$, such that $[G_{\mathbf{k'}}:H_{\mathbf{k'}}]=2$, implying that the elements $[(c^{\mathbf{k'}})^{-1}]_{sj}$ in SEq. (120) are non-negative multiples of 1/2. Nevertheless, we have verified that, for all connected little group pairs $G_{\mathbf{k'}} \subset G_{\mathbf{k}}$ in all 1,651 single and double SSGs, the elements of $m^{\mathbf{k},\mathbf{k'}}$ in the expression:

$$m^{\mathbf{k},\mathbf{k}'} = \left(c^{\mathbf{k}'}\right)^{-1} n^{\mathbf{k},\mathbf{k}'} b^{\mathbf{k}},\tag{121}$$

formed from SEqs. (117), (118), (119), and (120) are non-negative integers, as required by subduction [see the text following SEq. (109)]. SEq. (121) implies that the multiplicities $b_{i,l}^{\mathbf{k}}$ and $c_{j,s}^{\mathbf{k}'}$ obtained from Corepresentations and the unitary subgroup compatibility relations $n_{l,s}^{\mathbf{k},\mathbf{k}'}$ obtained from DCOMPREL determine the compatibility relations $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ between any two small coreps $\tilde{\sigma}_{i,\mathbf{k}}$ and $\tilde{\sigma}_{j,\mathbf{k}'}$ at any two connected points \mathbf{k} and \mathbf{k}' in any of the 1,651 SSGs. To simplify this procedure, we have implemented a new tool – MCOMPREL – through which the values of $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ can be directly obtained without using additional programs on the BCS. Further specific details of the implementation of MCOMPREL are available in the documentation provided on the BCS.

We will now briefly present an example demonstrating the derivation of the multiplicities and compatibility relations at two connected **k** points for the double-valued small coreps of Type-III double MSG 83.45 P4'/m, which is generated by:

$$\{C_{4z} \times \mathcal{T}|000\}, \{\mathcal{I}|000\}, \{E|100\}, \{E|001\}.$$
 (122)

In this example, we will specifically obtain the small corep compatibility relations [SEq. (109)] for G = P4'/m at the connected points:

$$\mathbf{k}_{\Gamma} = (0, 0, 0), \ \mathbf{k}_{LD} = (0, 0, w).$$
 (123)

First, using Corepresentations, we determine that the little group G_{Γ} is isomorphic to Type-III MSG 83.45 P4'/m, and has two, two-dimensional, double-valued small coreps $\tilde{\sigma}_{1,\Gamma}$ and $\tilde{\sigma}_{2,\Gamma}$, which are distinguished by their $\{\mathcal{I}|\mathbf{0}\}$ eigenvalues:

$$\chi_{\tilde{\sigma}_{1,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = 2, \ \chi_{\tilde{\sigma}_{2,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = -2. \tag{124}$$

Next, continuing to employ Corepresentations, we focus on the maximal unitary subgroup H_{Γ} of G_{Γ} . H_{Γ} is isomorphic to Type-I MSG 10.42 P2/m, and has four, one-dimensional, double-valued small irreps $\sigma_{1-4,\Gamma}$, which are also distinguished by their $\{\mathcal{I}|\mathbf{0}\}$ and $\{C_{2z}|\mathbf{0}\} = (\{C_{4z} \times \mathcal{T}|\mathbf{0}\})^6$ eigenvalues:

$$\chi_{\sigma_{1,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = 1, \ \chi_{\sigma_{2,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = 1, \ \chi_{\sigma_{3,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = -1, \ \chi_{\sigma_{4,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = -1, \ \chi_{\sigma_{4,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = -1, \ \chi_{\sigma_{4,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = -i, \ \chi_{\sigma_{4,\Gamma}}(\{\mathcal{I}|\mathbf{0}\}) = i.$$

$$(125)$$

We next subduce the small coreps $\tilde{\sigma}_{i,\Gamma}$ of G_{Γ} onto H_{Γ} [SEq. (111)]:

$$\tilde{\sigma}_{1,\Gamma} \downarrow H_{\Gamma} = \sigma_{1,\Gamma} \oplus \sigma_{2,\Gamma}, \ \tilde{\sigma}_{2,\Gamma} \downarrow H_{\Gamma} = \sigma_{3,\Gamma} \oplus \sigma_{4,\Gamma},$$
 (126)

which may be summarized by introducing the multiplicity matrix [SEq. (112)]:

$$b^{\Gamma} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}. \tag{127}$$

We then focus on the little group G_{LD} , which is isomorphic to Type-III MSG 75.3 P4', and is generated by:

$$\{C_{4z} \times \mathcal{T}|000\}, \{E|100\}, \{E|001\}.$$
 (128)

 G_{LD} has only one, two-dimensional double-valued small corep $\tilde{\sigma}_{1,LD}$. The maximal unitary subgroup H_{DT} of G_{DT} is isomorphic to Type-I MSG 3.1 P2, and has two, one-dimensional, double-valued small irreps $\sigma_{1,LD}$ and $\sigma_{2,LD}$, which are distinguished by their $\{C_{2z}|\mathbf{0}\}$ eigenvalues:

$$\chi_{\sigma_{1,LD}}(\{C_{2z}|\mathbf{0}\}) = -i, \ \chi_{\sigma_{2,LD}}(\{C_{2z}|\mathbf{0}\}) = i.$$
(129)

Hence, through subduction [SEq. (115)], we obtain:

$$\tilde{\sigma}_{1,LD} = \sigma_{1,LD} \oplus \sigma_{2,LD},\tag{130}$$

which may be summarized through the multiplicity matrix [SEq. (116)]:

$$c^{LD} = \begin{pmatrix} 1\\1 \end{pmatrix}. \tag{131}$$

Next, we obtain a left inverse for c^{LD} by establishing that $[G_{LD}: H_{LD}] = 2$ [see SEq. (15) and the surrounding text], and that:

$$\sigma_{1,LD} \uparrow G_{LD} = \sigma_{2,LD} \uparrow G_{LD} = \tilde{\sigma}_{1,LD}. \tag{132}$$

Through SEq. (120), this implies that:

$$(c^{LD})^{-1} = \frac{1}{2} \left(1 \ 1 \right). \tag{133}$$

As a final step towards computing the corep compatibility relations $m^{\Gamma,LD}$, we use subduction to obtain the unitary subgroup compatibility relations [SEq. (113)]:

$$\sigma_{1,\Gamma} \downarrow H_{LD} = \sigma_{3,\Gamma} \downarrow H_{LD} = \sigma_{1,LD},$$

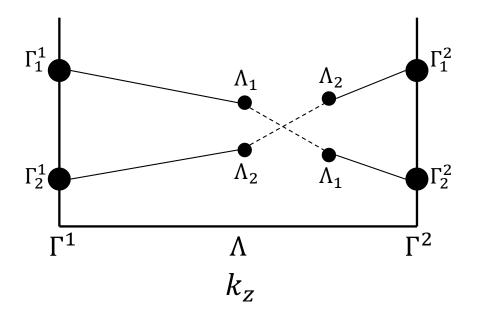
$$\sigma_{2,\Gamma} \downarrow H_{LD} = \sigma_{4,\Gamma} \downarrow H_{LD} = \sigma_{2,LD}.$$
(134)

consistent with the output of the earlier DCOMPREL tool. SEq. (134) may be summarized by the multiplicity matrix [SEq. (114)]:

$$n^{\Gamma,LD} = \left(\begin{array}{ccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right).$$

Lastly, we compute the small corep compatibility relations $m^{\Gamma,LD}$ using SEq. (121):

$$m^{\Gamma,LD} = (c^{LD})^{-1} n^{\Gamma,LD} b^{\Gamma} = \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \end{pmatrix},$$


Supplementary Figure 12: Compatibility relations and graphs for magnetic rod group (MRG) $(p422)_{RG}$, which is generated by $\{E|1\}$, $\{C_{4z}|0\}$, and $\{C_{2x}|0\}$, and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 89.87 P422 [see SRefs. 10,33,69–71 and the text following SEq. (2)]. Using the MKVEC tool on the BCS for the $k_x = k_y = 0$ line in MSG 89.87 P422, we deduce that there are only three momentum stars (SN 12) in MRG $(p422)_{RG}$: Γ ($k_z = 0$), Z ($k_z = \pi$), and LD ($k_z = \pm w$). Next, using MCOMPREL, we obtain the compatibility relations for MRG $(p422)_{RG}$ [i.e., the values of $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ in SEq. (109)], which, restricting to double-valued (spinful) coreps, are given by $\bar{\Gamma}_6 \downarrow G_{\mathrm{LD}} = \bar{Z}_6 \downarrow G_{\mathrm{LD}} = \bar{\mathrm{LD}}_5 \oplus \bar{\mathrm{LD}}_5 \oplus \bar{\mathrm{LD}}_7$ and $\bar{\Gamma}_7 \downarrow G_{\mathrm{LD}} = \bar{Z}_7 \downarrow G_{\mathrm{LD}} = \bar{\mathrm{LD}}_6 \oplus \bar{\mathrm{LD}}_8$. (a) For a set of four spinful Bloch eigenstates at each k_z point with a symmetry data vector [see SRefs. 109,110 and the text following SEq. (108)] given by $\bar{\zeta}_{\Gamma} = \bar{\Gamma}_6 \oplus \bar{\Gamma}_6$ and $\bar{\zeta}_Z = \bar{Z}_6 \oplus \bar{Z}_6$, a separated pair of connected graphs can be formed from the coreps at Γ and Z using the TQC graph-theory methodology detailed in SRefs. 3,4. The symmetry data in (a) is therefore compatible with an insulating (band) gap at a filling $\nu = 4$. (b) Conversely, for a set of four spinful Bloch eigenstates at each k_z point with a symmetry data vector given by $\bar{\zeta}_{\Gamma} = \bar{\Gamma}_6 \oplus \bar{\Gamma}_6$ and $\bar{\zeta}_Z = \bar{Z}_6 \oplus \bar{Z}_7$, there does not exist a graph for the coreps at Γ and Z that satisfies the compatibility relations. The symmetry data in (b) is therefore incompatible with a band gap at a filling $\nu = 4$, implying that the Bloch eigenstates at Γ and Z are connected to other, unoccupied states (bands) not described by the symmetry data. In the nomenclature of SRefs. 109,110, the symmetry data in (b) consequently corresponds to an "enforced semimetal" (ES).

in agreement with the subduction relations:

$$\tilde{\sigma}_{1,\Gamma} \downarrow G_{LD} = \tilde{\sigma}_{2,\Gamma} \downarrow G_{LD} = \tilde{\sigma}_{1,LD},\tag{135}$$

as well as the output of the MCOMPREL tool introduced in this work.

One of the key advances of TQC¹⁻⁶ and related works^{23,24} was to recognize that, for each Type-I MSG and Type-II SSG, there existed a small number of maximal k vectors [SEq. (59)] from which the connectivity of Bloch eigenstates (i.e. energy bands) throughout the entire BZ could be inferred from the symmetry data $[\tilde{s}_{\mathbf{k}}]$ in SEq. (108)]. Specifically, given a symmetry data vector $\{\tilde{\varsigma}_{\mathbf{k}}\}$, the set of small coreps at each \mathbf{k} point can be re-expressed as the nodes of a weighted graph whose edges are required to be consistent with the compatibility relations [i.e., the values of $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ in SEq. (109)]. If such a graph cannot be constructed without violating the compatibility relations, then the bands characterized by the symmetry data vector $\{\tilde{\zeta}_{\mathbf{k}}\}$ are necessarily connected to other bands, implying that the bulk is a form of topological semimetal [an "enforced semimetal" (ES) in the nomenclature of SRef. 109 (see SFig. 12)]. However, if a graph can be constructed, then it may further be separated into disconnected subgraphs. As we will discuss in SN 17, by collecting the symmetry data induced from (magnetic) atomic orbitals located at maximal Wyckoff positions (SN 9) and using the compatibility relations in MCOMPREL to construct graphs (which may be additionally separable into disconnected subgraphs), we obtain the EBRs of all 1,651 SSGs (specifically the PEBRs of the Type-II SSGs, and the MEBRs of the Type-I, III, and IV MSGs)^{1-6,11,12,20-22}. In this work, we will not provide further specific details of the TQC graph theory implementation^{3,4}; we will instead simply note that, for a given SSG, once the BCS tools introduced in this work have been used to obtain the momentum stars [MKVEC, see SN 12], small coreps [Corepresentations, see SN 13], and compatibility relations [MCOMPREL, see the text following SEq. (109) in this section then the previous graph theory construction from TQC can be used without further modification. Concurrently with the preparation of this work, the MSG compatibility relations in MCOMPREL were employed to perform a high-throughput analysis¹¹⁰ of band connectivity and topology in the ~ 500 magnetic materials on the BCS with well-characterized MSGs^{15–18}.

Supplementary Figure 13: Compatibility relations and graphs for MRG $(p_2)_{RG}$, which is generated by a twofold screw operation $(s_{21} = \{C_{2z}|1/2\})$, and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 4.7 $P2_1$ [see SRefs. 10,33,69–71 and the text following SEq. (2)]. Using the MKVEC tool on the BCS for the $k_x = k_z = 0$ line in MSG 4.7 $P2_1$, we deduce that there is only one, multiplicity-1 momentum star (SN 12) in MRG $(p2_1)_{RG}$, which is labeled LD and lies at $\mathbf{k}_{LD} = v\hat{\mathbf{z}}$. In an example of the representation monodromy discussed in this section, the matrix representatives of the small irreps of G_{LD} are 4π -periodic in v [SEq. (139)]. Specializing to three values of v respectively given by v = 0 (Γ^1), $0 < v < 2\pi$ (Λ), and $v = 2\pi$ (Γ^2), we observe that the compatibility relations [SEq. (140)] imply that the small irreps $\Lambda_{1,2}$ connect to different irreps at the Γ point, depending on whether Γ lies in an odd-numbered BZ (e.g. Γ^1 in the first BZ) or in an even-numbered BZ (e.g. Γ^2 in the second BZ). Crucially, the irrep labels ($\Gamma^i_{1,2}$) are the same at the Γ point in each BZ, consistent with the restriction that physical observables in pristine crystals are 2π -periodic (i.e., any physical observable in an infinite, periodic system must be the same at any two points \mathbf{k} and \mathbf{k}' that differ by a linear combination of reciprocal lattice vectors \mathbf{K}_{ν})³³. Specifically restricting to spinless Bloch eigenstates, this implies that a pair of states (bands) with the symmetry data vector $\tilde{\varsigma}_{\Gamma^1} = \Gamma^1_1 \oplus \Gamma^1_2$ [see SRefs. 109,110 and the text following SEq. (108)], will be connected at an odd number of \mathbf{k} points in each BZ, where one of the crossing points in each BZ (i.e. the intersection of the dashed lines in this figure) is movable, but unremovable $^{3,4,39,73,74,83,86,101,111-113}$.

As a final note, there are additional subtleties that come into play in determining the compatibility relations [SEq. (109)] and constructing connectivity graphs (SRefs. 3,4 and SFig. 12) in non-primitive SSGs [defined as SSGs whose gray Bravais lattices are not primitive³³], SSGs without orthogonal lattice vectors [e.q. hexagonal SSGs], and nonsymmorphic SSGs [defined in the text following SEq. (65)]. First, in non-primitive SSGs, and in SSGs whose generating translations [SEq. (1)] are not orthogonal, the construction of a graph (or failure to construct a graph) may depend on the compatibility relations along two distinct paths between the same maximal \mathbf{k} points. For example, in Type-I MSG 209.48 F432, given symmetry data at the maximal **k** points Γ [$\mathbf{k}_{\Gamma} = (0,0,0), G_{\Gamma}$ is isomorphic to Type-I MSG 209.48 F432 and X $[\mathbf{k}_X = (\pi, \pi, 0), G_X]$ is isomorphic to Type-I MSG 97.151 I422, the possibility of constructing a graph depends on the compatibility relations along both of the lines DT [$k_{DT} = (0, v, 0), G_{DT}$ is isomorphic to Type-I MSG 79.25 I4] and SM [$\mathbf{k}_{SM} = (u, u, 0), G_{SM}$ is isomorphic to Type-I MSG 5.13 C2]. This occurs because, for generic values of v and u, \mathbf{k}_{DT} and \mathbf{k}_{SM} are not related by any of the symmetries $g \in F432$ if \mathbf{k}_{DT} and \mathbf{k}_{SM} were instead related by symmetries, then \mathbf{k}_{DT} and \mathbf{k}_{SM} would be arms of the same momentum star, and the compatibility relations across the BZ would only depend on the compatibility relations along either DTor SM. We note that, throughout the BCS, **k** points are labeled in some applications with Greek letters (e.g. Γ), whereas in other applications, the same k point is labeled with an English abbreviation (e.g. GM). Hence, in this work, we will in general employ a mixed notation in which Greek letters and English abbreviations are consistently used throughout each example, where specific labels are chosen to maximize consistency with previous works and with the output of the BCS tools introduced in this work.

As mentioned above, an additional subtlety occurs in nonsymmorphic SSGs. Specifically, as discussed in SRefs. 39, 73,83,86,111–113, because of the *monodromy* of representations throughout the BZ, the compatibility relations in a nonsymmorphic SSG can even differ at two **k** points that are related by a reciprocal lattice vector $[\mathbf{K}_{\nu}$ in SEq. (46)].

For example, consider Type-I magnetic rod group (MRG) $(p2_1)_{RG}$ [SFig. 13], which is generated by the twofold screw symmetry:

$$s_{2_1} = \{C_{2z}|1/2\},\tag{136}$$

and is isomorphic after the addition of perpendicular lattice translations to Type-I MSG 4.7 $P2_1$ [see SRefs. 10,33,69–71 and the text following SEq. (2)]. Using the MKVEC tool on the BCS for the $k_x = k_z = 0$ line in MSG 4.7 $P2_1$, we deduce that there is only one, multiplicity-1 momentum star (SN 12) in MRG $(p2_1)_{RG}$, which is labeled LD and lies at $\mathbf{k}_{\mathrm{LD}} = v\hat{\mathbf{z}}$. To see the effect of the representation monodromy on the compatibility relations, we will calculate the values of $m_{i,j}^{\mathbf{k},\mathbf{k}'}$ in SEq. (109) at three specific \mathbf{k} points along the rod axis corresponding to different values of v in the same star (LD):

$$\mathbf{k}_{\Gamma^1} = \mathbf{0}, \ \mathbf{k}_{\Lambda} = v\hat{\mathbf{z}}, \ \mathbf{k}_{\Gamma^2} = 2\pi\hat{\mathbf{z}}, \tag{137}$$

where $\Gamma^{1,2}$ are related by a reciprocal lattice vector:

$$\mathbf{k}_{\Gamma^2} - \mathbf{k}_{\Gamma^1} = 2\pi \hat{\mathbf{z}}.\tag{138}$$

For simplicity, in the current demonstration of the role of representation monodromy in the compatibility relations of MRG $(p2_1)_{RG}$, we will restrict to the case of spinless Bloch eigenstates, which transform in single-valued small coreps. Using the Corepresentations tool (SN 13), we determine that, at generic points in the LD star ($\mathbf{k} = v\hat{\mathbf{z}}$), there are two, one-dimensional small coreps LD_{1,2}, for which the matrix representatives [and characters, see the text surrounding SEq. (71) for more information] of the twofold screw symmetry s_{2_1} [SEq. (136)] are given by:

$$\Delta_{\text{LD}_1}(s_{2_1}) = \chi_{\text{LD}_1}(s_{2_1}) = e^{iv/2}, \ \Delta_{\text{LD}_2}(s_{2_1}) = \chi_{\text{LD}_2}(s_{2_1}) = -e^{iv/2}.$$
 (139)

Evaluated at the k points in SEq. (137), the matrix representatives of twofold screw in SEq. (139) become:

$$\Delta_{\Gamma_1^1}(s_{2_1}) = 1, \ \Delta_{\Gamma_2^1}(s_{2_1}) = -1, \ \Delta_{\Lambda_1}(s_{2_1}) = e^{iv/2}, \ \Delta_{\Lambda_2}(s_{2_1}) = -e^{-iv/2}, \ \Delta_{\Gamma_1^2}(s_{2_1}) = -1, \ \Delta_{\Gamma_2^2}(s_{2_1}) = 1, \ (140)$$

where we have employed a notation for the small irreps at the $\Gamma^{1,2}$ points in which Γ^i_j denotes the j^{th} small irrep of the little group G_{Γ^i} at the **k** point Γ^i (*i.e.*, at the Γ point in the i^{th} BZ). Though $G_{\Gamma^1} = G_{\Lambda} = G_{\Gamma^2}$, we can still calculate compatibility relations of the form of SEq. (109):

$$\Gamma_1^1 \downarrow G_{\Lambda} = \Lambda_1, \ \Gamma_2^1 \downarrow G_{\Lambda} = \Lambda_2, \ \Gamma_1^2 \downarrow G_{\Lambda} = \Lambda_2, \ \Gamma_2^2 \downarrow G_{\Lambda} = \Lambda_1. \tag{141}$$

In SEq. (141), we find that, because of the 4π -periodicity of the matrix representatives in SEq. (139), the compatibility relations at $\mathbf{k}_{\Gamma^{1,2}}$ are different, despite $\mathbf{k}_{\Gamma^{1,2}}$ differing by a reciprocal lattice vector [SEq. (138)]. This implies that, as shown in SFig. 13, a pair of spinless Bloch states at Γ^1 with the symmetry data $\tilde{\varsigma}_{\Gamma^1} = \Gamma^1_1 \oplus \Gamma^1_2$ [see SRefs. 109, 110 and the text following SEq. (108)] will connect with each other, specifically forming a pair of spinless bands that cross at an odd number of \mathbf{k} points in each BZ, where one of the crossing points in each BZ is movable, but unremovable $^{3,4,39,73,74,83,86,101,111-113}$.

If additional symmetries are present in an SSG, such as $\{T|000\}$ in Type-II SSGs (SN 4), then the effects of representation monodromy on the compatibility relations may be redundant with the constraints imposed by the additional symmetries. Specifically, in Type-II SSGs, \mathcal{T} symmetry relates half of a high-symmetry line to its timereversal partner, providing further restrictions on corep connectivity that can be used in lieu of comparing the compatibility relations at **k** points that differ by a reciprocal lattice vector $(e.g. \Gamma^{1,2})$ in SFig. 13)⁴. For example, adding \mathcal{T} symmetry to an s_{2_1} -symmetric rod [see the text surrounding SEq. (136)] both doubles the band connectivity and introduces pinned degeneracies at the high-symmetry points $\mathbf{k}_{\Gamma^1} = \mathbf{0}$ and $\mathbf{k}_{X^1} = \pi \hat{\mathbf{z}}$, obviating the need to consider the compatibility relations at \mathbf{k}_{Γ^2} . In the case of a rod with \mathcal{T} and s_{2_1} screw symmetry, the pinned degeneracies at high-symmetry points specifically occur at odd electronic fillings [e.g. $\nu=1,3$], and groups of bands connect in "hourglass"-like patterns^{39,73,111–113} with odd numbers of moveable-but-unremovable twofold degeneracies in each half of the BZ at fillings $\nu = 2+4n, n \in \{\mathbb{Z}^+, 0\}$ [e.g. $\nu = 2$]. Consequently, there are only 4 Type-II single and double SSGs in which monodromy constraints must be considered in addition to those imposed by the symmetries of the SSG. In Supplementary Table 3, we list the single and double SSGs in which the monodromy of representations provides necessary constraints on small corep (band) connectivity. The Type-I and Type-II SSGs listed in Supplementary Table 3 were previously calculated for TQC¹⁻⁶, whereas the Type-III and Type-IV MSGs listed in Supplementary Table 3 are a new result that we have calculated for the present work. Surprisingly, in Supplementary Table 3, we find that there are only 4 Type-IV single and double MSGs in which representation monodromy must be taken into

account to determine corep connectivity, despite the fact that all Type-IV MSGs are nonsymmorphic [see the text following SEq. (65)]. This occurs because each Type-IV MSG [SEq. (19)] necessarily contains a symmetry of the form:

$$\theta = \{ \mathcal{T} | \mathbf{t}_0 \}, \tag{142}$$

	SSG	s in Whi	ch the Mono	dromy of	Representation	ons Provi	des	
		Neces	sary Constra	aints on E	Band Connect	ivity		
Type	Symbol	Number	Symbol	Number	Symbol	Number	Symbol	Number
Type-I	$P2_1$	4.7	Pc	7.24	Cc	9.37	$C222_{1}$	20.31
	$Pmc2_1$ (S)	26.66	Pcc2 (S)	27.78	$Pca2_1$	29.99	Pnc2	30.111
	$Pmn2_1$	31.123	$Pna2_1$	33.144	$Cmc2_1$	36.172	Ccc2 (S)	37.180
	$P4_1$	76.7	$P4_2$	77.13	$P4_3$	78.19	$I4_1$	80.29
	$P4_2cm$	101.179	$P4_2nm$	102.187	P4cc (S)	103.195	P4nc (S)	104.203
	$P4_2mc$	105.211	$P4_2bc$	106.219	$I4_1md$	109.239	$I4_1cd$	110.245
	$P3_1$	144.4	$P3_2$	145.7	$P3_{1}12$	151.29	$P3_{2}12$	153.37
	P3c1	158.57	R3c	161.69	$P6_1$	169.113	$P6_5$	170.117
	$P6_2$	171.121	$P6_4$	172.125	$P6_3$	173.129	P6cc (S)	184.191
	$P6_3cm$	185.197	$P6_3mc$	186.203			, ,	
Type-II	$P3_{1}1'$	144.5	$P3_{2}1'$	145.8	$P3_{1}121'$	151.30	$P3_{2}121'$	153.38
Type-III	$P2_1/m'$ (S)	11.53	P2'/c (S)	13.67	$P2_1'/c$	14.77	$P2_1/c'$	14.78
_	C2'/c (S)	15.87	$P2'2'2_1$	17.9	$P2_{1}2_{1}'2'$	18.19	$P2_{1}^{\prime}2_{1}^{\prime}2_{1}$	19.27
	$C2'2'2_1$	20.33	Pm'a2'	28.89	$Pc'a2'_1$	29.101	Pb'a2'	32.137
	$Pn'a2'_1$	33.146	$Cm'c'2_1$	36.176	Am'a2'	40.205	Ab'a2'	41.213
	Pccm' (S)	49.268	Pb'an (S)	50.279	Pm'ma (S)	51.291	Pn'na (S)	52.307
	Pnn'a	52.308	Pm'na	53.323	Pmna'	53.325	Pc'ca	54.339
	Pcca' (S)	54.341	Pb'am (S)	55.355	Pc'cn	56.367	Pccn' (S)	56.368
	Pbc'm (S)	57.380	Pbcm'	57.381	Pn'nm	58.395	Pm'mn (S)	59.407
	Pb'cn	60.419	Pbc'n	60.420	Pbcn'	60.421	Pb'ca	61.435
	Pn'ma (S)	62.443	Pnm'a (S)	62.444	Pnma'	62.445	Cmcm' (S)	63.461
	Cm'c'm' (S)	63.465	Cmca'	64.473	Cm'c'a' (D)	64.477	Cccm' (S)	66.494
	Ccca' (S)	68.514	$P4_1'$	76.9	$P4_3'$	78.21	$P4_2/m'$	84.54
	$P4_2/n'$	86.70	$I4_1/a'$	88.84	$P4_{1}2'2'$	91.106	$P4_{1}'2'2$	91.107
	$P4_{1}2_{1}'2'$	92.114	$P4_{2}2'2'$	93.122	$P4_{2}2_{1}'2'$	94.130	$P4_{3}2'2'$	95.138
	$P4_{3}^{\prime}2^{\prime}2$	95.139	$P4_32_1'2'$	96.146	$I4_{1}2'2'$	98.160	$P\bar{4}'2'c$ (S)	112.261
	$P\bar{4}'2'_{1}c$ (S)	114.277	$P\bar{4}'c2'$ (S)	116.294	P4/m'cc (S)	124.353	P4/n'nc (S)	126.377
		128.401	P4/n'cc (S)	130.425	$P4_2/m'mc$	131.437	$P4_2/m'cm$	132.449
	$P4_2/n'bc$	133.461	$P4_2/n'nm$	134.473	$P4_2/m'bc$	135.485	$P4_2/m'nm$	136.497
					$I4_1/a'md$			
	$P3_{1}12'$	151.31	$P3_{1}2'1$	152.35	$P3_{2}12'$	153.39	$P3_{2}2'1$	154.43
	$P\bar{3}'c1$ (S)	165.93	$R\bar{3}'c$ (S)	167.105	$P6_3/m'$	176.146	$P6_12'2'$	178.159
	$P6_52'2'$	179.165	$P6_{2}2'2'$	180.171	$P6_42'2'$	181.177	$P6_{3}2'2'$	182.183
	$P\bar{6}'c2'$	188.218	$P\bar{6}'2'c$	190.229	P6/m'cc (S)		$P6_3/m'cm$	193.255
	$P6_3/m'mc$	194.265						
Type-IV	P_c3_1	144.6	P_c3_2	145.9	$P_c 3_1 12$	151.32	$P_{c}3_{2}12$	153.40

Supplementary Table 3: List of SSGs for which the monodromy of representations imposes additional restrictions on small corep (band) connectivity beyond the constraints imposed by the symmetries of the SSG. The letters (S) and (D) after the symbol of an SSG respectively indicate that the representation monodromy only provides necessary constraints on the connectivity of single- and double-valued coreps of that SSG. In all of the other SSGs listed in this table, the representation monodromy provides necessary constraints on the connectivity of both single- and double-valued small coreps.

which acts the same as \mathcal{T} symmetry ($\{\mathcal{T}|000\}$) on points in **k** space [SEq. (51)]:

$$\theta \mathbf{k} = \mathcal{T} \mathbf{k} = -\mathbf{k}.\tag{143}$$

Conversely, in Type-I MSGs, which only contain unitary symmetries (SN 3), and in Type-III MSGs, which only contain unitary symmetries and antiunitary symmetries of the form $\{h \times \mathcal{T} | \mathbf{v}\}$ in which h is a unitary symmetry $h \neq E$ (SN 5), we find that representation monodromy frequently provides necessary constraints on corep connectivity. As shown in Supplementary Table 3, we specifically find that there are 38 Type-I single MSGs, 32 Type-I double MSGs, 92 Type-III single MSGs, and 65 Type-III double MSGs in which the connectivity of small coreps can only be fully determined by considering the effects of representation monodromy on the compatibility relations.

17. Introduction to the Elementary Band Corepresentations of the MSGs (MEBRs)

In the sections below, we will adapt the procedure previously employed in SRefs. 1,4 to obtain the magnetic elementary band corepresentations (MEBRs) of the Type-III and Type-IV single and double MSGs. Along with the Type-I MEBRs of the Type-I MSGs and the physical EBRs (PEBRs) of the Type-III SSGs previously tabulated in SRefs. 1,4, the MEBRs of the Type-III and IV MSGs form the foundation of MTQC. More generally, in this work, we will consider PEBRs and Type-III and Type-IV MEBRs to both be elementary band corepresentations (EBRs), because they derive from Type-I MEBRs of Type-I (unitary) MSGs that are related by the action of antiunitary symmetries (SN 13). We note that, previously in TQC¹⁻⁶, the Type-I MEBRs of the Type-I MSGs were termed EBRs, to draw contrast with the PEBRs of the Type-II SSGs. However, in this work, we will revise the previous terminology to accommodate the elementary band corepresentations of the Type-III and IV MSGs – in this work, all elementary band (co)representations are in general termed EBRs, the elementary band corepresentations of Type-II SSGs remain termed PEBRs, and the elementary band (co)representations of Type-I, III, and IV MSGs are respectively termed Type-I, III, and IV MEBRs.

Below, we will show that the EBRs provide a basis for all Wannierizable^{1,6,114,115}, mean-field crystalline insulators, with or without magnetism. First in SN 18, we will introduce the concept of (magnetic) atomic orbitals, which we will then relate to maximally (exponentially) localized, symmetric Wannier functions ^{114,115}. Importantly, in SN 18, we will establish a rigorous correspondence between (magnetic) atomic orbitals and the (co)reps of Shubnikov point groups (SPGs)⁷⁻¹⁸ (as well as site-symmetry groups, see SN 8). Next, in SN 22, we will adapt the central machinery of band induction and small corep subduction from TQC to MTQC. Specifically, in SN 22, we will use the magnetic atomic orbitals introduced in SN 18 to induce band corepresentations, which we will then Fourier transform and subduce onto little groups to obtain dependencies between small coreps in momentum space (SN 13) and site-symmetry group coreps in position space (SN 18). In SN 23, we will then enumerate the MEBRs by inducing band coreps from maximal Wyckoff positions and then excluding the exceptional cases (SRefs. 3,4,83–86 and SN 24) of band coreps induced from maximal Wyckoff positions that are non-elementary (i.e. composite). Finally, in SN 25, we will provide detailed statistics for the EBRs of all 1,651 SSGs, as well as introduce and detail the MBANDREP tool on the BCS, which we have implemented for this work to access both the EBRs and the composite band coreps induced from each Wyckoff position in each SSG. We note that prior to this work, Evarestov Smirnov, and Egorov in SRef. 12 introduced a method for obtaining the MEBRs of the MSGs and computed representative examples, but did not perform a large-scale tabulation of MEBRs or establish a connection to magnetic band topology. As will be detailed in this section, in this work, we have employed a method equivalent to the procedure in SRef. 12 to perform the first complete tabulation of the single- and double-valued MEBRs of the 1,421 MSGs. Furthermore, as detailed in the main text, in this work, we have used the MEBRs to construct the first complete position-space theory of mean-field magnetic band topology - MTQC.

18. Magnetic Atomic Orbitals and the CorepresentationsPG Tool

One of the fundamental advances of TQC was to introduce a *predictive* theory of bulk topology that derived from the *position-space* chemistry of a material or model¹, instead of momentum-space quantities such as (nested) Wilson loops and Berry phases^{6,28,38,39,71,112,113,116–126}. Specifically, in TQC, trivial bands in momentum-space are induced from the position-space (co)reps of the site-symmetry groups of the Wyckoff positions in a pristine crystal that is invariant under a particular SSG. As previously discussed in SN 8, site-symmetry groups in SSGs, magnetic or otherwise, are necessarily isomorphic to Shubnikov point groups (SPGs).

In the Type-II (nonmagnetic) SGs first analyzed with TQC, the authors of SRef. 1 exploited a correspondence between the coreps of the site-symmetry groups in solid-state materials and the eigenstates of the Schrödinger Hamil-

tonian for a hydrogen atom (hydrogenic ion). Specifically, because the Schrödinger Hamiltonian for an ion with a single electron is spherically symmetric (isotropic) and nonmagnetic, then the Hamiltonian is invariant under the action of any point group, crystallographic or otherwise⁹. In the language of group theory, the Schrödinger Hamiltonian for a hydrogenic ion is invariant under the action of the symmetries of the nonmagnetic (Type-II) group $Pin^{-}(3) \cup \mathcal{T} \times Pin^{-}(3)$ [see SRefs. 101,127 for a detailed discussion of the relationship between $Pin^{-}(3)$, SO(3), and SU(2) in condensed matter physics]. For the purposes of this work, it is sufficient to note that $Pin^{-}(3) \cup \mathcal{T} \times Pin^{-}(3)$ is composed of spinful rotations [e.g. C_{2z} , for which $(C_{2z})^2 = -1$], rotoinversions of the form of the product of spinful rotations and spinless inversion \mathcal{I} [e.g. $m_z = C_{2z} \times \mathcal{I}$, for which $(m_z)^2 = -1$, $(\mathcal{I})^2 = +1$], and antiunitary elements of the form of \mathcal{T} multiplied by rotation or rotoinversion [e.g. $C_{2z} \times \mathcal{T}$, for which $(\mathcal{T})^2 = -1$, such that $(C_{2z} \times \mathcal{T})^2 = +1$]. Consequently, the infinite group $\operatorname{Pin}^-(3) \cup \mathcal{T} \times \operatorname{Pin}^-(3)$ is a supergroup of any finite single or double 3D point group^{9,128} [see the text following SEq. (27)]. Returning to the hydrogenic ion, the eigenstates of the Schrödinger Hamiltonian are given by $\psi^{\sigma}(r,\theta,\phi) = R(r)Y(\theta,\phi)\mathbf{S}_{1/2}^{\sigma}$, where $\mathbf{S}_{1/2}^{\sigma}$ is a two-level, fermionic spinor for which $\sigma = \uparrow, \downarrow$. In ψ^{σ} , the angular part $Y(\theta, \phi)$ can be expressed in either the basis of spherical or cubic harmonics 128-130; therefore, in this section, we will denote $Y(\theta, \phi)$ with suppressed angular (l, m_l) or orbital $(e.g. s, d_{xy})$ indices whenever $Y(\theta,\phi)$ appears in a basis-independent expression or statement. Across the set of wavefunctions $\{\psi^{\sigma}(r,\theta,\phi)\}\$, the infinite set of angular and spin parts $\{Y(\theta,\phi)\}\otimes\{\mathbf{S}_{1/2}^{\sigma}\}\$ spans both the infinite set of basis functions of $Pin^{-}(3) \cup \mathcal{T} \times Pin^{-}(3)$, as well as the infinite set of basis functions of $Pin^{-}(3)$, the maximal unitary (Type-I) magnetic subgroup of $Pin^{-}(3) \cup \mathcal{T} \times Pin^{-}(3)$. We further note that the hydrogenic ion wavefunctions can also be expressed in a basis of coupled spinorbitals $\psi^{\sigma}(r,\theta,\phi) = R(r)\mathbf{J}^{\sigma}(\theta,\phi)$. However, the set of all spinful basis functions (spin-orbit-coupled angular parts) $\{J^{\sigma}(\theta,\phi)\}$ can be generated using only spinless angular parts and two-level (spin-1/2) spinors,

$$\left\{ \mathbf{J}^{\sigma}(\theta,\phi) \right\} = \left\{ Y(\theta,\phi) \right\} \otimes \left\{ \mathbf{S}_{1/2}^{\sigma} \right\}, \tag{144}$$

in which appropriately chosen Clebsch-Gordan coefficients (c.f. the tables in SRef. 9) are required to relate $\mathbf{J}_l^{j,m_j}(\theta,\phi)$ and $Y_l^{m_l}(\theta,\phi)\mathbf{S}_{1/2}^{\sigma}$ for specific values of $j,\ m_j,\ m_l$, and σ . Therefore, for the purposes of this work, we are free to simplify notation by restricting consideration to hydrogenic ion wavefunctions of the form $\psi^{\sigma}(r,\theta,\phi) = R(r)Y(\theta,\phi)\mathbf{S}_{1/2}^{\sigma}$. Hence, we may subduce the infinitely many irreducible coreps of $\mathrm{Pin}^-(3) \cup \mathcal{T} \times \mathrm{Pin}^-(3)$ onto any finite SPG $G_{\mathbf{q}}$ [which can either be a magnetic point group (MPG) or a nonmagnetic SPG, see the text following SEq. (27)], yielding the established result^{9,128-130} that the finite set of irreducible (co)reps of $G_{\mathbf{q}}$ are spanned by the [infinitely overcomplete] set of irreducible coreps of $\mathrm{Pin}^-(3) \cup \mathcal{T} \times \mathrm{Pin}^-(3)$ subduced onto $G_{\mathbf{q}}$. Specifically, there always exists at least one [and in fact, are infinitely many] corep[s] of $\mathrm{Pin}^-(3) \cup \mathcal{T} \times \mathrm{Pin}^-(3)$ that subduce[s] to each irreducible (co)rep of $G_{\mathbf{q}}$. We therefore conclude that the set $\{Y(\theta,\phi)\} \otimes \{\mathbf{S}_{1/2}^{\sigma}\}$ necessarily spans the basis functions of the single- and double-valued (co)reps of any $G_{\mathbf{q}}$, because the (co)reps of a particular $G_{\mathbf{q}}$ are formed from the irreps of its maximal unitary subgroup $H_{\mathbf{q}}$, which is a subgroup of $\mathrm{Pin}^-(3)$.

This establishes a correspondence between appropriately chosen linear combinations of the basis functions in $\{Y(\theta,\phi)\}\otimes\{\mathbf{S}_{1/2}^{\sigma}\}\$ and the (co)reps of $G_{\mathbf{q}}$. For the nonmagnetic (Type-II) SPGs (site-symmetry groups) studied in TQC¹, the correspondence is intuitive. Specifically, given a Type-II SPG $G_{\mathbf{q}}$ and a hydrogenic ion wavefunction $\psi^{\sigma}(r,\theta,\phi) = R(r)Y(\theta,\phi)\mathbf{S}_{1/2}^{\sigma}$ whose angular part $Y(\theta,\phi)$ is expressed in the basis of atomic orbitals in which it is real-valued (i.e. the basis of cubic harmonics $^{128-130}$), one can first determine if $\psi^{\sigma}(r,\theta,\phi)$ is an eigenstate of the unitary symmetries (i.e. proper rotations and rotoinversions) $h \in H_{\mathbf{q}}$, where $H_{\mathbf{q}}$ is the maximal unitary subgroup of $G_{\mathbf{q}}$, and where h includes SU(2) spin rotations if $H_{\mathbf{q}}$ is a single group. First, if $\psi^{\sigma}(r,\theta,\phi)$ is an eigenstate of each $h \in H_{\mathbf{q}}$, then $\psi^{\sigma}(r,\theta,\phi)$ can be classified by the phase λ_h that it acquires under the action of each $h \in H_{\mathbf{q}}$ [i.e., by the eigenvalue λ_h of h: $h\psi^{\sigma}(r,\theta,\phi) = \lambda_h\psi^{\sigma}(r,\theta,\phi)$]. Conversely, if $\psi^{\sigma}(r,\theta,\phi)$ is not an eigenstate of any of the unitary operations $h \in H_{\mathbf{q}}$, then one can instead form an orthonormal set of symmetrized wavefunctions $\tilde{\psi}^{\sigma}(r,\theta,\phi)$ from linear combinations of the wavefunctions in the set $\{h\psi^{\sigma}(r,\theta,\phi)h^{-1}\}$ taken over all $h \in H_{\mathbf{q}}$. Using the values of λ_h for each symmetry $h \in H_{\mathbf{q}}$ acting on $\psi^{\sigma}(r,\theta,\phi)$ [or on the orthonormal set of symmetrized $\tilde{\psi}^{\sigma}(r,\theta,\phi)$ formed from $\{h\psi^{\sigma}(r,\theta,\phi)h^{-1}\}\]$, each atomic [ionic] orbital [or symmetric set of atomic orbitals] can then be uniquely labeled by a (co)rep of $G_{\bf q}^{-131,132}$. Specifically, for each atomic orbital or symmetric set of orbitals, there is only one (co)rep $\tilde{\rho}$ of $G_{\mathbf{q}}$ whose characters [see the text following SEq. (71)] satisfy $\chi_{\tilde{\rho}}(h) = \sum_{i} \lambda_{h,i}$ for each $h \in H_{\mathbf{q}}$ and wavefunction $\tilde{\psi}_i^{\sigma}(r,\theta,\phi)$ in the symmetrized, orthonormal basis of $\{h\psi^{\sigma}(r,\theta,\phi)h^{-1}\}$. Following the terminology employed in TQC¹, we refer to the correspondence between [a set of] atomic orbital[s] and a (co)rep $\tilde{\rho}$ by stating that the atomic orbital [or set of orbitals] "transforms in" the (co)rep $\tilde{\rho}$.

If \mathcal{T} symmetry is relaxed, however, then $G_{\mathbf{q}}$ necessarily becomes isomorphic to a Type-III magnetic point group [MPG, see the text following SEq. (27)]. In the case in which $G_{\mathbf{q}}$ is isomorphic to an MPG, the correspondence

between (co)reps and atomic orbitals is more opaque. Specifically, the basis functions of the (co)reps of the MPGs are still spanned by the set $\{Y(\theta,\phi)\} \otimes \{\mathbf{S}_{1/2}^{\sigma}\}$, which occurs because each MPG is a subgroup of a Type-II SPG [see the text text following SEq. (27)], which is itself a subgroup of Pin⁻(3) $\cup \mathcal{T} \times \text{Pin}^-(3)$. However, as we will show in this section, for some MPG (co)reps, the corresponding $\psi^{\sigma}(r,\theta,\phi)$ is only an eigenstate of the unitary symmetries h in the MPG if the angular part $Y(\theta,\phi)$ is expressed in the complex basis of spherical harmonics^{128–130}. Therefore, for this work, we introduce the term magnetic atomic orbital to reference the basis functions that transform in the lowest-dimensional [i.e. in one-dimensional] MPG (co)reps⁹. As we will show in the examples below (SN 19, 20, and 21), the angular parts $Y(\theta,\phi)$ of some magnetic atomic orbitals can be expressed in the real basis of the familiar cubic harmonics (i.e. atomic orbitals, such as s and d_{xy}), whereas the angular parts of other magnetic orbitals necessarily take the form of \mathcal{T} -breaking linear combinations of cubic harmonics (i.e. spherical harmonics, such as $p_x \pm ip_y$ magnetic atomic orbitals).

Because the 3D magnetic atomic orbitals are relatively esoteric, especially when considering the combined effects of SOC and magnetism, then we will leave the complete tabulation of the magnetic atomic orbitals that transform in each (co)rep of each SPG for future works. However, we will still in this work detail representative examples of MPG (co)reps and their corresponding magnetic atomic orbitals. In SN 19, 20, and 21, we will respectively determine the lowest-angular-momentum, spin-degenerate pair of magnetic atomic orbitals that transforms in each single-valued (co)rep of Type-I MPG 9.1.29 4, Type-III MPG 9.3.31 4′, and Type-II SPG 9.2.30 41′ [as was previously done in SN 8, we will continue to label SPGs employing the notation of the MPOINT tool on the BCS^{15–18} in which an SPG is labeled by its number, followed by its symbol].

Lastly, we note that double-valued MPG (co)reps in general correspond to less intuitive tensor products of fermionic spinors and real-space wavefunctions^{9,33} [i.e., linear combinations of the basis functions in $\{Y(\theta,\phi)\} \otimes \{\mathbf{S}_{1/2}^{\sigma}\}$]. For example, a $(d_{xy} + id_{x^2-y^2}) \otimes \mathbf{S}_z^{\uparrow}$ magnetic atomic spinorbital is less familiar than a nonmagnetic spinless d_{xy} orbital. Conversely, single-valued MPG (co)reps correspond to spin-degenerate linear combinations of the basis functions in $\{Y(\theta,\phi)\} \otimes \mathbb{1}_{\sigma}$, where $\mathbb{1}_{\sigma}$ is the 2×2 identity in the space of $\mathbf{S}_{1/2}^{\sigma}$. Hence, for simplicity, in the examples in SN 19, 20, and 21, we will restrict focus to the single-valued (co)reps of single SPGs and their corresponding [spin-degenerate pairs of] magnetic atomic orbitals.

Throughout this section, we will obtain the (co)reps of SPGs through character tables reproduced from the CorepresentationsPG tool on the BCS, which we have implemented for this work. For each of the 122 crystallographic SPGs, CorepresentationsPG outputs the single- and double-valued (co)reps, character tables, and symmetry matrix representatives. CorepresentationsPG subsumes the earlier REPRESENTATIONS DPG tool (https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=dbg), which was implemented for TQC^{1,2} to output the irreps and character tables of the 32 single and double Type-I MPGs. In SFig. 14, we show the output of CorepresentationsPG for Type-III MPG 5.3.14 2'/m.

Irreducible corepresentations of the Magnetic Point Group 2'/m (N. 5.3.14)

Table of characters of the unitary symmetry operations

(1)	(2)	(3)	C ₁	C ₂	C ₃	C ₄
GM ₁	A'	GM ₁	1	1	1	1
GM ₂	Α''	GM ₂	1	-1	1	-1
GM ₄ GM ₃	² E ¹ E	$\overline{GM_3}\overline{GM_4}$	2	0	-2	0

Lists of unitary symmetry operations in the conjugacy classes

C₁: 1

C₂: m₀₁₀

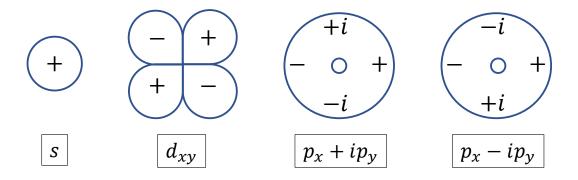
C₃: d1

C₄: dm₀₁₀

Matrices of the representations of the group

The antiunitary operations are written in red color

N	Matrix presentation		Seitz symbol	GM ₁	GM ₂	GM₃GM₄
1	$\left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \qquad \left(\begin{array}{ccccc} \end{array}\right)$	1 0 0 1	1	1	1	(1 0 0 1)
2	$\left(\begin{array}{cccc} & 1 & 0 & 0 \\ & 0 & -1 & 0 \\ & 0 & 0 & 1 \end{array}\right) \left($	0 -1 1 0	m ₀₁₀	1	-1	(-i 0 0 0 i
7	$\left(\begin{array}{cccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right)^{I} \qquad \left(\begin{array}{cccc} \end{array}\right)$	0 1 -1 0	^d 2' ₀₁₀	1	-1	(0 -i) -i 0
8	$\left(\begin{array}{cccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)^{I} $	-1 0 0 -1	ďŢʻ	1	1	(0 1)


Supplementary Figure 14: The output of the CorepresentationsPG tool on the BCS for Type-III MPG 5.3.14 2'/m. For each of the 122 crystallographic SPGs (see SN 8 and SRefs. 7–18), CorepresentationsPG outputs the irreducible (co)reps of the SPG, the unitary symmetry operations in the SPG, and the matrix representatives of both the unitary and antiunitary symmetry elements in the SPG. For each antiunitary symmetry $g_{A,i}$ in the SPG, entries in the table of matrix representatives are labeled in red text, and the matrices listed for each (co)rep $\tilde{\rho}$ indicate the unitary part U of the antiunitary matrix representative $\Delta_{\tilde{\rho}}(g_{A,i}) = UK$, where K is complex conjugation. We note that the bottom table only contains a representative subset of the output of CorepresentationsPG for Type-III MPG 5.3.14 2'/m, in order to preserve the legibility of the text in this figure.

19. Irreps and Magnetic Atomic Orbitals in Type-I Single MPG 9.1.29 4

	Character Table for								
Type-I Single MPG 9.1.29 4									
Irrep	E	C_{2z}	C_{4z}	C_{4z}^{-1}					
A	1	1	1	1					
B	1	1	-1	-1					
^{2}E	1	-1	i	-i					
^{1}E	1	-1	-i	i					

Supplementary Table 4: Single-valued irreps and characters for Type-I single MPG 9.1.29 4, reproduced from CorepresentationsPG on the BCS. For each irrep ρ and unitary symmetry element h, elements in the table correspond to the character $\chi_{\rho}(h) = \text{Tr}[\Delta_{\rho}(h)]$, where $\Delta_{\rho}(h)$ is the matrix representative of h in the irrep ρ [see the text following SEq. (65)]. Following the nomenclature established in SN 13, we use the symbol E for the identity element. Because $\chi_{\rho}[(C_{2z})^2] = \chi_{\rho}[(C_{4z})^4] = \chi_{\rho}(E)$ for all of the single-valued irreps ρ of Type-I single MPG 9.1.29 4, then the irreps in this table can only correspond to 0D spinless (spin-degenerate) electronic (bosonic) states.

We begin by examining the magnetic atomic orbitals that transform in irreps of Type-I single MPG 9.1.29 4. In Supplementary Table 4, we reproduce the characters for single MPG 9.1.29 4, obtained from CorepresentationsPG on the BCS. In Supplementary Table 4, and for all of the SPGs discussed in this work, we have labeled (co)reps in the notation of SRef. 33, which is based on the notation employed by Mulliken in SRef. 133. For each irrep ρ and unitary symmetry element h in Supplementary Table 4, we list the character $\chi_{\rho}(h) = \text{Tr}[\Delta_{\rho}(h)]$, where $\Delta_{\rho}(h)$ is the matrix representative of h in the irrep ρ [see the text following SEq. (65)].

Supplementary Figure 15: The lowest-angular-momentum spinless (i.e. spin-degenerate pairs of) magnetic atomic orbitals that transform in 131,132 single-valued irreps of Type-I single MPG 9.1.29 4 (Supplementary Table 4). From left to right, the orbitals specifically transform in the $A, B, ^2E$, and 1E single-valued irreps of MPG 9.1.29 4. While the spinless s (A) and d_{xy} (B) orbitals are the same as their familiar nonmagnetic counterparts, the spinless $p_x \pm ip_y$ ($^{2,1}E$) orbitals correspond to \mathcal{T} -breaking linear combinations of nonmagnetic, spinless $p_{x,y}$ orbitals. Most precisely, the angular parts of the wavefunctions of the spinless s and s0 orbitals are respectively given by the s1 and s2 orbitals are given by the s3 orbitals are given by the s4 spherical harmonics s4 spinless s5 orbitals are given by the s6 spinless s6 orbitals are given by the s8 spinless s9 orbitals are given by the s9 s9 orbitals are given by

For each irrep of single-valued Type-I MPG 9.1.29 4 in Supplementary Table 4, we obtain the corresponding lowest-angular-momentum spinless magnetic atomic orbital through the following procedure. First, because we are characterizing electronic states labeled by single-valued irreps, we restrict consideration to spin-degenerate pairs of orbitals $\{\psi^{\uparrow}(r,\theta,\phi),\psi^{\downarrow}(r,\theta,\phi)\}$, which we label by the spinless angular part of each orbital in the pair $Y(\theta,\phi)$. Next, we search for the circular harmonics $[Y(\theta,\phi)=Y_l^{m_l}(\theta,\phi)]$ or cubic harmonics $[Y(\theta,\phi)\propto Y_l^{m_l}\pm Y_l^{-m_l}]^{128-130}$ that are eigenstates of all of the unitary symmetries $h\in H_{\bf q}$ while carrying the lowest possible values of l and $|m_l|$. This procedure returns four (spin-degenerate pairs of) orbitals – one for each single-valued irrep in Supplementary Table 4 – which we depict in SFig. 15. While the (spin-degenerate pairs) of s (A) and d_{xy} (B) orbitals shown in SFig. 15 are the same as their familiar nonmagnetic counterparts, the $p_x \pm ip_y$ ($^{2,1}E$) orbitals in SFig. 15 correspond to T-breaking linear combinations of nonmagnetic $p_{x,y}$ orbitals. Specifically, the angular parts of the wavefunctions of the s and s0 orbitals are respectively given by the s1 and s1 orbitals are negative by the s2 and s3 orbitals are given by the s3 and s4 orbitals harmonics, whereas the angular parts of the s3 orbitals are given by the s4 orbitals harmonics.

20. Coreps and Magnetic Atomic Orbitals in Type-III Single MPG 9.3.31 4'

Next, in this section, we will determine the lowest-angular-momentum magnetic atomic orbitals that transform in single-valued coreps of Type-III single MPG 9.3.31 4′. As discussed in the text surrounding SEq. (37), a Type-III group $G_{\bf q}$ can be re-expressed as a coset decomposition with respect to its maximal index-2 unitary subgroup $H_{\bf q}$. In the case of $G_{\bf q}=4'$, the maximal unitary subgroup $H_{\bf q}$ is isomorphic to Type-I MPG 3.1.6 2, such that the coset decomposition is given by:

$$G_{\mathbf{q}} = 4' = 2 \cup \mathcal{T}(41' \setminus 2) = (E)2 \cup (C_{4z} \times \mathcal{T})2,$$
 (145)

where 2 and 41' respectively refer to Type-I MPG 3.1.6 2 and Type-II SPG 9.2.30 41'. SEq. (145) implies that, unlike the previous example of Type-I MPG 3.1.6 2 in SN 19, Type-III MPG 9.3.31 4' contains antiunitary symmetries, which comprise the coset $(C_{4z} \times \mathcal{T})2$.

Character Table for						
Type-I Single						
M	MPG 3.1.6 2					
Irrep	C_{2z}					
A	1	1				
B	1	-1				

Supplementary Table 5: Single-valued irreps and characters for Type-I single MPG 3.1.6 2, reproduced from CorepresentationsPG on the BCS. For each irrep ρ and unitary symmetry in the MPG $h \in H_q$ [SEq. (146)], the table lists the character $\chi_{\rho}(h) = \text{Tr}[\Delta_{\rho}(h)]$, where $\Delta_{\rho}(h)$ is the matrix representative of h in ρ [see the text following SEq. (65)]. Following the nomenclature established in SN 13, we use the symbol E for the identity element. Additionally, as previously emphasized in Supplementary Table 4, we again note that, because $\chi_{\rho}[(C_{2z})^2] = \chi_{\rho}(E)$ for all of the single-valued ρ in this table, then the irreps ρ can only correspond to spinless (spin-degenerate) electronic (bosonic) states.

To determine the single-valued coreps of Type-III single MPG 9.3.31 4′, we begin by examining the single-valued irreps of the maximal unitary subgroup:

$$H_{\mathbf{q}} = 2 = \left\{ E, \ C_{2z} \right\},$$
 (146)

where 2 refers to Type-I single MPG 3.1.6 2. In Supplementary Table 5, we reproduce the characters for Type-I single MPG 3.1.6 2 from CorepresentationsPG on the BCS. To obtain the single-valued coreps of $G_{\bf q}$ (Type-III MPG 9.3.31 4'), we use the characters in Supplementary Table 5 to calculate the indicator J_{ρ} , adapted from the modified Frobenius-Schur indicator^{33,97–99} J_{σ} for little group small coreps discussed in the text surrounding SEqs. (76) and (77):

$$J_{\rho} = \sum_{i} \chi_{\rho}(g_{A,i}^2),\tag{147}$$

where the sum in SEq. (147) runs over the two antiunitary elements $g_{A,i}$ in the coset $(C_{4z} \times \mathcal{T})2$ in SEq. (145). For the specific case of Type-III MPG 9.3.31 4', SEqs. (145), (146), and (147) imply that:

$$J_{\rho} = \chi_{\rho}(C_{4z}^2 \times \mathcal{T}^2) + \chi_{\rho}(C_{4z}^6 \times \mathcal{T}^2)$$

= $2\chi_{\rho}(C_{2z}),$ (148)

where we have exploited that 33 $C_{4z}C_{2z}=C_{4z}^3$, and that $\mathcal{T}^2=(C_{2z})^2=(C_{4z})^4=E$ for single groups. Inserting $\rho=A,B$ and the characters $\chi_{A,B}(h)$ from Supplementary Table 5 into SEq. (148), we determine that:

$$J_A = |H_{\mathbf{q}}|, \ J_B = -|H_{\mathbf{q}}|,$$
 (149)

where $|H_{\bf q}|=2$ is the number of elements [see the text following SEq. (8)] in Type-I single MPG 3.1.6 2 [SEq. (146)]. Following the discussion surrounding SEqs. (73), (74), and (77), SEqs. (148) and (149) imply that, in Type-III single MPG 9.3.31 4', $\rho=A$ forms an undoubled, one-dimensional corep of type (a), whereas $\rho=B$ forms a doubled,

two-dimensional corep of type (b). The single-valued coreps of Type-III single MPG 9.3.31 4' are therefore given by:

$$\tilde{\rho} = A, BB. \tag{150}$$

In Supplementary Table 6, we reproduce the characters for Type-III single MPG 9.3.31 4', obtained from CorepresentationsPG on the BCS. To obtain the lowest-angular-momentum (spin-degenerate pairs of) magnetic atomic orbitals that transform in each corep in Supplementary Table 6, we follow the procedure previously described at the beginning of this section (SN 18) and in the previous section (SN 19). For the corep A in Supplementary Table 6, we find that the corresponding lowest-angular-momentum atomic orbital is a spinless (i.e. spin-degenerate pair of spinful) s orbital(s) (SFig. 15). Conversely, there is no individual spinless magnetic atomic orbital that transforms in the corep BB in Supplementary Table 6, because BB is two-dimensional [i.e., because $\chi_{BB}(E) = 2$]. Instead, we find that the smallest set of magnetic atomic orbitals with the lowest angular momenta that transform in BB are a pair of spinless p orbitals whose lobes are oriented at $C_{4z} \times \mathcal{T}$ -related angles in the xy-plane. An example of a pair of orbitals that transform in BB is one spinless p_x plus one spinless p_y orbital, which span the same two-dimensional space (four-dimensional, including spin) as one spinless $p_x + ip_y$ orbital plus one spinless $p_x - ip_y$ orbital (SFig. 15). Intuitively, this can be understood by recognizing that the lowest-angular-momentum magnetic atomic orbital that transforms in the irrep A (B) of Type-I single MPG 3.1.6 2 is a spinless s ($p_x \pm ip_y$) orbital. Under the action of $C_{4z} \times \mathcal{T}$ in SEq. (145), an s orbital is transformed to itself, whereas a $p_x \pm ip_y$ orbital is transformed into a $(p_y \mp ip_x)^* = i(p_x \mp ip_y) \propto p_x \mp ip_y$ orbital. Hence, $A \uparrow G_{\mathbf{q}} = A$ [i.e., the irrep A of $H_{\mathbf{q}}$ induces a type (a) corep A in $G_{\mathbf{q}}$, see the text surrounding SEq. (73)], whereas $B \uparrow G_{\mathbf{q}} = BB$ [i.e., the irrep B of $H_{\mathbf{q}}$ induces a type (b) corep BB in $G_{\mathbf{q}}$, see the text surrounding SEq. (74)].

21. Coreps and Atomic Orbitals in Type-II Single SPG 9.2.30 41'

As a final example, in this section, we will determine the lowest-angular-momentum, nonmagnetic atomic orbitals that transform in single-valued coreps of Type-II single SPG 9.2.30 41', the \mathcal{T} -symmetric supergroup of the MPGs previously analyzed in SN 19 and 20 (Type-I MPG 9.1.29 4 and Type-III MPG 9.3.31 4', respectively). Like a Type-II SSG [SEq. (3)], a Type-II MPG $G_{\mathbf{q}}$ can be re-expressed as a coset decomposition with respect to its maximal index-2 unitary subgroup $H_{\mathbf{q}}$. In the case of $G_{\mathbf{q}} = 41'$, the decomposition is:

$$41' = 4 \cup (\mathcal{T})4,\tag{151}$$

where $H_{\mathbf{q}} = 4$ refers to Type-I single MPG 9.1.29 4, which we previously analyzed in SN 19. $H_{\mathbf{q}} = 4$ contains four elements (Supplementary Table 4):

$$H_{\mathbf{q}} = \left\{ E, \ C_{2z}, \ C_{4z}, \ C_{4z}^{-1} \right\}.$$
 (152)

Character Table for						
Type-III Single						
MPG $9.3.31~4'$						
Corep	E	C_{2z}				
A	1	1				
BB	2	-2				

Supplementary Table 6: Single-valued coreps and characters for Type-III single MPG 9.3.31 4', reproduced from CorepresentationsPG on the BCS. For each corep $\tilde{\rho}$ and unitary symmetry element $h \in H_{\mathbf{q}}$, where $H_{\mathbf{q}}$ is the maximal unitary subgroup of MPG 9.3.31 4' [Supplementary Table 5 and SEqs. (145) and (146)], the table lists the character $\chi_{\tilde{\rho}}(h) = \text{Tr}[\Delta_{\tilde{\rho}}(h)]$, where $\Delta_{\tilde{\rho}}(h)$ is the matrix representative of h in the corep $\tilde{\rho}$ [see the text following SEq. (65)]. Following the nomenclature established in SN 13, we use the symbol E for the identity element. Because the matrix representatives of the antiunitary symmetries in Type-III MPG 9.3.31 4' [i.e., the antiunitary elements of the coset $(C_{4z} \times \mathcal{T})2$ in SEq. (145)] are also antiunitary, then they do not have well-defined traces, and do not appear in the character table. In SEqs. (148), (149), (150), we show that Type-III single MPG 9.3.31 4' has two single-valued coreps: there is one, one-dimensional, single-valued corep A, which is equivalent [defined in the text surrounding SEq. (73)] to an irrep A of A of A (Supplementary Table 5), and there is one, two-dimensional, single-valued corep A by A (140) of A (141) to two copies of the same irrep A of A (141) of A (142) of A (143) is two copies of the same irrep A (143) of A (144) is two copies of the same irrep A (144) of A (145) of A (145) of A (145) is two copies of the same irrep A (145) of A (146) of A (147) is two copies of the same irrep A (147) of A (147) is two copies of the same irrep A (147) of A (147) is two copies of the same irrep A (147) of A (148) of A (149) of A (1

Using the character table for Type-I MPG 9.1.29 4 (Supplementary Table 4), we previously determined in SN 19 that the four single-valued irreps of $H_{\bf q}=4$ given by $\rho=A,\ B,\ ^2E,\ ^1E$ respectively correspond to spinless (i.e. spin-degenerate pairs of) $s,\ d_{xy},\ p_x+ip_y,$ and p_x-ip_y magnetic atomic orbitals.

С	Character Table for							
Type-II Single SPG 9.2.30 41'								
Corep	E	C_{2z}	C_{4z}	C_{4z}^{-1}				
A	1	1	1	1				
B	1	1	-1	-1				
^{1}E ^{2}E	2	-2	0	0				

Supplementary Table 7: Single-valued coreps and characters for Type-II single SPG 9.2.30 41', reproduced from CorepresentationsPG on the BCS. For each corep $\tilde{\rho}$ and unitary symmetry element $h \in H_{\mathbf{q}}$, where $H_{\mathbf{q}}$ is the maximal unitary subgroup of SPG 9.2.30 (41') [Supplementary Table 4 and SEqs. (151) and (152)], the table lists the character $\chi_{\tilde{\rho}}(h) = \text{Tr}[\Delta_{\tilde{\rho}}(h)]$, where $\Delta_{\tilde{\rho}}(h)$ is the matrix representative of h in the corep $\tilde{\rho}$ [see the text following SEq. (65)]. Following the nomenclature established in SN 13, we use the symbol E for the identity element. Because the matrix representatives of the antiunitary symmetries in Type-II SPG 9.2.30 41' [i.e., the antiunitary elements of the coset (\mathcal{T})4 in SEq. (151)] are also antiunitary, then they do not have well-defined traces, and do not appear in the character table. In SEqs. (154), (155), and (156), we show that Type-II single MPG 9.2.30 41' has three single-valued coreps: there are two, one-dimensional, single-valued coreps A and A, which are equivalent [defined in the text surrounding SEq. (73)] to irreps (A and A, respectively) of A (Supplementary Table 4), and there is one, two-dimensional, single-valued corep A and A if A is an area of the single-valued A in this table, then the coreps A and A in the cores of A and A in the single-valued A in this table, then the coreps A can only correspond to 0D spinless (spin-degenerate) electronic (bosonic) states.

To determine the single-valued coreps $\tilde{\rho}$ of Type-II single SPG 9.2.30 41', we again calculate the indicator J_{ρ} discussed in the text surrounding SEq. (147):

$$J_{\rho} = \sum_{i} \chi_{\rho}(g_{A,i}^2),$$
 (153)

where the sum in SEq. (153) runs over the four antiunitary elements $g_{A,i}$ in the coset (\mathcal{T})4 in SEq. (151). In the specific case of Type-II single SPG 9.2.30 41', SEqs. (151), (152), and (153) imply that:

$$J_{\rho} = \chi_{\rho}(\mathcal{T}^{2}) + \chi_{\rho}(C_{2z}^{2} \times \mathcal{T}^{2}) + \chi_{\rho}(C_{4z}^{2} \times \mathcal{T}^{2}) + \chi_{\rho}(C_{4z}^{-2} \times \mathcal{T}^{2})$$

= $2 \left[\chi_{\rho}(E) + \chi_{\rho}(C_{2z}) \right],$ (154)

where we have exploited that $C_{4z}^{33} = C_{2z}$, and that $C_{4z}^{-2} = C_{2z}^{-1} = C_{2z}$ and $C_{4z}^{2} = (C_{2z})^2 = (C_{4z})^4 = E$ for single groups. Inserting $\rho = A, B, E, E$ and the characters from Supplementary Table 4 into SEq. (154), we determine that:

$$J_A = J_B = |H_{\mathbf{q}}|, \ J_{^2E} = J_{^1E} = 0,$$
 (155)

where $|H_{\bf q}|=4$ is the number of elements [see the text following SEq. (8)] in Type-I single MPG 9.1.29 4 [SEq. (152)]. Following the discussion surrounding SEqs. (73), (75), and (77), SEqs. (154) and (155) imply that, in Type-II single MPG 9.2.30 41', $\rho=A$ and $\rho=B$ each form undoubled, one-dimensional coreps of type (a), whereas $\rho={}^2E$ and $\rho={}^1E$ together form a paired, two-dimensional corep of type (c). The single-valued coreps of Type-II single MPG 9.2.30 41' are therefore given by:

$$\tilde{\rho} = A, \ B, \ ^{1}E \ ^{2}E.$$
 (156)

In Supplementary Table 7, we reproduce the characters for Type-II SPG 9.2.30 41', obtained from CorepresentationsPG on the BCS. Like in $H_{\bf q}=4$, the maximal unitary subgroup of SPG 9.2.30 41' [see SN 19 and SEqs. (151) and (152)], the lowest-angular-momentum (spin-degenerate pairs of) atomic orbitals that transform in the single-valued coreps A and B of Type-II SPG 9.2.30 41' are respectively spinless s and spinless d_{xy} orbitals (SFig. 15). Conversely, there is no individual spinless atomic orbital that transforms in the corep 1E 2E in Supplementary Table 7, because 1E 2E is two-dimensional [i.e., because $\chi_{^1E}$ 2E 2E are a Kramers pair of spinless $p_x \pm ip_y$ magnetic atomic orbitals [i.e. one spinless $p_x + ip_y$ plus one spinless $p_x - ip_y$ orbital (SFig. 15)], which are usually

denoted more succinctly in other works¹ as "spinless p_x and p_y orbitals", because they span the same two-dimensional space (four-dimensional, including spin) as one spinless p_x orbital plus one spinless p_y orbital. Intuitively, this can be understood by recognizing that the lowest-angular-momentum magnetic atomic orbitals that transform in the irreps $A, B, {}^2E, {}^1E$ of Type-I MPG 9.1.29 4 are respectively spinless $s, d_{xy}, p_x + ip_y$, and $p_x - ip_y$ magnetic atomic orbitals (SFig. 15). Under the action of \mathcal{T} symmetry in SEq. (151), an s or d_{xy} orbital is transformed to itself, whereas a $p_x \pm ip_y$ orbital is transformed into a $p_x \mp ip_y$ orbital. Hence, $A \uparrow G_{\mathbf{q}} = A$ and $B \uparrow G_{\mathbf{q}} = B$ [i.e., the irreps A and B of $H_{\mathbf{q}}$ respectively induce the type (a) coreps A and B in $G_{\mathbf{q}}$, see the text surrounding SEq. (73)], whereas ${}^{1,2}E \uparrow G_{\mathbf{q}} = {}^{1}E {}^{2}E$ [i.e., the irreps ${}^{1,2}E$ of $H_{\mathbf{q}}$ each induce a type (c) corep ${}^{1}E {}^{2}E$ in $G_{\mathbf{q}}$, see the text surrounding SEq. (75)].

22. Inducing Band Corepresentations from Magnetic Atomic Orbitals and the MSITESYM Tool

Building upon the earlier definitions of site-symmetry groups [SN 8], Wyckoff positions [SN 9], little groups [SN 12], small (co)reps of the SSGs [SN 13], and magnetic atomic orbitals that transform in (co)reps of the site-symmetry groups [SN 18], we will now in this section define the band (co)representations of the SSGs, which are induced from exponentially localized [Wannier^{114,115}] orbitals in position space. We will also introduce and detail the MSITESYM tool, through which users may access the small (co)reps subduced from each band (co)representation of each SSG. This section is largely a review of previous works that discuss induced band (co)representations – most notably SRef. 4 – though throughout this section, we will employ a more general terminology than in SRef. 4 that encompasses both magnetic and nonmagnetic band (co)representations. In particular, in this section, we will introduce the term band corepresentation to refer to a band representation in an SSG with antiunitary symmetries [i.e., a Type-II, III, or IV SSG (SN 4, 5, and 6, respectively)]. Specific examples demonstrating usage of the theoretical machinery established in this section are provided in SN 24 and 29 for cases of magnetic band (co)representations, and are provided in SRefs. 1–4 for cases of nonmagnetic band corepresentations.

To begin, consider an infinite crystal whose unit cells are furnished with initially decoupled (magnetic) atomic orbitals. The set of atomic orbitals respects the symmetries of the SSG of the crystal G, and, by definition, each orbital at \mathbf{q} occupies a site in a Wyckoff position of G with a site-symmetry group $G_{\mathbf{q}} \in G$ (SN 7). As discussed in SN 9, $G_{\mathbf{q}}$ is a subgroup of G ($G_{\mathbf{q}} \subset G$) that is isomorphic to a Shubnikov point group (SPG) (SN 8) containing a set of symmetries $g \in G_{\mathbf{q}}$, $g \in G$. Generically, there also exist a set of symmetries:

$$\tilde{g} \in G \setminus G_{\mathbf{q}},$$
 (157)

for which:

$$\tilde{g}\mathbf{q} = \mathbf{q}',\tag{158}$$

where \mathbf{q}' is a different site than \mathbf{q} in the same unit cell. The set of all sites $\{\mathbf{q}_{\alpha}\}$ in the same unit cell as \mathbf{q} (including \mathbf{q} itself) form the Wyckoff orbit of \mathbf{q} , where the index α on \mathbf{q}_{α} runs from 1 to n, where n is the multiplicity of the Wyckoff orbit indexed by \mathbf{q} (see SN 9). We emphasize that the choice of \tilde{g} in SEqs. (157) and (158) is not generically unique – for example, in Type-I MSG 10.42 P2/m, which is generated by $\{\mathcal{I}|\mathbf{0}\}$, $\{C_{2y}|\mathbf{0}\}$, and 3D lattice translations, the sites $\mathbf{q}=(u,0,w)$ and $\mathbf{q}'=(-u,0,-w)$ are related by both $\tilde{g}=\{\mathcal{I}|\mathbf{0}\}$ and $\tilde{g}=\{C_{2y}|\mathbf{0}\}$. We additionally emphasize that the restriction to \mathbf{q}' that lie in the same unit cell as \mathbf{q} is a convention choice that was employed previously in TQC¹⁻⁶ that we will continue to employ in MTQC to obtain MEBRs consistent with the PEBRs previously calculated for TQC. More generally, a set of EBRs can be still be computed as long as each \mathbf{q}' is unique and is not related to \mathbf{q} or to any other \mathbf{q}' by an integer-valued linear combination of primitive lattice vectors.

We will find it convenient in this section to initially restrict to the case in which the crystal is furnished by a set of (magnetic) atomic orbitals at each site of a single Wyckoff position indexed by \mathbf{q} that transforms in one and only one (i.e. in an irreducible) (co)rep $\tilde{\rho}_{\mathbf{q}}$ of the site-symmetry group $G_{\mathbf{q}}$. Because reducible [composite] site-symmetry [band] (co)representations may be expressed as direct sums of irreducible [elementary] site-symmetry [band] (co)representations, then, at the end of this section, we will straightforwardly relax this restriction and consider the more general case in which the unit cell contains larger sets of atomic orbitals that transform in direct sums of site-symmetry (co)reps. In the language of SRefs. 114,115, each magnetic atomic orbital at \mathbf{q} (including spin) corresponds to an exponentially (maximally) localized (spinful), symmetric Wannier orbital. Specifically, while maximally localized, symmetric Wannier and magnetic atomic orbitals are not required to have the same radial parts [aside from the Wannier orbital exhibiting exponential or sharper localization], we can establish a correspondence between Wannier and atomic orbitals by restricting focus to the angular parts, which, for symmetrized [sets of] orbitals, necessarily transform in (co)reps of the 122 crystallographic SPGs [see SN 18 and SRefs. 7–18].

Next, because a Wyckoff position generically contains more than one site [i.e. the multiplicity of the Wyckoff position $n \geq 1$], then, given a [set of] Wannier orbital[s] that transform in a single irreducible, D-dimensional (co)rep of the site-symmetry group $G_{\mathbf{q}}$, in order to preserve the symmetry of the SSG G, there must additionally be D-dimensional [sets of] Wannier orbitals on each of the n-1 additional sites in the Wyckoff position, leading to a total of $n \times D$ Wannier orbitals in each unit cell. For each [set of] orbital[s] at \mathbf{q} that transforms in the (co)rep $\tilde{\rho}_{\mathbf{q}}$ of $G_{\mathbf{q}}$, there is therefore also an orbital [or set of orbitals] at each site $\mathbf{q}' = \tilde{g}\mathbf{q} \mod \mathbf{t}_{a,b,c}$ for each symmetry $\tilde{g} \in G \setminus G_{\mathbf{q}}$ that transform[s] in an irreducible (co)rep $\tilde{\rho}_{\mathbf{q}'}$ of:

$$G_{\mathbf{q}'} = \tilde{g}G_{\mathbf{q}}\tilde{g}^{-1},\tag{159}$$

where $G_{\mathbf{q}'}$ is isomorphic and conjugate to $G_{\mathbf{q}}$. It is important to note that even though $G_{\mathbf{q}'}$ is isomorphic to $G_{\mathbf{q}}$, and even though $G_{\mathbf{q}}$ and $G_{\mathbf{q}'}$ are both isomorphic to the same Shubnikov point group (SPG, see SN 8) M, the symmetries $\tilde{g} \in G \setminus G_{\mathbf{q}}$ require that the orbitals [and (co)reps] at \mathbf{q}' are conjugate to those at \mathbf{q} . For example, if \mathbf{q} and \mathbf{q}' are related by the symmetry $\{C_{4z}|\mathbf{0}\}$ in an SSG G, then a p_x orbital at \mathbf{q} must be accompanied by a $p_y = C_{4z}p_xC_{4z}^{-1}$ orbital at \mathbf{q}' in order to preserve $\{C_{4z}|\mathbf{0}\}\in G$. Employing the terminology previously established in SRefs. 1–6, this can be summarized by stating that the orbital[s] that transform in $\tilde{\rho}_{\mathbf{q}}$ – along with the orbital[s] that transform[s] in the conjugate (co)reps $\tilde{\rho}_{\mathbf{q}'}$ of each of the other n-1 sites in the Wyckoff position of \mathbf{q} – occupy the Wyckoff position indexed by \mathbf{q} . To formally define the conjugate site-symmetry (co)reps $\tilde{\rho}_{\mathbf{q}'}$, we first establish that, given a unitary symmetry $h \in H_{\mathbf{q}}$ – the maximal unitary subgroup of $G_{\mathbf{q}}$ – the matrix representative of h in $\tilde{\rho}_{\mathbf{k}}$ is denoted as $\Delta_{\tilde{\rho}_{\mathbf{q}}}(h)$, for which the character of h in $\tilde{\rho}_{\mathbf{k}}$ is given by $\mathrm{Tr}[\Delta_{\tilde{\rho}_{\mathbf{q}}}(h)]$. In this notation, it is clear that the matrix representative $\Delta_{\tilde{\rho}_{\mathbf{q}'}}(ghg^{-1})$ of the conjugate symmetry $\tilde{g}h\tilde{g}^{-1} \in G_{\mathbf{q}'}$ does not generically equal $\Delta_{\tilde{\rho}_{\mathbf{q}'}}(h)$ (which itself may not be well defined, because h is not required to be an element of both $G_{\mathbf{q}}$ and $G_{\mathbf{q}'}$). Instead, the matrix representatives of the conjugate symmetries $\tilde{g}h\tilde{g}^{-1} \in G_{\mathbf{q}'}$ are conjugate to the matrix representatives of $h \in G_{\mathbf{q}}$; specifically, if \tilde{g} is unitary, then:

$$\Delta_{\tilde{\rho}_{\mathbf{q}'}}(\tilde{g}h\tilde{g}^{-1}) = \Delta_{\tilde{\rho}_{\mathbf{q}}}(h), \tag{160}$$

and if \tilde{g} is antiunitary, then:

$$\Delta_{\tilde{\rho}_{\mathbf{q}'}}(\tilde{g}h\tilde{g}^{-1}) = \left[\Delta_{\tilde{\rho}_{\mathbf{q}}}(h)\right]^*. \tag{161}$$

The central principle of TQC, which we will here extend to MTQC, is that, when a set of of magnetic atomic orbital[s] that transform in an irreducible site-symmetry (co)rep $\tilde{\rho}_{\mathbf{q}}$ occupy the Wyckoff position of \mathbf{q} , the orbitals induce a (co)rep of the SSG G:

$$\tilde{\rho}_{\mathbf{q}} \uparrow G = \tilde{\rho}_{\mathbf{q}}^G, \tag{162}$$

where $\tilde{\rho}_{\mathbf{q}}^{G}$ is a band (co)representation [band (co)rep]. Crucially, the action of induction (\uparrow), unlike subduction (\downarrow), does not preserve dimensionality (i.e. the character of the identity element E), such that $\chi_{\tilde{\rho}_{\mathbf{q}}^{G}}(E) \neq \chi_{\tilde{\rho}_{\mathbf{q}}}(E)$. Instead:

$$\chi_{\tilde{\rho}_{\mathbf{q}}^{G}}(E) = \chi_{\tilde{\rho}_{\mathbf{q}}}(E) \times [G : G_{\mathbf{q}}] = \chi_{\tilde{\rho}_{\mathbf{q}}}(E) \times n \times N, \tag{163}$$

where n is the multiplicity of the Wyckoff position indexed by \mathbf{q} and N is the number of unit cells in the crystal. We next take N to be very large (i.e. countably infinite), reflecting our goal of applying MTQC to theoretical models of infinite crystals to predict the topology of mesoscopic solid-state systems. The (now infinite) factor of N on the right-hand side of SEq. (163) originates from the infinite subgroup index $[G:G_{\mathbf{q}}]$ of $G_{\mathbf{q}}$ in G [defined in the text surrounding SEq. (10)], which occurs because the site-symmetry group $G_{\mathbf{q}}$ is finite, whereas the SSG G is infinite. This can be seen by recognizing that $G_T \not\subset G_{\mathbf{q}}$, $G_T \subseteq G$, in which G_T is the infinite group of 3D lattice translations [SEq. (1)].

Most importantly, as shown in SRef. 4, SEq. (162) can be decomposed into a sum of full (co)reps:

$$\tilde{\rho}_{\mathbf{q}}^{G} = \bigoplus_{\tilde{\mathbf{k}}} \tilde{\Sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^{G},\tag{164}$$

where the sum in SEq. (164) instead runs over each of the points $\hat{\mathbf{k}}$ in the *irreducible wedge* of the first BZ^{134,135}, which is defined as the set of points $\tilde{\mathbf{k}}$ in the first BZ containing one and only one arm of each momentum star [see SN 12]. In SEq. (164), $\tilde{\Sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^G$ is a generically reducible full [i.e. space group] (co)rep of the star of the SSG G indexed

by $\tilde{\mathbf{k}}$ [SEq. (83)]. Hence:

$$\tilde{\Sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^{G} = \bigoplus_{i} b_{i}^{\tilde{\mathbf{k}},\mathbf{q}} \tilde{\Sigma}_{i,\tilde{\mathbf{k}}}, \tag{165}$$

where $\tilde{\Sigma}_{i,\tilde{\mathbf{k}}}$ is the i^{th} irreducible full (co)rep of the star of G indexed by $\tilde{\mathbf{k}}$, and where $b_i^{\tilde{\mathbf{k}},\mathbf{q}}$ is the multiplicity of $\tilde{\Sigma}_{i,\tilde{\mathbf{k}}}$ in the decomposition of $\tilde{\Sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^G$ [i.e., $b_i^{\tilde{\mathbf{k}},\mathbf{q}}$ is a non-negative integer that indicates the number of times that the irreducible full (co)rep $\tilde{\Sigma}_{i,\tilde{\mathbf{k}}}$ appears in $\tilde{\Sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^G$, see the text surrounding SEq. (108)]. Using SEq. (83), SEq. (164) can be further re-expressed in terms of the generically reducible small (co)reps $\tilde{\sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^G$ at each $\tilde{\mathbf{k}}$ point:

$$\tilde{\rho}_{\mathbf{q}}^{G} = \bigoplus_{\tilde{\mathbf{k}}} \tilde{\Sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^{G} = \bigoplus_{\tilde{\mathbf{k}}} \bigoplus_{\mathbf{k} = \tilde{\mathbf{k}}} \tilde{\sigma}_{\mathbf{k},\mathbf{q}}^{G} = \bigoplus_{\mathbf{k}} \tilde{\sigma}_{\mathbf{k},\mathbf{q}}^{G}$$

$$(166)$$

where $m_{\tilde{\mathbf{k}}}$ is the number of arms in the star of $\tilde{\mathbf{k}}$ [see the text surrounding SEq. (58)], such that \mathbf{k} runs from $\tilde{\mathbf{k}}$ to $\mathbf{k}_{m_{\tilde{\mathbf{k}}}}$ for each star indexed by $\tilde{\mathbf{k}}$ in the sum in the second equality, and where the sum on the right-hand side of SEq. (166) runs over each of the N (infinitely many) points \mathbf{k} in the first BZ.

Further intuition for SEqs. (163), (164), and (166), can be obtained by comparing the relative dimensionality of $\tilde{\rho}_{\mathbf{q}}$, $\tilde{\rho}_{\mathbf{q}}^G$, $\tilde{\Sigma}_{\mathbf{k},\mathbf{q}}^G$, and $\tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G$. First, while $\chi_{\tilde{\rho}_{\mathbf{q}}^G}(E)$ is infinite [SEq. (163)], the component $\tilde{\Sigma}_{\mathbf{k},\mathbf{q}}^G$ in the Fourier decomposition of the band (co)rep $\tilde{\rho}_{\mathbf{q}}^G$ in SEq. (165) is *finite-dimensional*, and there are instead an infinite number of [generically reducible] full (co)reps $\tilde{\Sigma}_{\mathbf{k},\mathbf{q}}^G$ – one at each of the infinitely many $\tilde{\mathbf{k}}$ points in the irreducible wedge of the first BZ [defined in the text following SEq. (164)]. To see this, we compute the dimensionality of $\tilde{\Sigma}_{\mathbf{k},\mathbf{q}}^G$, which is defined as the character of the identity operation E:

$$\chi_{\tilde{\Sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^G}(E) = \chi_{\tilde{\rho}_{\mathbf{q}}}(E) \times n \times m_{\tilde{\mathbf{k}}}, \tag{167}$$

in which n is the multiplicity of the Wyckoff position indexed by \mathbf{q} (SN 9), and $m_{\tilde{\mathbf{k}}}$ is the number of arms in the star of $\tilde{\mathbf{k}}$ [see the text surrounding SEq. (58)]. Conversely, the [generically reducible] small (co)rep $\tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G$ in SEq. (166) generically has a smaller (finite) dimensionality than $\tilde{\Sigma}_{\tilde{\mathbf{k}},\mathbf{q}}^G$. To see this, we first subduce $\tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G$ onto the little group $G_{\mathbf{k}}$:

$$\tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G \downarrow G_{\mathbf{k}} = \tilde{\varsigma}_{\mathbf{k},\mathbf{q}},\tag{168}$$

where $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}$ is the symmetry data [see the text following SEq. (108)] induced by the (co)rep $\tilde{\rho}_{\mathbf{q}}$ of the site-symmetry group $G_{\mathbf{q}}$ into the SSG G [SEq. (162)] and then subduced onto the little group $G_{\mathbf{k}}$ of the point \mathbf{k} in the first BZ. We note that, because $\tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G$ is already a [generically reducible] small (co)rep of $G_{\mathbf{k}}$ [SEq. (166)], then $\tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G \downarrow G_{\mathbf{k}}$ in SEq. (168) is a redundant expression. However, in this work, we will continue to employ the expression $\tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G \downarrow G_{\mathbf{k}}$ on the left-hand side of SEq. (168) for consistency with earlier works on TQC^{1,4}. Next, we compute the dimensionality of the subduced symmetry data $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}$:

$$\chi_{\tilde{\rho}_{\mathbf{r}},\mathbf{g}}(E) = \chi_{\tilde{\rho}_{\mathbf{g}}}(E) \times n,\tag{169}$$

where n continues to be the multiplicity of the Wyckoff position indexed by \mathbf{q} (SN 9). Physically, because the set of site-symmetry (co)reps $\{\tilde{\rho}_{\mathbf{q}_{\alpha}}\}$ corresponds to $\chi_{\tilde{\rho}_{\mathbf{q}}}(E) \times n$ magnetic atomic [Wannier] orbitals [SN 18] occupying the n sites \mathbf{q}_{α} in the Wyckoff position of \mathbf{q} , and therefore characterizes $\chi_{\tilde{\rho}_{\mathbf{q}}}(E) \times n$ bands in momentum space, then the subduced symmetry data $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}$ [SEq. (168)] correspond to a (set of) $\chi_{\tilde{\rho}_{\mathbf{q}}}(E) \times n$ Bloch states at \mathbf{k} . This can be summarized by the statement that the $\chi_{\tilde{\rho}_{\mathbf{q}}}(E) \times n$ Bloch states at \mathbf{k} transform in $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}$, analogous to the correspondence between orbitals and position-space SPG [site-symmetry group] (co)reps established in SN 18.

Though $\tilde{\rho}_{\mathbf{q}}$ is an irreducible (co)rep of the site-symmetry group $G_{\mathbf{q}}$, this does not imply that $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}} = \tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G \downarrow G_{\mathbf{k}}$ in [SEq. (166)] is an *irreducible* small (co)rep of $G_{\mathbf{k}}$. In fact, generically, $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}$ is a *reducible* small (co)rep of $G_{\mathbf{k}}$, such that:

$$\tilde{\sigma}_{\mathbf{k},\mathbf{q}}^G \downarrow G_{\mathbf{k}} = \tilde{\varsigma}_{\mathbf{k},\mathbf{q}} = \bigoplus_{j} a_j^{\mathbf{k},\mathbf{q}} \tilde{\sigma}_{j,\mathbf{k}}, \tag{170}$$

where $\tilde{\sigma}_{j,\mathbf{k}}$ is the j^{th} irreducible small (co)rep of $G_{\mathbf{k}}$ and $a_j^{\mathbf{k},\mathbf{q}}$ is a non-negative integer corresponding to the multiplicity of $\tilde{\sigma}_{j,\mathbf{k}}$ in the decomposition of $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}$. To obtain the multiplicities $a_j^{\mathbf{k},\mathbf{q}}$ in SEq. (170), we can re-express SEq. (170) in terms of the characters $\chi_{\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}}(h_i)$ and $\chi_{\tilde{\sigma}_{j,\mathbf{k}}}(h_i)$ of each of the unitary symmetries $h_i \in |\tilde{H}_{\mathbf{k}}|$, the maximal unitary subset of the set of coset representatives $\tilde{G}_{\mathbf{k}}$ [text preceding SEq. (71)] of $G_{\mathbf{k}}$ with respect to the group of lattice translations G_T [SEq. (1)]:

$$\chi_{\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}}(h_i) = \sum_{j} a_j^{\mathbf{k},\mathbf{q}} \chi_{\tilde{\sigma}_{j,\mathbf{k}}}(h_i). \tag{171}$$

As we will show below, it is important to emphasize that the values of $a_j^{\mathbf{k},\mathbf{q}}$ in SEqs. (170) and (171) are determined by the choice of the (co)rep $\tilde{\rho}_{\mathbf{q}}$ of the site-symmetry group $G_{\mathbf{q}}$ [i.e. the (magnetic) atomic orbitals occupying the Wyckoff position indexed by \mathbf{q}] in SEq. (162). This can be seen by first recognizing the values of $\tilde{\sigma}_{j,\mathbf{k}}$ in SEqs. (170) and (171) are limited to the finite set of small (co)reps of $G_{\mathbf{k}}$, which can be obtained through the Corepresentations tool, as previously described in SN 13. Next, we recognize that $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}$ is a component of the Fourier decomposition of the induced band (co)rep $\tilde{\rho}_{\mathbf{q}}^G = \tilde{\rho}_{\mathbf{q}} \uparrow G$ [SEqs. (162) and (166)]. Specifically, SEqs. (162) and (166) imply that, for a given little group $G_{\mathbf{k}}$, the characters $\chi_{\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}}(h_i)$ for each unitary symmetry $h_i \in \tilde{H}_{\mathbf{k}}$ [the maximal unitary subset of $\tilde{G}_{\mathbf{k}}$, see the text preceding SEq. (71)] are given by:

$$\chi_{\tilde{\mathbf{s}}_{\mathbf{k},\mathbf{q}}}(h_i) = \sum_{\alpha=1}^{n} \chi_{\tilde{\mathbf{s}}_{\mathbf{k},\mathbf{q}_{\alpha}}}(h_i), \tag{172}$$

where α runs over each of the n sites \mathbf{q}_{α} in the Wyckoff position of \mathbf{q} (including \mathbf{q} itself, see SN 9), and where, as will shortly be detailed below:

$$\chi_{\tilde{\mathbf{S}}_{\mathbf{k},\mathbf{q}_{\alpha}}}(h_{i}) = \begin{cases} e^{-i\mathbf{k}\cdot(\mathbf{q}_{\alpha}-h_{i}\mathbf{q}_{\alpha})}\chi_{\tilde{\rho}_{\mathbf{q}_{\alpha}}}\left(\left\{E|\mathbf{q}_{\alpha}-h_{i}\mathbf{q}_{\alpha}\right\}h_{i}\right) &, \text{ if } \left\{E|\mathbf{q}_{\alpha}-h_{i}\mathbf{q}_{\alpha}\right\}h_{i} \in G_{\mathbf{q}_{\alpha}}\\ 0 &, \text{ if } \left\{E|\mathbf{q}_{\alpha}-h_{i}\mathbf{q}_{\alpha}\right\}h_{i} \notin G_{\mathbf{q}_{\alpha}} \end{cases}.$$
(173)

When $\chi_{\tilde{\varsigma}_{\mathbf{k},\mathbf{q}\alpha}}(h_i) \neq 0$ in SEq. (173), the vectors $\mathbf{q}_{\alpha} - h_i \mathbf{q}_{\alpha}$ are necessarily integer-valued linear combinations of lattice vectors $[i.e.\ \{E|\mathbf{q}_{\alpha} - h_i\mathbf{q}_{\alpha}\} \in G_T$, where G_T is defined in SEq. (1)]⁴. This occurs because the symmetries $h_i \in \tilde{H}_{\mathbf{k}}$ may shift the location of a site \mathbf{q}_{α} in the Wyckoff position of \mathbf{q} to a site $h_i\mathbf{q}_{\alpha}$ in an adjacent unit cell that only differs from \mathbf{q}_{α} by a linear combination of lattice vectors (if $\mathbf{q}_{\alpha} - h_i\mathbf{q}_{\alpha}$ were not a lattice vector, then $\{E|\mathbf{q}_{\alpha} - h_i\mathbf{q}_{\alpha}\}h_i$ would instead be one of the symmetries $\{E|\mathbf{q}_{\alpha} - h_i\mathbf{q}_{\alpha}\}h_i \notin G_{\mathbf{q}_{\alpha}}$ that exchanges sites within the Wyckoff position of \mathbf{q} , and $\chi_{\tilde{\rho}_{\mathbf{q}_{\alpha}}}(\{E|\mathbf{q}_{\alpha} - h_i\mathbf{q}_{\alpha}\}h_i)$ in SEq. (173) would not be well defined). The (co)reps $\tilde{\rho}_{\mathbf{q}_{\alpha}}$ of the sites \mathbf{q}_{α} in SEqs. (172) and (173) are determined from the site-symmetry (co)rep $\tilde{\rho}_{\mathbf{q}}$ by conjugation with the symmetries $\tilde{g} \in G$, $\tilde{g} \notin G_{\mathbf{q}}$, as described in the text surrounding SEqs. (160) and (161).

Finally, using SEqs. (172) and (173) for each of the unitary symmetries $h_i \in H_k$ [SEq. (71)], we obtain $|H_k|$ equations of the form of SEq. (171) for the multiplicities $a_j^{\mathbf{k},\mathbf{q}}$, which can be condensed into a matrix equation in which the summation over j in SEq. (171) is implicit:

$$\chi_{\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}} = \mathcal{G}_{\mathbf{k}} \mathbf{a}^{\mathbf{k},\mathbf{q}},\tag{174}$$

where $\chi_{\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}}$ is an $|\tilde{H}_{\mathbf{k}}| \times 1$ -dimensional column vector whose i^{th} entry is the value of $\chi_{\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}}(h_i)$ inherited from the site-symmetry group (co)rep $\tilde{\rho}_{\mathbf{q}}$ through SEqs. (172) and (173), and where $\mathbf{a}^{\mathbf{k},\mathbf{q}}$ is an $l \times 1$ -dimensional column vector whose j^{th} entry is the multiplicity $a_j^{\mathbf{k},\mathbf{q}}$ of the small (co)rep $\tilde{\sigma}_{j,\mathbf{k}}$ of the little group $G_{\mathbf{k}}$ in the decomposition of the subduced symmetry data $\tilde{\varsigma}_{\mathbf{k},\mathbf{q}}$, where l is the number of small (co)reps of $G_{\mathbf{k}}$. In SEq. (174), $G_{\mathbf{k}}$ is an $|\tilde{H}_{\mathbf{k}}| \times l$ -dimensional, generically non-square matrix whose ij^{th} element is given by the character of the unitary symmetry $h_i \in G_{\mathbf{k}}$ in the small (co)rep $\tilde{\sigma}_{j,\mathbf{k}}$ of $G_{\mathbf{k}}$:

$$[\mathcal{G}_{\mathbf{k}}]_{ij} = \chi_{\tilde{\sigma}_{j,\mathbf{k}}}(h_i). \tag{175}$$

Consequently, $\mathcal{G}_{\mathbf{k}}$ is simply the transpose of the character table for $G_{\mathbf{k}}$ (see SFigs. 9, 10, and 11 and Supplementary Table 2, for example). Crucially, because the rows (and columns) of character tables are orthogonal^{33,128}, then the

columns (and rows) of $\mathcal{G}_{\mathbf{k}}$ are also orthogonal. This implies that the left inverse $\mathcal{G}_{\mathbf{k}}^{-1}$ of $\mathcal{G}_{\mathbf{k}}$ is simply given by:

$$\mathcal{G}_{\mathbf{k}}^{-1} = \frac{1}{|\tilde{H}_{\mathbf{k}}|} \mathcal{G}_{\mathbf{k}}^{\dagger},\tag{176}$$

such that:

$$\mathcal{G}_{\mathbf{k}}^{\dagger}\mathcal{G}_{\mathbf{k}} = |\tilde{H}_{\mathbf{k}}|\mathbb{1},\tag{177}$$

where $\mathbb{1}$ in SEq. (177) is the $l \times l$ identity. As a final step, we left-multiply SEq. (174) by $\mathcal{G}_{\mathbf{k}}^{-1}$ [SEq. (176)] to solve for $\mathbf{a}^{\mathbf{k},\mathbf{q}}$:

$$\mathbf{a}^{\mathbf{k},\mathbf{q}} = \frac{1}{|\tilde{H}_{\mathbf{k}}|} \mathcal{G}_{\mathbf{k}}^{\dagger} \boldsymbol{\chi}_{\tilde{s}_{\mathbf{k},\mathbf{q}}},\tag{178}$$

thus obtaining the multiplicities $a_j^{\mathbf{k},\mathbf{q}}$ in SEqs. (170) and (171). We note that SEq. (178) is in fact the matrix form of the Schur orthogonality relation (i.e. the so-called "magic formula")².

For this work, we have implemented the MSITESYM tool on the BCS to output the multiplicities $[a_j^{\mathbf{k},\mathbf{q}}]$ in SEqs. (170) and (171)] of the small (co)reps $\tilde{\sigma}_{j,\mathbf{k}}$ subduced in the little group $G_{\mathbf{k}}$ of each \mathbf{k} point [SEq. (168)] from the band (co)rep $\tilde{\rho}_{\mathbf{q}}^G$ induced into each SSG G [SEq. (162)] from each irreducible (co)rep $\tilde{\rho}_{\mathbf{q}}$ of one site-symmetry group $G_{\mathbf{q}}$ in each Wyckoff position of G. MSITESYM subsumes the earlier DSITESYM tool (https://www.cryst.ehu.es/cgi-bin/cryst/programs/dsitesym.p1)¹⁻³, which was previously implemented for TQC to provide direct access to the single-and double-valued small irreps subduced onto a given $G_{\mathbf{k}}$ from the band rep $\rho_{\mathbf{q}}^G$ induced from each site-symmetry irrep $\rho_{\mathbf{q}}$ in each of the 230 Type-I MSGs. In SFig. 16, we show the output of MSITESYM for Type-III MSG 75.3 P4' at the A point in momentum space and the 1b Wyckoff position in position space.

In summary, we have demonstrated in this section how decoupled Wannier orbitals that transform in site-symmetry (co)reps in position space induce band (co)reps [SEq. (162)], which in turn subduce small (co)reps at each point in momentum space that correspond to Bloch states (bands) [SEq. (168)]. It is straightforward to see that, if additional Wannier orbitals are added that either transform in different (co)reps of site-symmetry groups in the same Wyckoff position, or occupy a different Wyckoff position, then additional bands will also be present in the energy spectrum, corresponding to additional small (co)reps in the symmetry data at each $\bf k$ point. Therefore, we have also shown that

Induced site-symmetry representations of the Magnetic space group P4' (No. 75.3)

k-vector: A: (1/2,1/2,1/2) and Wyckoff position 1b: (1/2,1/2,z)Unitary site symmetry group for 1b: (1/2,1/2,z)

	Shorthand notation		Matrix presentation					
91	x,y,z s ⁺ ,s ⁻	(1 0 0	0 1 0	0 0 1	0 0	(1 0 0 1
g ₂	1-x,1-y,z -is+,is-	(-1 0 0	0 -1 0	0 0 1	1 1 0	(-i 0)
93	x,y,z -s ⁺ ,-s ⁻	(1 0 0	0 1 0	0 0 1	0 0	(-1 0 0 -1)
94	1-x,1-y,z is ⁺ ,-is ⁻	(-1 0 0	0 -1 0	0 0 1	1 1 0	(i 0 0 -i)

Irreducible representations

Character table for the magnetic point group 4

		g ₁	g ₂	g ₃	g ₄
4'	#	1	2 ₀₀₁	d ₁	$^{d}2_{001}$
Α	Γ ₁	1	1	1	1
ВВ	$\Gamma_2\Gamma_2$	2	-2	2	-2
¹Ē²Ē	$\overline{\Gamma}_3\overline{\Gamma}_4$	2	0	-2	0

Subduced representations

Character table for the subduced representations (*A+4') for Wyckoff position 1b

Reps\Irreps	g ₁	g ₂	g ₃	94
*(A)E ₁	1	1	1	1
*(A)E ₂ E ₂	2	-2	2	-2
*(A)\overline{E}_3\overline{E}_4	2	0	-2	0

Decomposition of (*A14') into irreducible representations of 4'

Reps\Irreps	Α	BB	¹Ē²Ē
*(A)E ₁	1		
*(A)E ₂ E ₂		1	
*(A)\overline{E}_3\overline{E}_4			1

Induced representations

Induced representations for the point A of F

Reps\Irreps	(A)E ₁	(A)E ₂ E ₂	$(A)\overline{E}_3\overline{E}_4$
Α	1		
BB		1	
¹Ē²Ē			1

Supplementary Figure 16: The output of the MSITESYM tool on the BCS for Type-III MSG 75.3 P4' at the A point in momentum space and the 1b Wyckoff position in position space. For one \mathbf{k} point in each momentum star (see SN 12) and one site \mathbf{q} in each Wyckoff position in each SSG (see SN 9), MSITESYM outputs the irreducible (co)reps of the site-symmetry group $G_{\mathbf{q}}$ (see SN 18), the small (co)reps of the little group $G_{\mathbf{k}}$ (see SN 13), and the multiplicities $a_j^{\mathbf{k},\mathbf{q}}$ in SEqs. (170) and (171). MSITESYM subsumes the earlier DSITESYM tool¹⁻³, which was previously implemented for TQC to provide direct access to the single- and double-valued small irreps subduced onto a given $G_{\mathbf{k}}$ from the band rep induced from each site-symmetry irrep in each of the 230 Type-I MSGs.

arbitrary sets of bands induced from Wannier orbitals transform in a linear combination of band (co)reps. In the subsequent section, SN 23, we will determine the minimal, or *elementary*, band (co)reps [EBRs, composed of PEBRs in Type-II SSGs and MEBRs in Type-I, III, and IV MSGs]^{1-6,11,12,20-22} that span all linear combinations of band (co)reps induced from maximally localized, symmetric Wannier orbitals.

23. Computing the MEBRs and the Exceptional Cases and Introduction to the MBANDREP Tool

In this section, we will use the results of SN 22 to determine which of the induced band (co)reps in each SSG are elementary – which we will rigorously define in this section – thus establishing the complete theory of MTQC. We will specifically obtain the MEBRs of the Type-III and Type-IV MSGs, which, along with the MEBRs of the Type-I MSGs and the PEBRs of the Type-II SSGs previously tabulated in SRefs. 1,4, form the complete set of EBRs of all of the 1,651 single and double SSGs. We note that previously in TQC¹⁻⁶, the Type-I MEBRs of the Type-I MSGs were termed EBRs, to draw contrast with the PEBRs of the Type-II SSGs. However, in this work, we will revise the previous terminology to accomodate the elementary band coreps of the Type-III and IV MSGs – in this work, all elementary band (co)reps are in general termed EBRs, the elementary band coreps of Type-II SSGs remain termed PEBRs, and the elementary band (co)reps of Type-I, III, and IV MSGs are respectively termed Type-I, III, and IV MEBRs. Finally, we note that prior to this work, Evarestov Smirnov, and Egorov in SRef. 12 introduced a method for obtaining the MEBRs of the MSGs and computed representative examples, but did not perform a large-scale tabulation of MEBRs – the calculations performed in this section represent the first complete tabulation of the MEBRs of the 1,421 single and double MSGs.

To begin, we previously established in SN 22 that, if a set of [magnetic] atomic orbitals transforming in an irreducible (co)rep $\tilde{\rho}_{\mathbf{q},1}$ of a site-symmetry group $G_{\mathbf{q}}$ is placed at \mathbf{q} in each unit cell of a crystal that is invariant under an SSG G, then $\tilde{\rho}_{\mathbf{q},1}$ induces a band (co)rep $\tilde{\rho}_{\mathbf{q},1}^G = \tilde{\rho}_{\mathbf{q},1} \uparrow G$ [SEq. (162)]. From this, we may then consider the case in which additional orbitals are subsequently added at \mathbf{q} that transform in the (co)rep $\tilde{\rho}_{\mathbf{q},2}$, such that the total set of Wannier orbitals at \mathbf{q} transforms in the reducible site-symmetry (co)rep $\tilde{\rho}_{\mathbf{q},T} = \tilde{\rho}_{\mathbf{q},1} \oplus \tilde{\rho}_{\mathbf{q},2}$. Because representation induction is distributive⁴, then it follows that:

$$\tilde{\rho}_{\mathbf{q},T} \uparrow G = (\tilde{\rho}_{\mathbf{q},1} \oplus \tilde{\rho}_{\mathbf{q},2}) \uparrow G = \tilde{\rho}_{\mathbf{q},T}^G, \tag{179}$$

such that:

$$\tilde{\rho}_{\mathbf{q},T}^G = (\tilde{\rho}_{\mathbf{q},1} \uparrow G) \oplus (\tilde{\rho}_{\mathbf{q},2} \uparrow G) = \tilde{\rho}_{\mathbf{q},1}^G \oplus \tilde{\rho}_{\mathbf{q},2}^G. \tag{180}$$

SEq. (180) implies that $\tilde{\rho}_{\mathbf{q},T}^G$ is a composite band (co)rep, because $\tilde{\rho}_{\mathbf{q},T}^G$ is equivalent to a sum of two other band (co)reps $[\tilde{\rho}_{\mathbf{q},1}^G$ and $\tilde{\rho}_{\mathbf{q},2}^G]$. In this work, we define two band (co)reps $\tilde{\rho}_{\mathbf{q},T}^G$ and $\tilde{\rho}_{\mathbf{q},1}^G \oplus \tilde{\rho}_{\mathbf{q},2}^G$ to be equivalent through the existence of a relation of the form of SEq. (180). If two band (co)reps $\tilde{\rho}_{\mathbf{q},1}^G$ and $\tilde{\rho}_{\mathbf{q},2}^G$ are equivalent, then this also implies the existence of a unitary matrix-valued function $S(\mathbf{k},t,h)$ that is smooth and non-singular in \mathbf{k} and continuous in t that interpolates for each unitary symmetry $h \in G$ between the full [space group] (co)rep matrix representatives $\Delta_{\tilde{\Sigma}_{\mathbf{k},\mathbf{q},1}^G}(h)$ [t=0] and $\Delta_{\tilde{\Sigma}_{\mathbf{k},\mathbf{q},1}^G}(h)$ [t=1] in the decomposition [see the text surrounding SEqs. (83) and (164) and SRefs. 1–6,11,12,20–22 for further details]:

$$\tilde{\rho}_{\mathbf{q},T}^{G} = \bigoplus_{\mathbf{k}} \tilde{\Sigma}_{\mathbf{k},\mathbf{q},T}^{G}, \ \tilde{\rho}_{\mathbf{q},1}^{G} \oplus \tilde{\rho}_{\mathbf{q},2}^{G} = \bigoplus_{\mathbf{k}} \tilde{\Sigma}_{\mathbf{k},\mathbf{q},1}^{G} \oplus \tilde{\Sigma}_{\mathbf{k},\mathbf{q},2}^{G}.$$

$$(181)$$

If a band (co)rep is not equivalent to a direct sum of other band reps, then we define the band (co)rep to be *elementary* [i.e., an EBR] $^{1,4,83-85}$.

In order to complete the theory of MTQC, we must perform a complete enumeration of the EBRs in all of the 1,651 single and double SSGs. Specifically, because EBRs are induced from (magnetic) Wannier orbitals (SN 22), then any set of bands that transforms in a direct sum of EBRs is Wannierizable, and therefore, does not exhibit stable or fragile 136–148 topology 1–6. With complete knowledge of the EBRs, we will then be able to identify the bands that do not transform in linear combinations of EBRs, which, as we will show in SN 26 correspond to stable topological (crystalline) insulators and topological semimetals.

To obtain an initial bound on the sites in each SSG from which EBRs may be induced, we first recognize that, if a site \mathbf{q}_0 indexes a Wyckoff position that is non-maximal, then $G_{\mathbf{q}_0} \subset G_{\mathbf{q}}$ where \mathbf{q} is a site in a maximal Wyckoff position that is connected to the Wyckoff position containing \mathbf{q}_0 (see SN 9 for definitions of connected and maximal Wyckoff positions). Taking $\tilde{\rho}_{\mathbf{q}_0}$ to be (co)rep of the site-symmetry group $G_{\mathbf{q}_0}$, then, through the transitive property

of induction⁴:

$$\tilde{\rho}_{\mathbf{q},0} \uparrow G = \tilde{\rho}_{\mathbf{q},0}^G = \tilde{\rho}_{\mathbf{q},0} \uparrow G_{\mathbf{q}} \uparrow G = \left(\bigoplus_{i=1}^z b_i^{\mathbf{q}_0,\mathbf{q}} \tilde{\rho}_{\mathbf{q},i} \right) \uparrow G = \bigoplus_{i=1}^z b_i^{\mathbf{q}_0,\mathbf{q}} \tilde{\rho}_{\mathbf{q},i}^G, \tag{182}$$

where z is the number of unique irreducible (co)reps $\tilde{\rho}_{\mathbf{q},i}$ in $G_{\mathbf{q}}$, $b_i^{\mathbf{q}_0,\mathbf{q}}$ is a non-negative integer, and where at least one $b_i^{\mathbf{q}_0,\mathbf{q}}$ is nonzero. SEq. (182) implies that any band (co)rep $\tilde{\rho}_{\mathbf{q},0}^G$ induced from a site \mathbf{q}_0 in a non-maximal Wyckoff position is equivalent to a sum of band (co)reps induced from a site \mathbf{q} in a maximal Wyckoff position; therefore $\tilde{\rho}_{\mathbf{q},0}^G$ is either a composite band (co)rep, or is equivalent to an EBR induced from \mathbf{q} . Consequently, the complete set of EBRs is contained within the set of band (co)reps induced from the sites of the maximal Wyckoff positions of each SSG.

Hence, in this work, we will obtain the EBRs of all single and double SSGs in two steps. First, we will restrict consideration to the band (co)reps induced by the irreducible (co)reps of the site-symmetry groups of the maximal Wyckoff positions of each SSG. We will then in SN 24 filter out the composite band (co)reps induced from sites in maximal Wyckoff positions, which are known as the exceptional cases^{3,4,83–86}; the remaining band (co)reps comprise the EBRs. In SN 25, we will then provide additional statistics for the EBRs of all SSGs – including the MEBRs of the Type-III and IV MSGs introduced in this work – as well as detail the MBANDREP tool on the BCS that we have implemented for this work to access the EBRs and composite band (co)reps induced from each Wyckoff position in each of the 1,651 single and double SSGs.

24. Exceptional Cases in the MSGs

In most cases, when a (co)rep $\tilde{\rho}_{\mathbf{q}}$ of a site-symmetry group $G_{\mathbf{q}}$ in a maximal Wyckoff position [see SN 9] is induced into an SSG G, the resulting band (co)rep $\tilde{\rho}_{\mathbf{q}}^G = \tilde{\rho}_{\mathbf{q}} \uparrow G$ [SEq. (162)] is an EBR [defined in the text following SEq. (180)]. However, in some *exceptional* cases, $\tilde{\rho}_{\mathbf{q}}^G = \tilde{\rho}_{\mathbf{q}} \uparrow G$ is instead a *composite* band (co)rep. In SRef. 4, it was determined that exceptional cases specifically occur under the following conditions:

- 1. Two maximal Wyckoff positions indexed by \mathbf{q} and \mathbf{q}' in an SSG G are both connected to the same site \mathbf{q}_0 in a non-maximal Wyckoff position. In SRef. 4, $G_{\mathbf{q}'}$ is termed the reducing group, and $G_{\mathbf{q}_0} = G_{\mathbf{q}} \cap G_{\mathbf{q}'}$ is termed the intersection group.
- 2. There exists an irreducible (co)rep $\tilde{\rho}_{\mathbf{q}_0}$ of $G_{\mathbf{q}_0}$ for which $\tilde{\rho}_{\mathbf{q}_0} \uparrow G_{\mathbf{q}}$ is equivalent to an irreducible (co)rep of $G_{\mathbf{q}}$.
- 3. For the same irreducible (co)rep $\tilde{\rho}_{\mathbf{q}_0}$ of $G_{\mathbf{q}_0}$, $\tilde{\rho}_{\mathbf{q}_0} \uparrow G_{\mathbf{q}'}$ is equivalent to a *reducible* (co)rep of $G_{\mathbf{q}'}$.

These three conditions may be summarized through the equivalence relations:

$$\tilde{\rho}_{\mathbf{q}_0} \uparrow G_{\mathbf{q}} \uparrow G = \tilde{\rho}_{\mathbf{q}} \uparrow G = \tilde{\rho}_{\mathbf{q}}^G = \tilde{\rho}_{\mathbf{q}_0} \uparrow G_{\mathbf{q}'} \uparrow G = \tilde{\rho}_{\mathbf{q}'} \uparrow G = \tilde{\rho}_{\mathbf{q}'}^G, \tag{183}$$

in which $\tilde{\rho}_{\mathbf{q}'}$ is a reducible (co)rep of $G_{\mathbf{q}'}$, such that $\tilde{\rho}_{\mathbf{q}'}^G$ is a composite band (co)rep, implying that the equivalent band (co)rep $\tilde{\rho}_{\mathbf{q}}^G$ is also a composite band (co)rep, despite $\tilde{\rho}_{\mathbf{q}}$ being an irreducible (co)rep of $G_{\mathbf{q}}$.

In the Type-I and Type-II SSGs previously analyzed in TQC¹⁻⁶, the exceptional cases all occurred in SSGs with point groups that were either isomorphic to Type-I MPG 8.1.24 mmm or to MPGs with higher-fold rotation, rotoinversion, or \mathcal{T} symmetries [c.f. Tables S10, S11, and S12 in SRef. 1]. Conversely, in this work, we find there are exceptional composite band coreps in some of the lowest-symmetry Type-III and Type-IV MSGs. Previously in TQC¹⁻⁶, it was specifically recognized that if two maximal Wyckoff positions in the same symmetry group have the same multiplicity, but the band (co)reps induced from the Wyckoff positions have different dimensionality, then it is possible that at least one of the induced band (co)reps is composite. In this section we will consider the example of double magnetic rod group [MRG] $(p_c\bar{1})_{RG}$ [SFig. 17], which we have selected because the 2a and 2b Wyckoff positions both have a multiplicity of 2, but the band coreps induced from 2a are two-dimensional, whereas the band corep induced from 2b is four-dimensional [and indeed exceptional-case composite].

MRG $(p_c\bar{1})_{RG}$ is generated by:

$$\{\mathcal{I}|0\}, \ \{\mathcal{T}|1/2\},$$
 (184)

and is isomorphic after the addition of perpendicular lattice translations to Type-IV double MSG 2.7 $P_S\bar{1}$ [see SRefs. 10,33,69–71 and the text following SEq. (2)]. Using MWYCKPOS on the BCS^{15–18} for Type-IV MSG 2.7 $P_S\bar{1}$ and restricting to Wyckoff positions with x=y=0 in the reduced notation of MWYCKPOS, we obtain the

coordinates and site-symmetry-group-isomorphic MPGs of the Wyckoff positions of MRG $(p_c\bar{1})_{RG}$:

$$\mathbf{q}_{2a} = 0, \ 1/2, \ G_{2a} = \bar{1},$$

$$\mathbf{q}_{2b} = 1/4, \ 3/4, \ G_{2b} = \bar{1}',$$

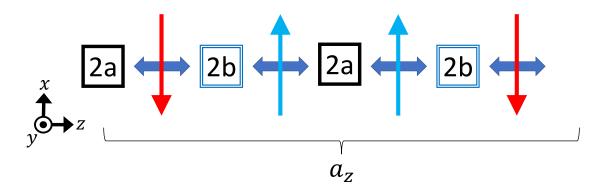
$$\mathbf{q}_{4c} = z, \ (1/2) - z, \ (1/2) + z, \ 1 - z, \ G_{4c} = 1,$$

$$(185)$$

where we have employed units in which $a_z = 1$ in SFig. 17. In SEq. (185), the symbols $\bar{1}$, $\bar{1}'$, and 1 respectively refer to Type-I MPG 2.1.3 $\bar{1}$, Type-III MPG 2.3.5 $\bar{1}'$, and Type-I MPG 1.1.1 1 [the trivial MPG, see the text following SEq. (27)]. In SEq. (185), the 2a and 2b positions are maximal, whereas 4c is the (non-maximal) general position. First, we will examine the site-symmetry groups of the \mathbf{q}_{2a} maximal Wyckoff position, which are isomorphic to Type-I double MPG 2.1.3 $\bar{1}$. G_{2a} contains only four symmetry operations and is equal to its maximal unitary subgroup H_{2a} :

$$G_{2a} = H_{2a} = \left\{ \{ E|0 \}, \ \{ \bar{E}|0 \}, \ \{ \bar{E}\mathcal{I}|0 \} \right\},$$
 (186)

where E is the identity operation, and $\bar{E} = C_{1n}$ is the symmetry operation of 360° rotation about an arbitrary axis n, which distinguishes single-valued (spinless) and double-valued (spinful) coreps. Using the CorepresentationsPG tool on the BCS for MPG 2.1.3 $\bar{1}$, we determine that there are only two double-valued irreducible coreps of G_{2n} :


$$\tilde{\rho}_{2a} = \left(\bar{A}_g\right)_{2a}, \ \left(\bar{A}_u\right)_{2a}, \tag{187}$$

for which:

$$\chi_{(\bar{A}_g)_{2a}}(\{E|0\}) = \chi_{(\bar{A}_u)_{2a}}(\{E|0\}) = -\chi_{(\bar{A}_g)_{2a}}(\{\bar{E}|0\}) = -\chi_{(\bar{A}_u)_{2a}}(\{\bar{E}|0\}) = 1,$$

$$\chi_{(\bar{A}_g)_{2a}}(\{\mathcal{I}|0\}) = -\chi_{(\bar{A}_g)_{2a}}(\{\bar{E}\mathcal{I}|0\}) = 1, \quad \chi_{(\bar{A}_u)_{2a}}(\{\mathcal{I}|0\}) = -\chi_{(\bar{A}_u)_{2a}}(\{\bar{E}\mathcal{I}|0\}) = -1, \quad (188)$$

implying that the lowest-angular-momentum spinful magnetic atomic orbitals (see SN 18) that transform in $(\bar{A}_g)_{2a}$

Supplementary Figure 17: An antiferromagnetic chain with magnetic rod group (MRG) $(p_c\bar{1})_{RG}$, which is generated by $\{\mathcal{I}|0\}$ and $\{\mathcal{T}|1/2\}$ $(t_{az/2}\mathcal{T})$ and is isomorphic after the addition of perpendicular lattice translations to Type-IV MSG 2.7 $P_S\bar{1}$ [see SRefs. 10,33,69–71 and the text following SEq. (2)]. There are three Wyckoff positions in MRG $(p_c\bar{1})_{RG}-2a$, 2b, and 4c – of which only 2a and 2b are maximal [SEq. (185)]. The site-symmetry group G_{2a} of sites in the maximal 2a position contains $\{\mathcal{I}|2\}$ [SEq. (186)], whereas the site-symmetry group G_{2b} of sites in the maximal 2b position instead contains $\{\mathcal{I}\times\mathcal{T}|1/2\}$ [SEq. (189)]; the site-symmetry group G_{4c} of sites in the general 4c position does not contain either $\{\mathcal{I}|0\}$ or $\{\mathcal{I}\times\mathcal{T}|1/2\}$ [SEq. (193)]. Four $\{\mathcal{I}\times\mathcal{T}|1/2\}$ -related spinful s orbitals occupying the 2b position in $G=(p_c\bar{1})_{RG}$ divide into two pairs that each transform in the two-dimensional irreducible double-valued corep $(\bar{A}\bar{A})_{2b}$ of G_{2b} [SEq. (191)], which is a necessary – but crucially not sufficient – condition for the four-dimensional band corep $(\bar{A}\bar{A})_{2b}^G=(\bar{A}\bar{A})_{2b}\uparrow G$ to be an EBR [see SEq. (182) and the surrounding text]. Indeed, in MRG $(p_c\bar{1})_{RG}$, we find that the four spinful s orbitals at 2b can be moved through the 4c position to 2a without breaking a symmetry or closing a gap. When the four s orbitals are moved to 2a, the four orbitals form two pairs of spinful bonding and antibonding orbitals that each transform in the two-dimensional reducible corep $(\bar{A}_g)_{2a}\oplus(\bar{A}_u)_{2a}$ of G_{2a} [SEq. (191)], and induce a four-dimensional composite band corep $(\bar{A}_g)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a}^G\oplus(\bar{A}_u)_{2a$

and $(\bar{A}_u)_{2a}$ are spin-split (singly-degenerate) s and p orbitals, respectively. We next examine the site-symmetry groups of the \mathbf{q}_{2b} maximal Wyckoff position in SEq. (185) and SFig. 17, which are isomorphic to Type-III double MPG 2.3.5 $\bar{1}'$. G_{2b} also contains four symmetry operations:

$$G_{2b} = \left\{ \{ E|0 \}, \ \{ \mathcal{I} \times \mathcal{T} | 1/2 \}, \ \{ \bar{E}|0 \}, \ \{ \bar{E}\mathcal{I} \times \mathcal{T} | 1/2 \} \right\}, \tag{189}$$

in which only $\{E|0\}$ and $\{\bar{E}|0\}$ are unitary. Hence the maximal unitary subgroup H_{2b} of G_{2b} is given by:

$$H_{2b} = \left\{ \{ E|0\}, \ \{ \bar{E}|0\} \right\}, \tag{190}$$

such that H_{2b} is isomorphic to the trivial MPG [Type-I MPG 1.1.1 1, see the text following SEq. (27)]. As discussed in SRef. 33, $(\mathcal{I} \times \mathcal{T})^2 = \bar{E}$ in double SPGs, and $\chi_{\tilde{\rho}}(\{\bar{E}|0\}) = -\chi_{\tilde{\rho}}(\{E|0\})$ for double-valued coreps $\tilde{\rho}$. From this, in agreement with the output of the CorepresentationsPG tool on the BCS for Type-III double MPG 2.3.5 $\bar{1}'$, we determine that G_{2b} has only one, two-dimensional, double-valued irreducible corep [see SEq. (147) and the surrounding text]:

$$\tilde{\rho}_{2b} = \left(\bar{A}\bar{A}\right)_{2b},\tag{191}$$

for which:

$$\chi_{(\bar{A}\bar{A})_{2b}}(\{E|0\}) = -\chi_{(\bar{A}\bar{A})_{2b}}(\{\bar{E}|0\}) = 2,$$
 (192)

implying that the lowest-angular-momentum spinful magnetic atomic orbitals that transform in $(\bar{A}\bar{A})_{2b}$ are an $\{\mathcal{I}\times\mathcal{T}|1/2\}$ -related pair of spinful s orbitals, which are twofold-degenerate because $\chi_{(\bar{A}\bar{A})_{2b}}([\{\mathcal{I}\times\mathcal{T}|1/2\}]^2) = -\chi_{(\bar{A}\bar{A})_{2b}}(\{E|0\}) = -2$. Lastly, the site-symmetry groups in the \mathbf{q}_{4c} position in SEq. (185) and SFig. 17 are isomorphic to the trivial MPG [Type-I MPG 1.1.1 1, see the text following SEq. (27)], and are thus equal to their maximal unitary subgroups H_{4c} :

$$G_{4c} = H_{4c} = \left\{ \{ E|0 \}, \ \{ \bar{E}|0 \} \right\}.$$
 (193)

There is only one, one-dimensional, double-valued irreducible corep of G_{4c} :

$$\tilde{\rho}_{4c} = \left(\bar{A}\right)_{4c},\tag{194}$$

for which:

$$\chi_{(\bar{A})_{4c}}(\{E|0\}) = -\chi_{(\bar{A})_{4c}}(\{\bar{E}|0\}) = 1.$$
 (195)

SEq. (195) implies that the lowest-angular-momentum spinful magnetic atomic orbital that transforms in $(\bar{A})_{4c}$ is a spin-split (singly-degenerate) s orbital.

Next, to determine if any of the band coreps induced from the maximal 2a and 2b Wyckoff positions in SEq. (185) and SFig. 17 are exceptional cases (*i.e.* composite), we induce band coreps from the intermediate 4c position that is connected to 2a and 2b [SEq. (183) and the surrounding text]. First, we focus on band coreps induced from 4c through 2b. Because G_{4c} is an index-2 subgroup of G_{2b} ([$G_{2b}:G_{4c}$] = 2, see SEqs. (10), (189), and (193)), and because G_{4c} and G_{2b} have isomorphic unitary subgroups $H_{4c} = H_{2b}$ [SEq. (190) and (193)], then:

$$\left(\bar{A}\right)_{4c} \uparrow G_{2b} = \left(\bar{A}\bar{A}\right)_{2b}. \tag{196}$$

where $(\bar{A}\bar{A})_{2b}$ is the irreducible corep of G_{2b} [SEq. (191)]. SEq. (196) implies that, for:

$$G = (p_c \bar{1})_{RG}, \tag{197}$$

it is possible for $(\bar{A})_{4c}^G = (\bar{A})_{4c} \uparrow G$ to be an EBR, because:

$$(\bar{A})_{4c}^G = (\bar{A})_{4c} \uparrow G_{2b} \uparrow G = (\bar{A}\bar{A})_{2b} \uparrow G = (\bar{A}\bar{A})_{2b}^G, \tag{198}$$

such that $(\bar{A}\bar{A})_{2b}^G$ is a band corep induced from an irreducible corep of a site-symmetry group in a maximal Wyckoff position [see SEq. (182) and the surrounding text].

However, to determine if $(\bar{A}\bar{A})_{2b}^G$ is indeed an EBR, we must also calculate the band coreps induced from 4c through 2a, which are equivalent to $(\bar{A}\bar{A})_{2b}^G$ [SEq. (183)]. Because G_{4c} is an index-2 subgroup of G_{2a} ($[G_{2a}:G_{4c}]=2$, see SEqs. (10), (186), and (193)), because $\{E|0\} \in G_{2a}$, $\{E|0\} \in G_{4c}$, and because $\{\mathcal{I}|0\} \in G_{2a}$, $\{\mathcal{I}|0\} \notin G_{4c}$, then:

$$\left(\bar{A}\right)_{4c} \uparrow G_{2a} = \left(\bar{A}_g\right)_{2a} \oplus \left(\bar{A}_u\right)_{2a},\tag{199}$$

where $(\bar{A}_g)_{2a}$ and $(\bar{A}_u)_{2a}$ are the irreducible coreps of G_{2a} [SEq. (187)], implying that $(\bar{A}_g)_{2a} \oplus (\bar{A}_u)_{2a}$ is a reducible corep of G_{2a} . SEq. (199) indicates that $(\bar{A})_{4c}^G = (\bar{A})_{4c} \uparrow G$ is not an EBR, but is instead a composite band corep, because

$$(\bar{A})_{4c}^G = (\bar{A})_{4c} \uparrow G_{2a} \uparrow G = \left[(\bar{A}_g)_{2a} \oplus (\bar{A}_u)_{2a} \right] \uparrow G = (\bar{A}_g)_{2a}^G \oplus (\bar{A}_u)_{2a}^G. \tag{200}$$

Because $(\bar{A}_g)_{2a}^G \oplus (\bar{A}_u)_{2a}^G = (\bar{A})_{4c}^G = (\bar{A}\bar{A})_{2b}^G$ [SEqs. (198) and (200)], then we conclude that $(\bar{A}\bar{A})_{2b}^G$ is an exceptional case of a composite band corep induced from an irreducible corep of a site-symmetry group in a maximal Wyckoff position.

We can gain physical intuition for why $(\bar{A}\bar{A})_{2b}^G$ is an exceptional-case composite band corep from the orbitals and spins depicted in SFig. 17. We begin with two $\{\mathcal{I} \times \mathcal{T}|1/2\}$ -related pairs of spin-up and spin-down s orbitals that occupy 2b (i.e. four total spinful s orbitals separated into $\{\mathcal{I} \times \mathcal{T}|1/2\}$ -reversed pairs at each of the two sites in the 2b position), where each pair transforms in the two-dimensional irreducible site-symmetry corep $(\bar{A}\bar{A})_{2b}$. We are then free to move the four orbitals to 2a without breaking a symmetry of $(p_c\bar{1})_{RG}$ or closing a gap to introduce additional Wannier orbitals (which, conversely, is required in the closely-related obstructed-atomic-limit Wannier-sliding transitions discussed in SRefs. 1,71,149). When the four spinful s orbitals reach s or s orbitals form two bonding and antibonding pairs that each transform in the two-dimensional reducible site-symmetry corep $(\bar{A}_g)_{2a} \oplus (\bar{A}_u)_{2a}$ of s of s or s

In SN 37, we provide a complete enumeration of all of the exceptional cases in the 1,651 single and double SSGs. For the Type-I MSGs and Type-II SGs previously analyzed in TQC¹⁻⁶, the exceptional cases listed in SN 37 agree with the previous tabulations performed in SRefs. 1,4. As shown in the text following SEq. (182), any band (co)rep induced from an irreducible (co)rep of a site in a maximal Wyckoff position that is not listed in the tables in SN 37 is an EBR. Hence, by calculating all of the band (co)reps induced from the irreducible (co)reps of the site-symmetry groups of the maximal Wyckoff positions of the 1,651 single and double SSGs, and then subsequently excluding the exceptional cases listed in SN 37, we obtain the complete list of single- and double-valued EBRs of the SSGs, completing the theory of MTQC.

25. Statistics for the MEBRs and the MBANDREP Tool

In this section, we provide general statistics for the EBRs previously obtained in SN 24 [which include the MEBRs of the Type-I MSGs and PEBRs of the Type-II SSGs previously tabulated for TQC¹⁻⁶, as well as the MEBRs of the Type-III and Type-IV MSGs calculated for the present work]. We additionally detail in this section the MBANDREP tool on the BCS, which we have implemented for this work to access both the elementary and non-elementary band (co)reps of all 1,651 single and double SSGs.

To begin, in Supplementary Tables 8 and 9, we provide the number of elementary and composite band (co)reps of the 1,651 single and double SSGs, respectively. Supplementary Tables 8 and 9 include the number of exceptional cases [SN 24 and 37] in which an irreducible (co)rep of a site-symmetry group of a site in a maximal Wyckoff position does not induce an EBR. For the Type-I MSGs and Type-II SGs analyzed in TQC¹⁻⁶, the band (co)rep statistics in Supplementary Tables 8 and 9 agree with the calculations previously performed in SRefs. 1,4. In Supplementary Tables 8 and 9, we also list the number of EBRs that can be decomposed into disconnected branches [i.e. decomposable

or "split" EBRs with disconnected subgraphs, see SN 16 and SRefs. 1,3,5,6,87,109,136]. As shown in SRefs. 1,5,6, 87,109, at least one disconnected piece of each decomposable EBR is topologically nontrivial, either in a stable or fragile sense^{136–148}. In SN 26, we will provide a complete enumeration of the symmetry-based indicators of stable band topology^{22–27,29–31} in the 1,651 double SSGs, which can be used to diagnose the stable topological indices of the disconnected branches of the decomposable double-valued EBRs in Supplementary Table 9. Lastly, to provide complete statistics for all of the band (co)reps that can be induced by any set of magnetic atomic orbitals in any Wyckoff position in a magnetic crystal, we additionally list in Supplementary Tables 8 and 9 the number of composite band (co)reps that can be induced from the unique irreducible (co)reps of the site-symmetry groups of the non-maximal Wyckoff positions in SSGs of the same type. Specifically, we obtain the numbers listed in the "Unique Non-Maximal Band (Co)reps" columns in Supplementary Tables 8 and 9 by summing over the composite band (co)reps induced from each unique irreducible (co)rep of one site-symmetry group in each non-maximal Wyckoff position in each SSG of the same type.

Single SSG Type	Number of SSGs	Number of EBRs Exceptions		Unique Non-Maximal	
		$[{\it Decomposable EBRs}]$	Cases	Band (Co)reps	
Type-I	230	3,383	40	1,931	
		[219]			
Type-II	230	3,141	39	1,852	
		[156]			
Type-III	674	7,492	151	5,279	
		[833]			
Type-IV	517	6,190	130	4,501	
		[699]			
Total	1,651	20,206	360	13,563	
		[1,907]			

Supplementary Table 8: Single-valued band (co)reps of the 1,651 single SSGs. In order, the columns in this table list the type of the single SSG (SN 2), the number of single SSGs of each type, the total number of single-valued elementary band (co)reps [EBRs] of the SSGs of the same type [see the text surrounding SEq. (180)], the total number of exceptional composite single-valued band (co)reps of the SSGs of the same type (SN 24 and 37), and the total number of composite single-valued band (co)reps induced from unique irreducible (co)reps of the site-symmetry groups of the non-maximal Wyckoff positions in SSGs of the same type.

		ı		
Double SSG Type	Number of SSGs	Number of EBRs	Exceptional	Unique Non-Maximal
		[Decomposable EBRs]	Cases	Band (Co)reps
Type-I	230	2,258	107	1,589
		[355]		
Type-II	230	1,616	0	1,001
		[426]		
Type-III	674	5,047	591	4,882
		[662]		
Type-IV	517	3,882	556	3,984
		[639]		
Total	1,651	12,803	1,254	11,456
		[2,082]		

Supplementary Table 9: Double-valued band (co)reps of the 1,651 double SSGs. In order, the columns in this table list the type of the double SSG (SN 2), the number of double SSGs of each type, the total number of double-valued EBRs of the SSGs of the same type [see the text surrounding SEq. (180)], the total number of exceptional composite double-valued band (co)reps of the SSGs of the same type (SN 24 and 37), and the total number of composite double-valued band (co)reps induced from unique irreducible (co)reps of the site-symmetry groups of the non-maximal Wyckoff positions in SSGs of the same type.

Next, in SN 38, we provide tables of the minimum and maximum EBR dimension in each single and double SSG. In particular, the minimum EBR dimensions in the double SSGs in SN 38 provide an upper bound on the *minimal*

insulating filling of each double SSG^{65,66,73,74,101,103,150,151}, which is defined as the set of electronic fillings at which a short-range-entangled insulating phase is permitted for arbitrarily strong, SSG-symmetry-preserving interactions, analogous to the Lieb-Schultz-Mattis filling constraints for a 1D spin chain¹⁵². In the cases in which the minimum-dimension EBRs in an SSG are decomposable, a tighter bound on the minimal insulating filling can be further obtained by determining the minimum disconnected branch dimension of each decomposable EBR^{87,151}. Hence, the minimum double-valued EBR dimensions of the Type-III and Type-IV MSGs listed in SN 38 provide upper bounds on the minimal electronic fillings at which short-range-entangled magnetic insulating phases are permitted in each Type-III and Type-IV MSG – at fillings that violate these bounds, any gapped, MSG-symmetric insulator must therefore exhibit long-range-entangled, magnetic topological order. Due to complications arising from the antiunitary symmetries of Type-III and Type-IV MSGs (see SN 5 and 6, respectively), the search for \mathcal{T} -breaking, long-range-entangled MSG-symmetric, insulating topological phases has thus far only been addressed from the perspective of minimal insulating filling in a handful of recent works^{65,66,153}. For each single and double SSG, we have specifically confirmed that the minimum EBR dimension listed in SN 38 is consistent with the minimum atomic insulator dimension previously calculated in SRef. 65. In summary, the Type-III and Type-IV MEBRs computed in this work provide new information

Band co-representations of the Magnetic Double Space Group *P6/m'm'm'* (No. 191.241) and Wyckoff position 2d:(1/3,2/3,1/2)

Unitary subgroup: P622 (No. 177) in its standard setting.

Magnetic point group isomorphic to the site-symmetry group of the Wyckoff position: 6'm'2 and unitary subgroup: 32

The second column gives the coordinates of the k-vectors in the standard setting of the unitary subgroup.

Minimal set of paths and compatibility relations to analyse the connectivity

Show all types of k-vectors

Band	I-rep.	A ₁ ↑G(2)	A ₂ ↑G(2)	E↑G(4)	¹Ē↑G(2)	² Ē↑G(2)	Ē ₁ ↑G(4)
Band	l-type	elementary	elementary	elementary	elementary	elementary	elementary
	posable nposable	Indecomposable	Indecomposable	Decomposable	Indecomposable	Indecomposable	Decomposable
Γ:(0,0,0)	Г:(0,0,0)	Γ ₁ (1) ⊕ Γ ₄ (1)	$\Gamma_2(1) \oplus \Gamma_3(1)$	Γ ₅ (2) ⊕ Γ ₆ (2)	Γ ₇ (2)	Γ ₇ (2)	$\overline{\Gamma}_8(2) \oplus \overline{\Gamma}_9(2)$
A:(0,0,1/2)	A:(0,0,1/2)	A ₂ (1) ⊕ A ₃ (1)	A ₁ (1) ⊕ A ₄ (1)	A ₅ (2) ⊕ A ₆ (2)	Ā ₇ (2)	A ₇ (2)	$\overline{A}_8(2) \oplus \overline{A}_9(2)$
H:(1/3,1/3,1/2)	H:(1/3,1/3,1/2)	H ₃ (2)	H ₃ (2)	H ₁ (1) ⊕ H ₂ (1) ⊕ H ₃ (2)	H ₆ (2)	H ₆ (2)	$\overline{H}_{4}\overline{H}_{5}(2)\oplus\overline{H}_{6}(2)$
K:(1/3,1/3,0)	K:(1/3,1/3,0)	K ₃ (2)	K ₃ (2)	K ₁ (1) ⊕ K ₂ (1) ⊕ K ₃ (2)	K̄ ₆ (2)	K̄ ₆ (2)	$\overline{K}_{4}\overline{K}_{5}(2)\oplus\overline{K}_{6}(2)$
L:(1/2,0,1/2)	L:(1/2,0,1/2)	L ₂ (1) ⊕ L ₃ (1)	L ₁ (1) ⊕ L ₄ (1)	$L_1(1) \oplus L_2(1) \oplus L_3(1) \oplus L_4(1)$	L ₅ (2)	L ₅ (2)	2 L ₅ (2)
M:(1/2,0,0)	M:(1/2,0,0)	M ₁ (1) \oplus M ₄ (1)	M ₂ (1) ⊕ M ₃ (1)	$M_1(1) \oplus M_2(1) \oplus M_3(1) \oplus M_4(1)$	M̄ ₅ (2)	M̄ ₅ (2)	2 M ₅ (2)

Supplementary Figure 18: The output of the MBANDREP tool for the 2d Wyckoff position in Type-III MSG 191.241 P6/m'm'm'. Similar to the earlier BANDREP tool implemented for TQC¹⁻⁶, MBANDREP allows users to choose between the EBRs of each SSG and the band (co)reps induced from each Wyckoff position in the SSG. When the Wyckoff position option is selected in MBANDREP, users can additionally select non-maximal Wyckoff positions to access the unique composite band (co)reps discussed in Supplementary Tables 8 and 9 and the surrounding text [though we have only shown the output of MBANDREP for a maximal Wyckoff position in this figure]. Specifically, to generate this figure, we have selected the Wyckoff position option in MBANDREP for the 2d position in Type-III MSG 191.241 P6/m'm'm'. For each irreducible (co)rep $\tilde{\rho}_{\bf q}$ of one site-symmetry group $G_{\bf q}$ in each Wyckoff position in each SSG, MBANDREP outputs whether the induced band (co)rep $\tilde{\rho}_{\bf q}^G = \tilde{\rho}_{\bf q} \uparrow G$ is elementary, indicates whether $\tilde{\rho}_{\bf q}^G$ is decomposable^{1,3,5,6,87,109,136}, and lists the subduced small (co)reps in $\tilde{\sigma}_{\bf k,\bf q}^G \downarrow G_{\bf k}$ [SEq. (170)] for each maximal $\bf k$ vector [SEq. (59) and the surrounding text] in the notation of the Corepresentations tool introduced in this work [see SN 13]. If an EBR is decomposable, users may click on the "Decomposable" button in MBANDREP to access a list of the allowed decompositions [branches] of the band (co)rep.

– including small (co)rep characters [SN 13] and compatibility relations [SN 16] – applicable to the search for novel long-range-entangled topological phases with magnetic crystal symmetries.

Finally, for this work, we have implemented the MBANDREP tool on the BCS to access both the elementary and non-elementary band (co)reps of all the 1,651 single and double SSGs. MBANDREP thus subsumes the earlier BANDREP tool (https://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl)^{1,2}, which was previously implemented for TQC^{1-6} to access the band (co)reps of the Type-I and Type-II SSGs. Unlike the earlier BANDREP tool, MBANDREP does not provide separate options for accessing band (co)reps with and without \mathcal{T} symmetry, which are instead separately listed in MBANDREP under Type-II and Type-I SSGs, respectively [see SN 4 and 3, respectively]. In SFig. 18, we reproduce the output of MBANDREP for the 2d Wyckoff position in Type-III MSG 191.241 P6/m'm'm'.

26. Introduction to Symmetry-Indicated Magnetic Topological Bands

In the previous sections of this supplement, we established the theory of MTQC. The building blocks of MTQC are topologically trivial bands that transform in direct sums of EBRs [defined in the text surrounding SEq. (180)], and, consequently, can be inverse-Fourier-transformed into (magnetic) Wannier orbitals in position space [see SN 18]. Generically, however, energetically isolated bands [specifically, bands that satisfy the insulating compatibility relations along all high-symmetry BZ lines and planes, see SN 16] are not required to be equivalent [defined in the text following SEq. (180)] to integer-valued linear combinations of EBRs. As we will show in this section, if a band B is not equivalent to an integer linear combination of EBRs, then B either corresponds to a topological semimetal whose nodal points lie away from the high-symmetry BZ lines and planes (along which bands satisfy the insulating compatibility relations)^{29,154}, or is the Fourier-transformed description of a stable topological insulator or topological crystalline insulator (TI or TCI, respectively)^{25,28,32,38,41,118,155–159}.

When unitary crystal symmetries – such as spatial inversion (\mathcal{I}) or fourfold rotoinversion $(C_4 \times \mathcal{I})$ – are present in the SSG of the 3D bulk, then the stable topology of a set of energetically-isolated bands (along all high-symmetry BZ lines and planes) may be diagnosed using symmetry eigenvalues through a symmetry-based indicator (SI) formula. By exhaustion, it has been demonstrated $^{24-28,32,34-36,39,41,112,123,160-164}$ that \mathcal{T} -symmetric, symmetry-indicated, stable 3D TIs and TCIs necessarily exhibit anomalous 2D surface and 1D hinge states crossing the bulk gap, where the surface and hinge states are respectively protected by the symmetries of Type-II surface wallpaper groups and hinge frieze or line groups 73,75,165,166 . The quintessential SI formula in 3D is the Fu-Kane parity (\mathcal{I}) criterion for diagnosing 3D \mathcal{T} -symmetric TIs³². More recently, it was shown in SRefs. 22–31 that the compatibility relations and EBRs in an SSG can be used to generate a set of linearly independent SI formulas for stable topological bands that respect the symmetries of the SSG. The procedure introduced in SRefs. 23–25 returns the SI group (e.g. $\mathbb{Z}_4 \times \mathbb{Z}_2^3$) as well as the SI formula for the SSG in an arbitrary basis. Previously, in SRef. 65, the authors derived the SI groups of all 1,651 single and double SSGs, but not the SI formulas or the physical interpretation (i.e. the bulk topology and anomalous boundary states) of the magnetic bands with nontrivial SIs.

In the sections below, restricting consideration to the double-valued (co)reps of the 1,651 double SSGs, which characterize spinful electronic states in solid-state materials³³, we will go beyond the analysis in SRef. 65 and generate the SI formulas in a consistent and physically-motivated basis. In the physical SI formula basis introduced in this work, all previously identified nonmagnetic double SI formulas correspond to established nonmagnetic semimetallic, TI, and TCI phases. Additionally, in the physical SI formula basis, the SIs of symmetry-indicated TIs and TCIs with the same bulk topology (e.g. 3D TIs and AXIs with the common nontrivial axion angle $\theta = \pi$) are related by intuitive SI subduction relations. We will also introduce layer constructions 26,167,168 in the minimal double SSGs (defined in SN 31) for each TCI phase that admits a decomposition into layered 2D Chern insulators, TIs and mirror TCIs, which we will then use to determine symmetry-respecting bulk and anomalous surface and hinge states for all topological bands in the minimal double SSGs. First, in SN 27, we will review the method employed in SRefs. 23,26–28,35 in which the multiplicities of small (co)reps are used to determine the symmetry-indicated topology of energetically isolated bands. Next, in SN 28, we will introduce the Smith normal form 169 decomposition of the EBR matrix of an SSG G, through which one can infer the SIs in G. Then, in SN 30, we will detail a procedure for obtaining a set of minimal SIs on which the SIs in all 1,651 double SSGs are dependent. In the following section – SN 31 – we will then compute the minimal SI formulas for spinful topological phases in the 34 minimal double SSGs containing the minimal SIs in the self-consistent, physical basis described above. In SN 31, we will also formulate layer constructions - where possible - for the symmetry-indicated TI and TCI phases in the minimal double SSGs. We have confirmed that the spinful SI groups obtained in this work agree with the previous tabulation of magnetic and nonmagnetic SI groups in the 1,651 double SSGs performed in SRef. 65. The results of the calculations that we will perform in SN 31 will be summarized in SN 32. Lastly, in SN 33, we will further detail the helical (i.e. non-axionic) magnetic higher-order TCI (HOTI) phases^{24–28,34–39} discovered in this work through the SI calculations performed in SN 31.

For the spinful helical magnetic HOTI phases discovered in this work, we will specifically detail symmetry-enhanced fermion doubling theorems^{36,39,74,111} in SN 34, and will provide tight-binding models in SN 35.

27. Diagnosing Band Topology from Symmetry Eigenvalues

In this section, we will review the procedure by which a symmetry data vector B [see SRefs. 109,110 and the text following SEq. (108)] derived from the band structure of a material or model can be evaluated for nontrivial topology. The discussion in this section is largely a review of previous works on stable^{22,24,26,27,29-31,109,110,170,171} and fragile^{5,6,136-141,143-148} topology. To begin, in a given SSG G, if a set of bands is energetically isolated from all of the other bands in the spectrum at all high-symmetry \mathbf{k} points and along all high-symmetry BZ lines and planes, then we may extract the symmetry data $B_{\mathbf{k}}$ at each point \mathbf{k} . As discussed in SN 16, the symmetry data $B_{\mathbf{k}}$ is composed of the multiplicities of the irreducible small (co)reps of the little group $G_{\mathbf{k}}$ that correspond to the set of energetically isolated Bloch eigenstates at \mathbf{k} [see the text following SEq. (169)]. Given symmetry data $B_{\mathbf{k}}$ at a point \mathbf{k} , the symmetry data $B_{\mathbf{k}}$ at a point \mathbf{k}' that is connected to \mathbf{k} [defined in the text following SEq. (58)] is fully determined by $B_{\mathbf{k}}$ through the compatibility relations $m^{\mathbf{k},\mathbf{k}'}$ [SEq. (110)] if the bands that transform in the symmetry data vector B are energetically isolated at all high-symmetry \mathbf{k} points and along all high-symmetry BZ lines and planes. Hence, we may summarize the complete set of $B_{\mathbf{k}}$ in B with the symmetry data at a smaller number of \mathbf{k} vectors consisting of one point \mathbf{k} within each of the maximal momentum stars in G [defined in the text surrounding SEq. (59)]:

$$B = (m(\tilde{\sigma}_{1,\mathbf{k}_1}), m(\tilde{\sigma}_{2,\mathbf{k}_1}), \cdots, m(\tilde{\sigma}_{1,\mathbf{k}_2}), m(\tilde{\sigma}_{2,\mathbf{k}_2}), \cdots)^T, \tag{201}$$

where $m(\tilde{\sigma}_{l,\mathbf{k}_n})$ denotes the multiplicity of the l^{th} small (co)rep of $G_{\mathbf{k}_n}$, and where B contains N_B entries. The multiplicities $m(\tilde{\sigma}_{l,\mathbf{k}_n})$ in B must obey a set of linear constraints imposed by the compatibility relations \mathcal{CR} , such that:

$$CR \cdot B = 0, \tag{202}$$

in which each row of \mathcal{CR} provides a linear constraint on B, and where the entries in \mathcal{CR} are given by $m^{\mathbf{k},\mathbf{k}'}(m^{\mathbf{k}'',\mathbf{k}'})^{-1}$ taken over all pairs \mathbf{k} and \mathbf{k}'' of maximal \mathbf{k} vectors in G and all symmetry-unrelated \mathbf{k} vectors \mathbf{k}' that are mutually connected [defined in the text following SEq. (58)] to \mathbf{k} and \mathbf{k}'' . We emphasize that $(m^{\mathbf{k}'',\mathbf{k}'})^{-1}$, like $(c^{\mathbf{k}'})^{-1}$ in SEq. (119), is guaranteed to exist (though not necessarily be unique) through Frobenius reciprocity^{2,108}, because the elements of $m^{\mathbf{k}'',\mathbf{k}'}$ are defined through subduction in SEq. (109) [see the text surrounding SEqs. (110) and (117)].

In particular, the symmetry data of an EBR contain the multiplicities of small coreps that are induced from site-symmetry coreps in position space [see the text surrounding SEq. (162)]. For each SSG G, we may define an EBR matrix:

$$\mathcal{EBR} = (B^{\tilde{\rho}_{1,\mathbf{q}_{1}}}, B^{\tilde{\rho}_{2,\mathbf{q}_{1}}}, \cdots B^{\tilde{\rho}_{1,\mathbf{q}_{2}}}, B^{\tilde{\rho}_{2,\mathbf{q}_{2}}}, \cdots), \tag{203}$$

in which each column $B^{\tilde{\rho}_{j,\mathbf{q}_{i}}}$ contains the symmetry data vector of the EBR of G induced from the j^{th} (co)rep $\tilde{\rho}_{j,\mathbf{q}_{i}}$ of the site-symmetry group $G_{\mathbf{q}_{i}}$ in the maximal Wyckoff position indexed by \mathbf{q}_{i} (see SN 9). In the SSG G, we define the number of EBRs as $N_{\mathcal{EBR}}$, such that \mathcal{EBR} in SEq. (203) is an $N_{B} \times N_{\mathcal{EBR}}$ -dimensional matrix. By definition, an EBR must correspond to a set of Bloch states that are energetically isolated at all high-symmetry \mathbf{k} points and along all high-symmetry BZ lines and planes, such that each $B^{\tilde{\rho}_{j,\mathbf{q}_{i}}}$ in SEq. (203) satisfies the compatibility relations:

$$CR \cdot \mathcal{EBR} = 0. \tag{204}$$

We find that, in each of the 1,651 single and double SSGs, the rank of \mathcal{EBR} is always equal to the dimension of the kernel of \mathcal{CR} over the rational numbers, implying that the columns of \mathcal{EBR} are at least a complete – and are in general an overcomplete – basis set of the kernel of \mathcal{CR} .

Given a set of bands that is energetically isolated at all high-symmetry \mathbf{k} points and along all high-symmetry BZ lines and planes, the symmetry data vector B of the bands can be expressed in terms of \mathcal{EBR} :

$$[B]_a = \sum_b [\mathcal{E}\mathcal{B}\mathcal{R}]_{ab} p_b(B) = [\mathcal{E}\mathcal{B}\mathcal{R} \cdot p(B)]_a, \tag{205}$$

in which p(B) is a vector of EBR multiplicities:

$$p(B) = (p(\tilde{\rho}_{1,\mathbf{q}_1}), p(\tilde{\rho}_{2,\mathbf{q}_1}), \cdots p(\tilde{\rho}_{1,\mathbf{q}_2}), p(\tilde{\rho}_{2,\mathbf{q}_2}), \cdots)^T,$$

$$(206)$$

where $p(\tilde{\rho}_{j,\mathbf{q}_i})$ indicates the multiplicity of the EBR symmetry data vector $B^{\tilde{\rho}_{j,\mathbf{q}_i}}$ in B [see the text folowing SEq. (203)], and where each $p(\tilde{\rho}_{j,\mathbf{q}_i})$ is rational, but not necessarily integer-valued. For all possible symmetry data vectors B that satisfy the compatibility relations, a decomposition of the form of SEqs. (205) and (206) is always permitted, because the symmetry data of the EBRs spans the set of symmetry data vectors that satisfy the compatibility relations in each SSG [i.e. because \mathcal{EBR} spans the kernel of \mathcal{CR} , see SEq. (204) and the surrounding text]^{3,4,24,26,109,110,170,171}. When rank(\mathcal{EBR}) = $N_{\mathcal{EBR}}$, the multiplicities $p(\tilde{\rho}_{j,\mathbf{q}_i})$ in SEq. (206) are unique; however, when rank(\mathcal{EBR}) < $N_{\mathcal{EBR}}$, then p(B) is not unique.

As discussed in several previous works^{3-6,22-26,29-31,109,110,136,137,139-141,143-148,170,171}, the values of $p(\tilde{\rho}_{j,\mathbf{q}_i})$ can be used to infer the topology of the bands that transform in B. Specifically, given a symmetry data vector B that satisfies the compatibility relations, there are three possibilities for the components of p(B) in SEq. (206):

- 1. In each of the possible p(B)-vector solutions to SEq. (205), at least one of the multiplicities $p(\tilde{\rho}_{j,\mathbf{q}_i})$ is not an integer (but is still rational)²⁴.
- 2. There exists at least one solution to SEq. (205) in which all of the multiplicities $p(\tilde{\rho}_{j,\mathbf{q}_i}) \in \mathbb{Z}$, though there do not exist solutions in which all of the multiplicities $p(\tilde{\rho}_{j,\mathbf{q}_i}) \in \{\mathbb{Z}^+, 0\}$; therefore, at least one $p(\tilde{\rho}_{j,\mathbf{q}_i})$ is negative in the solution in which $p(\tilde{\rho}_{j,\mathbf{q}_i}) \in \mathbb{Z}$ for all i and j.
- 3. There exists at least one solution to SEq. (205) in which all of the multiplicities $p(\tilde{\rho}_{j,\mathbf{q}_i}) \in \{\mathbb{Z}^+,0\}$.

In case 3, B contains the same small (co)reps as a direct sum of EBRs, such that the bands that transform in B exhibit the same symmetry eigenvalues as a trivial insulator. We note that this does not exclude the possibility that the bands that transform in B exhibit non-symmetry-indicated topology^{6,28,38,71,124,149}. In case 2, it is possible to add EBRs to the bands that transform in B until the direct sum of the bands that transform in B and the added EBRs realizes a set of bands with a symmetry data vector B' classified by case 3. Therefore, as shown in SRefs. 5,6,136–141,143–148, in case 2, the bands that transform in B exhibit symmetry-indicated fragile topology. In the nomenclature of SRefs. 109,110,172, the symmetry data vectors in cases 2 and 3 correspond to "linear combinations of EBRs" [LCEBR]. Finally, in case 1, there does not exist an integer-valued linear combination of EBRs that can be added to the bands that transform in B to produce a set of bands with integer-valued $p(\tilde{\rho}_{j,\mathbf{q}_i})$. Consequently, as shown in SRefs. 24,26,27,109,110,170–172, the bands that transform in B in case 1 are not Wannierizable, and either correspond to a topological semimetal that satisfies the compatibility relations²⁹, or to a symmetry-indicated stable TI or TCI with anomalous surface or hinge states.

28. Symmetry-Based Indicator (SI) Groups and Formulas from the Smith Normal Form

In this section, we will introduce the method employed in this work to calculate the SI groups and formulas for spinful stable topological phases in all 1,651 double SSGs. In SN 29, we will then as an example provide an explicit calculation of the SI groups and formulas for double-valued irreps in Type-I double MSG 3.1 P2. Variants of the method described in this section were previously introduced in SRefs. 22–31. We will leave the enumeration of the symmetry-indicated fragile bands in the 1,651 single and double SSGs for future works. To begin, if the entries of a matrix are integer-valued, then the matrix carries a unique Smith normal form¹⁶⁹. Consequently, given an SSG G, the EBR matrix \mathcal{EBR} [defined in SEq. (203)] – whose entries are the integer-valued multiplicities of induced small (co)reps – can be decomposed into the Smith normal form:

$$\mathcal{EBR} = L_{\mathcal{EBR}} \Lambda_{\mathcal{EBR}} R_{\mathcal{EBR}}, \tag{207}$$

where $L_{\mathcal{EBR}}$ is an $N_B \times N_B$ -dimensional unimodular matrix with integer-valued entries, $R_{\mathcal{EBR}}$ is an $N_{\mathcal{EBR}} \times N_{\mathcal{EBR}}$ -dimensional unimodular matrix, and $\Lambda_{\mathcal{EBR}}$ is an $N_B \times N_{\mathcal{EBR}}$ -dimensional (*i.e.* generically non-square) matrix with integer-valued entries $[\Lambda_{\mathcal{EBR}}]_{ij}$ for which:

$$[\Lambda_{\mathcal{E}\mathcal{R}\mathcal{R}}]_{ii} = 0 \text{ if } i \neq j. \tag{208}$$

Consequently, $\Lambda_{\mathcal{EBR}}$ – which is the Smith normal form of \mathcal{EBR} – generically appears as:

$$\Lambda_{\mathcal{EBR}} = \begin{pmatrix} \lambda_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_r & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix},$$
(209)

in which $1 \leq \lambda_1 \leq \lambda_2 \leq \cdots \lambda_r$ are positive integers and $r = \text{rank}(\mathcal{EBR})$. We note that, in contrast to $\Lambda_{\mathcal{EBR}}$, $L_{\mathcal{EBR}}$ and $R_{\mathcal{EBR}}$ in SEq. (207) are not unique. For example, given \mathcal{EBR} and $\Lambda_{\mathcal{EBR}}$, for any choice of $L_{\mathcal{EBR}}$ and $R_{\mathcal{EBR}}$, $L'_{\mathcal{EBR}} = -L_{\mathcal{EBR}}$ and $R'_{\mathcal{EBR}} = -R_{\mathcal{EBR}}$ always also satisfy the decomposition in SEq. (207).

Next, we consider all possible bands that transform in the most general symmetry data vector B in G that satisfies the compatibility relations [SEq. (202)]:

$$B = (m(\tilde{\sigma}_{1,\mathbf{k}_1}), m(\tilde{\sigma}_{2,\mathbf{k}_1}), \cdots, m(\tilde{\sigma}_{1,\mathbf{k}_2}), m(\tilde{\sigma}_{2,\mathbf{k}_2}), \cdots)^T, \tag{210}$$

where $m(\tilde{\sigma}_{l,\mathbf{k}_n})$ denotes the multiplicity of the l^{th} small (co)rep of the little group $G_{\mathbf{k}_n}$. Previously, in the text following SEq. (206), we described a procedure for diagnosing whether bands that satisfy the compatibility relations exhibit symmetry-indicated stable topology. In the following text, we will now additionally describe a method for classifying stable band topology, which we will accomplish by parameterizing the space of solutions to SEq. (205). First, we act on both sides of SEq. (205) with the left inverse $L_{\mathcal{EBR}}^{-1}$, which is guaranteed to exist, because $L_{\mathcal{EBR}}$ is an integer, unimodular matrix [see the text following SEq. (207)]:

$$L_{\mathcal{EBR}}^{-1}B = \Lambda_{\mathcal{EBR}}R_{\mathcal{EBR}} \cdot p(B). \tag{211}$$

Because only the first r rows of $\Lambda_{\mathcal{EBR}}$ are nonzero, then, in order for a solution p(B) to exist in SEq. (211), the $(r+1)^{\text{th}}$ to the $N_{\mathcal{EBR}}^{\text{th}}$ rows of $L_{\mathcal{EBR}}^{-1}B$ must be zero. However, the $(r+1)^{\text{th}}$ to the $N_{\mathcal{EBR}}^{\text{th}}$ rows of $L_{\mathcal{EBR}}^{-1}B$ are guaranteed to be zero, because \mathcal{EBR} spans the kernel of \mathcal{CR} [defined in SEq. (202)], and because B satisfies the compatibility relations. Hence, we obtain a solution for p(B) in SEq. (211).

For each nonzero λ_i in SEq. (209), we next construct an r-dimensional vector y(B) by multiplying B by $L_{\mathcal{EBR}}^{-1}$ and the pseudoinverse of $\Lambda_{\mathcal{EBR}}$ [SEq. (209)]:

$$[y]_i(B) = \frac{1}{\lambda_i} [L_{\mathcal{EBR}}^{-1} \cdot B]_i = [R_{\mathcal{EBR}} \cdot p(B)]_i, \ i = 1 \cdots r,$$
(212)

in which the entries $[y]_i(B)$ are rational numbers. We then re-express B in terms of y(B) using SEq. (212):

$$[B]_j = \sum_{i=1}^r [L_{\mathcal{EBR}}]_{ji}[y]_i(B)\lambda_i.$$
(213)

Because $L_{\mathcal{EBR}}$ is unimodular, then the correspondence between the components of B and y(B) is one-to-one. Conversely, the correspondence between y(B) and p(B) is generically one-to-many. Specifically, given y(B), the most general solution for p(B) takes the form:

$$p(B) = R_{\mathcal{EBR}}^{-1} \cdot (y_1(B), y_2(B), \dots, y_r(B), k_1, k_2, \dots, k_{N_{\mathcal{EBR}}-r})^T,$$
(214)

in which k_i are rational-valued free parameters.

To diagnose the stable topology of bands whose symmetry data satisfy the compatibility relations in G, we therefore restrict focus to the first r components of p(B). Because $R_{\mathcal{EBR}}$ is a unimodular matrix, then the components of p(B) are integer-valued if and only if $y_i(B)$ and k_i are integer-valued for all i, which reduces to the requirement that the values of $y_i(B)$ are integer-valued, because the values of k_i are free parameters in SEq. (214). Finally, using the values of $y_i(B)$, we define:

$$z_i(B) = (y_i(B)\lambda_i) \bmod \lambda_i = [L_{\mathcal{EBR}}^{-1} \cdot B]_i \bmod \lambda_i, \ i = i_0 \cdots r,$$
(215)

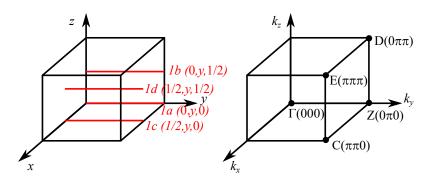
in which we have defined i_0 to be the smallest value of i for which $\lambda_{i_0} > 1$, and where each $y_i(B)$ is integer-valued

if and only if $z_i(B) = 0$. When B is expressed in terms of the most general small (co)rep multiplicities that satisfy the compatibility relations [i.e. in the form of SEq. (210)], then the $z_i(B)$ – which are implicitly functions of the small (co)rep multiplicities $m(\tilde{\sigma}_{l,\mathbf{k}_n})$ – are known as the SI formulas of $G^{23,24}$. Correspondingly, the representative B_i vector for each i is defined as the ith column of $L_{\mathcal{EBR}}$ for which $z_i(B_i) = (L_{\mathcal{EBR}}^{-1} \cdot L_{\mathcal{EBR}})_{ii} \mod \lambda_i = 1$.

Next, given a specific symmetry data vector B' with fixed values of $m(\tilde{\sigma}_{l,\mathbf{k}_n})$ that satisfy the compatibility relations, we may calculate the values $z_i(B')$, which necessarily satisfy $\{z_i(B') \in \mathbb{Z} | 0 \le z_i(B') \le \lambda_i - 1\}$. Hence, given B', the appearance of nonzero $z_i(B')$ in SEq. (215) implies that the components of y(B') and p(B') are not integer-valued, and that the bands that transform in B' exhibit stable topology. From this, we define the SI vector of B' as:

$$\mathbf{z}^{G}(B') = (z_{i_0}(B'), z_{i_0+1}(B'), \cdots, z_r(B'))^{T}, \tag{216}$$

where $z_i(B') \in \mathbb{Z}_{\lambda_i}$. Notably, the SI vectors of the representative B_i vectors satisfy $\mathbf{z}_j^G(B_i) = (L_{\mathcal{EBR}}^{-1} L_{\mathcal{EBR}})_{ji} \mod \lambda_j = \delta_{ji} \mod \lambda_j$. Lastly, using the values of λ_i obtained from SEqs. (209), (214), and (215), we define the SI group of G:


$$Z^G = \bigotimes_{i=i_0}^r \mathbb{Z}_{\lambda_i}.$$
 (217)

Consequently, in G, the bands that transform in the representative B_i vectors may be summed with each other and with the EBRs of G to generate $|Z^G|-1$ classes of stable topological bands that are not related by linear combinations of EBRs, as well as one class of (generically trivial) bands whose symmetry data vectors \tilde{B} map to the trivial (identity) element of the SI group $[\mathbf{z}^G(\tilde{B}) = \mathbf{0}]$ in SEqs. (215) and (216)]. Specifically, the SI group is spanned by summing the representative topological bands (e.g. $2B_i = B_i \oplus B_i$), such that $\mathbf{z}_i^G(nB_i) = n \mod \lambda_i$ where $n \in \mathbb{Z}^+$. One stable topological band from each of the $|Z^G|-1$ classes of stable topological bands and one integer-valued linear combination of EBRs that transforms in one \tilde{B} vector together form a nonunique set of $|Z^G|$ bands that we designate in this work as the SI topological bands.

Using the method described in this section, we have obtained the SI formulas and groups for the double-valued (co)reps of all 1,651 double SSGs, which we term the double SIs. We have confirmed that the SI groups obtained in our calculations agree with the previous tabulation performed in SRef. 65. However, in general, both the SI formulas and the representative B_i vectors are computed in an arbitrary basis that is generically not the natural (physical) basis for classifying topological phases. Specifically, additional bulk- and boundary-state^{25,27} or layer-construction²⁶ calculations must be performed to determine the semimetallic, TI, or TCI phases that correspond to each possible value of $z_i(B)$. Later, in SN 30, 39, and 31, we will determine a self-consistent, physically motivated basis and the corresponding bulk topology for the double SIs in all 1,651 double SSGs.

29. Double SI Group and Formulas in Type-I Double MSG 3.1 P2

As an example of the Smith normal form calculation described in SRefs. 22–31 and in the text following SEq. (207), we will in this section calculate the double SI group and formulas of Type-I double MSG 3.1 P2.

Supplementary Figure 19: The unit cell and BZ of Type-I MSG 3.1 P2. (Left panel) The unit cell of MSG 3.1 P2 with the maximal Wyckoff positions [SEq. (223)] labeled with red lines. (Right panel) The BZ of MSG 3.1 P2 with the maximal \mathbf{k} vectors in SEq. (219), as well as the Γ point $[\mathbf{k}_{\Gamma} = (0,0,0)]$, labeled with black circles.

First, using MGENPOS on the BCS $^{15-18}$, we determine that MSG 3.1 P2 is generated by:

$$\{C_{2y}|000\}, \{E|100\}, \{E|010\}, \{E|001\}.$$
 (218)

Next, using the MKVEC tool (see SN 12), we determine that there are four maximal momentum stars in M = P2 [defined in the text surrounding SEq. (59)]. Using MCOMPREL (see SN 16), we then find that, due to the compatibility relations, the small irrep multiplicities throughout the BZ of M are entirely determined by the irrep multiplicities at only one of the high-symmetry points in each of the four maximal momentum stars (SFig. 19):

$$\mathbf{k}_Z = 2\pi(0, 1/2, 0), \ \mathbf{k}_E = 2\pi(1/2, 1/2, 1/2), \ \mathbf{k}_D = 2\pi(0, 1/2, 1/2), \ \mathbf{k}_C = 2\pi(1/2, 1/2, 0).$$
 (219)

At each of the four **k** points in SEq. (219), there are only two double-valued small irreps $\bar{\sigma}_{\mathbf{k}}^{\pm \frac{1}{2}}$ for which:

$$\chi_{\bar{\sigma}_{\mathbf{k}}^{\pm \frac{1}{2}}}(\{C_{2y}|\mathbf{0}\}) = \pm i.$$
 (220)

In the notation of the Corepresentations tool on the BCS (SN 13):

$$\bar{\sigma}_{\mathbf{k}}^{\frac{1}{2}} = \overline{Z}_3, \ \overline{E}_3, \ \overline{D}_3, \ \text{and} \ \overline{C}_3 \ \text{for} \ \mathbf{k} = \mathbf{k}_Z, \ \mathbf{k}_E, \ \mathbf{k}_D, \ \text{and} \ \mathbf{k}_C, \ \text{respectively},$$

$$\bar{\sigma}_{\mathbf{k}}^{-\frac{1}{2}} = \overline{Z}_4, \ \overline{E}_4, \ \overline{D}_4, \ \text{and} \ \overline{C}_4 \ \text{for} \ \mathbf{k} = \mathbf{k}_Z, \ \mathbf{k}_E, \ \mathbf{k}_D, \ \text{and} \ \mathbf{k}_C, \ \text{respectively},$$
(221)

such that the most general symmetry data vector B that satisfies the compatibility relations of M is given by:

$$B = (m(\overline{Z}_3), m(\overline{Z}_4), m(\overline{E}_3), m(\overline{E}_4), m(\overline{D}_3), m(\overline{D}_4), m(\overline{C}_3), m(\overline{C}_4))^T.$$
(222)

To calculate the Smith normal form of M described in the text surrounding SEq. (207), we next determine the symmetry data vectors of the EBRs of M. Using MWYCKPOS on the BCS^{15–18}, we find that M has four, multiplicity-1 maximal Wyckoff positions (defined in SN 9), which are indexed by the sites (SFig. 19):

$$\mathbf{q}_{1a} = (0, y, 0), \ \mathbf{q}_{1b} = (0, y, 1/2), \ \mathbf{q}_{1c} = (1/2, y, 0), \ \mathbf{q}_{1d} = (1/2, y, 1/2),$$
 (223)

where $y \in [-1/2, 1/2)$, such that each of the sites in SEq. (223) lies along a line of $\{C_{2y}|\mathbf{0}\}$ symmetry (modulo integer lattice translations). At each of the four sites in SEq. (223), the site-symmetry group $G_{\mathbf{q}}$ is isomorphic to Type-I double MPG 3.1.6 2, which is generated by C_{2y} . Using the CorepresentationsPG tool (SN 18), we determine that each site-symmetry group $G_{\mathbf{q}}$ in M has two double valued irreps $({}^{1}\overline{E})_{\mathbf{q}}$ and $({}^{2}\overline{E})_{\mathbf{q}}$, where:

$$\chi_{(^{1}\overline{E})_{\mathbf{q}}}(C_{2y}) = i, \ \chi_{(^{2}\overline{E})_{\mathbf{q}}}(C_{2y}) = -i.$$
 (224)

To obtain the symmetry data vectors of the EBRs of M, we use the MBANDREP tool introduced in this work [SN 23, see also SEqs. (162) and (173)], the output of which is reproduced below in the condensed notation of SRefs. 38,142:

$$(^{2}\overline{E})_{1a} \uparrow M = \overline{Z}_{3} \oplus \overline{E}_{3} \oplus \overline{D}_{3} \oplus \overline{C}_{3}, \qquad (^{1}\overline{E})_{1a} \uparrow M = \overline{Z}_{4} \oplus \overline{E}_{4} \oplus \overline{D}_{4} \oplus \overline{C}_{4},$$

$$(^{2}\overline{E})_{1b} \uparrow M = \overline{Z}_{3} \oplus \overline{E}_{4} \oplus \overline{D}_{4} \oplus \overline{C}_{3}, \qquad (^{1}\overline{E})_{1b} \uparrow M = \overline{Z}_{4} \oplus \overline{E}_{3} \oplus \overline{D}_{3} \oplus \overline{C}_{4},$$

$$(^{2}\overline{E})_{1c} \uparrow M = \overline{Z}_{3} \oplus \overline{E}_{4} \oplus \overline{D}_{3} \oplus \overline{C}_{4}, \qquad (^{1}\overline{E})_{1c} \uparrow M = \overline{Z}_{4} \oplus \overline{E}_{3} \oplus \overline{D}_{4} \oplus \overline{C}_{3},$$

$$(^{2}\overline{E})_{1d} \uparrow M = \overline{Z}_{3} \oplus \overline{E}_{3} \oplus \overline{D}_{4} \oplus \overline{C}_{4}, \qquad (^{1}\overline{E})_{1d} \uparrow M = \overline{Z}_{4} \oplus \overline{E}_{4} \oplus \overline{D}_{3} \oplus \overline{C}_{3}. \qquad (225)$$

Using SEq. (225), we next construct the \mathcal{EBR} matrix [SEq. (203)]:

$$\mathcal{EBR} = (B^{(^{2}\overline{E})_{1a}}, B^{(^{1}\overline{E})_{1a}}, B^{(^{2}\overline{E})_{1b}}, B^{(^{1}\overline{E})_{1b}}, B^{(^{2}\overline{E})_{1c}}, B^{(^{1}\overline{E})_{1c}}, B^{(^{2}\overline{E})_{1d}}, B^{(^{1}\overline{E})_{1d}}),$$

$$\mathcal{EBR} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}, \tag{226}$$

in which the eight columns respectively correspond to the eight EBR symmetry data vectors of M given in the order of SEq. (225), and the eight rows respectively correspond to small irrep multiplicities given in the order of SEq. (222). \mathcal{EBR} in SEq. (226) admits a Smith normal decomposition [SEq. (207)]:

in which the left inverse of $L_{\mathcal{EBR}}$ is given by:

As described in the text surrounding SEq. (215), we first examine the nonzero values in $\Lambda_{\mathcal{EBR}}$ to isolate the rows of $L_{\mathcal{EBR}}^{-1}$ that contain SI formulas for M. There is only a single entry $\lambda_i > 1$ in $\Lambda_{\mathcal{EBR}}$ in SEq. (227): $\lambda_5 = 2$. This implies that the double SI group of M [SEq. (217)] is:

$$Z^M = \mathbb{Z}_2, \tag{229}$$

and that the fifth row of $L_{\mathcal{EBR}}^{-1}$ contains the formula for a \mathbb{Z}_2 -valued double SI:

$$z_{2R}(B) = -2m(\overline{Z}_3) - m(\overline{Z}_4) + m(\overline{E}_3) + m(\overline{D}_3) - m(\overline{C}_4) \mod 2, \tag{230}$$

which can be re-expressed using the modulo 2 operation as:

$$z_{2R}(B) = m(\overline{Z}_4) + m(\overline{E}_3) + m(\overline{D}_3) + m(\overline{C}_4) \mod 2. \tag{231}$$

Recognizing that $z_{2R}(B')=0$ for any EBR symmetry data vector B', we next add the symmetry data vectors $({}^{1}\overline{E})_{1a}\uparrow M$ and $({}^{2}\overline{E})_{1b}\uparrow M$ from SEq. (225) to SEq. (231) to rotate $z_{2R}(B)$ into a more recognizable form:

$$z_{2R}(B) = m(\overline{Z}_3) + m(\overline{E}_3) + m(\overline{D}_3) + m(\overline{C}_3) \mod 2. \tag{232}$$

Specifically, using the small irrep label substitution in SEq. (221), we recognize $z_{2R}(B)$ as the formula from SRefs. 156, 164 for the Chern number modulo 2 in the $k_y = \pi$ plane:

$$z_{2R} = \sum_{K=Z,E,D,C} n_K^{\frac{1}{2}} \mod 2, \tag{233}$$

in which we have substituted $\mathbf{k} \to K$ for notational consistency with previous works^{26,29}. Because $\{C_{2y}|\mathbf{0}\}$ is a symmetry of every BZ plane of constant k_y (see SFig. 19), then in an insulating phase, the compatibility relations require that the $\{C_{2y}|\mathbf{0}\}$ eigenvalues of the occupied bands along each of the $\{C_{2y}|\mathbf{0}\}$ -invariant lines $k_{x,y}=0,\pi$ are the same at each k_y . Hence $z_{2R}=1$ implies that the $k_y=\pi$ and $k_y=0$ planes both exhibit odd Chern numbers, such that the occupied bands either correspond to a 3D quantum anomalous Hall (QAH) insulator with an odd number of chiral modes per k_y on surfaces whose normal vectors point in the xz-plane, or to a Weyl semimetal with an even number of Weyl points between $k_y=0,\pi$.

30. Minimal Double SIs in the 1,651 Double SSGs

Because there are 805 double SSGs G for which the double SI group $|Z^G| > 1$ (see Supplementary Table 10), then individually calculating the bulk and anomalous surface and hinge states and physical basis for each stable topological symmetry data vector in each SSG is a practically intractable task. However, in this section, we will detail a procedure for identifying a considerably smaller set of minimal SSGs with minimal double SIs, on which the double SIs in all 1,651 double SSGs are dependent. Specifically, by recognizing that the symmetry-indicated spinful topological semimetals, TIs, and TCIs in non-minimal double SSGs are indicated by the same bulk symmetries as spinful topological semimetals, TIs, and TCIs in the minimal double SSGs, we will reduce the calculation of the physical double-SI-formula bases and symmetry-respecting bulk and boundary states to a smaller, tractable problem.

Statistics of the Double SIs				
Type	SSGs with $ Z^G > 1$	Minimal SSGs		
Type-I	126	18		
Type-II	117	5		
Type-III	286	11		
Type-IV	276	0		
Total	805	34		

Supplementary Table 10: Statistics for the double SIs of the 1,651 double SSGs. In order, each row of this table contains the type of the double SSG [see SN 2], the number of double SSGs with nontrivial double SI groups $[|Z^G| > 1$, see SEq. (217) and the surrounding text], and the number of minimal double SSGs with minimal double SIs.

To begin, consider a double SSG G and a subgroup M of G that is isomorphic to an SSG. Using the procedure detailed in SN 28, we then calculate the double SI groups $Z^{G,M}$, double SI formulas (in their original, arbitrary bases), and the symmetry data vectors B_i^G and B_j^M of the SI topological bands in G and G, respectively. We next restrict consideration to the case in which the double SI groups $Z^{G,M}$ are both nontrivial (i.e. $|Z^{G,M}| \neq 1$). Lastly, we determine whether the SI topological bands in G subduce to inequivalent SI topological bands in G, in which case, we consider the double SIs in G to be dependent on the double SIs in G. Specifically, for an SSG G and a subgroup G of G that is isomorphic to an SSG (but not necessarily an SSG with the same Bravais lattice as G), the double SIs in G are dependent on the double SIs in G if and only if:

- 1. $|Z^G| \le |Z^M|$.
- 2. For each SI topological band in G with a symmetry data vector B_i^G [defined in the text following SEq. (217)], the subduced SI vector $\mathbf{z}^M(B_i^G\downarrow M)$ [SEq. (216)] exhibits a distinct value for each choice of i. Specifically, given any two SI topological bands $B_{i_1}^G$ and $B_{i_2}^G$ in G for which $\mathbf{z}^G(B_{i_1}^G)\neq\mathbf{z}^G(B_{i_2}^G)$, the SIs in G can only be dependent on the SIs in M if $\mathbf{z}^M(B_{i_1}^G\downarrow M)\neq\mathbf{z}^M(B_{i_2}^G\downarrow M)$ for all choices of $B_{i_1}^G$ and $B_{i_2}^G$.

The above requirements indicate the conditions under which the double SIs in G are dependent on the double SIs in M. However, there may also exist subgroups M' of M where the double SIs in both G and M are dependent on the double SIs in M'. Hence, given an SSG M for which $|Z^M| > 1$, if there does not an exist a subgroup M' of M

for which the double SIs in M are dependent on the double SIs in M', then we define M as a minimal double SSG. Correspondingly, we define the minimal double SIs of the 1,651 double SSGs as the double SIs of the minimal double SSGs.

We note that in this work, we have employed a more narrow definition than in other previous works^{26,29} for minimal SIs. Specifically, in SRefs. 26,29 the authors considered cases in which the SIs in G in are neither dependent on the SIs in the subgroups $M \subset G$ and $M' \subset G$ (where M is not isomorphic to M'), but where the SIs in G are still spanned by the *combined* SIs in M and M'. As we will show below, using our narrower definition of minimal SIs, we still obtain a manageable number of minimal double SSGs.

Next, given a minimal SSG M and an SSG G in which the SIs are dependent on the SIs in M, it follows that all of the symmetry-indicated stable topological semimetals, TIs, and TCIs in G are indicated by the same bulk symmetries that indicate the bulk topology in M. Specifically, this dependency occurs because the set of SI topological bands in G subduced onto M is spanned by the SI topological bands in M modulo EBRs of M, and because the EBRs of M do not exhibit topological bulk, surface, or hinge states^{26,27,38}, as they are Wannierizable¹⁻⁶.

Conversely, if the bulk bands of a symmetry-indicated TI or TCI in G are subduced onto an SSG M where the SIs in G are dependent on the SIs in M, the subduced topological insulating phase in M may exhibit different anomalous boundary states. For example, when symmetry-indicated 3D TIs – such as an insulator with $z_2 = 1$ in Type-II double SG 81.34 $P\bar{4}1'$ (see SRef. 26) – are subduced to magnetic axion insulator (AXI)^{28,38,40-60} phases in minimal MSGs (in this case, Type-I double MSG 81.33 $P\bar{4}$, see SN 39), the twofold surface Dirac cones of the parent 3D TI become gapped on surfaces in which the Dirac cones are only protected by \mathcal{T} symmetry (see SRefs. 34,36,38,123,173), revealing a symmetric-sample-spanning network of chiral hinge modes. More generally, given a TI or TCI that respects the symmetries in the bulk SSG G, the anomalous 2D surface states on a surface with a Miller index vector $\hat{\mathbf{n}}$ are necessarily protected by the symmetries of a wallpaper subgroup of $G^{73,75}$ that leaves $\hat{\bf n}$ invariant. However, when the occupied topological bands are subduced onto a subgroup $M \subset G$ where M is isomorphic to an SSG, it is not generically guaranteed that the 2D surface states on the $\hat{\mathbf{n}}$ -normal surface are still gapless, because the $\hat{\mathbf{n}}$ -normal surface only respects the symmetries of a wallpaper subgroup of M. Nevertheless, we find that a finite (0D) geometry can in many cases be chosen for a symmetry-indicated TI or TCI that respects the symmetries of a bulk SSG G such that, upon subducing the bulk bands onto a subgroup $M \subset G$, the boundary states do not become gapped. Importantly, 3D TIs that subduce to magnetic AXIs^{32,41,160,174} represent a notable exception, because all 2D surfaces of 3D TIs exhibit odd numbers of twofold Dirac cones, whereas there do not exist magnetic AXIs in which all 2D surfaces are gapless $^{28,38,40-60}$.

Furthermore, we note that it is also possible for an SI topological band B_i^G in G to correspond to a gapless (semimetallic) phase even if a subduced SI topological band $B_i^G \downarrow M$ corresponds to a gapped (TI or TCI) phase. An example occurs in Type-IV double MSG 75.5 P_C4 and its minimal double subgroup Type-I MSG 75.1 P4. As we will show below in SN 31e, all of the double SIs in M=P4 are compatible with rotation-symmetry-indicated QAH states. However, because:

$$G = P_C 4 = P4 \cup \{ \mathcal{T} | \mathbf{t}_c / 2 \} P4,$$
 (234)

then G contains the antiunitary symmetry $\{C_{2z} \times \mathcal{T} | \mathbf{t}_c/2\}$, which enforces the presence of gapless (Weyl) points in the $k_z = 0, \pi$ planes for all nontrivial values of the SIs in $G^{26,36,175}$. This can be seen by recognizing that $\{C_{2z} \times \mathcal{T} | \mathbf{t}_c/2\}$ symmetry can protect gapless points in 2D systems (e.g. high-symmetry BZ-planes), and that the Chern numbers of the occupied bands in $\{C_{2z} \times \mathcal{T} | \mathbf{t}_c/2\}$ -invariant planes (e.g. $k_z = 0, \pi$) are required by symmetry to vanish. After the submission of this work, the authors of SRef. 176 performed a complete enumeration of the cases in which an SI topological band B_i^G in G corresponds to a gapless phase while the SI topological band $B_i^G \downarrow M$ in the subgroup $M \subset G$ is compatible with a gapped topological phase.

In this work, we have exhaustively calculated the double SI groups and formulas of all 1,651 double SSGs, and have determined that, remarkably, there are only 34 minimal double SSGs (see Supplementary Table 10):

- 1. Minimal Type-I Double MSGs (18 MSGs): 2.4 $P\bar{1}$, 3.1 P2, 10.42 P2/m, 47.249 Pmmm, 75.1 P4, 77.13 $P4_2$, 81.33 $P\bar{4}$, 83.43 P4/m, 84.51 $P4_2/m$, 88.81 $I4_1/a$, 123.339 P4/mmm, 143.1 P3, 147.13 $P\bar{3}$, 168.109 P6, 174.133 $P\bar{6}$, 175.137 P6/m, 176.143 $P6_3/m$, 191.233 P6/mmm.
- 2. Minimal Type-II Double SGs (5 SGs): 2.5 P11', 83.44 P4/m1', 87.76 I4/m1' 175.138 P6/m1' 176.144 P6₃/m1'.
- 3. Minimal Type-III Double MSGs (11 MSGs): 27.81 Pc'c'2, 41.215 Ab'a'2, 54.342 Pc'c'a, 56.369 Pc'c'n, 60.424 Pb'cn', 83.45 P4'/m, 103.199 P4c'c', 110.249 $I4_1c'd'$, 130.429 P4/nc'c', 135.487 $P4'_2/mbc'$, 184.195 P6c'c'.

Interestingly, we observe that there are no minimal Type-IV double MSGs (see Supplementary Table 10). As discussed in the main text, this implies that symmetry-indicated spinful topological phases in Type-IV MSGs are actually enforced by the symmetries of lower-symmetry Type-I or Type-III double MSGs. For example, we find that

the inversion- $(\mathcal{I}$ -) symmetric antiferromagnetic (AFM) TCIs introduced in SRef. 177, which respect the symmetries of Type-IV MSGs containing $\{\mathcal{I}|\mathbf{0}\}$, in fact subduce to \mathcal{I} -symmetric AXIs^{28,38,40-60} in Type-I double MSG 2.4 $P\bar{1}$ (see SN 31 a for the double SI group and formulas of double MSG 2.4 $P\bar{1}$). Previously, in SRef. 26, the authors determined that the double SIs in all Type-II double SGs are dependent on the double SIs in one of six Type-II double SGs: 2.5 $P\bar{1}1'$, 81.34 $P\bar{4}1'$, 83.44 P4/m1', 174.134 $P\bar{6}1'$, 175.138 P6/m1', and 176.144 $P6_3/m1'$. However, in this work, we find that Type-II SGs 81.34 $P\bar{4}1'$ and 174.134 $P\bar{6}1'$ are no longer minimal double SSGs after including magnetic subgroups of Type-II SGs, because their double SIs are respectively dependent on the double SIs in Type-I double MSGs 83.33 $P\bar{4}$ and 174.133 $P\bar{6}$. Additionally, for the purposes of this work, we have included Type-II SG 87.76 I4/m1' in our list of minimal double SSGs, because its double SI formulas can only be spanned by subducing SI topological bands onto two different minimal double SSGs (Type-II SGs 2.5 $P\bar{1}1'$ and 83.44 P4/m1'), rather than one. In the Supplementary Table in SN 39, we provide a complete enumeration of the minimal double SSGs with the minimal double SIs on which the double SIs in each double SSGs are dependent.

31. Double SI Formulas for Spinful Bands with Stable Topology in the 34 Minimal Double SSGs

Previously, in SN 30, we determined that the SIs in each of the 1,651 double SSGs are fully dependent on the minimal double SIs in one of 34 minimal double SSGs (the minimal double SSG associated to each double SSG is listed in the Supplementary Table in SN 39). In this section, we will present the minimal double SIs in all 34 minimal double SSGs, and hence, the minimal double SIs of spinful band topology in all 1,651 double SSGs. We will additionally transform the double SI formulas into a unified basis – which we term a physical basis – in which the double SIs for previously established spinful topological semimetals (SMs), TIs, and TCIs^{32,36,39,41,112,123,160–163,178–182} take the same form as the double SIs introduced in previous works^{22–31,34,35,164}. In a physical basis, the SIs for topological phases with the same response theories [e.g. a $z_8 = 1$ 3D TI in Type-II SG 123.340 P4/mmm1' and an $\eta_{4I} = 2$ magnetic AXI in MSG 2.4 $P\bar{1}$, see SRef. 26 and SN 31 a] are related through simple relations obtained from group-subgroup subduction [e.g. the relation $\eta_{4I} = 2(z_8 \text{ mod } 2)$ introduced in this work].

Below, for each minimal double SSG G, we will list the SI group Z^G [SEq. (217)] and the SI formula(s). We will additionally formulate layer constructions for the gapped (TI and TCI) phases, where admitted (see SRefs. 26,168 for further discussions of cases in which TI and TCI phases do not admit layer constructions). For the symmetry-indicated 3D QAH phases that we identify in the 34 minimal double SSGs, the anomalous boundary states are chiral modes along surfaces perpendicular to the Chern-layer stacking direction 65,178,182 . We will show that the remaining 3D symmetry-indicated, spinful, gapped topological phases in the 34 minimal double SSGs are 3D TI and TCI phases – which we will show to consist of AXIs^{28,38,40-60} with chiral hinge states, 3D TIs with twofold-degenerate, \mathcal{T} -symmetry-protected surface Dirac cones^{32,41,160,174}, helical mirror TCIs with mirror-protected surface states 161,162 , and higher-order TCIs (HOTIs) with mirror- or \mathcal{T} -protected helical hinge states $^{24-28,34-39}$. We emphasize that, employing the convention of SRefs. 34,39, a 2D crystal surface can only respect the symmetries of a wallpaper group, whereas a 1D hinge may either respect the symmetries of a frieze group or a line group [defined in SRefs. 73,75,165,166], depending on how the finite sample is cut from an infinite crystal. In this work, we define a helical (*i.e.* non-axionic) TCI phase to be higher-order topological if the TCI phase, when cut into a nanorod geometry, exhibits anomalous helical states that run along nanorod edges that are parallel to bulk rotation axes, where each edge is left invariant under a frieze or line group that contains either \mathcal{T} symmetry or a mirror line parallel to the nanorod edge.

For each of the 34 minimal double SSGs, we will additionally identify the minimal layer constructions necessary to span the subset of SI topological bands [defined in the text following SEq. (217)] corresponding to gapped (TI and TCI) phases; however, as we will detail below, we find that some of the symmetry-indicated spinful TI and TCI phases in the 34 minimal double SSGs are not layer-constructable. Specifically, as demonstrated in SRef. 26, a large subset of the previously identified TI and TCI phases in each Type-II SG G can be modeled by placing decoupled, flat layers of Chern insulators, 2D TIs, and 2D TCIs in each unit cell of a crystal that respects the symmetries of G. In this work, we find that a subset of the AXI phases in the minimal double SSGs cannot be constructed from layers of 2D TIs and TCIs. We conjecture that the AXI phases without layer constructions can still be constructed using the "topological crystal" framework discussed in SRef. 168, which incorporates cell complexes of 2D TIs and TCIs.

Throughout this section, we will obtain the properties of each minimal double SSG using tools on the BCS. Specifically, we will obtain the generators for each minimal double SSG using the MGENPOS tool^{15–18}, the maximal Wyckoff positions using the MWYCKPOS tool^{15–18}, the maximal momentum stars using the MKVEC tool (see SN 12), the small (co)reps using the Corepresentations tool (see SN 13), and the EBRs using the MBANDREP tool (see SN 23).

In this work, we will provide each double SI formula in the notation of SN 29 and SRefs. 26,29. For centrosymmetric SSGs (i.e. SSGs that contain $\{\mathcal{I}|\mathbf{0}\}$ in at least one definition of the unit cell origin), we will use the symbols n_K^{\pm} to

respectively indicate the number of Bloch eigenstates at the inversion-invariant point $\mathbf{k} = K$ with the parity ($\{\mathcal{I}|\mathbf{0}\}\)$) eigenvalues ± 1 in a given energy range (which is typically runs over the occupied bands). For SSGs that contain rotation symmetries of the form $\{C_n|\mathbf{0}\}$ or screw symmetries of the form $\{C_{nl}|\mathbf{t}_l/b\}$ in at least one definition of the unit cell origin, we will use the symbol n_K^j to indicate the number of Bloch eigenstates at the C_n -rotation(or screw)-invariant point $\mathbf{k} = K$ with the rotation eigenvalue $e^{-i\frac{2\pi}{n}j}$ in a given energy range. Because we are restricting focus in this work to the double SIs of spinful band topology in the 1,651 SSGs, the factor of j in each rotation eigenvalue $e^{-i\frac{2\pi}{n}j}$ is half-integer-valued; in this work, we term j the angular momentum (taken modulo n) of the rotation- or screw-invariant Bloch eigenstates at K. Next, for SSGs that contain fourfold rotoinversion symmetries of the form $\{S_4|\mathbf{0}\}=\{C_4\times\mathcal{I}|\mathbf{0}\}$ (but not fourfold rotation symmetries of the form $\{C_4|\mathbf{0}\}$) in at least one definition of the unit cell origin, we will use the symbol n_K^j to indicate the number of Bloch eigenstates at the S_4 -invariant point $\mathbf{k}=K$ with the $\{S_4|\mathbf{0}\}$ rotoinversion eigenvalues $e^{-i\frac{2\pi}{4}j}$ in a given energy range. Generically, n_K^j $(j=\pm\frac{1}{2},\pm\frac{3}{2})$ is defined using $\{S_4|\mathbf{0}\}$ eigenvalues only if the point K is $\{S_4|\mathbf{0}\}$ -invariant, but not $\{C_4|\mathbf{0}\}$ -invariant. Conversely, if K is $\{C_4|\mathbf{0}\}$ -invariant, then n_K^j $(j=\pm\frac{1}{2},\pm\frac{3}{2})$ is always defined using the eigenvalues of $\{C_4|\mathbf{0}\}$. Lastly, for SSGs that contain both mirror symmetries of the form $\{m_l|\mathbf{0}\}$ and rotation symmetries of the form $\{C_{nl}|\mathbf{0}\}$ or screw symmetries of the form $\{C_{nl}|\mathbf{t}_l/b\}$ in at least one definition of the unit cell origin, we will use the symbols $n_K^{j,\pm i}$ to respectively indicate the number of Bloch eigenstates at the rotation- or screw-invariant point $\mathbf{k} = K$ with the rotation or screw eigenvalue $e^{-i\frac{2\pi}{n}j}$ and the mirror eigenvalue $\pm i$ in a given energy range.

Before we will derive the double SIs in the 34 minimal double SSGs, we will first summarize our labeling convention for double SIs. First, for double SIs that have the same SI formulas as the nonmagnetic double SIs introduced in SRefs. 26, we have followed the labeling convention established in SRef. 26:

- 1. $z_{2w,i}$ (i=1,2,3) are the weak TI SIs in the $k_i=\pi$ planes, or the weak mirror Chern numbers modulo 2 in the $k_i=\pi$ planes in the absence of $\{\mathcal{T}|\mathbf{0}\}$ symmetry.
- 2. $z_{nm,k}$ $(n=4,3,6, k=0,\pi)$ are the mirror Chern numbers (modulo n) in the $k_z=k$ plane indicated by rotation eigenvalues in SSGs 83.44 P4/m1', 174.134 $P\bar{6}1'$, 175.138 P6/m1' for n=4,3,6, respectively. In this work, we will use the symbol $z_{nm,k}^{\pm}$ to represent the Chern numbers of sets of bands with mirror eigenvalues $\pm i$, respectively.
- 3. z_4 , z_2 , z_8 , z_{12} , and z_{12}' indicate strong 3D TIs and helical TCIs and HOTIs in SSGs 2.5 $P\bar{1}1'$, 81.34 $P\bar{4}1'$, 83.44 P4/m1', 175.138 P6/m1', 176.144 $P6_3/m1'$, respectively. Odd values of z_4 , z_2 , z_8 , z_{12} , and z_{12}' correspond to strong TIs. $z_4 = 2$, $z_8 = 4$, $z_{12} = 6$, $z_{12}' = 6$ correspond to non-axionic HOTI phases with helical hinge states or mirror TCIs with even mirror Chern numbers (see SN 31s through 31 w and SRef. 26).

If the double SIs in a Type-II SSG G continue to indicate stable topological phases in a magnetic subgroup M of G, then we will use the same double SI labels and formulas in G and M.

We additionally find that there are Type-I and Type-III double MSGs with new double SIs that are not subduced from Type-II SSGs (see Supplementary Table 10). For these minimal *magnetic* double SIs, we have adopted a convention in which:

- 1. z_{nR} (n=2,3,4,6) represent Chern numbers (modulo n) indicated by rotation eigenvalues.
- 2. z'_{nR} and z''_{nR} (n=2,3,4,6) represent doubled Chern numbers indicated by rotation eigenvalues [i.e. $z'_{nR}=(C/2) \bmod n$] in nonsymmorphic MSGs.
- 3. η_{4I} is defined in MSG 2.4 $P\bar{1}$. Odd values of η_{4I} correspond to Weyl semimetals, and $\eta_{4I}=2$ corresponds to an AXI provided that the net Chern numbers are zero and there are no Weyl points in the BZ interior. We use the symbol " η " rather than "z" to distinguish η_{4I} from the double SI z_4 in the minimal double SSGs 2.5 $P\bar{1}1'$, 47.249 Pmmm, and 83.45 P4'/m and from the double SI z_4' in double MSG 135.487 $P4'_2/mbc'$.
- 4. $z_{2I,i}$ (i=1,2,3) are defined in double MSG 2.4 $P\bar{1}$, and respectively represent the Chern numbers modulo 2 in the $k_i=\pi$ planes indicated by \mathcal{I} (parity) eigenvalues. We have used the subscript "I" to distinguish $z_{2I,i}$ from z_{2R} (the Chern number modulo 2 indicated by C_2 rotation eigenvalues) and $z_{2w,i}$ (the weak TI and TCI parity indices discussed above).
- 5. $\eta'_{2I} = \frac{1}{2}\eta_{4I}$ represents a doubled variant of η_{4I} that is present in SSGs in which symmetry requires η_{4I} to be even.
- 6. δ_{nm} (n=2,3,4,6) represent the differences between the mirror Chern numbers in the $k_z=0,\pi$ planes (modulo n).

- 7. z_{4S} and δ_{2S} are defined in MSG 81.33 $P\bar{4}$. Respectively, z_{4S} and δ_{2S} represent the total Chern number (modulo 4) in the $k_z = \pi$ plane and twice the difference of the total Chern numbers in the $k_z = 0, \pi$ planes (i.e. $\delta_{2S} = [(C_{k_z=\pi} C_{k_z=0})/2] \mod 2$).
- 8. z'_4 in MSG 135.487 $P4'_2/mbc'$ represents a different \mathbb{Z}_4 -valued doubled variant of the double SI η_{4I} than the double SI z_4 discussed above $[e.g. \eta_{4I} = (2z'_4) \mod 4]$.
- 9. For all of the symbols of the double SIs, the first number (n) in the subscript indicates that the corresponding double SI takes integer values in the range [0, n-1].
 - a. Double SIs in Type-I Double MSG 2.4 Pī

The double MSG 2.4 $P\bar{1}$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, and $\{\mathcal{I}|\mathbf{0}\}$. The SIs of MSG 2.4 $P\bar{1}$ were previously analyzed in SRefs. 65,183; the previous analyses performed in SRefs. 65,183 agree with the analysis performed in this section.

Double SIs – The double MSG 2.4 $P\bar{1}$ has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2^3$. We define the four SIs of double MSG 2.4 $P\bar{1}$ to be $(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})$, and we define the four SI formulas to be:

$$\eta_{4I} = \sum_{K} n_K^- \mod 4 = \sum_{K} \frac{1}{2} (n_K^- - n_K^+) \mod 4,$$
(235)

and:

$$z_{2I,i=1,2,3} = C_{k_i=\pi} \mod 2 = \sum_{K,K_i=\pi} n_K^- \mod 2, \tag{236}$$

where K runs over the eight \mathcal{I} -invariant momenta in the first BZ, and n_K^{\pm} are the number of Bloch states with ± 1 parity (\mathcal{I}) eigenvalues at K in the group of bands under consideration (typically the occupied bands). We find that $z_{2I,i}$ indicates the parity of the momentum-space Chern number in the $k_i = \pi$ plane, in agreement with the Chern number SI formulas previously introduced in SRefs. 156,164. Correspondingly, we find that η_{4I} mod 2 is the parity of the difference between the Chern numbers in the $k_z = 0$ and $k_z = \pi$ planes. Because a 3D |C| = 1 Weyl point is equivalent to the quantum critical point¹⁷⁸ between 2D Chern insulating phases with $|\Delta C| = 1$, then this implies that $\eta_{4I} = 1, 3$ correspond to Weyl SM (WSM) phases that satisfy the insulating compatibility relations (see SN 16), similar to the WSM and nodal-line SM phases previously analyzed in SRefs. 28,29,52,154,178,184,185. The boundary states of the $\eta_{4I} = 1, 3$ WSM phases differ from each other by a chiral hinge state or gapless surface states, because, as we will show below, the SI difference $\Delta \eta_{4I} = 3 - 1 = 2$ either corresponds to an AXI or a 3D QAH state. In this work, we refer to symmetry-indicated SM phases that satisfy the insulating compatibility relations as *Smith-index SMs* (SISMs).

Layer constructions – We will now formulate layer constructions of the symmetry-indicated spinful TI and TCI phases in double MSG 2.4 $P\bar{1}$. In each unit cell, we will use the relative 3D coordinates (x, y, z) to index layer positions, where the unit cell is defined as lying within $0 \le x, y, z < 1$. In position space, an \mathcal{I} center at (0,0,0) transforms the coordinates (x, y, z) to (-x, -y, -z). For a position \mathbf{r} to be considered \mathcal{I} -invariant, we require that:

$$\mathcal{I}\mathbf{r} = \mathbf{r} \mod (1, 0, 0) \mod (0, 1, 0) \mod (0, 0, 1).$$
 (237)

Consequently, the eight maximal Wyckoff positions (i.e. the \mathcal{I} centers) in MSG 2.4 $P\bar{1}$ lie at x, y, z = 0, 1/2.

We next study the layer constructions of the insulating subset of the SI topological bands (*i.e.* the symmetry-indicated topological phases that do not correspond to Weyl SISMs with odd η_{4I} indices). We first introduce the layer construction generators, each of which is equivalent to a 3D QAH insulator^{43,44,65,182}, where the double SIs for each layer construction are given in the order (η_{4I} , $z_{2I,1}$, $z_{2I,2}$, $z_{2I,3}$):

- 1. An $\hat{\mathbf{x}}$ -normal Chern layer with $C_x = \pm 1$ in the x = 0 plane has the SIs (2100).
- 2. An $\hat{\mathbf{x}}$ -normal Chern layer with $C_x = \pm 1$ in the $x = \frac{1}{2}$ plane has the SIs (0100).
- 3. A $\hat{\mathbf{y}}$ -normal Chern layer with $C_y=\pm 1$ in the y=0 plane has the SIs (2010).
- 4. A $\hat{\mathbf{y}}$ -normal Chern layer with $C_y = \pm 1$ in the $y = \frac{1}{2}$ plane has the SIs (0010).
- 5. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z = \pm 1$ in the z = 0 plane has the SIs (2001).
- 6. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z = \pm 1$ in the $z = \frac{1}{2}$ plane has the SIs (0001).

For the double SIs of the above layer constructions, we have adopted the convention used in SRefs. 26,29 in which commas are suppressed for specific values of the SIs $[e.g.~(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3}) = (2100)]$. Below, we will detail the explicit calculations that we have performed to calculate the SIs of each layer construction, focusing on the cases of $\hat{\mathbf{z}}$ -normal Chern layers with $C_z = 1$ respectively placed at z = 0 and $z = \frac{1}{2}$. In this work, we will only consider layer constructions of stable topological phases (as opposed to fragile phases, see SN 27 and SRefs. 5,6,136–141,143–148), which do not depend of the positions of layers with trivial 2D stable topological invariants [i.e. layers of 2D fragile phases or (obstructed) atomic limits]²⁶. Hence, for stable topological phases that admit layer constructions, the stable SIs are fully determined by the positions, orientations, and 2D stable topology of the layers.

First, we consider a crystal in double MSG 2.4 $P\bar{1}$ that is constructed of layered, $\hat{\mathbf{z}}$ -normal Chern insulators with $C_z = 1$ that lie at z = 0 in each unit cell. We assume, without loss of generality, that each Chern insulator originates from placing one valence (occupied) spinful s orbital at (x, y) = (0, 0), placing one conduction (unoccupied) spinful s orbital at s orb

$$\lambda'(0,0) = -1, \ \lambda'(\pi,0) = 1, \ \lambda'(0,\pi) = 1, \ \lambda'(\pi,\pi) = 1.$$
(238)

As shown in SRefs. 156,164 the Chern number C_z of each layer satisfies:

$$(-1)^{C_z} = \prod_{K} \prod_{n \in \text{occ}} \lambda'_n(K), \tag{239}$$

where K runs over the four \mathcal{I} -invariant momenta in SEq. (238), and $\lambda'_{K,n}$ is the parity eigenvalue of the n^{th} energetically isolated band at K [though for the specific case that we are discussing, there is only one isolated (valence) band n=1]. The parity eigenvalues shown in SEq. (238) indicate that each layer carries a nontrivial Chern number $C_z \mod 2 = 1$.

Next, we express the occupied band of each Chern layer in a basis of hybrid Wannier functions 114,115 in which states within the layers are exponentially localized in z and depend on the crystal momenta $k_{x,y}$. We then return to momentum space by Fourier-transforming the z component of the hybrid Bloch-Wannier wavefunction of the occupied band:

$$|\psi_{\mathbf{k}}\rangle = \frac{1}{\sqrt{N_z}} \sum_{z=0,\pm 1\cdots} e^{-izk_z} |\psi_{k_x,k_y,z}\rangle, \tag{240}$$

in which N_z is the number of unit cells in the crystal in the z-direction. In the hybrid basis of (k_x, k_y, z) :

$$\mathcal{I}(k_x, k_y, z) = (-k_x, -k_y, -z), \tag{241}$$

and hybrid coordinates \mathbf{h} are considered to be \mathcal{I} -invariant if:

$$\mathcal{I}\mathbf{h} = \mathbf{h} \mod (2\pi, 0, 0) \mod (0, 2\pi, 0) \mod (0, 0, 1).$$
 (242)

However, it is important to emphasize that the hybrid wavefunction $|\psi_{k_x,k_y,z}\rangle$ of each layer, unlike the Bloch wavefunction $|\psi_{\mathbf{k}}\rangle$, is generically not an eigenstate of \mathcal{I} :

$$\mathcal{I}|\psi_{k_x,k_y,z}\rangle = \lambda'(k_x,k_y)|\psi_{k_x,k_y,-z}\rangle,\tag{243}$$

in which $\lambda'(k_x, k_y)$ is the parity eigenvalue of the occupied band in the 2D BZ of a single Chern insulator. For a crystal in double MSG 2.4 $P\bar{1}$ furnished by $\hat{\mathbf{z}}$ -normal, $C_z=1$ Chern layers in the z=0 plane of each cell, this implies

that the parity eigenvalues at the \mathcal{I} -invariant \mathbf{k} points are given by:

$$\mathcal{I}|\psi_{\mathbf{k}}\rangle = \frac{1}{\sqrt{N_z}} \sum_{z=0,\pm 1\cdots} e^{-izk_z} \mathcal{I}|\psi_{k_x,k_y,z}\rangle
= \frac{1}{\sqrt{N_z}} \sum_{z=0,\pm 1\cdots} e^{-izk_z} \lambda'(k_x,k_y)|\psi_{k_x,k_y,-z}\rangle
= \lambda'(k_x,k_y) \left[\frac{1}{\sqrt{N_z}} \sum_{z=0,\pm 1\cdots} e^{izk_z}|\psi_{k_x,k_y,z}\rangle \right]
= \lambda'(k_x,k_y) \left[\frac{1}{\sqrt{N_z}} \sum_{z=0,\pm 1\cdots} e^{-izk_z} \left[e^{ik_z} \right]^{2z} |\psi_{k_x,k_y,z}\rangle \right]
= \lambda'(k_x,k_y) \left[\frac{1}{\sqrt{N_z}} \sum_{z=0,\pm 1\cdots} e^{-izk_z} |\psi_{k_x,k_y,z}\rangle \right]
= \lambda'(k_x,k_y)|\psi_{\mathbf{k}}\rangle,$$
(244)

where in the fifth line, we have used the relation $[e^{ik_z}]^{2z}=1$ for \mathcal{I} -invariant momenta $k_z=0,\pi$ and $z\in\mathbb{Z}$. Through SEq. (244), we determine that the 3D parity eigenvalues $\lambda(k_x,k_y,k_z)$ satisfy $\lambda(k_x,k_y,k_z)=\lambda'(k_x,k_y)$. From the parity eigenvalues of each layer listed in SEq. (238), this implies that:

$$\lambda(0,0,0) = -1, \ \lambda(\pi,0,0) = 1, \ \lambda(0,\pi,0) = 1, \ \lambda(\pi,\pi,0) = 1, \lambda(0,0,\pi) = -1, \ \lambda(\pi,0,\pi) = 1, \ \lambda(0,\pi,\pi) = 1, \ \lambda(\pi,\pi,\pi) = 1.$$
 (245)

Substituting the parity eigenvalues from SEq. (245) into SEqs. (235) and (236), we obtain the SIs (2001) for a 3D crystal in double MSG 2.4 $P\bar{1}$ with $\hat{\mathbf{z}}$ -normal $C_z=1$ Chern insulators placed at z=0 in each cell.

We next consider the case in which the 3D crystal is furnished with layers of $\hat{\mathbf{z}}$ -normal, $C_z = 1$ Chern insulators that lie at $z \mod 1 = \frac{1}{2}$. The Bloch wavefunction of the occupied band of the 3D crystal takes the form:

$$|\psi_{\mathbf{k}}\rangle = \frac{1}{\sqrt{N_z}} \sum_{z=\pm\frac{1}{2},\pm\frac{3}{2}\cdots} e^{-izk_z} |\psi_{k_x,k_y,z}\rangle.$$
(246)

Unlike previously in SEq. (244), for a crystal in double MSG 2.4 $P\bar{1}$ furnished by $\hat{\mathbf{z}}$ -normal, $C_z = 1$ Chern insulator in the $z = \frac{1}{2}$ plane of each unit cell, the parity eigenvalues at the \mathcal{I} -invariant \mathbf{k} points are given by:

$$\mathcal{I}|\psi_{\mathbf{k}}\rangle = \frac{1}{\sqrt{N_z}} \sum_{z=\pm \frac{1}{2}, \pm \frac{3}{2} \dots} e^{-izk_z} \mathcal{I}|\psi_{k_x, k_y, z}\rangle
= \frac{1}{\sqrt{N_z}} \sum_{z=\pm \frac{1}{2}, \pm \frac{3}{2} \dots} e^{-izk_z} \lambda'(k_x, k_y)|\psi_{k_x, k_y, -z}\rangle
= \lambda'(k_x, k_y) \left[\frac{1}{\sqrt{N_z}} \sum_{z=\pm \frac{1}{2}, \pm \frac{3}{2} \dots} e^{izk_z} |\psi_{k_x, k_y, z}\rangle \right]
= \lambda'(k_x, k_y) \left[\frac{1}{\sqrt{N_z}} \sum_{z=\pm \frac{1}{2}, \pm \frac{3}{2} \dots} e^{-izk_z} \left[e^{ik_z} \right]^{2z} |\psi_{k_x, k_y, z}\rangle \right]
= \lambda'(k_x, k_y) e^{ik_z} \left[\frac{1}{\sqrt{N_z}} \sum_{z=\pm \frac{1}{2}, \pm \frac{3}{2} \dots} e^{-izk_z} |\psi_{k_x, k_y, z}\rangle \right]
= \lambda'(k_x, k_y) e^{ik_z} |\psi_{\mathbf{k}}\rangle,$$
(247)

where in the fifth line, we have exploited that the summation is taken over half-integer values of z. SEq. (247) implies that the 3D parity eigenvalues $\lambda(k_x, k_y, k_z)$ satisfy $\lambda(k_x, k_y, k_z) = e^{ik_z} \lambda'(k_x, k_y)$. From the parity eigenvalues of each

layer listed in SEq. (238), this indicates that:

$$\lambda(0,0,0) = -1, \ \lambda(\pi,0,0) = 1, \ \lambda(0,\pi,0) = 1, \ \lambda(\pi,\pi,0) = 1, \lambda(0,0,\pi) = 1, \ \lambda(\pi,0,\pi) = -1, \ \lambda(0,\pi,\pi) = -1, \ \lambda(\pi,\pi,\pi) = -1.$$
(248)

Substituting the parity eigenvalues from SEq. (248) into SEqs. (235) and (236), we obtain the SIs (0001) for a 3D crystal of $\hat{\mathbf{z}}$ -normal $C_z = 1$ Chern insulators placed at $z = \frac{1}{2}$ in double MSG 2.4 $P\bar{1}$.

For the remainder of this work, we will not explicitly calculate the 3D symmetry eigenvalues that are implied by each layer construction. However, because the unitary symmetries of magnetic crystals are drawn from the same set as the unitary symmetries of nonmagnetic crystals [i.e. because the unitary subgroups of both Type-II SGs and Type-III and IV MSGs are isomorphic to Type-I MSGs, see SN 2], then the symmetry eigenvalues of the magnetic layer constructions introduced in this work can be extrapolated from the analogous analyses of nonmagnetic layer constructions in SRef. 26.

The inversion \mathbb{Z}_2 invariant and AXIs – We find that $\eta_{4I} = 2$ if and only if the \mathcal{I} -center at the origin (000) is occupied by a layer with an odd Chern number. For 3D QAH states (i.e. 3D insulators with nonzero Chern numbers), the $\eta_{4I} = 0, 2$ phases have the same bulk response. For example, layer constructions 1 and 2 for double MSG 2.4 $P\bar{1}$ – which exhibit $\eta_{4I} = 2, 0$, respectively – are related by a shift of origin from (000) to $(00\frac{1}{2})$. Nevertheless, the boundary states of insulators with $\eta_{4I} = 0, 2$ are distinct. For a finite-size sample with an \mathcal{I} center at (000), the state with $\eta_{4I} = 2$ has a single Chern layer passing through the \mathcal{I} center, and pairs of Chern layers at positions $(00, \pm z)$. In the finite sample, the total Chern number is therefore odd, and there is an \mathcal{I} -symmetric chiral hinge (or surface) mode surrounding the sample guaranteed by the net-odd Chern number. However, in the state with $\eta_{4I} = 0$, all of the Chern layers appear in pairs at the positions $(00, \pm z)$, such that the total Chern number is even. This implies the possibility of a completely gapped finite sample (i.e. a total sample Chern number of zero).

For 3D insulators with vanishing Chern numbers, $\eta_{4I}=0,2$ correspond to trivial insulators and AXIs, respectively. For example, the TCI constructed by one $C_z=1$ layer in the z=0 plane and one $C_z=-1$ layer in the $z=\frac{1}{2}$ plane is an AXI with the double SIs $(2000)^{47,53,54,57,58,65,183}$. The chiral hinge states of the AXI can be understood by observing that the chiral modes on the boundary of the layered crystal alternate in direction, and can hence pairwise annihilate – when the finite-sized crystal is \mathcal{I} -symmetric, there is an unpaired chiral mode that is equivalent to a boundary-encircling chiral hinge state. Specializing to the even sector of η_{4I} , this implies that an inversion \mathbb{Z}_2 invariant may be defined as:

$$\eta'_{2I} = \frac{1}{2}\eta_{4I} \mod 2. \tag{249}$$

We emphasize that it is η_{4I} – as opposed to η'_{2I} – that is returned by the Smith normal form calculation (see SN 28) for double MSG 2.4 $P\bar{1}$. The non-minimal index η'_{2I} is integer-valued only for 3D insulators or WSMs with even numbers of Weyl points in each half of the bulk BZ. Nevertheless, as we will show below, in many higher-symmetry double SSGs in which the SIs depend on the SIs in double MSG 2.4 $P\bar{1}$ (see SN 39), the Smith normal form calculation does return η'_{2I} . From previous works^{28,38,40–60}, we recognize that $\eta'_{2I} = 1$ is related to the axion angle $\theta = \pi$:

$$\theta \bmod 2\pi = \pi \eta_{2I}'. \tag{250}$$

However, it is crucial to note that the axion angle $\theta = \pi$ does not always indicate an axionic band-insulating phase (i.e. an AXI or 3D TI, see SRefs. 28,32,38,40-60,160). For example, consider the case of a crystal in MSG $2.4\ P\bar{1}$ furnished by one $C_z=1$ layer in the z=0 plane and one $C_z=1$ layer in the $z=\frac{1}{2}$ plane – the bulk topological phase is not an AXI, but is instead a 3D QAH insulator with $C_z = 2$ per unit cell. For the $C_z = 2$ QAH insulator, the SIs [(2000)] are the same as those of the AXI discussed in the text surrounding SEqs. (249) and (250), indicating that $\theta = \pi \eta'_{2I} = \pi$, despite the fact that the bulk is not an AXI. This can be understood by recognizing that the axion θ angle is origin-dependent when the Z-valued, non-symmetry-indicated Chern numbers of a 3D crystal do not vanish^{47,57,58,186,187}, and hence θ can still be nonzero in a 3D QAH phase depending on the choice of origin. Therefore, in order for SEq. (250) to indicate the origin-independent θ angle of an AXI, it is additionally required that the total Chern numbers $C_{x,y,z}$ vanish in each unit cell. Lastly, we note that SEq. (250) differs by π from the definition of θ as a "Chern number polarization" employed in SRefs. 47,57,186. Hence, in 3D insulators with non-vanishing position-space Chern numbers (i.e. nonzero total Chern numbers in any direction summed across the layers in each position-space unit cell) and origin- (i.e. convention-) dependent θ angles, the SIs introduced in this work [e.g. SEq. (250)] return values of θ that are shifted from the values in SRefs. 47,57,186 by π . Importantly, however, both SEq. (250) and the Chern number polarization in SRefs. 47,57,186 correctly diagnose the convention-independent bulk θ angle of AXIs to be $\theta = \pi$.

Relationship with the SIs in other double SSGs – As shown in SRefs. 24,26,27, the double SIs in double SG 2.5 $P\bar{1}1'$ take the same form as SEqs. (236) and (235) under the replacement of n_K^- with $n_K^-/2$ [i.e. the number of energetically isolated Kramers pairs of Bloch states at K]. The SI topological bands in double SG 2.5 $P\bar{1}1'$ subduced onto double MSG 2.4 $P\bar{1}$ imply the double SI dependencies:

$$(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{P\bar{1}1'} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2(z_4 \bmod 2), 000)_{P\bar{1}}. \tag{251}$$

b. Double SIs in Type-I Double MSG 3.1 P2

The double MSG 3.1 P2 is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, and $\{C_{2y}|\mathbf{0}\}$, and has the double SI group \mathbb{Z}_2 . We first recall the formula established in SRefs. 43,156,164 for the parity of the Chern number in a $\hat{\mathbf{y}}$ -normal 2D insulator with $\{C_{2y}|00\}$ symmetry:

$$(-1)^{C_y} = \prod_{n \in occ} \prod_K \zeta_n(K), \tag{252}$$

where C_y is the Chern number in the y-direction, $\zeta_n(K)$ is the $\{C_{2y}|00\}$ eigenvalue of the n^{th} energetically isolated state at K, and K runs over the four $\{C_{2y}|00\}$ -invariant momenta in 2D. Using SEq. (252), we define the double SI z_{2R} of MSG 3.1 P2 to be the parity of the Chern number C_y in the $k_y = \pi$ plane:

$$z_{2R} = C_{k_y = \pi} \mod 2 = \sum_{K = Z, D, C, E} n_K^{\frac{1}{2}} \mod 2, \tag{253}$$

where $n_K^{\frac{1}{2}}$ is the number of energetically isolated states with the $\{C_{2y}|\mathbf{0}\}$ eigenvalue -i [corresponding to an angular momentum (modulo 2) of $j=\frac{1}{2}$] at K. For 3D insulating phases, the Chern numbers in all of the BZ planes of constant k_y for $-\pi \leq k_y < \pi$ must be the same (otherwise, there would be bulk Weyl points, and the bulk would not be an insulator). Hence, a 3D insulator with $z_{2R}=1$ is a 3D QAH state with $C_y \mod 2=1$.

If the symmetry operation $\{\mathcal{T}|\mathbf{0}\}$ were added, a crystal in double MSG 3.1 P2 would become invariant under Type-II double SG 3.2 P21'. In P21', states at the four TRIM points K in SEq. (253) form Kramers pairs with opposite $\{C_{2y}|\mathbf{0}\}$ eigenvalues, causing $n_K^{\frac{1}{2}}$ to be even, and z_{2R} to be zero. This agrees with the absence of double SIs in Type-II double SG 3.2 P21' (see SN 39), and the requirement that the position-space Chern numbers $C_{x,y,z}$ vanish in a nonmagnetic (\mathcal{T} -symmetric) crystal^{188,189}.

c. Double SIs in Type-I Double MSG 10.42 P2/m

The double MSG 10.42 P2/m is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{2y}|\mathbf{0}\}$, and $\{m_y|\mathbf{0}\}$. SIs – The double MSG 10.42 P2/m has the SI group \mathbb{Z}_2^3 . In the physical basis, the three double SIs of double MSG 10.42 P2/m ($\delta_{2m}, z_{2m,\pi}^+, z_{2m,\pi}^-$) have the respective SI formulas:

$$\delta_{2m} = C_{\pi}^{+} - C_{0}^{-} \mod 2 = \sum_{K=Z,D,C,E} n_{K}^{\frac{1}{2},+i} - \sum_{K=\Gamma,A,B,Y} n_{K}^{\frac{1}{2},-i} \mod 2, \tag{254}$$

$$z_{2m,\pi}^+ = C_{\pi}^+ \mod 2 = \sum_{K=Z,D,C,E} n_K^{\frac{1}{2},+i} \mod 2,$$
 (255)

$$z_{2m,\pi}^- = C_{\pi}^- \mod 2 = \sum_{K=Z,D,C,E} n_K^{\frac{1}{2},-i} \mod 2,$$
 (256)

where $n_K^{j,\pm i}$ is the number of occupied states with angular momentum j, the $\{C_{2y}|0\}$ eigenvalue $e^{-i\pi j}$, and the $\{m_y|0\}$ eigenvalue $\pm i$. Because the matrix representative of $\{m_y|0\}$ commutes with the matrix representative of $\{C_{2y}|0\}$ in all double-valued small irreps at each of the \mathcal{I} -invariant \mathbf{k} points in double MSG 10.42 P2/m, then $z_{2m,\pi}^{\pm}$, respectively indicate the Chern number parities in the mirror sector of the $k_y=\pi$ plane with $\{m_y|0\}$ eigenvalue $\pm i$. As discussed in SN 29, if the bulk is a 3D insulator, then the occupied states in the $k_y=0,\pi$ planes have the same total Chern

numbers (i.e the sum of the Chern numbers over the two mirror sectors in each of the $k_y = 0, \pi$ planes is the same), because the insulating compatibility relations require that the occupied bands in the $k_y = 0, \pi$ planes have the same $\{C_{2y}|0\}$ eigenvalues.

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ the layer construction method. We denote the Chern numbers of the occupied bands in each mirror sector – which we term the mirror sector Chern numbers – as $(C_{k_y=0}^+, C_{k_y=0}^-, C_{k_y=\pi}^+, C_{k_y=\pi}^-)$. The insulating compatibility relations require that $C_{k_y=0}^+ + C_{k_y=0}^- \mod 2 = C_{k_y=\pi}^+ + C_{k_y=\pi}^- \mod 2$. We emphasize that the double SIs in SEqs. (254), (255), and (256) are fully determined by the above mirror sector Chern numbers $(C_{k_y=0}^+, C_{k_y=0}^-, C_{k_y=\pi}^+, C_{k_y=\pi}^-)$. We next calculate the minimal double SIs of double MSG 10.42 P2/m in the order $(\delta_{2m}, z_{2m,\pi}^+, z_{2m,\pi}^-)$, as well as the subduced double SIs $(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}}$ in the subgroup double MSG 2.4 $P\bar{1}$ for a physical comparison and to identify symmetry-indicated AXI phases in MSG 10.42 P2/m.

- 1. A $\hat{\mathbf{y}}$ -normal layer with $C_y^+ = 1$, $C_y^- = 0$ in the y = 0 plane has the mirror sector Chern numbers =(1010) and the SIs (110). The subgroup SIs are $(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2010)_{P\bar{1}}$.
- 2. A $\hat{\mathbf{y}}$ -normal layer with $C_y^+ = 0$, $C_y^- = 1$ in the y = 0 plane has the mirror sector Chern numbers (0101) and the SIs (101). The subgroup SIs are $(2010)_{P\bar{1}}$.
- 3. A $\hat{\mathbf{y}}$ -normal layer with $C_y^+=1$, $C_y^-=0$ in the $y=\frac{1}{2}$ plane has the mirror sector Chern numbers (1001) and the SIs (001). The subgroup SIs are $(0010)_{P\bar{1}}$.
- 4. A $\hat{\mathbf{y}}$ -normal layer with $C_y^+ = 0$, $C_y^- = 1$ in the $y = \frac{1}{2}$ plane has the mirror sector Chern numbers (0110) and the SIs (010). The subgroup SIs are $(0010)_{P\bar{1}}$.

Relationship with the SIs in other double SSGs – To identify the AXI phases in double MSG 10.42 P2/m, we subduce the SIs onto the SIs of double MSG 2.4 $P\overline{1}$:

$$\left(\delta_{2m}, z_{2m,\pi}^{+}, z_{2m,\pi}^{-}\right)_{P2/m} \to \left(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3}\right)_{P\bar{1}} = \left(2\delta_{2m}, 0, z_{2m,\pi}^{+} + z_{2m,\pi}^{-}, 0\right)_{P\bar{1}}.$$
 (257)

We find that both the (100) and (111) states in double MSG 10.42 P2/m are consistent with AXI phases [but may also, for example, be 3D QAH phases, see SN 31a]. We label the four layer constructions as $L_{1,2,3,4}$. The (100) and (111) states in double MSG 10.42 P2/m can be constructed as $L_1 - L_4$ and $L_1 - L_3$, respectively. Lastly, $-L_3$ ($-L_4$) has the same construction as L_3 (L_4), except for a difference in the position-space mirror sector Chern number $C_y^+ = -1$ ($C_y^- = -1$).

Lastly, Type-II double SSG 10.43 P2/m1' – the double SSG that results from adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to Type-I double MSG 10.42 P2/m – has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2^3$. The subduction relations between the double SIs in double SSG 10.43 P2/m1' and double MSG 10.42 P2/m are given by:

$$(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{P2/m1'} \to (\delta_{2m}, z_{2m,\pi}^+, z_{2m,\pi}^-)_{P2/m} = (z_4 \bmod 2, z_{2w,2}, z_{2w,2})_{P2/m}. \tag{258}$$

d. Double SIs in Type-I Double MSG 47.249 Pmmm

The double MSG 47.249 Pmmm is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{m_x|\mathbf{0}\}$, $\{m_y|\mathbf{0}\}$, and $\{\mathcal{I}|\mathbf{0}\}$.

SIs – The double MSG 47.249 Pmmm has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2^3$. In double-valued small irreps of the little groups at the \mathcal{I} -invariant \mathbf{k} points, the matrix representatives of perpendicular mirror symmetries (e.g. $\{m_x|\mathbf{0}\}$) and $\{m_y|\mathbf{0}\}$) anticommute. Hence, Bloch states at the eight \mathcal{I} -invariant momenta must be at least twofold degenerate (and in fact are exactly twofold degenerate in double MSG 47.249 Pmmm). The double SIs can be chosen to be the same as the double SIs of SSG 47.250 Pmmm1', because the addition of \mathcal{T} symmetry to double MSG 47.249 Pmmm does not change the dimensions and characters of the small irreps at the high-symmetry BZ points or the compatibility relations between the high-symmetry-point small irreps. In the physical basis, the \mathbb{Z}_4 double SI is:

$$z_4 = \sum_K \frac{1}{4} (n_K^- - n_K^+) \mod 4, \tag{259}$$

where K indexes all \mathcal{I} -invariant momenta and n_K^{\pm} is the number of occupied states with ± 1 parity (\mathcal{I}) eigenvalues at K. z_4 has the same form as η_{4I} [SEq. (235)], but carries an additional prefactor of 1/2. The extra factor of 1/2 in SEq. (259) can be understood from the double degeneracy of the Bloch states at the \mathcal{I} -invariant TRIM points, where the two states in each doublet have the same parity eigenvalues and complex-conjugate pairs of spinful mirror

eigenvalues $\pm i$, due to the anticommutation relations discussed above. Hence, the SI formula for z_4 [SEq. (259)] is simply one half of the SI formula for η_{4I} [SEq. (235)] (before applying the modulo 4 operation). The three \mathbb{Z}_2 SIs are the mirror Chern number parities in the $k_{1,2,3} = \pi$ planes:

$$z_{2w,i=1,2,3} = \sum_{K,K_i=\pi} \frac{1}{2} n_K^- \mod 2.$$
 (260)

Specifically, because an in-plane mirror operation reverses the sign of a 2D Chern number, and because all of the mirror planes in the bulk BZ have additional in-plane mirror symmetries (e.g. the Hamiltonian in each BZ mirror plane must respect the symmetries of magnetic layer group 10,39,69,70,73,74 pmmm), then the net Chern number in each BZ mirror plane in double MSG 47.249 Pmmm must vanish. For a group of bands in a mirror-invariant BZ (position-space) plane for which $C_{k_i}^+ = -C_{k_i}^-$ ($C^+ = -C^-$), we then define the mirror Chern number $C_{k_i}^{161,162}$ to be $C_{k_i}^+$ ($C_{k_i}^+$).

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ the layer construction method. In the layer constructions below, $C^+ = -C^-$ due to the net-zero Chern numbers enforced by the mirror symmetries. Hence, we will omit C^- in further discussions of the topology in double MSG 47.249 Pmmm. The layer constructions for the double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})$ of MSG 47.249 Pmmm are given by:

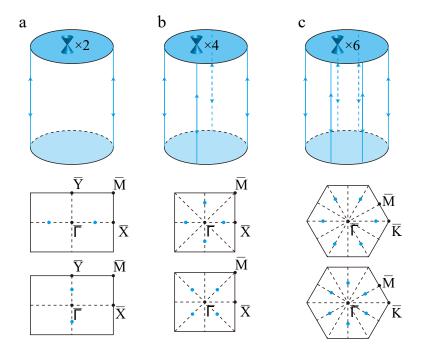
- 1. An $\hat{\mathbf{x}}$ -normal mirror Chern layer with $C_x^+=1$ in the x=0 plane has the mirror sector Chern numbers $(C_{k_x=0}^+,C_{k_x=\pi}^+)=(11)$ and the SIs (2100).
- 2. An $\hat{\mathbf{x}}$ -normal mirror Chern layer with $C_x^+=1$ in the $x=\frac{1}{2}$ plane has the mirror sector Chern numbers $(C_{k_x=0}^+,C_{k_x=\pi}^+)=(1,-1)$ and the SIs (0100).
- 3. A $\hat{\mathbf{y}}$ -normal mirror Chern layer with $C_y^+=1$ in the y=0 plane has the mirror sector Chern numbers $(C_{k_y=0}^+,C_{k_y=\pi}^+)=(11)$ and the SIs (2010).
- 4. A $\hat{\mathbf{y}}$ -normal mirror Chern layer with $C_y^+ = 1$ in the $y = \frac{1}{2}$ plane has the mirror sector Chern numbers $(C_{k_y=0}^+, C_{k_y=\pi}^+) = (1, -1)$ and the SIs (0010).
- 5. A $\hat{\mathbf{z}}$ -normal mirror Chern layer with $C_z^+=1$ in the z=0 plane has the mirror sector Chern numbers $(C_{k_z=0}^+,C_{k_z=\pi}^+)=(11)$ and the SIs (2001).
- 6. A $\hat{\mathbf{z}}$ -normal mirror Chern layer with $C_z^+=1$ in the $z=\frac{1}{2}$ plane has the mirror sector Chern numbers $(C_{k_z=0}^+,C_{k_z=\pi}^+)=(1,-1)$ and the SIs (0001).

The layer-construction calculations in this section parallel with the previous calculations in SN 31a of the layer constructions of the insulating phases in double MSG $2.4~P\bar{1}$. Hence, we will only consider layer construction 5 as an example of the generalization from the layer constructions and bulk topology in double MSG $2.4~P\bar{1}$ to that in double MSG 47.249~Pmmm.

In layer construction 5, we take each layer to consist of a $\hat{\mathbf{z}}$ -normal 2D mirror Chern insulator $(C_z^+ = -C_z^- = 1)$ with the occupied parity (\mathcal{I}) eigenvalues $\lambda'_{1,2}(k_x,k_y) = --,++,++,++$ at $(k_x,k_y) = (00),(0\pi),(\pi0),(\pi\pi)$, respectively. The subscripts 1,2 on $\lambda'_{1,2}(k_x,k_y)$ represent the $\{m_z|\mathbf{0}\}$ eigenvalue sectors i and -i, respectively. Applying the Fourier transformation in SEq. (240), we find that the parity eigenvalues of the 3D system are given by $\lambda_{1,2}(k_x,k_y,k_z) = \lambda'_{1,2}(k_x,k_y)$ [SEq. (244)]. This implies that $\lambda_{1,2}(k_x,k_y,k_z) = --,++,++,++,+--,+++,+++$ for $(k_x,k_y,k_z) = (000),(0\pi0),(\pi00),(\pi00),(\pi\pi0),(00\pi),(\pi\pi\pi),(\pi\pi\pi)$, respectively. Substituting the parity eigenvalues of layer construction 5 into SEqs. (259) and (260), we obtain the SIs (2001).

Axion insulators – We find that states with odd z_4 SIs cannot be constructed from layers of 2D stable topological phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values of z_4 . First, as we will show below, (1000) and (3000) subduce to $(2000)_{P\bar{1}}$ in MSG 2.4 $P\bar{1}$. Hence, if the (1000) and (3000) phases in double MSG 47.249 Pmmm are insulating, then the bulk insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers $C_{x,y,z}=0$ must vanish if the bulk is gapped, due to the mirror symmetries of double MSG 47.249 Pmmm, then the (1000) and (3000) states must be AXIs. This result can also be understood by subducing from a \mathcal{T} -symmetric SSG. Specifically, because (1000) and (3000) in MSG 47.249 Pmmm can respectively be subduced from $(1000)_{Pmmm1'}$ and $(3000)_{Pmmm1'}$ in Type-II SG 47.250 Pmmm1', which correspond to \mathcal{T} -symmetric 3D TIs with $\theta = \pi^{24,26,27}$, then (1000) and (3000) are compatible with bulk-gapped states. Hence, we conclude that 3D insulators with (1000) and (3000) in double MSG 47.249 Pmmm are AXIs, without ambiguity. We

Supplementary Figure 20: Surface Dirac points protected by mirror Chern numbers. In this figure, we respectively depict the surface states of insulators with the bulk mirror Chern numbers $C^+ = -C^- = 1, 2, 3$, where C^{\pm} respectively refer to the Chern number in the mirror sector with eigenvalue $\pm i$. In each panel, we depict a topological surface band structure along a mirror-invariant surface BZ line, where the red and blue lines respectively indicate bands with the mirror eigenvalues i and -i. At half-filling, the number of twofold surface Dirac points is given by the mirror Chern number $|C^+|$, where $|C^+| = |C^-|$.


conjecture that the (1000) and (3000) AXIs in MSG 47.249 Pmmm can be constructed using the topological crystal method ¹⁶⁸, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TCIs.

Helical HOTI phases protected by mirror – First, the double SIs $(2000)_{Pmmm1'}$ of Type-II double SSG 47.250 Pmmm1' correspond to a helical (non-axionic, i.e. θ mod $2\pi = 0$) HOTI protected by \mathcal{I} and \mathcal{T} symmetries. In the \mathcal{I} - and \mathcal{T} -symmetric HOTI phase, an odd number of helical modes encircle a finite sample with \mathcal{I} -symmetry. Because double SSG 47.250 Pmmm1' contains $\{m_{x,y,z}|\mathbf{0}\}$ symmetries, then a single helical hinge mode on a boundary must also be pinned to the hinge projection of a bulk mirror plane, and must indicate a bulk mirror Chern number $C_m = 2$ (because a mirror-invariant hinge is a 1D domain wall between two 2D surfaces with two massive twofold Dirac cones with oppositely-signed masses related by mirror symmetry, see SRefs. 26,34,39).

Returning to the magnetic subgroup Type-I MSG 47.249 Pmmm of Type-II SG 47.250 Pmmm1', we denote the six layer constructions introduced in this section as L_a ($a=1\cdots 6$), respectively. Without loss of generality, we consider $(2n+1)L_1\oplus (2m+1)L_2$. We next consider a 90° hinge of a z-directed, mmm-invariant rod that lies between x+y>0, x-y<0, where the rod is centered at the origin. On the 1D hinge, $(2n+1)L_1$, which has the mirror sector Chern numbers $C_x^+=-C_y^-=2n+1$ and has 2D TCI layers at $x=0,\pm 1\cdots$, will contribute 2n+1 helical modes to the hinge at x=y=0.

We next note that the bulk mirror Chern numbers $(C_{k_x=0}^+, C_{k_x=\pi}^+)$ are (2n+2m+2, 2n-2m). If $n-m \mod 2=0$, then $C_{k_x=0}^+ \mod 4=2$ and $C_{k_x=\pi}^+ \mod 4=0$, and if $n-m \mod 2=1$, then $C_{k_x=0}^+ \mod 4=0$ and $C_{k_x=\pi}^+ \mod 4=2$. In general, the SIs (2000) can be constructed as $(2n+1)L_1 \oplus (2m+1)L_2$, or $(2n+1)L_3 \oplus (2m+1)L_4$, or $(2n+1)L_5 \oplus (2m+1)L_6$ $(m,n\in\mathbb{Z})$, or through any superposition of an odd number of the aforementioned layer constructions. Hence, there exists a direction $i\in\{x,y,z\}$ such that the mirror Chern numbers in the i direction are either $(C_{k_i=0}^+ \mod 4, C_{k_i=\pi}^+ \mod 4) = (2,0)$ or $(C_{k_i=0}^+ \mod 4, C_{k_i=\pi}^+ \mod 4) = (0,2)$. Therefore, the bulk of the (2000) is a mirror TCI. Nevertheless, in this work, we refer to the (2000) phase in double MSG 47.249 Pmmm as a helical HOTI, because the (2000) phase of double MSG 47.249 can be connected to a $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{Pmmm1'} = (2000)_{Pmmm1'}$ mirror TCI phase in the \mathcal{T} -symmetric supergroup Type-II double SG 47.250 Pmmm1' without closing a bulk or surface gap. In turn, the (2000) Pmmm1' TCI phase subduces to an \mathcal{T} - and \mathcal{T} -protected $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{P\bar{1}1'} = (2000)_{P\bar{1}1'}$ helical HOTI in Type-II double SG 2.5 $P\bar{1}1'$ [see SN 31s and SRefs. 24,26–28]. To summarize, there exists at least one mirror-symmetric surface in the (2000) HOTI state that has 2+4n ($n\in\{\mathbb{Z}^+,0\}$) twofold Dirac points, in agreement with nontrivial even bulk mirror Chern number. We depict the anomalous surface and hinge states of the (2000) HOTI phase in SFig. 21(a).

For completeness, we next consider the boundary states of the layer construction $(2n+1)L_1 \oplus (2m+1)L_2$. The Chern numbers in the $\{m_x|\mathbf{0}\}$ mirror sectors are $C_{k_x=0}^+ = -C_{k_x=0}^- = 2n+2m+2$, $C_{k_x=\pi}^+ = -C_{k_x=\pi}^- = 2n-2m$. We consider either a $\hat{\mathbf{y}}$ - or a $\hat{\mathbf{z}}$ -normal surface, either of which preserves $\{m_x|\mathbf{0}\}$ mirror symmetry. In the 2D surface BZ, the bulk Chern number $C_{k_x=0}^+$ mandates the presence of |2n+2m+2| twofold Dirac points on the $k_x=0$ line (see SFig. 20), and $C_{k_x=\pi}^+$ mandates the presence of |2n-2m| Dirac points on the $k_x=\pi$ line. Hence the total number of twofold surface Dirac points is |2n+2m+2|+|2n-2m| mod 4=2. Similarly, $(2n+1)L_3 \oplus (2m+1)L_4$ and $(2n+1)L_5 \oplus (2m+1)L_6$ will exhibit 2+4n $(n \in \{\mathbb{Z}^+,0\})$ twofold Dirac points on $\{m_y|\mathbf{0}\}$ - and $\{m_z|\mathbf{0}\}$ -preserving surfaces, respectively. In SN 34, we will prove that, on surfaces of the (2000) state that respect the symmetries of

Supplementary Figure 21: The boundary states of the non-axionic magnetic HOTI phases in double MSGs (a) $47.249 \ Pmmm$, (b) $123.339 \ P4/mmm$, (c) $191.233 \ P6/mmm$. In the top panel, we show the mirror-protected surface twofold Dirac cones and side-surface helical hinge modes of each non-axionic magnetic HOTI (see SN 33 for further details). The symmetry groups of the top ($\hat{\mathbf{z}}$ -normal) surfaces are Type-I magnetic wallpaper groups (a) pmm, (b) p4m, and (c) p6m (see SRefs. 36,39,73-75 and SN 33). We note that, in this work, we have labeled wallpaper groups – which are also sometimes termed $plane \ groups$ – using the short notation previously employed in SRefs. 39,71,73; in the long notation of the Get Plane Gen tool on the BCS 13,14 , the magnetic wallpaper groups in (a-c) pmm, p4m, and p6m are respectively labeled by the symbols p2mm, p4mm, and p6mm. In (a-c), the helical hinge states are pinned to the hinge projections of the bulk mirror planes, and therefore originate from nontrivial bulk mirror Chern numbers. In the middle and bottom panels, we depict two possible configurations of anomalous twofold Dirac points in the top-surface BZ, where the dashed lines represent the top-surface projections of bulk mirror planes. In SN 34, we will introduce magnetic Dirac fermion doubling theorems for 2D insulators with the magnetic wallpaper groups of the top surfaces in (a-c). The fermion doubling theorems for the top-surface wallpaper groups in (a-c) are respectively circumvented by the non-axionic magnetic HOTI phases discovered in this work.

Type-I double magnetic wallpaper group $^{36,39,73-75}$ pmm, the presence of 2+4n $(n \in \{\mathbb{Z}^+,0\})$ twofold surface Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group pmm.

Relationship with the SIs in other double SSGs – To identity the AXI phases, we subduce the SIs onto double MSG 2.4 $P\bar{1}$. As explained in the text following SEq. (259), because each doublet of Bloch states at an \mathcal{I} -invariant \mathbf{k} point in MSG 47.249 Pmmm has the same parity eigenvalues (and complex-conjugate mirror eigenvalues), then z_4 is simply a doubling of η_{4I} . Hence $\eta_{4I} = 2z_4 \mod 4$. Similarly, $z_{2I,i} = 2z_{2w,i} \mod 2 = 0$. In summary:

$$(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{Pmmm} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2z_4 \mod 4,000)_{P\bar{1}}.$$
 (261)

Hence, the (1000) and (3000) states in double MSG 47.249 Pmmm, if gapped, correspond to AXIs.

Lastly, the correspondence between the double SIs of Type-I double MSG 47.249 *Pmmm* and the double SIs of Type-II double SSG 47.250 *Pmmm1'* is one-to-one.

e. Double SIs in Type-I Double MSG 75.1 P4

The double MSG 75.1 P4 is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, and $\{C_{4z}|\mathbf{0}\}$.

The double SI group of double MSG 75.1 P4 is \mathbb{Z}_4 . To determine the physical basis for the double SIs, we first recall the formula for the Chern number in the presence of fourfold rotation symmetry ¹⁶⁴:

$$i^{C} = (-1)^{N_{\text{occ}}} \prod_{n \in occ} \xi_n(00) \xi_n(\pi \pi) \zeta_n(0\pi), \tag{262}$$

where $\xi_n(K)$ is the $\{C_{4z}|\mathbf{0}\}$ eigenvalue of the n^{th} occupied state at K, and $\zeta_n(K)$ is the $\{C_{2z}|\mathbf{0}\}$ eigenvalue of the n^{th} occupied state at K. We can define the SI as the Chern number in the $k_z = \pi$ plane modulo 4:

$$z_{4R} = C_{k_z = \pi} \mod 4 = 2N_{\text{occ}} + \sum_{K = Z, A} \left(-\frac{1}{2} n_K^{\frac{1}{2}} + \frac{1}{2} n_K^{-\frac{1}{2}} - \frac{3}{2} n_K^{\frac{3}{2}} + \frac{3}{2} n_K^{-\frac{3}{2}} \right) - n_R^{\frac{1}{2}} + n_R^{-\frac{1}{2}} \mod 4$$

$$= \sum_{K = Z, A} \left(-\frac{1}{2} n_K^{\frac{1}{2}} + \frac{1}{2} n_K^{-\frac{1}{2}} - \frac{3}{2} n_K^{\frac{3}{2}} + \frac{3}{2} n_K^{-\frac{3}{2}} \right) + n_R^{\frac{1}{2}} - n_R^{-\frac{1}{2}} \mod 4, \tag{263}$$

where $n_{Z,A}^{\frac{1}{2},-\frac{1}{2},\frac{3}{2},-\frac{3}{2}}$ are the number of occupied states with $\{C_{4z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{\pi}{4}}$, $e^{i\frac{\pi}{4}}$, $e^{i\frac{3\pi}{4}}$, $e^{i\frac{3\pi}{4}}$, respectively, and $n_R^{\frac{1}{2},-\frac{1}{2}}$ are the number of occupied states with $\{C_{2z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{\pi}{2}}$, $e^{i\frac{\pi}{2}}$, respectively. In deriving SEq. (263), we have used the relation $N_{\text{occ}} = n_R^{\frac{1}{2}} + n_R^{-\frac{1}{2}}$.

Due to the compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a momentum-space Chern number, a 3D insulator must satisfy $C_{k_z=\pi}=C_{k_z}$ for all k_z . Hence, we may have equivalently defined the SI z_{4R} using the occupied $\{C_{4z}|\mathbf{0}\}$ and $\{C_{2z}|\mathbf{0}\}$ eigenvalues in $k_z=0$ plane, or in any other BZ plane of constant k_z . In general, in this work, in order to match the convention employed in SRef. 26, we will use the rotation eigenvalues in the $k_i=\pi$ plane to define double SIs in the physical basis. To summarize, if a 3D system is insulating and exhibits $z_{4R}\neq 0$, then the system is in a 3D QAH state with $C_{k_z=0}=C_{k_z=\pi}$ and $z_{4R}=C_{k_z=0}$ mod 4.

Because the physical meaning of the double SIs is straightforward (*i.e.* the nontrivial phases are 3D QAH states composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 75.1 P4.

If we impose \mathcal{T} -symmetry, then the position-space Chern numbers must vanish, which enforces z_{4R} to be zero. Furthermore, if we add \mathcal{T} symmetry to a system that respects double MSG 75.1 P4, we specifically find that the SI group becomes trivial.

f. Double SIs in Type-I Double MSG 77.13 P42

The double MSG 77.13 $P4_2$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, and $\{C_{4z}|00\frac{1}{2}\}$.

The SI group of double MSG 77.13 $P4_2$ is \mathbb{Z}_2 . We can define the SI as half of the Chern number C_0 in the $k_z = 0$ plane modulo 2 (where we will show below that C_0 is always even due to the screw symmetry $\{C_{4z}|00\frac{1}{2}\}$):

$$z'_{2R} = \frac{C_0}{2} \mod 2$$

$$= N_{\text{occ}} - \frac{1}{4} n_{\Gamma}^{\frac{1}{2}} + \frac{1}{4} n_{\Gamma}^{-\frac{1}{2}} - \frac{3}{4} n_{\Gamma}^{\frac{3}{2}} + \frac{3}{4} n_{\Gamma}^{-\frac{3}{2}} - \frac{1}{4} n_{M}^{\frac{1}{2}} + \frac{1}{4} n_{M}^{-\frac{1}{2}} - \frac{3}{4} n_{M}^{\frac{3}{2}} + \frac{3}{4} n_{M}^{-\frac{3}{2}} - \frac{1}{2} n_{X}^{\frac{1}{2}} + \frac{1}{2} n_{X}^{-\frac{1}{2}} \mod 2, \tag{264}$$

where $n_{\Gamma,M}^{\frac{1}{2},-\frac{1}{2},\frac{3}{2},-\frac{3}{2}}$ are the number of occupied states with $\{C_{4z}|00\frac{1}{2}\}$ eigenvalues $e^{-i\frac{\pi}{4}}$, $e^{i\frac{\pi}{4}}$, $e^{-i\frac{3\pi}{4}}$, $e^{i\frac{3\pi}{4}}$, respectively, and $n_X^{\frac{1}{2},-\frac{1}{2}}$ are the number of occupied states with $\{C_{2z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{\pi}{2}}$, $e^{i\frac{\pi}{2}}$, respectively. For Chern number SIs determined by screw symmetry eigenvalues, we note that we may, in general, either define the SI using the screw eigenvalues in the $k_i=0$ plane or the eigenvalues in the $k_i=\pi$ plane. However, as we will shortly see in the case of double MSG 84.51 $P4_2/m$ in SN 31 i, if a mirror symmetry is also present whose matrix representatives do not commute with those of screw symmetry at all \mathbf{k} points where both symmetries are in the little group $G_{\mathbf{k}}$, then additional constraints are imposed on the small (co)rep characters of screw. Hence, in this work, we will only use screw eigenvalues in the $k_i=0$ plane to define double SIs.

Due to the monodromy of small (co)reps in nonsymmorphic SSGs [see SN 16], the overall sign of each eigenvalue of $\{C_{4z}|00\frac{1}{2}\}$ changes when k_z is advanced through a period of the reciprocal lattice. This implies the compatibility relations: $n_{\Gamma}^{\frac{1}{2}} = n_{\Gamma}^{-\frac{3}{2}}, n_{\Gamma}^{-\frac{1}{2}} = n_{M}^{\frac{3}{2}}, n_{M}^{\frac{1}{2}} = n_{M}^{-\frac{3}{2}}, n_{M}^{-\frac{1}{2}} = n_{M}^{\frac{3}{2}}, n_{M}^{-\frac{1}{2}} = n_{M}^{\frac{3}{2}}, n_{M}^{-\frac{1}{2}} = n_{M}^{\frac{3}{2}}, n_{M}^{\frac{1}{2}} = n_{M}^{\frac{3}{2}}, n_{M}^{\frac{3}{2}} = n_{M}^{\frac{3}{2}}, n_$

We therefore define $(C_0/2)$ mod 2 [as opposed to C_0 mod 4] to be the SI z'_{2R} of double MSG 77.13 $P4_2$. Using $N_{\text{occ}} = n_X^{\frac{1}{2}} + n_X^{-\frac{1}{2}}$, and the compatibility relations, we then simplify SEq. (264) to be:

$$z'_{2R} = -\frac{1}{2}n_{\Gamma}^{\frac{3}{2}} + \frac{1}{2}n_{\Gamma}^{-\frac{3}{2}} - \frac{1}{2}n_{M}^{\frac{3}{2}} + \frac{1}{2}n_{M}^{-\frac{3}{2}} + \frac{1}{2}n_{X}^{\frac{1}{2}} - \frac{1}{2}n_{X}^{-\frac{1}{2}} \mod 2.$$
 (265)

If an insulating state has $z'_{2R} = 1$, then the state is a 3D QAH phase with $C_0 \mod 4 = 2$ in the z-direction.

We can also understand the even Chern number from the perspective of layer constructions. Specifically, if a Chern layer is placed in the $z=z_0$ plane, then, because of the $\{C_{4z}|00\frac{1}{2}\}$ symmetry, there must be another Chern layer with the same Chern number in the $z=z_0+\frac{1}{2}$ plane.

If we impose \mathcal{T} symmetry then the position-space Chern numbers must vanish, which enforces z'_{2R} to be zero.

g. Double SIs in Type-I Double MSG 81.33 P4

The double MSG 81.33 $P\bar{4}$ is generated by $\{E|100\}, \{E|010\}, \{E|001\}, \text{ and } \{S_{4z}|\mathbf{0}\}.$

SIs – The double MSG 81.33 $P\bar{4}$ has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2^2$. We choose the \mathbb{Z}_4 SI to be the Chern number in the $k_z = \pi$ plane modulo 4:

$$z_{4S} = C_{k_z = \pi} \mod 4 = -\frac{1}{2} n_Z^{\frac{1}{2}} + \frac{1}{2} n_Z^{-\frac{1}{2}} - \frac{3}{2} n_Z^{\frac{3}{2}} + \frac{3}{2} n_Z^{-\frac{3}{2}} - \frac{1}{2} n_A^{\frac{1}{2}} + \frac{1}{2} n_A^{-\frac{1}{2}} - \frac{3}{2} n_A^{\frac{3}{2}} + \frac{3}{2} n_A^{-\frac{3}{2}} + n_R^{\frac{1}{2}} - n_R^{-\frac{1}{2}} \mod 4, \quad (266)$$

where $n_{Z,A}^{\frac{1}{2},-\frac{1}{2},\frac{3}{2},-\frac{3}{2}}$ are the number of occupied states with $\{S_{4z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{\pi}{4}}$, $e^{i\frac{\pi}{4}}$, $e^{-i\frac{3\pi}{4}}$, $e^{i\frac{3\pi}{4}}$, respectively, and $n_R^{\frac{1}{2},-\frac{1}{2}}$ are the number of occupied states with $\{C_{2z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{\pi}{2}}$, $e^{i\frac{\pi}{2}}$, respectively. Due to the compatibility relations, the occupied bands in the $k_z=0,\pi$ planes must have the same $\{C_{2z}|\mathbf{0}\}$ rotation eigenvalues; hence, the Chern numbers $C_{k_z=0}$ and $C_{k_z=\pi}$ have the same parity $(C_{k_z=0} \mod 2 = C_{k_z=\pi} \mod 2)$. We define the first \mathbb{Z}_2 SI to be half of the difference between the Chern numbers in the $k_z=0,\pi$ planes, taken modulo 2:

$$\begin{split} \delta_{2S} &= \frac{C_{k_z = \pi} - C_{k_z = 0}}{2} \mod 2 \\ &= -\frac{1}{4} n_Z^{\frac{1}{2}} + \frac{1}{4} n_Z^{-\frac{1}{2}} - \frac{3}{4} n_Z^{\frac{3}{2}} + \frac{3}{4} n_Z^{-\frac{3}{2}} - \frac{1}{4} n_A^{\frac{1}{2}} + \frac{1}{4} n_A^{-\frac{1}{2}} - \frac{3}{4} n_A^{\frac{3}{2}} + \frac{3}{4} n_A^{-\frac{3}{2}} + \frac{1}{2} n_R^{\frac{1}{2}} - \frac{1}{2} n_R^{-\frac{1}{2}} \\ &+ \frac{1}{4} n_\Gamma^{\frac{1}{2}} - \frac{1}{4} n_\Gamma^{-\frac{1}{2}} + \frac{3}{4} n_\Gamma^{\frac{3}{2}} - \frac{3}{4} n_\Gamma^{-\frac{3}{2}} + \frac{1}{4} n_M^{\frac{1}{2}} - \frac{1}{4} n_M^{-\frac{1}{2}} + \frac{3}{4} n_M^{\frac{3}{2}} - \frac{3}{4} n_A^{-\frac{3}{2}} - \frac{1}{2} n_X^{\frac{1}{2}} \mod 2. \end{split} \tag{267}$$

Next using the relations:

$$n_{\Gamma,M}^{\frac{1}{2}} + n_{\Gamma,M}^{-\frac{3}{2}} = n_{Z,A}^{\frac{1}{2}} + n_{Z,A}^{-\frac{3}{2}}, \ n_{\Gamma,M}^{-\frac{1}{2}} + n_{\Gamma,M}^{\frac{3}{2}} = n_{Z,A}^{-\frac{1}{2}} + n_{Z,A}^{\frac{3}{2}}, \ n_{X}^{\frac{1}{2}} = n_{R}^{\frac{1}{2}}, \ n_{X}^{-\frac{1}{2}} = n_{R}^{-\frac{1}{2}},$$
 (268)

we simplify δ_{2S} :

$$\delta_{2S} = -n_Z^{\frac{3}{2}} + n_Z^{-\frac{3}{2}} - n_A^{\frac{3}{2}} + n_A^{-\frac{3}{2}} + n_\Gamma^{\frac{3}{2}} - n_\Gamma^{-\frac{3}{2}} + n_M^{\frac{3}{2}} - n_M^{-\frac{3}{2}} \mod 2.$$
 (269)

Because of the difference of 2 (modulo 4) in the Chern numbers in the $k_z=0,\pi$ planes indicated by $\delta_{2S}=1$, we deduce that $\delta_{2S}=1$ indicates a WSM with 2+4n ($n\in\{\mathbb{Z}^+,0\}$) Weyl points between $k_z=0$ and $k_z=\pi$. Additionally, the Chern number in the $k_z=0$ plane (modulo 4) is completely determined by the compatibility relations and the SIs – specifically, $C_{k_z=0}$ mod $4=z_{4S}-2\delta_{2S}$ mod 4. We note that during the preparation of this work, an SI equivalent to δ_{2S} was introduced in SRef. 175 as an intermediate quantity relevant to the high-throughput numerical identification of nonmagnetic solid-state WSMs.

The second \mathbb{Z}_2 SI in double MSG 81.33 $P\bar{4}$ is given by:

$$z_2 = \sum_{K=\Gamma, M, Z, A} \frac{n_K^{\frac{1}{2}} - n_K^{-\frac{3}{2}}}{2} \mod 2.$$
 (270)

Below, we will show that z_2 is in one-to-one correspondence with the WSM and 3D TI invariant $(z_2)_{P\bar{4}1'}$ in the Type-II double SSG 81.34 $P\bar{4}1'$ generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to double MSG 81.33 $P\bar{4}$, where $(z_2)_{P\bar{4}1'}$ was previously introduced in SRef. 26. Hence, we will show below that a gapped state with $z_2 = 1$ is compatible with a fourfold-rotoinversion- (S_4) -protected AXI phase if $z_{4S} = \delta_{2S} = 0$.

Layer constructions – We next employ the layer construction method to diagnose the topology of the symmetry-indicated topological insulating phases in double MSG 81.33 $P\bar{4}$, where the double SIs of each layer construction are given in the order $(z_{4S}, \delta_{2S}, z_2)$:

1. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ in the z=0 plane can be realized by a 3D insulator whose occupied bands transform in the small irreps $\frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$, and $-\frac{1}{2}$ at Γ, M, X, Z, A , and R ($N_{\text{occ}}=1$), respectively. The SIs of this layer construction are (101).

2. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ in the $z=\frac{1}{2}$ plane can be realized by a 3D insulator whose occupied bands transform in the small irreps $\frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, -\frac{3}{2}, -\frac{1}{2}$, and $-\frac{1}{2}$ at Γ, M, X, Z, A , and R ($N_{\text{occ}}=1$), respectively. The SIs of this layer construction are (100).

Both of the layer constructions are 3D QAH states with C=1 in the z-direction. Because $S_{4z}=\mathcal{I}C_{4z}^{-1}$, and \mathcal{I} leads to an additional minus sign in the occupied $S_{4z}=\mathcal{I}C_{4z}^{-1}$ eigenvalue in the $k_z=\pi$ plane contributed by the layer $z=\frac{1}{2}$ (i.e. $e^{-i\frac{2\pi}{4}j}\to -e^{-i\frac{2\pi}{4}j}$, see SN 31a), then the $\{S_{4z}|\mathbf{0}\}$ eigenvalues at Z and A in the $z=\frac{1}{2}$ layer construction have opposite signs compared to the occupied $\{S_{4z}|\mathbf{0}\}$ eigenvalues at Γ and M, respectively. We additionally note that the occupied C_{2z} eigenvalues are required to be the same at R and X due to the compatibility relations.

The S_4 \mathbb{Z}_2 invariant and axion insulators – When the total Chern number is zero and the bulk is insulating, the axion angle θ is given by θ mod $2\pi = \pi z_2$, where z_2 is termed the S_4 \mathbb{Z}_2 invariant. We may construct an AXI phase by placing a Chern layer with $C_z = 1$ in the z = 0 plane and a Chern layer with $C_z = -1$ in the $z = \frac{1}{2}$ plane. The AXI phase has the SIs (001). However, we emphasize that the total Chern number cannot be completely determined by the SIs. For example, the 3D QAH state consisting of a Chern layer with $C_z = 3$ in the z = 0 plane and a Chern layer with $C_z = 1$ in the $z = \frac{1}{2}$ plane also has the SIs (001).

Relationship with the SIs in other double SSGs – Double SSG 83.34 $P\bar{4}1'$, which is the double SSG that results from adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to Type-I double MSG 81.33 $P\bar{4}$ – has the SI group \mathbb{Z}_2 . The \mathbb{Z}_2 double SI in double SSG 83.34 $P\bar{4}1'$ either corresponds to a \mathcal{T} -invariant WSM, or to a \mathcal{T} -symmetric 3D TI²⁶. Consequently, a 3D TI phase in double SSG 83.34 $P\bar{4}1'$ must subduce to an AXI in double MSG 83.33 $P\bar{4}$ if $\{S_{4z}|\mathbf{0}\}$ and primitive lattice translation symmetries are preserved while breaking \mathcal{T} , because both insulators share the common nontrivial axion angle $\theta = \pi$. Hence, the double SI subduction relations are given by:

$$(z_2)_{P\bar{4}1'} \to (z_{4S}, \delta_{2S}, z_2)_{P\bar{4}} = (00, z_2)_{P\bar{4}}.$$
 (271)

h. Double SIs in Type-I Double MSG 83.43 P4/m

The double MSG 83.43 P4/m is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{4z}|\mathbf{0}\}$, and $\{m_z|\mathbf{0}\}$. SIs – The double MSG 83.43 P4/m has the SI group \mathbb{Z}_4^3 . We choose the three \mathbb{Z}_4 -valued SIs to be:

$$\delta_{4m} = -C_{k_z=\pi}^+ + C_{k_z=0}^- \mod 4$$

$$= -\sum_{K=Z,A} \left(-\frac{1}{2} n_K^{\frac{1}{2},+i} + \frac{1}{2} n_K^{-\frac{1}{2},+i} - \frac{3}{2} n_K^{\frac{3}{2},+i} + \frac{3}{2} n_K^{-\frac{3}{2},+i} \right) + n_R^{\frac{1}{2},+i} - n_R^{-\frac{1}{2},+i}$$

$$+ \sum_{K=\Gamma,M} \left(-\frac{1}{2} n_K^{\frac{1}{2},-i} + \frac{1}{2} n_K^{-\frac{1}{2},-i} - \frac{3}{2} n_K^{\frac{3}{2},-i} + \frac{3}{2} n_K^{-\frac{3}{2},-i} \right) - n_X^{\frac{1}{2},-i} + n_X^{-\frac{1}{2},-i} \mod 4, \tag{272}$$

$$z_{4m,\pi}^{+} = C_{k_z=\pi}^{+} \mod 4 = \sum_{K=Z,A} \left(-\frac{1}{2} n_K^{\frac{1}{2},+i} + \frac{1}{2} n_K^{-\frac{1}{2},+i} - \frac{3}{2} n_K^{\frac{3}{2},+i} + \frac{3}{2} n_K^{-\frac{3}{2},+i} \right) + n_R^{\frac{1}{2},+i} - n_R^{-\frac{1}{2},+i} \mod 4, \tag{273}$$

$$z_{4m,\pi}^{-} = C_{k_z=\pi}^{-} \mod 4 = \sum_{K=Z,A} \left(-\frac{1}{2} n_K^{\frac{1}{2},-i} + \frac{1}{2} n_K^{-\frac{1}{2},-i} - \frac{3}{2} n_K^{\frac{3}{2},-i} + \frac{3}{2} n_K^{-\frac{3}{2},-i} \right) + n_R^{\frac{1}{2},-i} - n_R^{-\frac{1}{2},-i} \mod 4, \tag{274}$$

where the $\pm i$ superscripts indicate the signs of the mirror eigenvalues. In SEqs. (272), (273), and (274), we have defined δ_{4m} to be $-C_{k_z=\pi}^+ + C_{k_z=0}^-$, rather than $C_{k_z=\pi}^+ - C_{k_z=0}^-$, such that the double SI z_8 in double MSG 123.339 P4/mmm, which we will shortly define in SN 31 k, is related to δ_{4m} through the subduction relation $\delta_{4m} = z_8 \mod 4$. Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs $(\delta_{4m}, z_{4m,\pi}^+, z_{4m,\pi}^-)$, we employ the layer construction method. We denote the Chern number in each mirror sector in the $k_z=0$, π planes as $(C_{k_z=0}^+, C_{k_z=0}^-, C_{k_z=\pi}^+, C_{k_z=\pi}^-)$, respectively. We will also calculate the subduced SIs in the subgroups double MSG 2.4 $P\bar{1}$ and double MSG 81.33 $P\bar{4}$, which we will shortly use to determine the double SI subduction relations. The layer constructions for Type-I double MSG 83.43 P4/m are given by:

1. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+ = 1$, $C_z^- = 0$ in the z = 0 plane has the mirror sector Chern numbers (1010) and the SIs (310). The subduced subgroup SIs are $(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2001)_{P\bar{1}}, (z_{4S}, \delta_{2S}, z_2)_{P\bar{4}} = (101)_{P\bar{4}}$.

- 2. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+ = 0$, $C_z^- = 1$ in the z = 0 plane has the mirror sector Chern numbers (0101) and the SIs (101). The subduced subgroup SIs are $(2001)_{P\bar{1}}$, $(101)_{P\bar{4}}$.
- 3. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+ = 1$, $C_z^- = 0$ in the $z = \frac{1}{2}$ plane has the mirror sector Chern numbers (1001) and the SIs (001). The subduced subgroup SIs are $(0001)_{P\bar{1}}$, $(100)_{P\bar{4}}$.
- 4. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+ = 0$, $C_z^- = 1$ in the $z = \frac{1}{2}$ plane has the mirror sector Chern numbers (0110) and the SIs (010). The subduced subgroup SIs are $(0001)_{P\bar{1}}$, $(100)_{P\bar{4}}$.

We emphasize that Chern insulators whose normal vectors lie in the xy-plane are disallowed by $\{m_z|\mathbf{0}\}$ symmetry. Relationship with the SIs in other double SSGs – In order to identify the AXI phases, we will subduce the SIs in double MSG 83.43 P4/m onto the SIs in double MSG 2.4 $P\bar{1}$ and double MSG 81.33 $P\bar{4}$. The subduction relations are given by:

$$\left(\delta_{4m}, z_{4m,\pi}^+, z_{4m,\pi}^-\right)_{P4/m} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = \left(2(\delta_{4m} \bmod 2), 0, 0, \ z_{4m,\pi}^+ + z_{4m,\pi}^- \bmod 2\right)_{P\bar{1}}, \tag{275}$$

$$\left(\delta_{4m}, z_{4m,\pi}^+, z_{4m,\pi}^-\right)_{P4/m} \to (z_{4S}, \delta_{2S}, z_2)_{P\bar{4}} = \left(z_{4m,\pi}^+ + z_{4m,\pi}^- \mod 4, \ 0, \ \delta_{4m} \mod 2\right)_{P\bar{4}},\tag{276}$$

which imply that $\eta'_{2I} = \frac{1}{2}\eta_{4I} = z_2 = \delta_{4m} \mod 2$ [see SEqs. (249) and (270)]. In MSG 2.4 $P\bar{1}$ and MSG 81.33 $P\bar{4}$, we previously found in SN 31 a and 31 g that the $\eta'_{2I} = 1$ and $z_2 = 1$ states are AXIs protected by $\{\mathcal{I}|\mathbf{0}\}$ and $\{S_{4z}|\mathbf{0}\}$, respectively (provided that the non-symmetry-indicated net Chern numbers are zero). Hence, the AXI phases in MSG 83.43 P4/m are simultaneously protected by $\{\mathcal{I}|\mathbf{0}\}$ and $\{S_{4z}|\mathbf{0}\}$.

Lastly, we will study the effects of imposing \mathcal{T} symmetry. Adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to Type-I double MSG 83.43 P4/m generates the Type-II double SSG 83.44 P4/m1', which has the SI group $\mathbb{Z}_8 \times \mathbb{Z}_4 \times \mathbb{Z}_2$. The SIs in double SSG 83.44 P4/m1' are related to the SIs in double MSG 83.43 P4/m through the subduction relations:

$$(z_8, z_{4m,\pi}, z_{2w,1})_{P4/m1'} \to \left(\delta_{4m}, z_{4m,\pi}^+, z_{4m,\pi}^-\right)_{P4/m} = (z_8 \mod 4, -z_{4m,\pi}, z_{4m,\pi})_{P4/m}. \tag{277}$$

The subduction relations imply that strong 3D TIs in double SSG 83.44 P4/m1' indicated by odd z_8 and mirror TCIs indicated by z_8 mod 4 and $z_{4m,\pi}$ will continue to exhibit symmetry-indicated nontrivial topology if $\{\mathcal{T}|\mathbf{0}\}$ is broken while preserving the symmetries of double MSG 83.43 P4/m. Conversely, the weak TI phases indicated by $z_{2w,1}$ and the rotation-anomaly HOTI indicated by $z_8 = 4$ in double SSG 83.44 P4/m1' no longer exhibit symmetry-indicated stable topology when subduced onto double MSG 83.43 P4/m. Specifically, the SIs $(400)_{P4/m1'}$ correspond to either a mirror TCI phase with $C_{k_z=0}^+$ mod 4=8 or $C_{k_z=\pi}^+$ mod 8=4 or a HOTI with vanishing mirror Chern numbers²⁶. The HOTI phase has a gapless top $(\hat{\mathbf{z}}$ -normal) surface³⁶ with 4+8n $(n\in\{\mathbb{Z}^+,0\})$ twofold Dirac cones that are locally protected by $\{C_{2z}\times\mathcal{T}|\mathbf{0}\}$ symmetry and are anomalous due to surface and bulk $\{C_{4z}|\mathbf{0}\}$ symmetry (see SN 34 and SRef. 36). The HOTI phase, when cut into a 4/m1'-symmetric rod geometry, exhibits 4+8n helical hinge states that are locally protected by \mathcal{T} symmetry and globally protected by $\{C_{4z}|\mathbf{0}\}$ symmetry. If \mathcal{T} symmetry is relaxed, then the HOTI hinge states must become gapped, because there are no side-surface mirror lines to protect helical spectral flow in the absence of \mathcal{T} symmetry in MSG 83.33 P4/m (see SN 33). We leave the finer question of whether any non-symmetry-indicated crystalline topology in MSG 83.33 P4/m is subduced from the $(400)_{P4/m1'}$ HOTI phase in double SSG 83.44 P4/m1' for future works.

i. Double SIs in Type-I Double MSG 84.51 P42/m

The double MSG 84.51 $P4_2/m$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{4z}|00\frac{1}{2}\}$, and $\{m_z|\mathbf{0}\}$. SIs – The double MSG 84.51 $P4_2/m$ has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2$. We define the two SIs to be:

$$\begin{split} z_{4m,0}^+ = & C_{k_z=0}^+ \mod 4 \\ & = \sum_{K = \Gamma M} \left(-\frac{1}{2} n_K^{\frac{1}{2},+i} + \frac{1}{2} n_K^{-\frac{1}{2},+i} - \frac{3}{2} n_K^{\frac{3}{2},+i} + \frac{3}{2} n_K^{-\frac{3}{2},+i} \right) + n_X^{\frac{1}{2},+i} - n_X^{-\frac{1}{2},+i} \mod 4, \end{split} \tag{278}$$

$$\delta_{2m} = C_{k_z = \pi}^+ - C_{k_z = 0}^- \mod 2, \tag{279}$$

where an explicit formula for δ_{2m} was previously provided in SEq. (254). Because the matrix representatives of $\{C_{4z}|00\frac{1}{2}\}$ and $\{m_z|\mathbf{0}\}$ do not commute in all of the small irreps at the \mathbf{k} points in the $k_z=\pi$ plane at which $\{C_{4z}|00\frac{1}{2}\}$ and $\{m_z|\mathbf{0}\}$ are both elements of the little group, then we cannot determine the mirror sector Chern numbers (modulo 4) in the $k_z=\pi$ plane using $\{C_{4z}|00\frac{1}{2}\}$ eigenvalues. Conversely, because the matrix representatives of $\{C_{2z}|\mathbf{0}\}$ and $\{m_z|\mathbf{0}\}$ commute in all of the small irreps at the \mathbf{k} points in the $k_z=\pi$ plane at which $\{C_{2z}|\mathbf{0}\}$ and $\{m_z|\mathbf{0}\}$ are both elements of the little group, then we can determine the mirror sector Chern numbers (modulo 2) in the $k_z=\pi$ plane using the occupied $\{C_{2z}|\mathbf{0}\}$ eigenvalues. We thus specifically determine that $\delta_{2m}=C_{k_z=\pi}^+-C_{k_z=0}^-$ mod 2. Layer constructions – We find that all of the double SIs in double MSG 84.51 $P4_2/m$ can be realized by layer constructions. Before introducing the layer constructions, we first note that the mirror planes in double MSG 84.51 $P4_2/m$ lie at $z=0,\frac{1}{2}$. However, the \mathcal{I} centers lie in the $z=0,\frac{1}{2}$ planes, whereas, conversely, the S_4 centers lie in the $z=\frac{1}{4},\frac{3}{4}$ planes. For each layer construction, we also compute the subduced SIs in the subgroup MSG 2.4 P1, which we will shortly use to determine the SI subduction relations. The layer constructions of the double SIs $(z_{4m,0}^+, \delta_{2m})$

1. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+=1$, $C_z^-=0$ in the z=0 plane. Due to the $\{C_{4z}|00\frac{1}{2}\}$ symmetry, there is another $C_z^+=1$, $C_z^-=0$ layer in the $z=\frac{1}{2}$ plane. The mirror sector Chern numbers in momentum space are $(C_{k_z=0}^+,C_{k_z=0}^-,C_{k_z=\pi}^+,C_{k_z=\pi}^-)=(2011)$, where the subscripts 0 and π indicate values of k_z . The SIs are (21). The subduced subgroup SIs are $(\eta_{4I},z_{2I,1},z_{2I,2},z_{2I,3})_{P\bar{1}}=(2000)_{P\bar{1}}, (z_{4S},\delta_{2S},z_2)_{P\bar{4}}=(200)_{P\bar{4}}.$

in double MSG 84.51 $P4_2/m$ are given by:

- 2. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+=0$, $C_z^-=1$ in the z=0 plane. Due to the $\{C_{4z}|00\frac{1}{2}\}$ symmetry, there is another $C_z^+=0$, $C_z^-=1$ layer in the $z=\frac{1}{2}$ plane. The mirror sector Chern numbers in momentum space are $(C_{k_z=0}^+, C_{k_z=0}^-, C_{k_z=\pi}^+, C_{k_z=\pi}^-) = (0211)$. The SIs are (01). The subduced subgroup SIs are $(2000)_{P\bar{1}}$, $(200)_{P\bar{4}}$.
- 3. A $\hat{\mathbf{z}}$ -normal layer with $C_z=1$ in the $z=\frac{1}{4}$ plane. Due to the $\{C_{4z}|00\frac{1}{2}\}$ symmetry, there is another $C_z=1$ layer in the $z=\frac{3}{4}$ plane. The mirror sector Chern numbers in momentum space are $(C_{k_z=0}^+,C_{k_z=0}^-,C_{k_z=\pi}^+,C_{k_z=\pi}^-)=(1111)$. The SIs are (10). The subduced subgroup SIs are $(0000)_{P\bar{1}}$, $(201)_{P\bar{4}}$.

Relationship with the SIs in other double SSGs – In order to later identify the AXI phases, we subduce the SIs onto double MSG $2.4\ P\bar{1}$ and double MSG $81.33\ P\bar{4}$:

$$(z_{4m,0}^+, \delta_{2m})_{P4_2/m} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2\delta_{2m}, 000)_{P\bar{1}}, \tag{280}$$

$$(z_{4m,0}^+, \delta_{2m})_{P4_2/m} \to (z_{4S}, \delta_{2S}, z_2)_{P\bar{4}} = (2z_{4m,0} - 2\delta_{2m} \mod 4, \ 0, \ z_{4m,0}^+ \mod 2)_{P\bar{4}}. \tag{281}$$

We next study the effects of imposing \mathcal{T} symmetry. The double SSG 84.52 $P4_2/m1'$ – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to MSG 84.51 $P4_2/m$ – has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2$. The \mathbb{Z}_4 SI is the parity index z_4 (i.e. the \mathcal{I} z_4 index), and the \mathbb{Z}_2 SI is the \mathcal{I} $z_{2w,1}$ index. Hence, the subduction relations are given by:

$$(z_4, z_{2w,1})_{P4_2/m1'} \to (z_{4m,0}^+, \delta_{2m})_{P4_2/m} = (z_4, z_4 \mod 2)_{P4_2/m},$$
 (282)

implying that adding $\{\mathcal{T}|\mathbf{0}\}$ to an insulating phase in double MSG 84.51 $P4_2/m$ results in an insulator with the SIs $\delta_{2m}=z_4$ mod 2. Furthermore, in an insulator, it is required that $C_{k_z=0}^++C_{k_z=0}^-=C_{k_z=\pi}^++C_{k_z=\pi}^-=2C_{k_z=\pi}^+$. $\{\mathcal{T}|\mathbf{0}\}$ further enforces $C_{k_z=\pi}^+=0$, $C_{k_z=0}^+=-C_{k_z=0}^-$, such that $\delta_{2m}=C_{k_z=\pi}^+-C_{k_z=0}^-$ mod $2=C_{k_z=0}^+$ mod $2=z_4$ mod 2. Axion insulators – Because the S_4 centers in position space do not coincide with the \mathcal{I} centers in MSG 84.51 $P4_2/m$, then the S_4 invariant $z_2=z_{4m,0}^+$ mod 2 is free to differ from the \mathcal{I} invariant $\eta'_{2I}=\delta_{2m}$. An AXI phase must

have vanishing position-space Chern numbers, as well as $z_2 = \eta'_{2I} = 1$, due to the definitions θ mod $2\pi = \pi \eta'_{2I}$ and θ mod $2\pi = \pi z_2$ (see SN 31 a and 31 g, respectively). Thus, in order to guarantee that the net Chern numbers vanish, we may, for example, only construct an AXI phase with C = 1 layers at $z = 0, \frac{1}{2}$ if C = -1 layers are additionally placed at $z = \frac{1}{4}, \frac{3}{4}$. In this example of an AXI, the C = 1 (C = -1) Chern layers occupy the \mathcal{I} (C = 1) (C = 1) Chern layers occupy the C = 1 (C = 1) chern layers occupy th

j. Double SIs in Type-I Double MSG 88.81 I4₁/a

The double MSG 88.81 $I4_1/a$ is generated by $\{E|-\frac{1}{2},\frac{1}{2},\frac{1}{2}\}$, $\{E|\frac{1}{2},-\frac{1}{2},\frac{1}{2}\}$, $\{E|\frac{1}{2},\frac{1}{2},-\frac{1}{2}\}$, $\{E|\frac{1}{2},\frac{1}{2},-\frac{1}{2}\}$, $\{C_{4z}|\frac{3}{4},\frac{1}{4}\}$, and $\{\mathcal{I}|\mathbf{0}\}$. SIs – The double MSG 88.81 $I4_1/a$ has the SI group \mathbb{Z}_2^2 . As we will explicitly derive later in this section, the first \mathbb{Z}_2 SI η'_{2I} is related by subduction to the \mathcal{I} invariant η'_{2I} in double MSG 2.4 $P\bar{1}$ [SEq. (249)]:

$$\eta'_{2I} = \frac{\eta_{4I}}{2} \mod 2 = \frac{1}{2} n_{\Gamma}^{-} + \frac{1}{2} n_{M}^{-} + \frac{1}{2} n_{X}^{-} + \frac{1}{2} n_{X}^{+} + \frac{3}{2} n_{N}^{-} + \frac{1}{2} n_{N}^{+} \mod 2.$$
 (283)

The second \mathbb{Z}_2 SI z_2 is related by subduction to the S_4 invariant z_2 in double MSG 81.33 $P\bar{4}$ [SEq. (270)]:

$$z_2 = \frac{n_{\Gamma}^{\frac{1}{2}} - n_{\Gamma}^{-\frac{3}{2}}}{2} + \frac{n_P^{\frac{1}{2}} - n_P^{-\frac{3}{2}} + n_P^{\frac{3}{2}} - n_P^{-\frac{1}{2}}}{2}.$$
 (284)

 $Layer\ constructions$ – The double MSG 88.81 has a body-centered lattice generated by:

$$\mathbf{a}_1 = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \quad \mathbf{a}_2 = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}), \quad \mathbf{a}_3 = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}).$$
 (285)

There are two types of maximal Wyckoff positions: \mathcal{I} centers:

8c:
$$(0,0,0), \qquad (\frac{1}{2},0,\frac{1}{2}), \qquad (\frac{3}{4},\frac{1}{4},\frac{1}{4}), \qquad (\frac{3}{4},\frac{3}{4},\frac{3}{4}),$$
 (286)

8d:
$$(0,0,\frac{1}{2}), \qquad (\frac{1}{2},0,0), \qquad (\frac{3}{4},\frac{1}{4},\frac{3}{4}), \qquad (\frac{3}{4},\frac{3}{4},\frac{1}{4}),$$
 (287)

and S_4 ($\{S_{4z}|\frac{1}{4},\frac{3}{4},\frac{3}{4}\}$) = $\{C_{4z}|\frac{1}{4},\frac{3}{4},\frac{3}{4}\}$ $\{\mathcal{I}|\mathbf{0}\}$) centers:

$$4a: (0, \frac{1}{4}, \frac{1}{8}), (\frac{1}{2}, \frac{1}{4}, \frac{3}{8}),$$
 (288)

4b:
$$(0, \frac{1}{4}, \frac{5}{8}), \qquad (\frac{1}{2}, \frac{1}{4}, \frac{7}{8}),$$
 (289)

using the notation of the MWYCKPOS tool on the BCS^{15–18}, and where all coordinates are given in the conventional cell. We consider the following layer constructions:

- 1. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ in the z=0 plane. The screw symmetry operation additionally generates Chern layers with $C_z=1$ in the $z=\frac{1}{4},\frac{1}{2},\frac{3}{4}\cdots$ planes. All of the \mathcal{I} centers are occupied, all of the S_4 centers are unoccupied, and the total Chern number in each unit cell is $C_z=2$, such that $\eta'_{2I}=1, z_2=0$.
- 2. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ in the $z=\frac{1}{8}$ plane. The screw symmetry operation additionally generates Chern layers with $C_z=1$ in the $z=\frac{3}{8},\frac{5}{8},\frac{7}{8}\cdots$ planes. All of the \mathcal{I} centers are unoccupied, all of the S_4 centers are occupied, and the total Chern number in each unit cell is $C_z=2$, such that $\eta'_{2I}=0, z_2=1$.

Axion insulators – Because the S_4 centers do not coincide with the \mathcal{I} centers in position space in double MSG 88.81 $I4_1/a$, then the S_4 invariant z_2 is free to differ from the \mathcal{I} invariant η'_{2I} . An AXI phase must have vanishing position-space Chern numbers, as well as $z_2 = \eta'_{2I} = 1$, due to the definitions θ mod $2\pi = \pi \eta'_{2I}$ and θ mod $2\pi = \pi z_2$ (see SN 31a and 31g, respectively). Hence, to generate an AXI with vanishing position-space Chern numbers by placing C = 1 layers at $z = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, we must also place C = -1 layers at $z = \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$, such that the Chern layers with C = 1 (C = -1) occupy the \mathcal{I} (S_4) centers.

Relationship with the SIs in other double SSGs – We will now study the effects of imposing \mathcal{T} symmetry. The double SSG 88.82 $I4_1/a1'$ – which is generated by adding $\{\mathcal{T}|\mathbf{0}\}$ to Type-I double MSG 88.81 $I4_1/a$ – has the SI

group \mathbb{Z}_4 . The subduction relations for the double SIs are given by:

$$(z_4)_{I4_1/a1'} \to (\eta'_{2I}, z_2)_{I4_1/a} = (z_4 \mod 2, z_4 \mod 2)_{I4_1/a}.$$
 (290)

Hence, a symmetry-indicated 3D TI in $I4_1/a1'$ will necessarily become an \mathcal{I} - or S_4 -protected AXI if \mathcal{T} symmetry is relaxed while preserving the symmetries of MSG 88.81 $I4_1/a$, because infinitesimal \mathcal{T} -breaking in a 3D insulator cannot change the momentum-space Chern numbers of the occupied bands in any 2D BZ plane.

Subduction of η'_{2I} onto double MSG 2.4 $P\bar{1}$ – In MSG 88.81 $I4_1/a$, the reciprocal lattice is generated by:

$$\mathbf{b}_1 = (0, 2\pi, 2\pi), \qquad \mathbf{b}_2 = (2\pi, 0, 2\pi), \qquad \mathbf{b}_3 = (2\pi, 2\pi, 0).$$
 (291)

There are four inequivalent, \mathcal{I} -invariant momenta:

$$\Gamma(0,0,0), \qquad M(2\pi,0,0), \qquad X(\pi,\pi,0), \qquad N(\pi,0,\pi),$$
 (292)

where the equivalence between **k** points is defined in SEq. (48) and the surrounding text, and where the coordinates of Γ , M, X, and N in SEq. (292) are given in the conventional cell.

The star of X has two arms $-X_1(\pi,\pi,0)$ and $X_2(\pi,-\pi,0)$, which are related by the screw operation $\{C_{4z}|\frac{3}{4}\frac{1}{4}\frac{1}{4}\}$. If $|\psi_{X_1}\rangle$ is a Bloch state at X_1 , then $|\psi_{X_2}\rangle = \{C_{4z}|\frac{3}{4}\frac{1}{4}\frac{1}{4}\}|\psi_{X_1}\rangle$ is a state at X_2 . Taking $|\psi_{X_1}\rangle$ to have the parity (\mathcal{I}) eigenvalue ξ , we will now determine the parity eigenvalue of $|\psi_{X_2}\rangle$. Because:

$$\{\mathcal{I}|\mathbf{0}\}\{C_{4z}|\frac{3}{4}\frac{1}{4}\frac{1}{4}\}\{\mathcal{I}|\mathbf{0}\}^{-1} = \{E|-\frac{3}{2}, -\frac{1}{2}, -\frac{1}{2}\}\{C_{4z}|\frac{3}{4}\frac{1}{4}\frac{1}{4}\},\tag{293}$$

then:

$$\{\mathcal{I}|\mathbf{0}\}|\psi_{X_2}\rangle = \{E|-\frac{3}{2}, -\frac{1}{2}, -\frac{1}{2}\}\xi|\psi_{X_2}\rangle = -\xi|\psi_{X_2}\rangle.$$
 (294)

Hence, taking the parity eigenvalue of $|\psi_{X_1}\rangle$ to be ξ , the parity eigenvalue of $|\psi_{X_2}\rangle$ is $-\xi$.

Next, the star of N has four arms: $N_1(\pi, 0, \pi)$, $N_2(0, \pi, \pi)$, $N_3(-\pi, 0, \pi)$, and $N_4(0, -\pi, \pi)$, which are related to N_1 by the operations, $\{E|\mathbf{0}\}$, $\{C_{4z}|\frac{3}{4}\frac{1}{4}\frac{1}{4}\}$, $\{C_{2z}|\frac{1}{2}0\frac{1}{2}\}$, and $\{C_{4z}^{-1}|\frac{3}{4}\frac{3}{4}\frac{3}{4}\}$, respectively. Because:

$$\{\mathcal{I}|\mathbf{0}\}\{C_{4z}|\frac{3}{4}\frac{1}{4}\frac{1}{4}\}\{\mathcal{I}|\mathbf{0}\}^{-1} = \{E|-\frac{3}{2}, -\frac{1}{2}, -\frac{1}{2}\}\{C_{4z}|\frac{3}{4}\frac{1}{4}\frac{1}{4}\},\tag{295}$$

$$\{\mathcal{I}|\mathbf{0}\}\{C_{2z}|\frac{1}{2}0\frac{1}{2}\}\{\mathcal{I}|\mathbf{0}\}^{-1} = \{E|-1,0,-1\}\{C_{2z}|\frac{1}{2}0\frac{1}{2}\},\tag{296}$$

$$\{\mathcal{I}|\mathbf{0}\}\{C_{4z}^{-1}|\frac{3}{4}\frac{3}{4}\frac{3}{4}\}\{\mathcal{I}|\mathbf{0}\}^{-1} = \{E|-\frac{3}{2}, -\frac{3}{2}, -\frac{3}{2}\}\{C_{4z}^{-1}|\frac{3}{4}\frac{3}{4}\frac{3}{4}\},\tag{297}$$

then the extra phase factor in the SI for the occupied parity eigenvalue at $\mathbf{k}_{N_{\alpha}}$ is given by $e^{-i\mathbf{t}_{\alpha}\cdot\mathbf{k}_{N_{\alpha}}}$ ($\alpha=2,3,4$), where \mathbf{t}_{α} is the extra translation determined above, and where $\mathbf{k}_{N_{\alpha}}$ is the momentum N_{α} . The parity SI phases at N_2 , N_3 , and N_4 are thus -1, 1, and 1, respectively.

To determine the \mathcal{I} double SI η_{4I} , we apply SEq. (235) to the parity eigenvalue multiplicities at the eight \mathcal{I} -invariant momenta Γ , M, $X_{1,2}$, and $N_{1,2,3,4}$, respectively:

$$\eta_{4I} = n_{\Gamma}^{-} + n_{M}^{-} + n_{X}^{-} + n_{X}^{+} + 3n_{N}^{-} + n_{N}^{+} \mod 4.$$
(298)

We find that the parity eigenvalues enforce that $\eta_{4I} \mod 2 = 0$. Hence, the \mathcal{I} double SI in MSG 88.81 $I4_1/a$ is $\eta'_{2I} = \frac{1}{2}\eta_{4I}$ [SEq. (249)].

Subduction of z_2 onto double MSG 81.33 $P\bar{4}$ – There are three inequivalent S_4 -invariant momenta:

$$\Gamma(0,0,0), \qquad M(2\pi,0,0), \qquad P(\pi,\pi,\pi).$$
 (299)

First, the star of P has two arms – $P_1(\pi, \pi, \pi)$ and $P_2(-\pi, -\pi, -\pi)$, which are related by \mathcal{I} . Because,

$$\{S_{4z}|\frac{1}{4}\frac{3}{4}\frac{3}{4}\}\{\mathcal{I}|\mathbf{0}\}\{S_{4z}|\frac{1}{4}\frac{3}{4}\frac{3}{4}\}^{-1} = \{E|\frac{1}{2},\frac{3}{2},\frac{3}{2}\}\{\mathcal{I}|\mathbf{0}\},\tag{300}$$

and:

$$\exp\left(i\left(\frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right) \cdot (-\pi, -\pi, -\pi)\right) = \exp\left(i\frac{\pi}{2}\right),\tag{301}$$

then, if P_1 has a Bloch state with the $\{S_{4z}|\frac{1}{4},\frac{3}{4},\frac{3}{4}\}$ eigenvalue $e^{-i\frac{\pi}{2}j}$, P_2 is required to have a Bloch state with the $\{S_{4z}|\frac{1}{4},\frac{3}{4},\frac{3}{4}\}$ eigenvalue $e^{-i\frac{\pi}{2}(j-1)}$. We thus conclude that:

$$n_{P_1}^j = n_{P_2}^{j-1}. (302)$$

To determine the S_4 double SI z_2 , we apply SEq. (270) to the $\{S_4|\frac{1}{4},\frac{3}{4},\frac{3}{4}\}$ eigenvalue multiplicities at the four $\{S_4|\frac{1}{4},\frac{3}{4},\frac{3}{4}\}$ -invariant momenta Γ , M, and $P_{1,2}$:

$$z_2 = \frac{n_{\Gamma}^{\frac{1}{2}} - n_{\Gamma}^{-\frac{3}{2}}}{2} + \frac{n_M^{\frac{1}{2}} - n_M^{-\frac{3}{2}}}{2} + \frac{n_P^{\frac{1}{2}} - n_P^{-\frac{3}{2}} + n_P^{\frac{3}{2}} - n_P^{-\frac{1}{2}}}{2} \mod 2.$$
(303)

Using the Corepresentations, MCOMPREL, and MBANDREP tools on the BCS introduced in this work (see SN 13, 16, and 23, respectively), we find that $n_M^{\frac{1}{2}} = n_M^{-\frac{3}{2}}$ is required in any insulating state in double MSG 88.81 $I4_1/a$. Hence, the factor of $\frac{n_M^{\frac{1}{2}} - n_M^{-\frac{3}{2}}}{2}$ can be omitted in SEq. (303), leading to a final expression:

$$z_2 = \frac{n_{\Gamma}^{\frac{1}{2}} - n_{\Gamma}^{-\frac{3}{2}}}{2} + \frac{n_P^{\frac{1}{2}} - n_P^{-\frac{3}{2}} + n_P^{\frac{3}{2}} - n_P^{-\frac{1}{2}}}{2} \mod 2.$$
 (304)

k. Double SIs in Type-I Double MSG 123.339 P4/mmm

The double MSG 123.339 P4/mmm is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{4z}|\mathbf{0}\}$, $\{m_x|\mathbf{0}\}$, and $\{\mathcal{I}|\mathbf{0}\}$. SIs – The double MSG 123.339 P4/mmm has the SI group $\mathbb{Z}_8 \times \mathbb{Z}_4 \times \mathbb{Z}_2$. In double-valued small irreps of the little groups at the \mathcal{I} -invariant \mathbf{k} points, the matrix representatives of perpendicular mirror symmetries (e.g. $\{m_x|\mathbf{0}\}$ and $\{m_y|\mathbf{0}\}$) anticommute. Hence, Bloch states at the eight \mathcal{I} -invariant momenta must be at least twofold degenerate (and in fact are exactly twofold degenerate in double MSG 123.339 P4/mmm). The double SIs can be chosen to be the same as the double SIs of SSG 123.340 P4/mmm1' (previously introduced in SRefs. 25–27), because the addition of \mathcal{T} symmetry to double MSG 123.339 P4/mmm does not change the dimensions and characters of the small irreps at the high-symmetry BZ points or the compatibility relations between the high-symmetry-point small irreps. In the physical basis, the \mathbb{Z}_8 double SI is:

$$z_8 = \frac{3}{2}n^{\frac{3}{2},+} - \frac{3}{2}n^{\frac{3}{2},-} - \frac{1}{2}n^{\frac{1}{2},+} + \frac{1}{2}n^{\frac{1}{2},-} \mod 8, \tag{305}$$

$$n^{j,\pm} = \sum_{K=\Gamma} \sum_{M} n_K^{j,\pm} + \sum_{K=X} n_K^{\frac{1}{2},\pm}, \tag{306}$$

where $n_K^{j,\pm}$ is the number of states with parity (\mathcal{I}) eigenvalue ± 1 and angular momentum j (modulo 4) at the momentum K, which corresponds to the $\{C_{4z}|\mathbf{0}\}$ eigenvalue $e^{-i\frac{2\pi}{4}j}$ at $K=\Gamma,M,Z,A$, and the $\{C_{2z}|\mathbf{0}\}$ eigenvalue $e^{-i\frac{\pi}{2}j}$ at K=X,R. The \mathbb{Z}_4 SI is $z_{4m,\pi}^-$, which indicates the Chern number in the negative mirror sector in the $k_z=\pi$ plane $z_{4m,\pi}^-$, and is related by subduction to the same SI $(z_{4m,\pi}^-)$ in double MSG 83.43 P4/m [SEq. (274)]. The \mathbb{Z}_2 SI corresponds to the weak TCI \mathcal{I} invariant $z_{2w,1}$ for the mirror Chern number (modulo 2) in the $k_{x,y}=\pi$ planes, and is related by subduction to the same SI $(z_{2w,1})$ in double MSG 47.249 Pmmm [SEq. (260)].

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ the layer construction method. In the layer constructions below, $C^+ = -C^-$ due to the net-zero Chern numbers enforced by the mirror symmetries. Hence, we will omit C^- in further discussions of the topology in double MSG 123.339 P4/mmm. The layer constructions for the double SIs $(z_8, z_{4m,\pi}^+, z_{2w,1}^-)$ in MSG 123.339 P4/mmm are given by:

- 1. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+ = 1$ in the z = 0 plane has the SIs (230).
- 2. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+=1$ in the $z=\frac{1}{2}$ plane has the SIs (010).

- 3. An $\hat{\mathbf{x}}$ -normal layer with $C_x^+ = 1$ in the x = 0 plane has the SIs (401). We emphasize that, in this layer construction, there is also a superposed $\hat{\mathbf{y}}$ -normal layer with $C_y^+ = 1$ in the y = 0 plane implied by the $\{C_{4z}|\mathbf{0}\}$ rotation symmetry.
- 4. An $\hat{\mathbf{x}}$ -normal layer with $C_x^+ = 1$ in the $x = \frac{1}{2}$ plane has the SIs (001). We emphasize that, in this layer construction, there is also a superposed $\hat{\mathbf{y}}$ -normal layer with $C_y^+ = 1$ in the $y = \frac{1}{2}$ plane implied by the $\{C_{4z}|\mathbf{0}\}$ rotation symmetry.
- 5. An $(\hat{\mathbf{x}} + \hat{\mathbf{y}})$ -normal layer with $C_{x+y}^+ = 1$ in the x + y = 0 plane has the SIs (400). We emphasize that, in this layer construction, there is also a superposed $(\hat{\mathbf{x}} \hat{\mathbf{y}})$ -normal layer with $C_{x-y}^+ = 1$ in the x y = 0 plane implied by the $\{C_{4z}|\mathbf{0}\}$ rotation symmetry.

Axion insulators – We find that states with odd z_8 SIs cannot be constructed from layers of 2D stable topological phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values of z_8 . First, as we will show below, (100), (300), (500), and (700) subduce to (2000) $_{P\bar{1}}$ in MSG 2.4 $P\bar{1}$. Hence, if the (100), (300), (500), and (700) phases in double MSG 123.339 P4/mmm are insulating, then the bulk insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers $C_{x,y,z}=0$ must vanish if the bulk is gapped, due to the mirror symmetries of MSG 123.339 P4/mmm, then the (100), (300), (500), and (700) states must be AXIs. This result can also be understood by subducing from a \mathcal{T} -symmetric SSG. Specifically, because (100), (300), (500), and (700) in double MSG 123.339 P4/mmm can respectively be subduced from $(100)_{P4/mmm1'}$, $(300)_{P4/mmm1'}$, $(500)_{P4/mmm1'}$, and $(700)_{P4/mmm1'}$ in Type-II SG 123.340 P4/mmm1', which correspond to \mathcal{T} -symmetric 3D TIs with $\theta = \pi^{24,26,27}$, then (100), (300), (500), and (700) are compatible with bulk-gapped states. Hence, we conclude that 3D insulators with (100), (300), (500), and (700) in double MSG 123.349 P4/mmm are AXIs, without ambiguity. We conjecture that (100), (300), (500), and (700) AXIs in double MSG 123.349 P4/mmm can be constructed using the topological crystal method 168, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TCIs.

Helical HOTI phases protected by mirror and C_4 rotation symmetry – First, the double SIs $(400)_{P4/mmm1'}$ of Type-II double SSG 123.340 P4/mmm1' either correspond to a rotation-anomaly (non-axionic, i.e. θ mod $2\pi = 0$) HOTI protected by C_4 and \mathcal{T} symmetries, or a mirror TCI with C_{m_z} mod 8 = 4 (c.f. Table 7 in the Supplementary Material of SRef. 26). In the C_4 - and \mathcal{T} -symmetric HOTI phase, there are 4 + 8n ($n \in \{\mathbb{Z}^+, 0\}$) helical hinge modes on a z-directed, C_4 - and \mathcal{T} -symmetric rod, and 4 + 8n twofold Dirac points on the top ($\hat{\mathbf{z}}$ -normal) rod surface that are locally protected by mirror symmetry (see SN 33). Because double SSG 123.340 P4/mmm1' contains $\{m_{x,y}|\mathbf{0}\}$ symmetries, then four of the helical hinge modes on the boundary of a 4/mmm1'-symmetric sample must also be pinned to the hinge projections of bulk mirror planes whose normal vectors lie in the xy-plane, and must be indicated by bulk mirror Chern numbers. Hence, when \mathcal{T} symmetry is relaxed in a fourfold rotation-anomaly $(400)_{P4/mmm1'}$ HOTI phase in Type-II double SSG 123.340 P4/mmm1' while preserving the symmetries of MSG 123.339 P4/mmm, the surface and hinge states will remain gapless and anomalous [see SFig. 21(b) and SN 35].

We will next prove that there are 4+8n twofold Dirac points on the top surface of a 4/mmm-symmetric nanorod of the (400) fourfold rotation-anomaly magnetic HOTI phase in double MSG 123.339 P4/mmm introduced in this work. We denote the five layer constructions as L_a ($a=1\cdots 5$), respectively. The fourfold rotation-anomaly HOTI phase can be constructed as $(2n+1)L_3 \oplus (2m+1)L_4$, or $(2n+1)L_5$, or through any superposition of odd number of the aforementioned layer constructions. Adding $4n'L_1$ or $4m'L_2$, which have the SIs (000), to the layer-constructed HOTI phase will not change the top surface spectrum, because L_1 and L_2 consist of horizontal (i.e. $\hat{\mathbf{z}}$ -normal) layers, and hence only contribute surface and hinge states on boundaries whose normal vectors lie in the xy-plane.

We will thus focus on the top surface spectra of the $(2n+1)L_3 \oplus (2m+1)L_4$ and $(2n+1)L_5$ layer constructions. We first consider $(2n+1)L_3 \oplus (2m+1)L_4$. The Chern numbers in the m_x mirror sectors are $C_{k_x=0}^+ = -C_{k_x=0}^- = 2n+2m+2$, $C_{k_x=\pi}^+ = -C_{k_x=\pi}^- = 2n-2m$. Due to the C_4 symmetry, the Chern numbers in the m_y mirror sectors are $C_{k_y=0}^+ = -C_{k_x=0}^- = 2n+2m+2$, $C_{k_y=\pi}^+ = -C_{k_x=\pi}^- = 2n-2m$. In the 2D top surface BZ, $C_{k_x=0}^+ (C_{k_y=0}^+)$ mandates the presence of |2n+2m+2| twofold Dirac points on the $k_x=0$ ($k_y=0$) line, and $C_{k_x=\pi}^+ (C_{k_y=\pi}^+)$ mandates the presence of |2n-2m| twofold Dirac points on the $k_x=\pi$ ($k_y=\pi$) line. Hence, the total number of Dirac points is 2|2n+2m+2|+2|2n-2m| mod 8=4.

Lastly, we consider the layer construction $(2n+1)L_5$. As shown in Supplementary Note 5 in SRef. 26 and in Table 6 of the Supplementary Material of SRef. 26, the mirror sector Chern numbers are given by $C_{k_x+k_y=0}^+ = -C_{k_x+k_y=0}^- = 4n+2$, $C_{k_x-k_y=0}^+ = -C_{k_x-k_y=0}^- = 0$. To understand this result, one can enlarge the unit cell to a supercell with the lattice vectors (1,1,0) and (1,-1,0). We emphasize that mirror (sector) Chern numbers do not change upon enlarging the unit cell if the number of layers per cell does not change; hence we can compute the mirror sector Chern numbers in the supercell. We define $x' = \frac{1}{2}x + \frac{1}{2}y$, $y' = \frac{1}{2}x - \frac{1}{2}y$, and correspondingly define $k'_x = k_x + k_y$, $k'_y = k_x - k_y$. As shown in SN 31a, the Chern numbers of the layers at x' = 0 (y' = 0) and

 $x'=\frac{1}{2}$ ($y'=\frac{1}{2}$) contribute with the same signs towards $C_{k'_x=0}^+=-C_{k'_x=0}^-$ ($C_{k'_y=0}^+=-C_{k'_y=0}^-$) and with opposite signs towards $C_{k'_x=\pi}^+=-C_{k'_x=\pi}^-$ ($C_{k'_y=\pi}^+=-C_{k'_y=\pi}^-$). Hence, $C_{k'_x=0}^+=-C_{k'_x=0}^-=-C_{k'_x=0}^+=-C_{k'_x=\pi}^-=0$, $C_{k'_x=0}^+=-C_{k'_x=0}^-=-C_{k'_x=0}^-=-C_{k'_x=0}^-=0$. In the 2D top surface BZ, $C_{k_x+k_y=0}^+$ ($C_{k_x-k_y=0}^+$) mandates the presence of |4n+2| Dirac points on the $k_x+k_y=0$ ($k_x-k_y=0$) line. We additionally note that the mirror sector Chern numbers $C^+=-C^-$ mandate the presence of $|C^+|$ twofold Dirac points on the surface, as shown in SFig. 20. In summary, the total number of top-surface twofold Dirac points in the first surface BZ is 2|4n+2| mod 8=4.

In SN 34, we will prove that, on the top surface of the (400) HOTI state – which respects the symmetries of Type-I double magnetic wallpaper group $^{36,39,73-75}$ p4m – the presence of 4+8n ($n \in \{\mathbb{Z}^+,0\}$) twofold surface Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group p4m.

Relationship with the SIs in other double SSGs – To identify the AXI phases, we subduce the SIs onto double MSG $2.4\ P\bar{1}$:

$$(z_8, z_{4m,\pi}^+, z_{2w,1})_{P4/mmm} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2(z_8 \bmod 2), 000)_{P\bar{1}}. \tag{307}$$

Because the AXI \mathcal{I} SI $\eta_{2I'} = \frac{1}{2}\eta_{4I} = z_8 \mod 2$ [SEq. (249)], then we conclude that insulators with odd z_8 SIs in double MSG 123.339 P4/mmm are AXIs.

l. Double SIs in Type-I Double MSG 143.1 P3

The double MSG 143.1 P3 is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, and $\{C_{3z}|\mathbf{0}\}$, where the angle between the $\{E|100\}$ and $\{E|010\}$ translations is chosen to be $2\pi/3$ for consistency with the $\{C_{3z}|\mathbf{0}\}$ rotation symmetry.

The double MSG 143.1 P3 has the SI group \mathbb{Z}_3 . To determine the physical basis for the double SIs, we first recall the formula for the 2D Chern number in the presence of threefold rotation symmetry ¹⁶⁴:

$$e^{i\frac{2\pi}{3}C} = (-1)^{N_{\text{occ}}} \prod_{n \in \text{occ}} \theta_n(\Gamma)\theta_n(\mathcal{K})\theta_n(\mathcal{K}\mathcal{A}), \tag{308}$$

where $\theta_n(\Gamma, \mathcal{K}, \mathcal{K}\mathcal{A})$ is the $\{C_{3z}|\mathbf{0}\}$ eigenvalue of the n^{th} occupied state at the corresponding momentum (where it is important to distinguish the $\{C_{3z}|\mathbf{0}\}$ eigenvalues θ_n from the axion angle θ). We can define the SI as the Chern number in the $k_z = \pi$ plane modulo 3:

$$z_{3R} = C_{k_z = \pi} \mod 3 = \frac{3}{2} N_{\text{occ}} + \sum_{K = A, H, H, A} \left(-\frac{1}{2} n_K^{\frac{1}{2}} + \frac{1}{2} n_K^{-\frac{1}{2}} + \frac{3}{2} n_K^{\frac{3}{2}} \right) \mod 3, \tag{309}$$

where the superscripts $j=-\frac{1}{2},\frac{1}{2},\frac{3}{2}$ represent the $\{C_{3z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{2\pi}{3}j}=e^{-i\frac{\pi}{3}},e^{i\frac{\pi}{3}},-1$, respectively, and $N_{\rm occ}$ is the number of occupied bands. Because $\frac{3}{2}N_{\rm occ}=\sum_{K=A,H,HA}\frac{1}{2}n_K^{-\frac{1}{2}}+\frac{1}{2}n_K^{\frac{1}{2}}+\frac{1}{2}n_K^{\frac{3}{2}}$, then SEq. (309) can be simplified:

$$z_{3R} = \sum_{K=A,H,HA} \left(n_K^{-\frac{1}{2}} - n_K^{\frac{3}{2}} \right) \mod 3.$$
 (310)

Due to the compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a momentum-space Chern number, a 3D insulator must satisfy $C_{k_z=\pi}=C_{k_z}$ for all k_z . Hence, we may have equivalently defined the SI z_{3R} using the occupied $\{C_{3z}|\mathbf{0}\}$ eigenvalues in $k_z=0$ plane, or in any other BZ plane of constant k_z . To summarize, if a 3D system is insulating and exhibits $z_{3R}\neq 0$, then the system is in a 3D QAH state with $C_{k_z=0}=C_{k_z=\pi}$ and $z_{3R}=C_{k_z=0}$ mod 3.

Because the physical meaning of the double SIs is straightforward (i.e. the nontrivial phases are 3D QAH states composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 143.1 P3. If we impose \mathcal{T} -symmetry, then the position-space Chern numbers must vanish, which enforces z_{3R} to be zero.

Furthermore, if we add \mathcal{T} symmetry to a system that respects double MSG 143.1 P3, we specifically find that the SI group becomes trivial.

m. Double SIs in Type-I Double MSG 147.13 P3

The double MSG 147.13 $P\bar{3}$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{3z}|\mathbf{0}\}$, and $\{\mathcal{I}|\mathbf{0}\}$, where the angle between the $\{E|100\}$ and $\{E|010\}$ translations is chosen to be $2\pi/3$ for consistency with the $\{C_{3z}|\mathbf{0}\}$ rotation symmetry.

SIs – The double MSG 147.13 $P\bar{3}$ has the SI group $\mathbb{Z}_{12} \times \mathbb{Z}_2 \sim \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_2$. We find that the \mathbb{Z}_4 , \mathbb{Z}_3 , and \mathbb{Z}_2 double SIs in double MSG 147.13 $P\bar{3}$ all subduce to previously introduced double SIs. First, the \mathbb{Z}_4 SI subduces to η_{4I} in double MSG 2.4 $P\bar{1}$ [SEq. (235)], where, as shown in SN 31a, $\eta_{4I} = 1,3$ indicate WSM phases, $\eta_{4I} = 2$ indicates that an insulator is either an AXI or in a 3D QAH state, and $\eta_{4I} = 0$ indicates that an insulator is either topologically trivial or in a 3D QAH state. The \mathbb{Z}_3 SI subduces to z_{3R} in double MSG 143.1 P3 [SEq. (310)]. In insulating states, z_{3R} indicates the Chern number modulo 3 in BZ planes of constant k_z . Lastly, the \mathbb{Z}_2 SI subduces to $z_{2I,3}$ in double MSG 2.4 $P\bar{1}$ [SEq. (236)], where $z_{2I,3}$ indicates the Chern number modulo 2 in the $k_z = \pi$ plane. In summary, the double SIs in double MSG 147.13 $P\bar{3}$ in the physical basis are given by the previously-defined double SIs $(\eta_{4I}, z_{3R}, z_{2I,3})$.

Layer constructions – In Cartesian coordinates (x, y, z), the primitive lattice translation vectors in double MSG 147.13 $P\bar{3}$ – $\{E|100\}$, $\{E|010\}$, and $\{E|001\}$ – respectively correspond to $\mathbf{t}_1=(0,-1,0)$, $\mathbf{t}_2=(\frac{\sqrt{3}}{2},\frac{1}{2},0)$, and $\mathbf{t}_3=(0,0,1)$. We consider the following four layer constructions, where the double SIs of each layer construction are given in the order $(\eta_{4I}, z_{3R}, z_{2I,3})$:

- 1. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z = 1$ in the z = 0 plane has the SIs (211).
- 2. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z = -2$ in the z = 0 plane has the SIs (010).
- 3. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z = 1$ in the $z = \frac{1}{2}$ plane has the SIs (011).
- 4. An $\hat{\mathbf{x}}$ -normal Chern layer with $C_x = 1$ in the x = 0 plane has the SIs (200). We emphasize that, in this layer construction, there are also |C| = 1 Chern layers in the $C_{3z}\hat{\mathbf{x}}$ and $C_{3z}^2\hat{\mathbf{x}}$ directions implied by the $\{C_{3z}|\mathbf{0}\}$ rotation symmetry.

We label the four layer constructions as $L_{1,2,3,4}$, respectively. We note that $-2L_1$ and $-2L_3$ exhibit the same symmetry-indicated topology as L_2 , where $-L_1$ ($-L_3$) has the same construction as L_1 (L_3), except for a sign change in the Chern number $C_z \to -C_z$.

Total Chern number modulo 6 – The Chern number at $k_z = \pi$ can be determined modulo 6:

$$C_{k_z=\pi} \mod 6 = -2z_{3R} + 3z_{2I,3} \mod 6.$$
 (311)

SEq. (311) takes the same form as the SI introduced in SRef. 164 for the Chern number in a 2D insulator with sixfold rotation symmetry, which occurs because the point group of double MSG 147.13 $P\bar{3}$ (isomorphic to Type-I MPG 17.1.62 $P\bar{3}$) exhibits sixfold symmetry generated by C_{3z} and $\mathcal{I}^{9,33}$. In general, we find that, if $\eta_{4I}=0,2$, then the Chern number of the occupied bands in the $k_z=0$ plane is the same as the Chern number of the occupied bands in the $k_z=\pi$ plane (modulo 6). Lastly, if $\eta_{4I}=1,3$, then the Chern number of the occupied bands in the $k_z=0$ plane differs from the Chern number of the occupied bands in the $k_z=\pi$ plane by 3 (modulo 6), implying the presence of an odd number of Weyl points in the BZ between $k_z=0,\pi$, in agreement with the odd value of η_{4I} (see SN 31a).

Relationship with the SIs in other double SSGs – The double SSG 147.14 P31' – which is generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to double MSG 147.13 $P\bar{3}$ – has the double SI group $\mathbb{Z}_4 \times \mathbb{Z}_2$. The SIs in double SSG 147.14 $P\bar{3}1'$ are related to the SIs in double MSG 147.13 $P\bar{3}$ through the subduction relations:

$$(z_4, z_{2w,3})_{P\bar{3}1'} \to (\eta_{4I}, z_{3R}, z_{2I,3})_{P\bar{3}} = (2(z_4 \text{ mod } 2), 00)_{P\bar{3}}.$$
 (312)

n. Double SIs in Type-I Double MSG 168.109 P6

The double MSG 168.109 P6 is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, and $\{C_{6z}|\mathbf{0}\}$, where the angle between the $\{E|100\}$ and $\{E|010\}$ translations is chosen to be $2\pi/3$ for consistency with the $\{C_{3z}|\mathbf{0}\} = (\{C_{6z}|\mathbf{0}\})^2$ rotation symmetry.

The double MSG 168.109 P6 has the SI group \mathbb{Z}_6 . To determine the physical basis for the double SIs, we first recall the formula for the 2D Chern number in the presence of sixfold symmetries 164 :

$$e^{i\frac{2\pi}{6}C} = (-1)^{N_{\text{occ}}} \prod_{n \in \text{occ}} \eta_n(\Gamma)\theta_n(\mathcal{K})\zeta_n(M), \tag{313}$$

where $\eta_n(\Gamma)$, $\theta_n(\mathcal{K})$, $\zeta_n(M)$ are the $\{C_6|\mathbf{0}\}$, $\{C_3|\mathbf{0}\}$, and $\{C_2|\mathbf{0}\}$ eigenvalues of the n^{th} occupied state at Γ , \mathcal{K} , and

M, respectively. We define the SI as the Chern number in the $k_z = \pi$ plane modulo 6:

$$\begin{split} z_{6R} = & C_{k_z = \pi} \bmod 6 = 3N_{\text{occ}} - \frac{1}{2}n_A^{\frac{1}{2}} + \frac{1}{2}n_A^{-\frac{1}{2}} - \frac{3}{2}n_A^{\frac{3}{2}} + \frac{3}{2}n_A^{-\frac{3}{2}} - \frac{5}{2}n_A^{\frac{5}{2}} + \frac{5}{2}n_A^{-\frac{5}{2}} - n_H^{\frac{1}{2}} + n_H^{-\frac{1}{2}} + 3n_H^{\frac{3}{2}} - \frac{3}{2}n_L^{\frac{1}{2}} + \frac{3}{2}n_L^{-\frac{1}{2}} \bmod 6 \\ = & -\frac{1}{2}n_A^{\frac{1}{2}} + \frac{1}{2}n_A^{-\frac{1}{2}} - \frac{3}{2}n_A^{\frac{3}{2}} + \frac{3}{2}n_A^{-\frac{3}{2}} - \frac{5}{2}n_A^{\frac{5}{2}} + \frac{5}{2}n_A^{-\frac{5}{2}} - n_H^{\frac{1}{2}} + n_H^{-\frac{1}{2}} + 3n_H^{\frac{3}{2}} + \frac{3}{2}n_L^{\frac{1}{2}} - \frac{3}{2}n_L^{-\frac{1}{2}} \bmod 6, \end{split}$$

where the superscripts n_A^j represent the $\{C_{6z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{2\pi}{6}j}$ at A, n_H^j is the number of occupied states with $\{C_{3z}|\mathbf{0}\}$ eigenvalue $e^{-i\frac{2\pi}{3}j}$ at H, and where n_L^j is the number of states with $\{C_{2z}|\mathbf{0}\}$ eigenvalue $e^{-i\frac{\pi}{2}j}$ at L. Due to the compatibility relations and the fact that a chiral fermion in 3D occurs when there is a change in a momentum-space Chern number, a 3D insulator must satisfy $C_{k_z=\pi}=C_{k_z}$ for all k_z . Hence, we may have equivalently defined the SI z_{6R} using the occupied rotation symmetry eigenvalues in the $k_z=0$ plane, or in any other BZ plane of constant k_z . To summarize, if a 3D system is insulating and exhibits $z_{6R}\neq 0$, then the system is in a 3D QAH state with $C_{k_z=0}=C_{k_z=\pi}$ and $z_{6R}=C_{k_z=0}$ mod 6.

Because the physical meaning of the double SIs is straightforward (i.e. the nontrivial phases are 3D QAH states composed of stacks of Chern insulators), then will not provide explicit layer constructions for double MSG 168.109 P6.

If we impose \mathcal{T} -symmetry, then the position-space Chern numbers must vanish, which enforces z_{6R} to be zero. Furthermore, if we add \mathcal{T} symmetry to a system that respects double MSG 168.109 P6, we specifically find that the SI group becomes trivial.

o. Double SIs in Type-I Double MSG 174.133 P\(\bar{6}\)

The double MSG 174.133 $P\bar{6}$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{3z}|\mathbf{0}\}$, and $\{m_z|\mathbf{0}\}$, where the angle between the $\{E|100\}$ and $\{E|010\}$ translations is chosen to be $2\pi/3$ for consistency with the $\{C_{3z}|\mathbf{0}\} = (\{C_{6z}|\mathbf{0}\})^2$ rotation symmetry.

SIs – The double MSG 174.133 $P\bar{6}$ has the SI group \mathbb{Z}_3^3 . In the physical basis, the three \mathbb{Z}_3 -valued SIs are: $(\delta_{3m}, z_{3m,\pi}^+, z_{3m,\pi}^-)$, for which the SI formulas are:

$$\delta_{3m} = C_{k_z=\pi}^+ - C_{k_z=0}^- \mod 3 = \sum_{K=A,H,HA} \left(n_K^{-\frac{1}{2},+i} - n_K^{\frac{3}{2},+i} \right) - \sum_{K=\Gamma,\mathcal{K},\mathcal{K},\mathcal{A}} \left(n_K^{-\frac{1}{2},-i} - n_K^{\frac{3}{2},-i} \right) \mod 3, \tag{315}$$

$$z_{3m,\pi}^{+} = C_{k_z=\pi}^{+} \mod 3 = \sum_{K=A}^{+} \prod_{HA} \left(n_K^{-\frac{1}{2},+i} - n_K^{\frac{3}{2},+i} \right) \mod 3, \tag{316}$$

$$z_{3m,\pi}^- = C_{k_z=\pi}^- \mod 3 = \sum_{K=A,H,H,A} \left(n_K^{-\frac{1}{2},-i} - n_K^{\frac{3}{2},-i} \right) \mod 3, \tag{317}$$

such that a 3D insulator with $z_{3m,\pi}^+ \neq -z_{3m,\pi}^-$ mod 3 is in a 3D QAH state. The compatibility relations require the $k_z=0,\pi$ planes to have the same occupied C_{3z} eigenvalues, and hence the same Chern numbers (modulo 3). In an insulating state (i.e. in the absence of bulk Weyl points), it is further required that $C_{k_z=0}^+ + C_{k_z=0}^- = C_{k_z=\pi}^+ + C_{k_z=\pi}^-$ and $C_{k_z=0}^+ - C_{k_z=\pi}^-$ mod $3=C_{k_z=\pi}^+ - C_{k_z=0}^-$ mod $3=\delta_{3m}$. As we will show below, in insulators with net-zero position-space Chern numbers, AXI phases may be stabilized in double MSG 174.133 $P\bar{6}$ by S_6 rotoinversion symmetry, but will not be symmetry indicated, because the strong index δ_{3m} is \mathbb{Z}_3 -valued, whereas the axion angle θ is \mathbb{Z}_2 -valued (if quantized).

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs $(\delta_{3m}, z_{3m,\pi}^+, z_{3m,\pi}^-)$, we employ the layer construction method. In each layer construction, we denote the mirror sector Chern numbers of the occupied bands at $k_z = 0$, π as $(C_{k_z=0}^+, C_{k_z=0}^-, C_{k_z=\pi}^+, C_{k_z=\pi}^-)$. The layer constructions for Type-I double MSG 174.133 $P\bar{6}$ are given by:

- 1. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z^+ = 1$, $C_z^- = 0$ in the z = 0 plane has the mirror sector Chern numbers (1010) and the SIs (110).
- 2. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z^+ = 0$, $C_z^- = 1$ in the z = 0 plane has the mirror sector Chern numbers (0101) and the SIs (201).

- 3. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z^+ = 1$, $C_z^- = 0$ in the $z = \frac{1}{2}$ plane has the mirror sector Chern numbers (1001) and the SIs (001).
- 4. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z^+ = 0$, $C_z^- = 1$ in the $z = \frac{1}{2}$ plane has the mirror sector Chern numbers (0110) and the SIs (010).

Relationship with the SIs in other double SSGs – We next study the effects of imposing \mathcal{T} symmetry. The double SSG 174.134 $P\bar{6}1'$ – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to MSG 174.133 $P\bar{6}$ – has the SI group $\mathbb{Z}_3 \times \mathbb{Z}_3$. The SIs in double SSG 174.134 $P\bar{6}1'$ are related to the SIs in double MSG 174.133 $P\bar{6}$ through the subduction relations:

$$(z_{3m,0}, z_{3m,\pi})_{P\bar{6}1'} \to (\delta_{3m}, z_{3m,\pi}^+, z_{3m,\pi}^-)_{P\bar{6}} = (z_{3m,\pi} + z_{3m,0} \mod 3, \ z_{3m,\pi}, \ -z_{3m,\pi} \mod 3)_{P\bar{6}}. \tag{318}$$

In Type-II double SSG 174.134 $P\bar{6}1'$ insulators with net-odd odd mirror Chern numbers²⁶ are 3D TIs. However, because $z_{3m,0}$ and $z_{3m,\pi}$ only indicate the mirror Chern numbers in the $k_z=0,\pi$ planes modulo 3, then there is no relationship between $z_{3m,0}$ and $z_{3m,\pi}$ and the axion (3D TI) angle θ . Specifically, consider a 3D TI in double SSG 174.134 $P\bar{6}1'$ with $(z_{3m,0},z_{3m,\pi})_{P\bar{6}1'}=(10)_{\bar{6}1'}$, where the bulk axion angle $\theta=\pi$. Taking three superposed copies of the 3D TI results in an insulator with the SIs $(00)_{\bar{6}1'}$ and the axion angle $\theta=\pi$. Hence, $z_{3m,0}$ and $z_{3m,\pi}$ are individually (and as a set) independent of θ , because $z_{3m,0}$ and $z_{3m,\pi}$ are \mathbb{Z}_3 -valued, whereas θ is \mathbb{Z}_2 -valued (if quantized). We thus conclude that, while axionic mirror TCI phases can be stabilized by $\{m_z|\mathbf{0}\}$ mirror and $\{S_6|\mathbf{0}\}$ rotoinversion symmetries in the magnetic subgroup double MSG 174.133 $P\bar{6}$ of double SSG 174.134 $P\bar{6}1'$, θ is not symmetry-indicated in double MSG 174.133 $P\bar{6}$.

p. Double SIs in Type-I Double MSG 175.137 P6/m

The double MSG 175.137 P6/m is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{6z}|\mathbf{0}\}$, and $\{\mathcal{I}|\mathbf{0}\}$, where the angle between the $\{E|100\}$ and $\{E|010\}$ translations is chosen to be $2\pi/3$ for consistency with the $\{C_{3z}|\mathbf{0}\} = (\{C_{6z}|\mathbf{0}\})^2$ rotation symmetry. We note that double MSG 175.137 P6/m additionally contains a mirror symmetry operation: $\{m_z|\mathbf{0}\} = \{C_{6z}|\mathbf{0}\}^3 \{\mathcal{I}|\mathbf{0}\}$.

SIs – The double MSG 175.137 P6/m has the SI group \mathbb{Z}_6^3 . In the physical basis, the three \mathbb{Z}_6 -valued SIs are: $(\delta_{6m}, z_{6m,\pi}^+, z_{6m,\pi}^-)$, for which the SI formulas are:

$$\begin{split} \delta_{6m} &= C_{k_z=\pi}^+ - C_{k_z=0}^- \bmod 6 = -\frac{1}{2} n_A^{\frac{1}{2},+i} + \frac{1}{2} n_A^{-\frac{1}{2},+i} - \frac{3}{2} n_A^{\frac{3}{2},+i} + \frac{3}{2} n_A^{-\frac{3}{2},+i} - \frac{5}{2} n_A^{\frac{5}{2},+i} + \frac{5}{2} n_A^{-\frac{5}{2},+i} \\ &- n_H^{\frac{1}{2},+i} + n_H^{-\frac{1}{2},+i} + 3 n_H^{\frac{3}{2},+i} + \frac{3}{2} n_L^{\frac{1}{2},+i} - \frac{3}{2} n_L^{-\frac{1}{2},+i} \\ &+ \frac{1}{2} n_\Gamma^{\frac{1}{2},-i} - \frac{1}{2} n_\Gamma^{-\frac{1}{2},-i} + \frac{3}{2} n_\Gamma^{\frac{3}{2},-i} - \frac{3}{2} n_\Gamma^{-\frac{3}{2},-i} + \frac{5}{2} n_\Gamma^{\frac{5}{2},-i} - \frac{5}{2} n_\Gamma^{-\frac{5}{2},-i} \\ &+ n_K^{\frac{1}{2},-i} - n_K^{-\frac{1}{2},-i} - 3 n_K^{\frac{3}{2},-i} - \frac{3}{2} n_M^{\frac{1}{2},-i} + \frac{3}{2} n_M^{-\frac{1}{2},-i} \bmod 6, \end{split} \tag{319}$$

$$z_{6m,\pi}^{+} = C_{k_z=\pi}^{+} \mod 6 = -\frac{1}{2} n_A^{\frac{1}{2},+i} + \frac{1}{2} n_A^{-\frac{1}{2},+i} - \frac{3}{2} n_A^{\frac{3}{2},+i} + \frac{3}{2} n_A^{-\frac{3}{2},+i} - \frac{5}{2} n_A^{\frac{5}{2},+i} + \frac{5}{2} n_A^{-\frac{5}{2},+i} \\ -n_H^{\frac{1}{2},+i} + n_H^{-\frac{1}{2},+i} + 3n_H^{\frac{3}{2},+i} + \frac{3}{2} n_L^{\frac{1}{2},+i} - \frac{3}{2} n_L^{\frac{1}{2},+i} \mod 6,$$
 (320)

$$\begin{split} z_{6m,\pi}^- &= C_{k_z=\pi}^- \bmod 6 = -\frac{1}{2} n_A^{\frac{1}{2},-i} + \frac{1}{2} n_A^{-\frac{1}{2},-i} - \frac{3}{2} n_A^{\frac{3}{2},-i} + \frac{3}{2} n_A^{-\frac{3}{2},-i} - \frac{5}{2} n_A^{\frac{5}{2},-i} + \frac{5}{2} n_A^{-\frac{5}{2},-i} \\ &- n_H^{\frac{1}{2},-i} + n_H^{-\frac{1}{2},-i} + 3 n_H^{\frac{3}{2},-i} + \frac{3}{2} n_L^{\frac{1}{2},-i} - \frac{3}{2} n_L^{\frac{1}{2},-i} \bmod 6, \end{split} \tag{321}$$

such that a 3D insulator with $z_{6m,\pi}^+ \neq -z_{6m,\pi}^-$ mod 6 is in a 3D QAH state. As we will show below, in insulators with net-zero position-space Chern numbers, odd values of δ_{6m} indicate mirror TCI phases with $\theta=\pi$. The compatibility relations require that the occupied bands in the $k_z=0,\pi$ planes have the same rotation symmetry eigenvalues, and hence the same Chern numbers (modulo 6). In an insulating state (i.e. in the absence of bulk Weyl points), it is further required that $C_{k_z=0}^+ + C_{k_z=0}^- = C_{k_z=\pi}^+ + C_{k_z=\pi}^-$ and $C_{k_z=0}^+ - C_{k_z=\pi}^-$ mod $C_{k_z=0}^+ - C_{k_z=0}^-$ mod $C_{k_z=0}^+ - C_$

 $(\delta_{6m}, z_{6m,\pi}^+, z_{6m,\pi}^-)$, we employ the layer construction method. In each layer construction, we denote the mirror

sector Chern numbers of the occupied bands at $k_z = 0$, π as $(C_{k_z=0}^+, C_{k_z=0}^-, C_{k_z=\pi}^+, C_{k_z=\pi}^-)$, and additionally compute the subduced SIs $(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}}$ in the subgroup double MSG 2.4 $P\bar{1}$ (see SN 31 a). The layer constructions for Type-I double MSG 175.137 P6/m are given by:

- 1. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z^+ = 1$, $C_z^- = 0$ at z = 0 has the mirror sector Chern numbers (1010) and the SIs (110). The subduced subgroup SIs are $(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2001)_{P\bar{1}}$.
- 2. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z^+=0$, $C_z^-=1$ at z=0 has the mirror sector Chern numbers (0101) and the SIs (501). The subduced subgroup SIs are $(2001)_{P\bar{1}}$.
- 3. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z^+=1$, $C_z^-=0$ at $z=\frac{1}{2}$ has the mirror sector Chern numbers (1001) and the SIs (001). The subduced subgroup SIs are $(0001)_{P\bar{1}}$.
- 4. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z^+=0$, $C_z^-=1$ at $z=\frac{1}{2}$ has the mirror sector Chern numbers (0110) and the SIs (010). The subduced subgroup SIs are $(0001)_{P\bar{1}}$.

Relationship with the SIs in other double SSGs – To identify the AXI phases in double MSG 175.137 P6/m, we subduce the SIs onto double MSG 2.4 $P\bar{1}$:

$$\left(\delta_{6m}, z_{6m,\pi}^+, z_{6m,\pi}^-\right)_{P6/m} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = \left(2(\delta_{6m} \bmod 2), 0, 0, z_{6m,\pi}^+ + z_{6m,\pi}^- \bmod 2\right)_{P\bar{1}}. \tag{322}$$

SEq. (322) implies that the \mathcal{I} AXI index $\eta_{2I'}$ [SEq. (249)] is related to δ_{6m} by $\eta_{2I'} = \frac{1}{2}\eta_{4I} = \delta_{6m} \mod 2$, such that gapped states with $\delta_{6m} \mod 2 = 1$ and $z_{6m,\pi}^+ + z_{6m,\pi}^- \mod 2 = 0$ in MSG 175.137 P6/m are AXIs if the non-symmetry-indicated Chern numbers vanish.

Lastly, we study the effects of imposing \mathcal{T} symmetry. The double SSG 175.138 P6/m1' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ to double MSG 175.137 P6/m – has the SI group $\mathbb{Z}_{12} \times \mathbb{Z}_6$. The SIs in double SSG 175.138 P6/m1' are related to the SIs in double MSG 175.137 P6/m through the subduction relations:

$$(z_{12}, z_{6m,\pi})_{P6/m1'} \to (\delta_{6m}, z_{6m,\pi}^+, z_{6m,\pi}^-)_{P6/m} = (z_{12} \mod 6, z_{6m,\pi}, -z_{6m,\pi} \mod 6)_{P6/m}. \tag{323}$$

q. Double SIs in Type-I Double MSG 176.143 P6₃/m

The double MSG 176.143 $P6_3/m$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{6z}|00\frac{1}{2}\}$, and $\{\mathcal{I}|\mathbf{0}\}$, where the angle between the $\{E|100\}$ and $\{E|010\}$ translations is chosen to be $2\pi/3$ for consistency with the $\{C_{3z}|\mathbf{0}\} = \{E|00\overline{1}\}\{C_{6z}|00\frac{1}{2}\}^2$ rotation symmetry. We note that double MSG 176.143 $P6_3/m$ additionally contains a mirror symmetry operation: $\{m_z|00\frac{1}{2}\} = \{E|00\overline{1}\}\{C_{6z}|00\frac{1}{2}\}^3\{\mathcal{I}|\mathbf{0}\}$.

SIs – The double MSG 176.143 $P6_3/m$ has the SI group $\mathbb{Z}_6 \times \mathbb{Z}_3$. In the physical basis, the SIs are $(z_{6m,0}^+, \delta_{3m})$, where $\delta_{3m} = C_{k_z=\pi}^+ - C_{k_z=0}^- \mod 3$ subduces to the same SI (δ_{3m}) in double MSG 174.133 $P\bar{6}$ [SEq. (315)]. The SI formula for $z_{6m,0}^+$ is given by:

$$z_{6m,0}^{+} = C_{k_z=0}^{+} \mod 6 = -\frac{1}{2} n_{\Gamma}^{\frac{1}{2},+i} + \frac{1}{2} n_{\Gamma}^{-\frac{1}{2},+i} - \frac{3}{2} n_{\Gamma}^{\frac{3}{2},+i} + \frac{3}{2} n_{\Gamma}^{-\frac{3}{2},+i} - \frac{5}{2} n_{\Gamma}^{\frac{5}{2},+i} + \frac{5}{2} n_{\Gamma}^{-\frac{5}{2},+i} - \frac{5}{2} n_{\Gamma}^{\frac{5}{2},+i} + \frac{5}{2} n_{\Gamma}^{-\frac{5}{2},+i} + \frac{3}{2} n_{K}^{\frac{1}{2},+i} + \frac{3}{2} n_{K}^{\frac{1}{2},+i} - \frac{3}{2} n_{M}^{\frac{1}{2},+i} \mod 6,$$

$$(324)$$

where $n_K^{j,+i}$ is the number of occupied states with mirror $\{m_z|00\frac{1}{2}\}$ eigenvalue i and rotation eigenvalue $e^{-i\frac{2\pi}{n}j}$ (n=6,3,2 for $K=\Gamma,\mathcal{K},$ and M, respectively). As we will show below, insulators with $z_{6m,0}^+$ mod 2=1 and net-zero position-space Chern numbers in double MSG 176.143 $P6_3/m$ are AXIs – all of the other insulators in double MSG 176.143 $P6_3/m$ with nontrivial SIs are 3D QAH states.

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs $(z_{6m,0}^+, \delta_{3m})$, we employ the layer construction method. In each layer construction, we denote the mirror sector Chern numbers of the occupied bands at $k_z = 0$, π as $(C_{k_z=0}^+, C_{k_z=0}^-, C_{k_z=\pi}^+, C_{k_z=\pi}^-)$, and additionally compute the subduced SIs $(\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}}$ in the subgroup double MSG 2.4 $P\bar{1}$ (see SN 31a). We note that, while the \mathcal{I} centers in MSG 176.143 $P6_3/m$ lie in the z = 0, $\frac{1}{2}$ planes, the mirror planes lie at $z = \frac{1}{4}$, $\frac{3}{4}$ in each cell. The layer constructions for Type-I double MSG 176.143 $P6_3/m$ are given by:

1. A $\hat{\mathbf{z}}$ -normal layer with $C_z=1$ in the $z=0,\frac{1}{2}$ planes has the mirror sector Chern numbers (1111) and the SIs (10). The subduced subgroup SIs are $(\eta_{4I},z_{2I,1},z_{2I,2},z_{2I,3})_{P\bar{1}}=(2000)_{P\bar{1}}$.

- 2. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+ = 1$, $C_z^- = 0$ in the $z = \frac{1}{4}, \frac{3}{4}$ planes has the mirror sector Chern numbers (2011) and the SIs (21). The subduced subgroup SIs are $(0000)_{P\bar{1}}$.
- 3. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+=0$, $C_z^-=1$ layer in the $z=\frac{1}{4},\frac{3}{4}$ planes has the mirror sector Chern numbers (0211) and the SIs (02). The subduced subgroup SIs are $(0000)_{P\bar{1}}$.

Relationship with the SIs in other double SSGs – To identify the AXI phases, we subduce the SIs in double MSG $176.143\ P6_3/m$ onto double MSG $2.4\ P\bar{1}$:

$$(z_{6m,0}^+, \delta_{3m}) \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2(z_{6m,0}^+ \mod 2), 000)_{P\bar{1}},$$
 (325)

which implies that the \mathcal{I} AXI index $\eta_{2I'}$ [SEq. (249)] is related to $z_{6m,0}^+$ by $\eta_{2I'}=\frac{1}{2}\eta_{4I}=z_{6m,0}^+$ mod 2. Hence, we conclude that insulators in double MSG 176.143 $P6_3/m$ with $z_{6m,0}^+$ mod 2 = 1 and net-zero position-space Chern numbers are AXIs.

Lastly, we study the effects of imposing \mathcal{T} symmetry. The double SSG 176.144 $P6_3/m1'$ – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ to double MSG 176.143 $P6_3/m$ – has the SI group \mathbb{Z}_{12} . The SIs in double SSG 176.144 $P6_3/m1'$ are related to the SIs in double MSG 176.143 $P6_3/m$ through the subduction relations:

$$(z'_{12})_{P6_3/m1'} \to (z^+_{6m,0}, \delta_{3m})_{P6_3/m} = (z'_{12} \mod 6, z'_{12} \mod 3)_{P6_3/m}.$$
 (326)

r. Double SIs in Type-I Double MSG 191.233 P6/mmm

The double MSG 191.233 P6/mmm is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{6z}|\mathbf{0}\}$, $\{\mathcal{I}|\mathbf{0}\}$, and $\{m_x|\mathbf{0}\}$, where the angle between the $\{E|100\}$ and $\{E|010\}$ translations is chosen to be $2\pi/3$ for consistency with the $\{C_{3z}|\mathbf{0}\}=(\{C_{6z}|\mathbf{0}\})^2$ rotation symmetry. We note that double MSG 191.233 P6/mmm additionally contains a mirror symmetry operation: $\{m_z|\mathbf{0}\}=\{C_{6z}|\mathbf{0}\}^3\{\mathcal{I}|\mathbf{0}\}$. In Cartesian coordinates (x,y,z), the primitive lattice translation vectors in double MSG 191.233 $P6/mmm-\{E|100\}$, $\{E|010\}$, and $\{E|001\}$ respectively correspond to $\mathbf{t}_1=(0,-1,0)$, $\mathbf{t}_2=(\frac{\sqrt{3}}{2},\frac{1}{2},0)$, and $\mathbf{t}_3=(0,0,1)$.

SIs – The double MSG 191.233 P6/mmm has the SI group $\mathbb{Z}_{12} \times \mathbb{Z}_6$. In double-valued small irreps of the little groups at the \mathcal{I} -invariant \mathbf{k} points, the matrix representatives of perpendicular mirror symmetries (e.g. $\{m_x|\mathbf{0}\}$) and $\{m_y|\mathbf{0}\}$) anticommute. Hence, Bloch states at the eight \mathcal{I} -invariant momenta must be at least twofold degenerate (and in fact are exactly twofold degenerate in double MSG 191.233 P6/mmm). The double SIs can be chosen to be the same as the double SIs of SSG 191.234 P6/mmm1' (previously introduced in SRef. 26), because the addition of \mathcal{T} symmetry to double MSG 191.233 P6/mmm does not change the dimensions and characters of the small irreps at the high-symmetry BZ points or the compatibility relations between the high-symmetry-point small irreps. In the physical basis, the \mathbb{Z}_{12} double SI is:

$$z_{12} = \delta_{6m} + 3[(\delta_{6m} - z_4) \mod 4] \mod 12, \tag{327}$$

where δ_{6m} is computed by subduction onto double MSG 175.137 P6/m [SEq. (319)], and z_4 is computed by subduction onto double MSG 2.4 $P\bar{1}$ [SEq. (259)]. As we will show below, odd values of the strong index z_{12} indicate mirror TCI phases with $\theta = \pi$ (i.e. AXIs), and nontrivial even values indicate non-axionic (helical) magnetic TCI and HOTI phases. Lastly, in the physical basis, the \mathbb{Z}_6 -valued double SI is the weak TCI invariant $z_{6m,\pi}^+$ for the mirror Chern number (modulo 6) in the $k_z = \pi$ plane, and can also be computed by subduction onto double MSG 175.137 P6/m [SEq. (320)].

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ the layer construction method. In the layer constructions below, $C^+ = -C^-$ due to the net-zero Chern numbers enforced by the mirror symmetries. Hence, we will omit C^- in further discussions of the topology in double MSG 191.233 P6/mmm. The layer constructions for the double SIs $(z_{12}, z_{6m,\pi}^+)$ in MSG 191.233 P6/mmm are given by:

- 1. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+ = 1$ in the z = 0 plane has the SIs (21).
- 2. A $\hat{\mathbf{z}}$ -normal layer with $C_z^+ = 1$ in the $z = \frac{1}{2}$ plane has the SIs (05).
- 3. An $\hat{\mathbf{x}}$ -normal layer with $C_x^+ = 1$ in the x = 0 plane has the SIs (60). We emphasize that, in this layer construction, there are also $|C^+| = 1$ mirror Chern layers in the $C_{6z}\hat{\mathbf{x}}$, $C_{6z}^2\hat{\mathbf{x}}$, $C_{6z}^3\hat{\mathbf{x}}$, $C_{6z}^4\hat{\mathbf{x}}$, and $C_{6z}^5\hat{\mathbf{x}}$ directions implied by the $\{C_{6z}|\mathbf{0}\}$ rotation symmetry.

4. A $\hat{\mathbf{y}}$ -normal layer with $C_y^+ = 1$ in the y = 0 plane has the SIs (60). We emphasize that, in this layer construction, there are also $|C^+| = 1$ mirror Chern layers in the $C_{6z}\hat{\mathbf{y}}$, $C_{6z}^2\hat{\mathbf{y}}$, $C_{6z}^3\hat{\mathbf{y}}$, $C_{6z}^4\hat{\mathbf{y}}$, and $C_{6z}^5\hat{\mathbf{y}}$ directions implied by the $\{C_{6z}|\mathbf{0}\}$ rotation symmetry.

Axion insulators – We find that states with odd z_{12} SIs cannot be constructed from layers of 2D stable topological phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values of z_{12} . First, as we will show below, insulators in double MSG 191.233 P6/mmm with z_{12} mod 2=1 subduce to $(2000)_{P\bar{1}}$ in MSG 2.4 $P\bar{1}$. Hence, if the z_{12} mod 2=1 phases in double MSG 191.233 P6/mmm are insulating, then the bulk insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers $C_{x,y,z}=0$ must vanish if the bulk is gapped, due to the mirror symmetries of double MSG 191.233 P6/mmm, then insulators with z_{12} mod z_{12} in double MSG 191.233 z_{12} mod z_{12} mod z_{12} mod z_{12} in double MSG 191.233 z_{12} mod z_{12} in double MSG 191.233 z_{12} mod z_{12} mod z_{12} in double MSG 191.233 z_{12} mod z_{12} in double MSG 191.233 z_{12} mod z_{12} mod z_{12} in double MSG 191.233 z_{12} mod z_{12} mod z_{12} in double MSG 191.233 z_{12} mod z_{12}

Helical HOTI phases protected by mirror and C_6 rotation symmetry – First, the double SIs $(60)_{P6/mmm1'}$ of Type-II double SSG SG 191.234 P6/mmm1' either correspond to a rotation-anomaly (non-axionic, i.e. θ mod $2\pi = 0$) HOTI protected by C_6 and \mathcal{T} symmetries, or a mirror TCI with C_{m_z} mod 12 = 6 (c.f. Table 7 in the Supplementary Material of SRef. 26). In the C_6 - and \mathcal{T} -symmetric HOTI phase, there are 6 + 12n ($n \in \{\mathbb{Z}^+, 0\}$) helical hinge modes on a z-directed, C_6 - and \mathcal{T} -symmetric rod, and 6 + 12n twofold Dirac points on the top ($\hat{\mathbf{z}}$ -normal) rod surface that are locally protected by mirror symmetry (see SN 33). Because double SSG SG 191.234 P6/mmm1' contains $\{m_{x,y}|\mathbf{0}\}$ symmetries (as well as their conjugates under C_{6z} symmetry), then six of the helical hinge modes on the boundary of a 6/mmm1'-symmetric sample must also be pinned to the hinge projections of bulk mirror planes whose normal vectors lie in the xy-plane, and must be indicated by bulk mirror Chern numbers. Hence, when \mathcal{T} symmetry is relaxed in a sixfold rotation-anomaly $(60)_{P6/mmm1'}$ HOTI phase in Type-II double SSG 191.234 P6/mmm1' while preserving the symmetries of MSG 191.233 P6/mmm, the surface and hinge states will remain gapless and anomalous [see SFig. 21(c) and SN 35].

We will next prove that there are 6+12n twofold Dirac points on the top surface of a 6/mmm-symmetric nanorod of the (60) sixfold rotation-anomaly magnetic HOTI phase in double MSG 191.233 P6/mmm introduced in this work. We denote the four layer constructions as L_a ($a=1\cdots 4$), respectively. First, we note that the (60) mirror TCI phase with C_{m_z} mod 12=6 can be constructed as $(6m+3)L_1 \oplus (6m'+3)L_2$. Next, the sixfold rotation-anomaly HOTI phase can be constructed as $(2n+1)L_3$, or $(2n+1)L_4$, or through any superposition of an odd number of the aforementioned layer constructions. Adding $6L_1$ or $6L_2$, which have SIs (00), to the layer-constructed HOTI phase will not change the top surface spectrum, because L_1 and L_2 consist of horizontal (i.e. $\hat{\mathbf{z}}$ -normal) layers, and hence only contribute surface and hinge states on boundaries whose normal vectors lie in the xy-plane.

We will thus focus on the top surface spectra of the $(2n+1)L_3$ and $(2n+1)L_4$ layer constructions. We first consider $(2n+1)L_3$. As shown in Supplementary Note 5 in SRef. 26 and in Table 6 of the Supplementary Material of SRef. 26, the Chern numbers in the m_x mirror sectors are given by $C_{k_x=0}^+ = -C_{k_x=0}^- = 4n+2$, $C_{k_x=\pi}^+ = -C_{k_x=\pi}^- = 0$. In the 2D top surface BZ, $C_{k_x=0}^+$ mandates the presence of |4n+2| twofold Dirac points on the $k_x=0$ line. Due to the C_{6z} symmetry, there must also be 2|4n+2| twofold Dirac points on the C_{6z} and C_{6z}^{-1} conjugates of the $k_x=0$ line. Hence, the total number of top-surface Dirac points is 3|4n+2| mod 12=6. Lastly, we note that performing the analogous analysis on the $(2n+1)L_4$ layer construction also returns the same number of mirror-protected twofold Dirac points on the top surface (6+12n).

In SN 34, we will prove that, on the top surface of the (60) HOTI state – which respects the symmetries of Type-I double magnetic wallpaper group $^{36,39,73-75}$ p6m – the presence of 6+12n ($n \in \{\mathbb{Z}^+,0\}$) twofold surface Dirac points circumvents the fermion multiplication theorem for 2D lattices with double magnetic wallpaper group p6m.

Relationship with the SIs in other double SSGs – To identify the AXI phases, we subduce the SIs onto double MSG $2.4~P\bar{1}$:

$$(z_{12}, z_{6m,\pi}^+)_{P6/mmm} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2(z_{12} \bmod 2), 000)_{P\bar{1}}. \tag{328}$$

Because the AXI \mathcal{I} SI $\eta_{2I'} = \frac{1}{2}\eta_{4I} = z_{12} \mod 2$ [SEq. (249)], then we conclude that insulators with odd z_{12} SIs in double MSG 191.233 P6/mmm are AXIs.

s. Double SIs in Type-II Double SG 2.5 $P\bar{1}1'$

Using the definition of a minimal double SSG established in SN 30, we find that there are only five minimal Type-II double SSGs: $2.5 P\bar{1}1'$, 83.44 P4/m1', 87.76 I4/m1', 175.138 P6/m1', and $176.144 P6_3/m1'$. The SIs, SI formulas, and physical interpretation of the SIs in the Type-II double SSGs were previously determined in SRefs. 24,26,27. In the physical basis employed in this work, the SI formulas, physical interpretations, and layer constructions of the double SIs in the above minimal Type-II double SSGs are provided in SRef. 26. Here and below [SN 31 t, 31 u, 31 v, and 31 w, respectively], we will briefly review the established SI formulas and physical interpretations of the double SIs in the five minimal Type-II double SSGs.

To begin, the double SSG 2.5 $P\bar{1}1'$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{\mathcal{I}|\mathbf{0}\}$, and $\{\mathcal{T}|\mathbf{0}\}$.

The SI group is $\mathbb{Z}_4 \times \mathbb{Z}_2^3$. In the physical basis, the four double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})$ of double SSG 2.5 $P\bar{1}1'$ have the respective SI formulas:

$$z_4 = \sum_K \frac{1}{2} n_K^- = \sum_K \frac{n_K^- - n_K^+}{4} \mod 4, \tag{329}$$

$$z_{2w,i} = \sum_{KK_i = \pi} \frac{1}{2} n_K^- = \sum_{KK_i = \pi} \frac{n_K^- - n_K^+}{4} \mod 2 \qquad (i = 1, 2, 3), \tag{330}$$

where K runs over the eight \mathcal{I} -invariant momenta in the first BZ, and n_K^{\pm} are the number of Bloch states with ± 1 parity (\mathcal{I}) eigenvalues at K in the group of bands under consideration. The double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{P\bar{1}1'}$ in double SSG 2.5 $P\bar{1}1'$ have the same SI formulas as the double SIs in $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{Pmmm}$ in double MSG 47.249 Pmmm [SEqs. (259) and (260)], which we previously analyzed in SN 31 d.

The physical interpretations of the double SIs in Type-II double SSG 2.5 $P\bar{1}1'$ are given below:²⁶:

- 1. $z_4 = 1, 3$ indicate strong 3D TIs protected by \mathcal{T} symmetry.
- 2. For $z_4 = 0, 2$, $z_{2w,i} = 1$ indicates a weak TI phase that can be deformed into a stack of 2D TIs whose normal vectors point in the *i*-direction [e.g., the double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{P\bar{1}1'} = (2110)_{P\bar{1}1'}$ indicate a weak TI that is equivalent to a stack of 2D TIs oriented in the x + y-direction].
- 3. For $z_{2w,1} = z_{2w,2} = z_{2w,3} = 0$, $z_4 = 2$ indicates a non-axionic helical HOTI protected by \mathcal{I} and \mathcal{T} symmetries with a sample-encircling helical hinge mode (see Supplementary Note 5 in SRef. 26).

t. Double SIs in Type-II Double SG 83.44 P4/m1'

The double SSG 83.44 P4/m1' is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{Z|\mathbf{0}\}$, $\{C_{4z}|\mathbf{0}\}$, and $\{\mathcal{T}|\mathbf{0}\}$. The double SSG 83.44 P4/m1' has the SI group $\mathbb{Z}_8 \times \mathbb{Z}_4 \times \mathbb{Z}_2$. In the physical basis, the \mathbb{Z}_8 double SI has the SI formula:

$$z_8 = \frac{3}{2}n^{\frac{3}{2},+} - \frac{3}{2}n^{\frac{3}{2},-} - \frac{1}{2}n^{\frac{1}{2},+} + \frac{1}{2}n^{\frac{1}{2},-} \mod 8, \tag{331}$$

$$n^{j,\pm} = \sum_{K=\Gamma,M,Z,A} n_K^{j,\pm} + \sum_{K=X,R} n_K^{\frac{1}{2},\pm},$$
(332)

where $n_K^{j,\pm}$ $(K=\Gamma,M,Z,A)$ are the number of states at the momentum K with parity (\mathcal{I}) eigenvalue ± 1 and $\{C_{4z}|\mathbf{0}\}$ eigenvalue angular momentum j (modulo 4), and $n_K^{j,\pm}$ (K=X,R) are the number of states at the momentum K with parity eigenvalue ± 1 and angular momentum j (modulo 2). The \mathbb{Z}_4 SI subduces to the weak TCI invariant $z_{4m,\pi}^-$ in double MSG 83.43 P4/m [SEq. (274)], and the \mathbb{Z}_2 SI subduces to the weak TI invariant $z_{2w,1}$ in double SSG 2.5 $P\bar{1}1'$ [SEq. (260)]. We note that in SRef. 26, $z_{4m,\pi}^-$ is instead labeled $z_{4m,\pi}$. As a set, the three double SIs $(z_8, z_{4m,\pi}^-, z_{2w,1})_{P4/m1'}$ in double SSG 83.44 P4/m1' have the same SI formulas as the double SIs $(z_8, z_{4m,\pi}^-, z_{2w,1})_{P4/mmm}$ in double MSG 123.339 P4/mmm, which we previously analyzed in SN 31 k.

The physical interpretations of the double SIs in Type-II double SSG 83.44 P4/m1' are given below²⁶:

- 1. $z_{2w,1} = 1$ indicates the presence of nontrivial weak TI indices in the $k_{x,y} = \pi$ planes.
- 2. Nonzero values of $z_{4m,\pi}^-$ indicate nontrivial mirror sector Chern numbers in the $k_z=\pi$ plane: $z_{4m,\pi}^-=C_{k_z=\pi}^-$ mod $4=-C_{k_z=\pi}^+$ mod 4 [see SEq. (274) and the surrounding text].
- 3. $z_8 \neq 0, 4$ indicate nontrivial mirror sector Chern numbers in the $k_z = 0, \pi$ planes: $C_{k_z=0}^- C_{k_z=\pi}^+ \mod 4 = z_8$ [see SN 31 h for the subduction relations between $(z_8)_{P4/m1'}$ in double SSG 83.44 P4/m1' and the double SIs in double MSG 83.43 P4/m]. $z_8 \mod 2 = 1$ specifically indicates strong 3D TI phases.
- 4. For $z_{2w,1} = z_{4m,\pi}^- = 0$, $z_8 = 4$ either indicates a mirror TCI phase with $C_{m_z} \mod 8 = 4$, or a non-axionic fourfold rotation-anomaly HOTI phase with C_{4z} and \mathcal{T} -symmetry-protected bulk topology and 4 + 8n $(n \in \{\mathbb{Z}^+, 0\})$ \mathcal{T} -protected helical hinge modes (see Supplementary Note 5 in SRef. 26).
 - u. Double SIs in Type-II Double SG 87.76 I4/m1'

The double SSG 87.76 I4/m1' is generated by $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{I|\mathbf{0}\}$, $\{C_{4z}|\mathbf{0}\}$, and $\{I|\mathbf{0}\}$. The double SSG 87.76 I4/m1' has the SI group $\mathbb{Z}_8 \times \mathbb{Z}_2$. In the physical basis, the \mathbb{Z}_8 double SI subduces to $(z_8)_{P4/m1'}$ in double SSG 83.44 P4/m1' (see SN $\frac{31}{2}$ t):

$$z_8 = \frac{3}{2}n^{\frac{3}{2},+} - \frac{3}{2}n^{\frac{3}{2},-} - \frac{1}{2}n^{\frac{1}{2},+} + \frac{1}{2}n^{\frac{1}{2},-} \mod 8, \tag{333}$$

in which $n^{j,\pm}$ are given by:

$$n^{j,\pm} = \sum_{K=\Gamma,M} n_K^{j,\pm} + \sum_{K=X,N} n_K^{\frac{1}{2},\pm} + \sum_{K=P} n_K^{\pm j}, \tag{334}$$

where $n_K^{j,\pm}$ ($K=\Gamma,M$) are the number of states at the momentum K with parity eigenvalue ± 1 and $\{C_{4z}|\mathbf{0}\}$ eigenvalue angular momentum j (modulo 4), $n_K^{j,\pm}$ (K=X,N) are the number of states at the momentum K with parity eigenvalue ± 1 and angular momentum j (modulo 2), and $n_P^{\pm j}$ are the number of states at the momentum P with $\{S_{4z}|0\}$ eigenvalue $e^{\mp i\frac{2\pi}{4}j}$. The \mathbb{Z}_2 SI subduces to the weak TI invariant $z_{2w,1}$ in double SSG 2.5 $P\bar{1}1'$ [SEq. (260)]. The physical interpretations of the double SIs in Type-II double SSG 87.76 I4/m1' are closely related to the physical interpretations of the double SIs in double SSG 83.44 P4/m1' previously determined in SN 31t and SRef. 26:

- 1. $z_{2w,1} = 1$ indicates the presence of nontrivial weak TI indices in the $k_{x,y} = \pi$ planes in the primitive-cell BZ.
- 2. $z_8 \neq 0,4$ indicate nontrivial mirror sector Chern numbers in the $k_z = 0$ plane: $C_{k_z=0}^- \mod 4 = -C_{k_z=0}^+ \mod 4 = z_8$ (noting that the $k_z = 0, \pi$ planes are related by reciprocal lattice vectors, because the Bravais lattice of SSG 87.76 I4/m1' is body-centered tetragonal³³). $z_8 \mod 2 = 1$ specifically indicates strong 3D TI phases.
- 3. For $z_{2w,1} = 0$, $z_8 = 4$ either indicates a mirror TCI phase with C_{m_z} mod 8 = 4, or a non-axionic fourfold rotation-anomaly HOTI phase with C_{4z} and \mathcal{T} -symmetry-protected bulk topology and 4 + 8n $(n \in \{\mathbb{Z}^+, 0\})$ \mathcal{T} -protected helical hinge modes (see Supplementary Note 5 in SRef. 26).
 - v. Double SIs in Type-II Double SG 175.138 P6/m1'

The double SSG 175.138 P6/m1' is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{Z|\mathbf{0}\}$, $\{C_{6z}|\mathbf{0}\}$, and $\{\mathcal{T}|\mathbf{0}\}$. The double SSG 175.138 P6/m1' has the SI group $\mathbb{Z}_{12} \times \mathbb{Z}_6$. In the physical basis, the SI formula of the \mathbb{Z}_{12} SI can be expressed in terms of previously established double SIs²⁶:

$$z_{12} = \delta_{6m} + 3[(\delta_{6m} - z_4) \mod 4] \mod 12, \tag{335}$$

where δ_{6m} is computed by subduction onto double MSG 175.137 P6/m [SEq. (319)], and z_4 is computed by subduction onto double SSG 2.5 $P\bar{1}1'$ [see SN 31 s]. Additionally, in the physical basis, the \mathbb{Z}_6 SI is the weak TCI invariant $z_{6m,\pi}^+$ for the mirror Chern number (modulo 6) in the $k_z = \pi$ plane, and can also be computed by subduction onto double

MSG 175.137 P6/m [SEq. (320)]. We note that in SRef. 26, $z_{6m,\pi}^+$ is instead labeled $z_{6m,\pi}$. As a set, the two double SIs $(z_{12}, z_{6m,\pi}^+)_{P6/m1'}$ in double SSG 175.138 P6/m1' have the same SI formulas as the double SIs $(z_{12}, z_{6m,\pi}^+)_{P6/mmm}$ in double MSG 191.233 P6/mmm, which we previously analyzed in SN 31 r.

The physical interpretations of the double SIs in double SSG 175.138 P6/m1' are given below²⁶:

- 1. Nonzero values of $z_{6m,\pi}^+$ indicate nontrivial mirror sector Chern numbers in the $k_z=\pi$ plane: $z_{6m,\pi}^+=C_{k_z=\pi}^+$ mod $6=-C_{k_z=\pi}^-$ mod 6 [see SEq. (320) and the surrounding text].
- 2. $z_{12} \neq 0,6$ indicate nontrivial mirror sector Chern numbers in the $k_z = 0,\pi$ planes: $C_{k_z=\pi}^+ C_{k_z=0}^-$ mod $6 = z_{12}$ [see SN 31 p for the subduction relations between $(z_{12})_{P6/m1'}$ in double SSG 175.138 P6/m1' and the double SIs in double MSG 175.137 P6/m]. z_{12} mod 2 = 1 specifically indicates strong 3D TI phases.
- 3. For $z_{6m,\pi}^+=0$, $z_{12}=6$ either indicates a mirror TCI phase with C_{m_z} mod 12=6, or a non-axionic sixfold rotation-anomaly HOTI phase with C_{6z} and \mathcal{T} -symmetry-protected bulk topology and 6+12n $(n \in \{\mathbb{Z}^+,0\})$ \mathcal{T} -protected helical hinge modes (see Supplementary Note 5 in SRef. 26).

w. Double SIs in Type-II Double SG 176.144 P6₃/m1'

The double SSG 176.144 $P6_3/m1'$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{Z|\mathbf{0}\}$, $\{C_{6z}|00\frac{1}{2}\}$, and $\{\mathcal{T}|\mathbf{0}\}$. The double SSG 176.144 $P6_3/m1'$ has the SI group \mathbb{Z}_{12} . In the physical basis, the SI formula of the \mathbb{Z}_{12} SI can be expressed in terms of previously established double SIs²⁶:

$$z'_{12} = z^{+}_{6m,0} + 3[(z^{+}_{6m,0} - z_4) \mod 4] \mod 12, \tag{336}$$

where $z_{6m,0}^+$ is computed by subduction onto double MSG 176.143 $P6_3/m$ [SEq. (324)], and z_4 is computed by subduction onto double SSG 2.5 $P\bar{1}1'$ [see SN 31s]. We note that, unlike previously in double SSG 175.138 P6/m1' (SN 31v), the mirror sector Chern numbers in the $k_z=\pi$ plane individually vanish $C_{k_z=\pi}^{\pm}=0$ for any group of bands in double SSG 176.144 $P6_3/m1'$. This can be seen by first recognizing that the matrix representatives of $\{\mathcal{T}C_{6z}|00\frac{1}{2}\}$ and $\{m_z|00\frac{1}{2}\}$ anticommute in any small corep of any little group in the $k_z=\pi$ plane that contains both $\{\mathcal{T}C_{6z}|00\frac{1}{2}\}$ and $\{m_z|00\frac{1}{2}\}$. Hence, if $|\psi\rangle$ is a Bloch eigenstate of $\{m_z|00\frac{1}{2}\}$ at a k point in the $k_z=\pi$ plane with the $\{m_z|00\frac{1}{2}\}$ eigenvalue i, then $\{\mathcal{T}C_{6z}|00\frac{1}{2}\}|\psi\rangle$ is also an eigenstate of $\{m_z|00\frac{1}{2}\}$ with the same eigenvalue i. Consequently, there is an effective time-reversal symmetry $\{\mathcal{T}C_{6z}|00\frac{1}{2}\}\}$ within each mirror sector, which enforces that the mirror sector Chern numbers in the $k_z=\pi$ plane individually vanish.

The physical interpretations of the double SIs in double SSG 176.144 $P6_3/m1'$ are given below²⁶:

- 1. $z'_{12} \neq 0$, 6 indicate nontrivial mirror sector Chern numbers in the $k_z=0$ plane: $C^+_{k_z=0} \mod 6 = -C^-_{k_z=0} \mod 6 = z'_{12}$ [see SN 31 q for the subduction relations between $(z'_{12})_{P6_3/m1'}$ in double SSG 176.144 $P6_3/m1'$ and the double SIs in double MSG 176.143 $P6_3/m$]. $z'_{12} \mod 2 = 1$ specifically indicates strong 3D TI phases.
- 2. $z'_{12} = 6$ either indicates a mirror TCI phase with C_{m_z} mod 12 = 6, or a non-axionic sixfold rotation-anomaly HOTI phase with 6_3 -screw- and \mathcal{T} -symmetry-protected bulk topology and 6 + 12n ($n \in \{\mathbb{Z}^+, 0\}$) \mathcal{T} -protected helical hinge modes (see Supplementary Note 5 in SRef. 26).

x. Double SIs in Type-III Double MSG 27.81 Pc'c'2

Finally, beginning here with double MSG 27.81 Pc'c'2 and continuing below, we will introduce the physical-basis SI formulas and the physical interpretations of the double SIs in the 11 minimal Type-III double MSGs (see SN 30). To begin, the double MSG 27.81 Pc'c'2 is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{2z}|\mathbf{0}\}$, and $\{\mathcal{T}m_x|00\frac{1}{2}\}$.

SI – The double MSG 27.81 Pc'c'2 has the SI group \mathbb{Z}_2 . As we will shortly demonstrate, in the physical basis, the double SI z'_{2R} indicates the *even-valued* Chern number in the $k_z=\pi$ plane (modulo 4): $C_{k_z=\pi} \mod 4=2z'_{2R}$. Hence, insulators with $z'_{2R}=1$ are 3D QAH states with $C_z \mod 4=2$.

We will first demonstrate that Bloch states at the $\{C_{2z}|\mathbf{0}\}$ -invariant momenta in the $k_z=\pi$ plane in double MSG 27.81 Pc'c'2 form doubly-degenerate pairs with the same $\{C_{2z}|\mathbf{0}\}$ eigenvalues. To begin, in the $k_z=\pi$ plane, the matrix representative of $\{\mathcal{T}m_x|00\frac{1}{2}\}$ squares to minus the identity in all double-valued small coreps. Hence, all of the irreducible small coreps in the $k_z=\pi$ plane along the $\{\mathcal{T}m_x|00\frac{1}{2}\}$ -invariant lines $k_y=0,\pi$ must be at least twofold degenerate (and in fact are exactly twofold degenerate in double MSG 27.81 Pc'c'2). Next, the matrix representatives

of $\{\mathcal{T}m_x|00\frac{1}{2}\}$ and $\{C_{2z}|\mathbf{0}\}$ anticommute in all small coreps at the $\{C_{2z}|\mathbf{0}\}$ -invariant points $k_{x,y}=0,\pi$ in the $k_z=\pi$ plane. This implies that, if $|\psi\rangle$ is a Bloch state at $k_{x,y}=0,\pi$ in the $k_z=\pi$ plane for which $\{C_{2z}|\mathbf{0}\}|\psi\rangle=i|\psi\rangle$, then:

$$\{C_{2z}|\mathbf{0}\}\{\mathcal{T}m_x|00\frac{1}{2}\}|\psi\rangle = -\{\mathcal{T}m_x|00\frac{1}{2}\}\{C_{2z}|\mathbf{0}\}|\psi\rangle = i\{\mathcal{T}m_x|00\frac{1}{2}\}|\psi\rangle. \tag{337}$$

SEq. (337) implies that both Bloch states in each $\{\mathcal{T}m_x|00\frac{1}{2}\}$ doublet at $k_{x,y}=0,\pi,\ k_z=\pi$ must have the same $\{C_{2z}|\mathbf{0}\}$ eigenvalues. We therefore define the \mathbb{Z}_2 SI as the parity of the number of doublets with $\{C_{2z}|\mathbf{0}\}$ eigenvalue -i in the $k_z=\pi$ plane:

$$z'_{2R} = \sum_{K=Z} \frac{1}{T} \frac{1}{UR} \frac{1}{2} \mod 2 = \frac{C_{k_z = \pi}}{2} \mod 2, \tag{338}$$

where $n_K^{\frac{1}{2}}$ is the number of states with $\{C_{2z}|\mathbf{0}\}$ eigenvalue -i, such that $\frac{1}{2}n_K^{\frac{1}{2}}$ is the number of doublets in which both Bloch states have the $\{C_{2z}|\mathbf{0}\}$ eigenvalues -i.

Layer constructions – To diagnose the topology associated to $z_{2R}'=1$, we employ the layer construction method. We begin by placing a $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ in the z=0 plane. Due to the $\{Tm_x|00\frac{1}{2}\}$ symmetry in double MSG 27.81 Pc'c'2, there must be another Chern layer with $C_z=1$ in the $z=\frac{1}{2}$ plane, such that the total Chern number per cell is $C_z=2$, and the Chern number of the occupied bands in the $k_z=\pi$ plane is $C_{k_z=\pi}=2$. Hence, in this layer construction of a 3D QAH state with $C_z=2$, the \mathbb{Z}_2 SI is nontrivial $z_{2R}'=1$.

Relationship with the SIs in other double SSGs – We next compute the subduction relations between the SIs in double MSG 27.81 Pc'c'2 and the SIs in the maximal unitary subgroup double MSG 3.1 P2 (see SN 31 b):

$$(z'_{2R})_{Pc'c'2} \to (z_{2R})_{P2} = (0)_{P2}.$$
 (339)

SEqs. (338) and (339) imply that symmetry-indicated 3D QAH states with $z'_{2R}=1$ in double MSG 27.81 Pc'c'2 necessarily subduce to non-symmetry-indicated 3D QAH states with $(z_{2R})_{P2}=0$ in double MSG 3.1 P2, in agreement with the physical-basis double SI relations $C_{k_z=\pi} \mod 4=2z'_{2R}$ and $C_{k_z=\pi} \mod 2=z_{2R}$ [taking the twofold axis in double MSG 3.1 P2 to be oriented in the z-direction, see SEq. (253) and the surrounding text].

Lastly, if we impose \mathcal{T} symmetry, then the position-space Chern numbers must vanish, which enforces z'_{2R} to be zero. Correspondingly, in double SSG 27.79 Pcc21' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ to double MSG 27.81 Pc'c'2 – the double SI group is trivial.

y. Double SIs in Type-III Double MSG 41.215 Ab'a'2

The double MSG 41.215 Ab'a'2 is generated by $\{E|100\}$, $\{E|0\frac{1}{2}\frac{1}{2}\}$, $\{E|0\frac{1}{2}\frac{1}{2}\}$, $\{C_{2z}|\mathbf{0}\}$, and $\{\mathcal{T}m_x|\frac{1}{2}\frac{1}{2}0\}$. The primitive lattice vectors are:

$$\mathbf{a}_1 = (1, 0, 0), \quad \mathbf{a}_2 = (0, \frac{1}{2}, \frac{1}{2}), \quad \mathbf{a}_3 = (0, \frac{1}{2}, -\frac{1}{2}),$$
 (340)

and the reciprocal lattice vectors of the primitive cell are:

$$\mathbf{b}_1 = 2\pi(1,0,0), \quad \mathbf{b}_2 = 2\pi(0,1,1), \quad \mathbf{b}_3 = 2\pi(0,1,-1).$$
 (341)

In the conventional (super)cell, the lattice vectors are:

$$\mathbf{a}'_1 = (1,0,0), \quad \mathbf{a}'_2 = \mathbf{a}_2 + \mathbf{a}_3 = (0,1,0), \quad \mathbf{a}'_3 = \mathbf{a}_2 - \mathbf{a}_3 = (0,0,1).$$
 (342)

and the reciprocal lattice vectors of the conventional cell are:

$$\mathbf{b}_1' = 2\pi(1,0,0), \quad \mathbf{b}_2' = 2\pi(0,1,0), \quad \mathbf{b}_3' = 2\pi(0,0,1).$$
 (343)

In the analysis below of the double SIs in double MSG 41.215 Ab'a'2, we will refer to coordinates in the basis of the conventional cell for consistency with the convention employed in the BCS applications implemented for MTQC.

SI – The double MSG 41.215 Ab'a'2 has the SI group \mathbb{Z}_2 . In the physical basis, the \mathbb{Z}_2 SI has the SI formula:

$$z_{2R} = n_{\Gamma}^{\frac{1}{2}} \bmod 2, \tag{344}$$

where $n_{\Gamma}^{\frac{1}{2}}$ is the number of occupied states with $\{C_{2z}|\mathbf{0}\}$ eigenvalues -i at Γ . Below, we will demonstrate that $z_{2R} = C_z \mod 2$ where C_z is the total position-space Chern number in the primitive cell (or equivalently z_{2R} indicates the even-valued Chern number C_z in the conventional cell modulo 4), such that insulators in double MSG 41.215 Ab'a'2 with $z_{2R} = 1$ are 3D QAH states.

Layer constructions – To diagnose the topology associated to $z_{2R} = 1$, we employ the layer construction method. We begin by placing a $\hat{\mathbf{z}}$ -normal Chern insulator with $C_z = 1$ in the z = 0 plane. In the conventional cell, the system has $\{\mathcal{T}m_x|\frac{1}{2}\frac{1}{2}0\}$ and $\{C_{2z}|\mathbf{0}\}$ symmetries, as well as the conventional-cell translation symmetries $\{E|100\}$ and $\{E|010\}$. Because a minimal Chern insulator has one occupied band¹⁵⁶, then, in the conventional supercell – which is twice as large as the primitive cell – the system has two occupied bands. Below, we will demonstrate that a set of occupied bands compatible with this layer construction exhibits $z_{2R} = 1$.

We next determine the constraints imposed by symmetry on the occupied $\{C_{2z}|\mathbf{0}\}$ eigenvalues at the momenta $\Gamma(0,0,0),\ Z(\pi,0,0),\ (0,\pi,0),\$ and $(\pi,\pi,0)$ [where we note that $(0,\pi,0)$ and $(\pi,\pi,0)$ are not high-symmetry points in MSG 41.215 Ab'a'2, see MKVEC (SN 12)]. Because $\{\mathcal{T}m_x|\frac{1}{2}\frac{1}{2}0\}^2=\{E|010\}$, then the matrix representative of $\{\mathcal{T}m_x|\frac{1}{2}\frac{1}{2}0\}$ squares to minus the identity in all small coreps in the $k_y=\pi$ plane, and states in the $k_y=\pi$ plane must be at least [and are in fact exactly] twofold degenerate, whereas states in the $k_y=0$ plane are not required by $\{\mathcal{T}m_x|\frac{1}{2}\frac{1}{2}0\}$ to be doubly degenerate [and are in fact singly degenerate at $\Gamma(0,0,0)$]. We then consider a Bloch eigenstate $|\psi(k_x,\pi,0)\rangle$ ($k_x\in\{0,\pi\}$) with $\{C_{2z}|\mathbf{0}\}$ eigenvalue $\xi\in\{i,-i\}$, and compute the $\{C_{2z}|\mathbf{0}\}$ eigenvalue of the state $\{Tm_x|\frac{1}{2}\frac{1}{2}0\}|\psi(k_x,\pi,0)\rangle$:

$$\{C_{2z}|\mathbf{0}\}\{Tm_x|\frac{1}{2}\frac{1}{2}0\}|\psi(k_x,\pi,0)\rangle = -\{E|\bar{1}\bar{1}0\}\{Tm_x|\frac{1}{2}\frac{1}{2}0\}\xi|\psi(k_x,\pi,0)\rangle = e^{-ik_x}\xi^*\{Tm_x|\frac{1}{2}\frac{1}{2}0\}|\psi(k_x,\pi,0)\rangle.$$
(345)

SEq. (345) implies that doublets at $(\pi, \pi, 0)$ consist of Bloch states with the same $\{C_{2z}|\mathbf{0}\}$ eigenvalues, but that the two states in each doublet at $(0, \pi, 0)$ have oppositely-signed $\{C_{2z}|\mathbf{0}\}$ eigenvalues. Next, we consider there to be a state $|\psi(k_x, 0, 0)\rangle$ $(k_x \in \{0, \pi\})$ with $\{C_{2z}|\mathbf{0}\}$ eigenvalue $\xi \in \{i, -i\}$, and compute the $\{C_{2z}|\mathbf{0}\}$ eigenvalue of $\{Tm_x|\frac{1}{2}, \frac{1}{2}0\}|\psi(k_x, 0, 0)\rangle$:

$$\{C_{2z}|\mathbf{0}\}\{Tm_x|\frac{1}{2}\frac{1}{2}0\}|\psi(k_x,0,0)\rangle = -\{E|\bar{1}\bar{1}0\}\{Tm_x|\frac{1}{2}\frac{1}{2}0\}\xi|\psi(k_x,0,0)\rangle = -e^{-ik_x}\xi^*\{Tm_x|\frac{1}{2}\frac{1}{2}0\}|\psi(k_x,0,0)\rangle.$$
(346)

SEq. (346) implies that Bloch states at $Z(\pi, 0, 0)$ are doubly degenerate with complex-conjugate pairs of $\{C_{2z}|\mathbf{0}\}$ eigenvalues $\{i, -i\}$.

We have thus determined that Bloch states at $\Gamma(0,0,0)$ are singly degenerate, Bloch states at $Z(\pi,0,0)$ and $(0,\pi,0)$ are doubly degenerate and have opposite $\{C_{2z}|\mathbf{0}\}$ eigenvalues, and that Bloch states at $(\pi,\pi,0)$ are doubly degenerate and have the same $\{C_{2z}|\mathbf{0}\}$ eigenvalues. Thus, one possible set of occupied $\{C_{2z}|\mathbf{0}\}$ eigenvalues that satisfy the above constraints and the compatibility relations are (-i,+i), (-i,+i), (-i,+i), (+i,+i) at $\Gamma(0,0,0)$, $Z(\pi,0,0)$, $(0,\pi,0)$, $(\pi,\pi,0)$, respectively. Next, we consider the $\{C_{2z}|\mathbf{0}\}$ eigenvalues at the remaining two high-symmetry \mathbf{k} points: $Y(0,2\pi,0)$ and $T(\pi,2\pi,0)$. Because $\mathbf{k}_Y-\mathbf{b}_3=(0,0,2\pi)$, then the occupied states at Y must have the same $\{C_{2z}|\mathbf{0}\}$ rotation eigenvalues as the occupied states at T must have the same $\{C_{2z}|\mathbf{0}\}$ rotation eigenvalues as the occupied states at T must have the same $\{C_{2z}|\mathbf{0}\}$ rotation eigenvalues as the occupied states at T must have the same $\{C_{2z}|\mathbf{0}\}$ rotation eigenvalues as the occupied states at T must have the same $\{C_{2z}|\mathbf{0}\}$ eigenvalues of the occupied bands at the high-symmetry \mathbf{k} points are given by:

$$\frac{\left|\Gamma(000)\right|Z(\pi00)\left|Y(0,2\pi,0)\right|T(\pi,2\pi,0)}{\left\{C_{2z}|\mathbf{0}\right\}\left|-i,+i\right|-i,+i}.$$
(347)

Using SEq. (344), we determine that the occupied bands have $z_{2R} = 1$. Next, using the established formula for the parity of the Chern numbers in the $k_z = 0$, π planes in terms of $\{C_{2z}|\mathbf{0}\}$ rotation eigenvalues^{156,164} [which is equivalent to SEq. (253)], we conclude that $C_{k_z=0,\pi} \mod 2 = 1$, which is compatible with the layer construction for $z_{2R} = 1$ introduced in the text preceding SEq. (345). Thus, we conclude that insulators with $z_{2R} = 1$ are 3D QAH states with $C_z \mod 2 = 1$ in the primitive cell.

Lastly, if we impose \mathcal{T} symmetry, then the position-space Chern numbers must vanish, which enforces z'_{2R} to be zero. Correspondingly, in double SSG 41.212 Aba21' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ to double MSG 41.215 $Ab'a'^2$ – the double SI group is trivial.

The double MSG 54.342 Pc'c'a is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{\mathcal{I}|00\}$, $\{\mathcal{I}|00\}$, and $\{\mathcal{T}m_y|00\frac{1}{2}\}$. SIs – The double MSG 54.342 Pc'c'a has the SI group $\mathbb{Z}_2 \times \mathbb{Z}_2$. In the physical basis, the double SIs of double MSG 54.342 Pc'c'a (η'_{2I}, z'_{2R}) individually subduce to previously introduced double SIs. First, the \mathcal{I} AXI index η'_{2I} subduces to the non-minimal index (η'_{2I}) $_{P\bar{1}}$ in double MSG 2.4 $P\bar{1}$ (see SN 31 a). Next, the even Chern number SI $2z'_{2R} = C_{k_z=\pi}$ mod 4 subduces to the same SI (z'_{2R}) $_{Pc'c'2}$ in double MSG 27.81 Pc'c'2 [see SEq. (338) and the surrounding text]. Hence, as we will show below, an insulator with (η'_{2I}, z'_{2R}) = (10) in double MSG 54.342 Pc'c'a is an \mathcal{I} -protected AXI if the non-symmetry-indicated Chern numbers vanish, and an insulator with $z'_{2R} = 1$ is a 3D QAH state with C_z mod A = 2.

Layer constructions – We find that all of the double SIs in double MSG 54.342 Pc'c'a can be realized by layer constructions. The layer constructions for the double SIs (η'_{2I}, z'_{2R}) in double MSG 54.342 Pc'c'a are given by:

- 1. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ at the z=0 has the SIs (11). We emphasize that, in this layer construction, there is also a $C_z=1$ Chern layer in the $z=\frac{1}{2}$ plane implied by the $\{\mathcal{T}m_y|00\frac{1}{2}\}$ symmetry operation. This layer construction is a 3D QAH state with $C_{k_z}=2$ in all BZ planes of constant k_z .
- 2. An $\hat{\mathbf{x}}$ -normal Chern layer with $C_x=1$ at the x=0 plane has the SIs (10). We emphasize that, in this layer construction, there is also a $C_x=-1$ Chern layer in the $x=\frac{1}{2}$ plane implied by the $\{C_{2z}|\frac{1}{2}00\}$ symmetry. Because this layer construction consists of layers with alternating odd Chern numbers occupying \mathcal{I} centers, then this layer construction is an \mathcal{I} -protected AXI (see SN 31 a and SRefs. 28,38,40–60).

Relationship with the SIs in other double SSGs – The SIs in double MSG 54.342 Pc'c'a are related to the SIs in double MSG 2.4 $P\bar{1}$ through the subduction relations:

$$(\eta'_{2I}, z'_{2R})_{Pc'c'a} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2\eta'_{2I}, 000)_{P\bar{1}}.$$
(348)

Lastly, we study the effects of imposing \mathcal{T} symmetry. The double SSG 54.338 Pcca1' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to double MSG 54.342 Pc'c'a – has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2^{26}$. The SIs in double SSG 54.338 Pcca1' are related to the SIs in double MSG 54.342 Pc'c'a through the subduction relations:

$$(z_4, z_{2w,2})_{Pcca1'} \to (\eta'_{2I}, z'_{2R})_{Pc'c'a} = (z_4 \mod 2, 0)_{Pc'c'a}.$$
 (349)

aa. Double SIs in Type-III Double MSG 56.369 Pc'c'n

The double MSG 56.369 Pc'c'n is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{I|00\}$, $\{I|00\}$, $\{I|00\}$, and $\{I|00\}$, and an insulator with $\{I|00\}$, and $\{I|00\}$,

Layer constructions – We find that all of the double SIs in double MSG 56.369 Pc'c'n can be realized by layer constructions. The layer constructions for the double SIs (η'_{2I}, z'_{2R}) in double MSG 56.369 Pc'c'n are given by:

- 1. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ at the z=0 has the SIs (11). We emphasize that, in this layer construction, there is also a $C_z=1$ Chern layer in the $z=\frac{1}{2}$ plane implied by the $\{\mathcal{T}m_y|0\frac{1}{2}\frac{1}{2}\}$ symmetry operation. This layer construction is a 3D QAH state with $C_{k_z}=2$ in all BZ planes of constant k_z .
- 2. An $\hat{\mathbf{x}}$ -normal Chern layer with $C_x=1$ at the x=0 plane has the SIs (10). We emphasize that, in this layer construction, there is also a $C_x=-1$ Chern layer in the $x=\frac{1}{2}$ plane implied by the $\{C_{2z}|\frac{1}{2}\frac{1}{2}0\}$ symmetry. Because this layer construction consists of layers with alternating odd Chern numbers occupying \mathcal{I} centers, then this layer construction is an \mathcal{I} -protected AXI (see SN 31a and SRefs. 28,38,40-60).

Relationship with the SIs in other double SSGs – The SIs in double MSG 56.369 Pc'c'n are related to the SIs in double MSG 2.4 $P\bar{1}$ through the subduction relations:

$$(\eta'_{2I}, z'_{2R})_{Pc'c'n} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2\eta'_{2I}, 000)_{P\bar{1}}.$$
(350)

Lastly, we study the effects of imposing \mathcal{T} symmetry. The double SSG 56.366 Pccn1' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to double MSG 56.369 Pc'c'n – has the SI group \mathbb{Z}_4^{26} . The SIs in double SSG 56.366 Pccn1' are related to the SIs in double MSG 56.369 Pc'c'n through the subduction relations:

$$(z_4)_{Pccn1'} \to (\eta'_{2I}, z'_{2R})_{Pc'c'n} = (z_4 \mod 2, 0)_{Pc'c'n}.$$
 (351)

bb. Double SIs in Type-III Double MSG 60.424 Pb'cn'

The double MSG 60.424 Pb'cn' is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{\mathcal{I}|00\}$, $\{\mathcal{I}|00\}$, and $\{\mathcal{T}m_x|\frac{1}{2}\frac{1}{2}0\}$. SIs – The double MSG 60.424 Pb'cn' has the SI group $\mathbb{Z}_2 \times \mathbb{Z}_2$. In the physical basis, the double SIs of double MSG 60.424 Pb'cn' are (η'_{2I}, z'_{2R}) . As previously in double MSGs 54.342 Pc'c'a and 56.369 Pc'c'n (SN 31 z and 31 aa, respectively), η'_{2I} is the \mathcal{I} AXI index, and subduces to the non-minimal index $(\eta'_{2I})_{P\bar{1}}$ in double MSG 2.4 $P\bar{1}$.

However, unlike previously in double MSGs 54.342 Pc'c'a and 56.369 Pc'c'n, z'_{2R} does not subduce to a previously introduced minimal double SI. Nevertheless, we will shortly use layer constructions to demonstrate that like in double MSGs 54.342 Pc'c'a and 56.369 Pc'c'n, z'_{2R} indicates the value of a Chern number – here the position-space Chern number C_y – modulo 4. Hence, an insulator with $(\eta'_{2I}, z'_{2R}) = (10)$ in double MSG 60.424 Pb'cn' is an \mathcal{I} -protected AXI if the non-symmetry-indicated Chern numbers vanish, and an insulator with $z'_{2R} = 1$ is a 3D QAH state with C_y mod 4 = 2. Using the Smith normal form of the EBR matrix [see SN 28] and the definition of the \mathbb{Z}_2 AXI parity index η'_{2I} obtained by subduction onto double MSG 2.4 $P\bar{1}$ [see the text surrounding SEq. (249)], we define the second \mathbb{Z}_2 SI in double MSG 60.424 Pb'cn' to be:

$$z_{2R}' = \eta_{2I}' + m(\overline{\Gamma}_3) \mod 2, \tag{352}$$

where $m(\overline{\mathbf{k}}_i)$ is the multiplicity of the small corep $\overline{\mathbf{k}}_i$ of the little group $G_{\mathbf{k}}$ in the symmetry data vector of the occupied bands [where the symmetry data vector of a group of bands is defined in the text following SEq. (108)].

Layer constructions – We find that all of the double SIs in double MSG 60.424 Pb'cn' can be realized by layer constructions. The layer constructions for the double SIs (η'_{2I}, z'_{2R}) in double MSG 60.424 Pb'cn' are given by:

- 1. A $\hat{\mathbf{y}}$ -normal Chern layer with $C_y=1$ at the y=0 has the SIs (11). We emphasize that, in this layer construction, there is also a $C_y=1$ Chern layer in the $y=\frac{1}{2}$ plane implied by the $\{\mathcal{T}m_x|\frac{1}{2}\frac{1}{2}0\}$ symmetry operation. This layer construction is a 3D QAH state with $C_{k_y}=2$ in all BZ planes of constant k_y .
- 2. An $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ at the z=0 plane has the SIs (10). We emphasize that, in this layer construction, there is also a $C_z=-1$ Chern layer in the $z=\frac{1}{2}$ plane implied by the $\{C_{2y}|00\frac{1}{2}\}$ symmetry. Because this layer construction consists of layers with alternating odd Chern numbers occupying \mathcal{I} centers, then this layer construction is an \mathcal{I} -protected AXI (see SN 31 a and SRefs. 28,38,40–60).

Relationship with the SIs in other double SSGs – The SIs in double MSG 60.424 Pb'cn' are related to the SIs in double MSG 2.4 $P\bar{1}$ through the subduction relations:

$$(\eta'_{2I}, z'_{2R})_{Pb'cn'} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2\eta'_{2I}, 000)_{P\bar{1}}. \tag{353}$$

Lastly, we study the effects of imposing \mathcal{T} symmetry. The double SSG 60.418 Pbcn1' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to double MSG 60.424 Pb'cn' – has the SI group \mathbb{Z}_4^{26} . The SIs in double SSG 60.418 Pbcn1' are related to the SIs in double MSG 60.424 Pb'cn' through the subduction relations:

$$(z_4)_{Pbcn1'} \to (\eta'_{2I}, z'_{2R})_{Pb'cn'} = (z_4 \mod 2, 0)_{Pb'cn'}.$$
 (354)

cc. Double SIs in Type-III Double MSG 83.45 P4'/m

The double MSG 83.45 P4'/m is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{\mathcal{I}|\mathbf{0}\}$, and $\{\mathcal{T}C_{4z}|\mathbf{0}\}$. We note that double MSG 83.45 P4'/m additionally contains a mirror symmetry operation: $\{m_z|\mathbf{0}\} = \{\mathcal{I}|\mathbf{0}\}\{\mathcal{T}C_{4z}|\mathbf{0}\}^2$.

SIs – The double MSG 83.45 P4'/m has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2$. In double-valued small coreps of the little groups at the \mathcal{I} - and $\mathcal{T}C_{4z}$ -invariant \mathbf{k} points Γ [$\mathbf{k}_{\Gamma} = (000)$], M [$\mathbf{k}_{M} = (\pi\pi0)$], Z [$\mathbf{k}_{Z} = (00\pi)$], and A [$\mathbf{k}_{A} = (\pi\pi\pi)$], the matrix representatives of $\{\mathcal{I}|\mathbf{0}\}$, $\{\mathcal{T}C_{4z}|\mathbf{0}\}$, and $\{m_z|\mathbf{0}\}$ commute. Hence, Bloch states $|\psi\rangle$ at the Γ , M, Z, and A points may be simultaneously labeled with both parity ($\{\mathcal{I}|\mathbf{0}\}$) and mirror eigenvalues. Taking $|\psi\rangle$ to be a state at an \mathcal{I} - and $\mathcal{T}C_{4z}$ -invariant \mathbf{k} point with $\{m_z|\mathbf{0}\}$ eigenvalue i, and parity eigenvalue $\xi \in \{-1,1\}$, we next compute the

 $\{m_z|\mathbf{0}\}\$ eigenvalues of the state $\{\mathcal{T}C_{4z}|\mathbf{0}\}|\psi\rangle$:

$$\{m_z|\mathbf{0}\}\{\mathcal{T}C_{4z}|\mathbf{0}\}|\psi\rangle = \{\mathcal{T}C_{4z}|\mathbf{0}\}\{m_z|\mathbf{0}\}|\psi\rangle = -i\{\mathcal{T}C_{4z}|\mathbf{0}\}|\psi\rangle, \tag{355}$$

and the $\{\mathcal{I}|\mathbf{0}\}$ eigenvalues of $\{\mathcal{T}C_{4z}|\mathbf{0}\}|\psi\rangle$:

$$\{\mathcal{I}|\mathbf{0}\}\{\mathcal{T}C_{4z}|\mathbf{0}\}|\psi\rangle = \{\mathcal{T}C_{4z}|\mathbf{0}\}\{\mathcal{I}|\mathbf{0}\}|\psi\rangle = \xi\{\mathcal{T}C_{4z}|\mathbf{0}\}|\psi\rangle. \tag{356}$$

SEqs. (355) and (356) imply that the Bloch states at Γ , M, Z, and A form doublets with complex-conjugate $\{m_z|\mathbf{0}\}$ eigenvalues and the same parity eigenvalues. At the \mathcal{I} -invariant \mathbf{k} points X [$\mathbf{k}_X = (0\pi0)$], XA [$\mathbf{k}_{XA} = (\pi00)$], R [$\mathbf{k}_{RA} = (0\pi\pi)$], and RA [$\mathbf{k}_{RA} = (\pi0\pi)$] at which $\{\mathcal{T}C_{4z}|\mathbf{0}\}$ is not an element of the little group $G_{\mathbf{k}}$, Bloch states are instead singly degenerate (see the output of the Corepresentations tool introduced in this work for the double-valued small coreps of double MSG 83.45 P4'/m, where Corepresentations is detailed in SN 13). However, the insulating compatibility relations require that there is always an even number of singly-degenerate occupied Bloch states at X, XA, R, and RA, which are required to subdivide into pairs of states (at different energies) with complex-conjugate $\{m_z|\mathbf{0}\}$ eigenvalues and the same parity eigenvalues (see the output of the MCOMPREL tool introduced in this work for the double-valued small coreps of double MSG 83.45 P4'/m, where MCOMPREL is detailed in SN 16).

Therefore, like in other centrosymmetric SSGs in which insulators with nontrivial SIs have even numbers of occupied bands that subdivide at each \mathcal{I} -invariant \mathbf{k} point into doublets with the same parity eigenvalues [e.g. double MSG 47.249 Pmmm and double SSG 2.5 $P\bar{1}1'$, see SN 31d and 31s, respectively], the double SIs of MSG 83.45 P4'/m in the physical basis $(z_4, z_{2w,3})$ have the respective SI formulas:

$$z_4 = \sum_K \frac{1}{2} n_K^- = \sum_K \frac{n_K^- - n_K^+}{4} \mod 4, \tag{357}$$

$$z_{2w,3} = \sum_{K,K_3 = \pi} \frac{1}{2} n_K^- = \sum_{K,K_3 = \pi} \frac{n_K^- - n_K^+}{4} \mod 2, \tag{358}$$

where K runs over the eight \mathcal{I} -invariant momenta in the first BZ, and n_K^{\pm} are the number of Bloch states with ± 1 parity eigenvalues at K in the group of bands under consideration. Like in double MSG 47.249 Pmmm (see SN 31 d), insulators with z_4 mod z_4

Layer constructions – To diagnose the topology associated to each nontrivial value of the double SIs, we employ the layer construction method. In the layer constructions below, $C^+ = -C^-$ due to the net-zero Chern numbers enforced by the symmetries $\{TC_{4z}|\mathbf{0}\}$ and $\{m_z|\mathbf{0}\}$. Hence, we will omit C^- in further discussions of the topology in double MSG 83.45 P4'/m. The layer constructions for the double SIs $(z_4, z_{2w,3})$ of MSG 83.45 P4'/m are given by:

- 1. A $\hat{\mathbf{z}}$ -normal mirror Chern layer with $C_z^+=1$ in the z=0 plane has the mirror sector Chern numbers $(C_{k_z=0}^+,C_{k_z=\pi}^+)=(11)$ and the SIs (21).
- 2. A $\hat{\mathbf{z}}$ -normal mirror Chern layer with $C_z^+=1$ in the $z=\frac{1}{2}$ plane has the mirror sector Chern numbers $(C_{k_-=0}^+,C_{k_-=\pi}^+)=(1,-1)$ and the SIs (01).

Axion insulators – We find that states with odd z_4 SIs cannot be constructed from layers of 2D stable topological phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values of z_4 . First, as we will show below, (10) and (30) subduce to $(2000)_{P\bar{1}}$ in MSG 2.4 $P\bar{1}$. Hence, if the (10) and (30) phases in double MSG 83.45 P4'/m are insulating, then the bulk insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers $C_{x,y,z}=0$ must vanish if the bulk is gapped, due to the symmetries $\{\mathcal{T}C_{4z}|\mathbf{0}\}$ and $\{m_z|\mathbf{0}\}$ of double MSG 83.45 P4'/m, then the (10) and (30) states must be AXIs. As we will show below, this result can also be understood by subducing from a \mathcal{T} -symmetric SSG. Specifically, because z_4 mod z_4 mod z_4 mod z_4 states in MSG 83.45 z_4 may can respectively be subduced from insulators with z_4 mod z_4 mod z_4 mod z_4 mod z_4 mod SRefs. 24–27), then (10) and (30) are compatible with bulk-gapped states in double MSG 83.45 z_4 m. Hence, we conclude that 3D insulators with (10) and (30) in double MSG 83.45 z_4 may are AXIs, without ambiguity. We conjecture that the (10) and (30) AXIs in double MSG 83.45 z_4 m can be constructed using the topological crystal method 168, which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TCIs.

Relationship with the SIs in other double SSGs – The SIs in double MSG 83.45 P4'/m are related to the SIs in double MSG 2.4 $P\bar{1}$ through the subduction relations:

$$(z_4, z_{2w,3})_{P4'/m} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2(z_4 \bmod 2), 000)_{P\bar{1}}. \tag{359}$$

Lastly, we study the effects of imposing \mathcal{T} symmetry. The double SSG 83.44 P4/1m1' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to double MSG 83.45 P4'/m – has the SI group $\mathbb{Z}_8 \times \mathbb{Z}_4 \times \mathbb{Z}_2$ (see SN 31 t and SRefs. 24–27). The SIs in double SSG 83.44 P4/1m1' are related to the SIs in double MSG 83.45 P4'/m through the subduction relations:

$$(z_8, z_{4m,\pi}^-, z_{2w,1})_{P4/m1'} \to (z_4, z_{2w,3})_{P4'/m} = (z_8 \mod 4, z_{4m,\pi}^- \mod 2)_{P4'/m}.$$
 (360)

dd. Double SIs in Type-III Double MSG 103.199 P4c'c'

The double MSG 103.199 P4c'c' is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{4z}|\mathbf{0}\}$, and $\{\mathcal{T}m_y|00\frac{1}{2}\}$.

SI – The double MSG 103.199 P4c'c' has the SI group \mathbb{Z}_4 . As we will shortly demonstrate, in the physical basis, the double SI z'_{4R} indicates the *even-valued* Chern number in the $k_z=\pi$ plane (modulo 8): $C_{k_z=\pi} \mod 8=2z'_{4R}$. Hence, insulators with nontrivial values of z'_{4R} are 3D QAH states.

We first emphasize that Bloch states at the $\{C_{4z}|\mathbf{0}\}$ -invariant momenta in the $k_z=\pi$ plane in double MSG 103.199 P4c'c' form doubly-degenerate pairs with the same $\{C_{4z}|\mathbf{0}\}$ eigenvalues. Specifically, in the $k_z=\pi$ plane, the matrix representative of $\{\mathcal{T}m_y|00\frac{1}{2}\}$ squares to minus the identity in all double-valued small coreps. Furthermore, using the Corepresentations tool introduced in this work (detailed in SN 13), we determine that, in all of $\{\mathcal{T}m_y|00\frac{1}{2}\}$ -paired doublets at the $\{C_{4z}|\mathbf{0}\}$ -invariant \mathbf{k} points $k_x=k_y=0,\pi$ in the $k_z=\pi$ plane, both states have the same $\{C_{4z}|\mathbf{0}\}$ (and $\{C_{2z}|\mathbf{0}\}$) eigenvalues. Additionally, using the output of Corepresentations for the double-valued small coreps of double MSG 103.199 P4c'c', we find that, at the $\{C_{4z}|\mathbf{0}\}$ -invariant \mathbf{k} points $(k_x,k_y)=(0\pi)$ and $(\pi 0)$, both of the Bloch states within each doublet have the same $\{C_{2z}|\mathbf{0}\}$ eigenvalues.

We therefore define the \mathbb{Z}_4 SI to be half of the even-valued Chern number (modulo 4) of the occupied bands in the $k_z = \pi$ plane:

$$z'_{4R} = \sum_{K=Z} \left(-\frac{1}{4} n_K^{\frac{1}{2}} + \frac{1}{4} n_K^{-\frac{1}{2}} - \frac{3}{4} n_K^{\frac{3}{2}} + \frac{3}{4} n_K^{-\frac{3}{2}} \right) + \frac{1}{2} n_R^{\frac{1}{2}} - \frac{1}{2} n_R^{-\frac{1}{2}} \mod 4 = \frac{C_{k_z = \pi}}{2} \mod 4.$$
 (361)

where $n_{Z,A}^{\frac{1}{2},-\frac{1}{2},\frac{3}{2},-\frac{3}{2}}$ are the number of occupied states with $\{C_{4z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{\pi}{4}},\ e^{i\frac{\pi}{4}},\ e^{i\frac{3\pi}{4}},\ e^{i\frac{$

Layer constructions – To diagnose the topology associated to nontrivial values of z'_{4R} , we employ the layer construction method. We begin by placing a $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ in the z=0 plane. Due to the $\{Tm_y|00\frac{1}{2}\}$ symmetry in double MSG 103.199 P4c'c', there must be another Chern layer with $C_z=1$ in the $z=\frac{1}{2}$ plane, such that the total Chern number per cell is $C_z=2$, and the Chern number of the occupied bands in the $k_z=\pi$ plane is $C_{k_z=\pi}=2$. Hence, in this layer construction of a 3D QAH state, $C_z=2$ and $z'_{4R}=1$.

Relationship with the SIs in other double SSGs – We next compute the subduction relations between the SIs in double MSG 103.199 P4c'c' and the SIs in the maximal unitary subgroup double MSG 75.1 P4 (see SN 31e):

$$(z'_{AR})_{P4c'c'} \to (z_{AR})_{P4} = (2(z'_{AR} \mod 2))_{P4}.$$
 (362)

SEq. (362) implies that symmetry-indicated 3D QAH states with z'_{4R} mod 2 = 1 in double MSG 103.199 P4c'c' subduce to symmetry-indicated 3D QAH states with $(z_{4R})_{P4}=2$ in double MSG 75.1 P4, whereas symmetry-indicated 3D QAH states with $z'_{4R}=2$ in double MSG 103.199 P4c'c' necessarily subduce to non-symmetry-indicated 3D QAH states with $(z_{4R})_{P4}=0$ in double MSG 75.1 P4, in agreement with the physical-basis double SI relations $C_{k_z=\pi} \mod 8=2z'_{4R}$ and $C_{k_z=\pi} \mod 4=z_{4R}$ [see SEq. (263) and the surrounding text].

Lastly, if we impose \mathcal{T} symmetry, then the position-space Chern numbers must vanish, which enforces z'_{4R} to be zero. Correspondingly, in double SSG 103.196 P4cc1' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ to double MSG 103.199 P4c'c' – the double SI group is trivial.

ee. Double SIs in Type-III Double MSG 110.249 I41c'd'

The double MSG 110.249 $I4_1c'd'$ is generated by $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$, and $\{\mathcal{T}m_x|\frac{1}{2}\frac{1}{2}0\}$. The Bravais lattice of double MSG 110.249 $I4_1c'd'$ is body-centered. Correspondingly, in the primitive cell, the lattice vectors are:

$$\mathbf{a}_1 = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \quad \mathbf{a}_2 = (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}), \quad \mathbf{a}_3 = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}),$$
 (363)

and the reciprocal lattice vectors are:

$$\mathbf{b}_1 = 2\pi(0, 1, 1), \quad \mathbf{b}_2 = 2\pi(1, 0, 1), \quad \mathbf{b}_3 = 2\pi(1, 1, 0).$$
 (364)

We additionally note that $\{C_{4z}|0\frac{1}{2}\frac{1}{4}\}^2 = \{C_{2z}|\frac{1}{2}\frac{1}{2}\frac{1}{2}\} = \{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}\{C_{2z}|\mathbf{0}\}$, where $\{E|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$ is a primitive translation symmetry. Hence, the 4_1 screw symmetry operation $\{C_{4z}|0\frac{1}{2}\frac{1}{4}\}$ only contains a half lattice translation in the z direction in the primitive cell, such that double MSG 110.249 $I4_1c'd'$ also contains the rotation symmetry $\{C_{2z}|\mathbf{0}\}$. SI – The double MSG 110.249 $I4_1c'd'$ has the SI group \mathbb{Z}_2 . In the physical basis, the \mathbb{Z}_2 SI has the SI formula:

$$z_{2R}'' = m(\overline{\Gamma}_6) \mod 2 = \frac{C_{k_z=0}}{2} \mod 2,$$
 (365)

where $m(\overline{\Gamma}_6)$ is the multiplicity of the double-valued small corep $\overline{\Gamma}_6$ in the symmetry data ξ_{Γ} corresponding to the occupied states at Γ [$\mathbf{k}_{\Gamma} = (0, 0, 0)$], where the symmetry data at a \mathbf{k} point is defined in the text following SEq. (108), and where the $\{C_{4z}|0\frac{1}{2}\frac{1}{4}\}$ and $\{C_{2z}|\mathbf{0}\}$ characters of the irreducible small coreps $\tilde{\sigma}$ at Γ are given by:

$$\frac{\left|\begin{array}{c|c}\overline{\Gamma}_{5} & \overline{\Gamma}_{6} & \overline{\Gamma}_{7} & \overline{\Gamma}_{8}\\ \hline \chi_{\tilde{\sigma}}(\{C_{4z}|0\frac{1}{2}\frac{1}{4}\}) & e^{i\frac{3\pi}{4}} & e^{-i\frac{\pi}{4}} & e^{-i\frac{3\pi}{4}} & e^{i\frac{\pi}{4}}\\ \hline \chi_{\tilde{\sigma}}(\{C_{2z}|\mathbf{0}\}) & -i & -i & i & i
\end{array} \right| (366)$$

Hence, as we will show below, insulators in double MSG 110.249 $I4_1c'd'$ with $z_{2R}''=1$ are 3D QAH states with $C_z \mod 4=2$ per primitive cell.

Layer constructions – To diagnose the topology associated to $z_{2R}''=1$, we employ the layer construction method. We begin by placing a $\hat{\mathbf{z}}$ -normal Chern insulator with $C_z=1$ in the z=0 plane. Due to the $\{C_{4z}|0\frac{1}{2}\frac{1}{4}\}$ screw symmetry in double MSG 110.249 $I4_1c'd'$, there must be a second $\hat{\mathbf{z}}$ -normal Chern insulator with $C_z=1$ in the $z=\frac{1}{4}$ plane. Using the established formula for the parity of the Chern number in terms of $\{C_{2z}|\mathbf{0}\}$ rotation eigenvalues 156,164 and the constraints imposed by the compatibility relations on the eigenvalues of the 4_1 screw symmetry $\{C_{4z}|0\frac{1}{2}\frac{1}{4}\}$ in an insulating state (see the output of the MCOMPREL tool introduced in this work for the double-valued small coreps of double MSG 110.249 $I4_1c'd'$, where MCOMPREL is detailed in SN 16), we find that a set of symmetry data compatible with this layer construction is given by $\tilde{\varsigma}_{\Gamma} = \overline{\Gamma}_5 + \overline{\Gamma}_6 + \overline{\Gamma}_7 + \overline{\Gamma}_8$. Hence, $z_{2R}'' = 1$ in this layer construction of a 3D QAH state, in agreement with the net position-space Chern number $C_z=2$ per primitive cell.

Lastly, if we impose \mathcal{T} symmetry, then the position-space Chern numbers must vanish, which enforces z'_{2R} to be zero. Correspondingly, in double SSG 110.246 $I4_1cd1'$ – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ to double MSG 110.249 $I4_1c'd'$ – the double SI group is trivial.

ff. Double SIs in Type-III Double MSG 130.429 P4/nc'c'

The double MSG 130.429 P4/nc'c' is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{4z}|\frac{1}{2}00\}$, $\{\mathcal{I}|\mathbf{0}\}$, and $\{\mathcal{T}m_{1\bar{1}0}|00\frac{1}{2}\}$. SIs – The double MSG 130.429 P4/nc'c' has the SI group $\mathbb{Z}_4 \times \mathbb{Z}_2$. In the physical basis, the double SIs of double MSG 130.429 P4/nc'c' (z'_{4R}, η'_{2I}) individually subduce to previously introduced double SIs. First, the even Chern number SI $2z'_{4R} = C_{k_z=\pi}$ mod 8 subduces to the same SI (z'_{4R}) $_{P4c'c'}$ in double MSG 103.199 P4c'c' [see SEq. (361) and the surrounding text]. Next, the \mathcal{I} AXI index η'_{2I} subduces to the non-minimal index (η'_{2I}) $_{P\bar{1}}$ in double MSG 2.4 $P\bar{1}$ (see SN 31a). Hence, as we will show below, an insulator with (z'_{4R}, η'_{2I}) = (01) in double MSG 130.429 P4/nc'c' is an \mathcal{I} -protected AXI if the non-symmetry-indicated Chern numbers vanish, and insulators with $z'_{4R} \neq 0$ are 3D QAH states.

Layer constructions – We find that in double MSG 130.429 P4/nc'c', the 3D QAH states – but not the AXI states – can be realized by layer constructions. The double SIs (z'_{4R}, η'_{2I}) of the symmetry-indicated 3D QAH states in double MSG 130.429 P4/nc'c' are spanned by superpositions of the following layer construction:

1. A $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ at the z=0 has the SIs (11). We emphasize that, in this layer construction, there is also a $C_z=1$ Chern layer in the $z=\frac{1}{2}$ plane implied by the $\{\mathcal{T}m_{1\bar{1}0}|00\frac{1}{2}\}$ symmetry operation. This layer construction is a 3D QAH state with $C_{k_z}=2$ in all BZ planes of constant k_z .

Axion insulators and 3D QAH states – We find that states with the double SIs $(z'_{4R}, \eta'_{2I}) = (01)$ in double MSG 130.429 P4/nc'c' cannot be constructed from layers of 2D stable topological phases. However, we may still use subduction relations to determine the bulk topology of insulators with the double SIs (01). First, as we will show below, (01) subduces to $(2000)_{P\bar{1}}$ in MSG 2.4 $P\bar{1}$. Hence, if a (01) state in double MSG 130.429 P4/nc'c' is insulating, then the bulk insulator must either be an AXI or a 3D QAH state, and will specifically be an AXI if the non-symmetry-indicated Chern numbers vanish. As we will show below, this result can also be understood by subducing from a \mathcal{T} -symmetric SSG. Specifically, because (01) states in double MSG 130.429 P4/nc'c' can be subduced from insulators with $(z_4)_{P4/ncc1'}$ mod 2 = 1 in Type-II double SG 130.424 P4/ncc1', which correspond to \mathcal{T} -symmetric 3D TIs with $\theta = \pi^{26}$, then the double SIs (01) are compatible with a bulk-gapped state in double MSG 130.429 P4/nc'c'. This provides further evidence that 3D insulators with (01) and net-zero position-space Chern numbers in double MSG 130.429 P4/nc'c' can be constructed using the topological crystal method 168 , which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TCIs.

Relationship with the SIs in other double SSGs – The SIs in double MSG 130.429 P4/nc'c' are related to the SIs in double MSG 2.4 $P\bar{1}$ through the subduction relations:

$$(z'_{4R}, \eta'_{2I})_{P4/nc'c'} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2\eta'_{2I}, 000)_{P\bar{1}}. \tag{367}$$

Lastly, we study the effects of imposing \mathcal{T} symmetry. The double SSG 130.424 P4/ncc1' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to double MSG 130.429 P4/nc'c' – has the SI group \mathbb{Z}_4^{26} . The SIs in double SSG 130.424 P4/ncc1' are related to the SIs in double MSG 130.429 P4/nc'c' through the subduction relations:

$$(z_4)_{P4/ncc1'} \to (z'_{4R}, \eta'_{2I})_{P4/nc'c'} = (0, z_4 \text{ mod } 2)_{P4/nc'c'}.$$
 (368)

qq. Double SIs in Type-III Double MSG 135.487 P4'_2/mbc'

The double MSG 135.487 $P4_2'/mbc'$ is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{\mathcal{I}|\mathbf{0}\}$, $\{m_z|\mathbf{0}\}$, $\{C_{2x}|\frac{1}{2}\frac{1}{2}0\}$, and $\{\mathcal{T}C_{4z}|00\frac{1}{2}\}$.

SI – The double MSG 135.487 $P4'_2/mbc'$ has the SI group \mathbb{Z}_4 . At the \mathcal{I} -invariant momenta, the double-valued irreducible small coreps are either two- or four-dimensional. An expression for the SI formula of the \mathbb{Z}_4 double SI computed from the Smith normal form of the EBR matrix (see SN 28) is given by:

$$z_4' = 2m(\overline{\Gamma}_5) - m(\overline{\Gamma}_6) - m(\overline{M}_5) + 2m(\overline{X}_3), \tag{369}$$

where $m(\overline{\mathbf{k}}_i)$ is the multiplicity of the small corep $\overline{\mathbf{k}}_i$ of the little group $G_{\mathbf{k}}$ in the symmetry data vector of the occupied bands [where the symmetry data vector of a group of bands is defined in the text following SEq. (108)]. As we will shortly show below through layer constructions, like in double MSGs 47.249 Pmmm and 83.45 P4'/m, insulators with z'_4 mod 2 = 1 are TCIs with $\theta = \pi$ (i.e. AXIs), and $z'_4 = 2$ indicates a helical (non-axionic) magnetic mirror TCI with C_{m_z} mod 4 = 2.

Layer constructions – We find that in double MSG 135.487 $P4'_2/mbc'$, the non-axionic magnetic TCI phases – but not the AXI phases – can be realized by layer constructions. The double SI $z'_4 = 2$ of a symmetry-indicated non-axionic TCI phase in $P4'_2/mbc'$ with $C_{m_z} = 2$ is realized by the following layer construction:

1. A $\hat{\mathbf{z}}$ -normal mirror Chern layer with $C_z^+ = -C_z^- = 1$ in the z=0 plane has the double SI $z_4' = 2$. We emphasize that, in this layer construction, there is also a $\hat{\mathbf{z}}$ -normal mirror Chern layer with $C_z^+ = -C_z^- = 1$ in the $z=\frac{1}{2}$ plane implied by the $\{\mathcal{T}C_{4z}|00\frac{1}{2}\}$ symmetry operation.

Axion insulators – We find that states with odd z_4' SIs cannot be constructed from layers of 2D stable topological phases. However, we may still use subduction relations to determine the bulk topology of insulators with odd values of z_4' . First, as we will show below, the double SIs $z_4' = 1,3$ in double MSG 135.487 $P4_2'/mbc'$ subduce to $(2000)_{P\bar{1}}$ in MSG 2.4 $P\bar{1}$. Hence, if the z_4' mod 2 = 1 phases in double MSG 135.487 $P4_2'/mbc'$ are insulating, then the bulk insulator must either be an AXI or a 3D QAH state. Because the net Chern numbers $C_{x,y,z} = 0$ must vanish if the bulk is gapped, due to the symmetries $\{m_z|\mathbf{0}\}$ and $\{C_{2x}|\frac{1}{2}\frac{1}{2}0\}$ of double MSG 135.487 $P4_2'/mbc'$, then the $z_4' = 1,3$ states must be AXIs. As we will show below, this result can also be understood by subducing from a \mathcal{T} -symmetric SSG.

Specifically, because $z_4' \mod 2 = 1$ states in MSG 135.487 $P4_2'/mbc'$ can respectively be subduced from insulators with $z_4 = 1,3$ in Type-II double SG 135.484 $P4_2/mbc'$, which correspond to \mathcal{T} -symmetric 3D TIs with $\theta = \pi^{26}$, then the double SIs $z_4' = 1,3$ are compatible with bulk-gapped states in double MSG 135.487 $P4_2'/mbc'$. Hence, we conclude that 3D insulators with $z_4' \mod 2 = 1$ in double MSG 135.487 $P4_2'/mbc'$ are AXIs, without ambiguity. We conjecture that the $z_4' = 1,3$ AXIs in double MSG 135.487 $P4_2'/mbc'$ can be constructed using the topological crystal method 168 , which additionally incorporates cell complexes of 2D Chern insulators, TIs, and TCIs.

Relationship with the SIs in other double SSGs – The SIs in double MSG 135.487 $P4'_2/mbc'$ are related to the SIs in double MSG 2.4 $P\bar{1}$ through the subduction relations:

$$(z_4')_{P4'_5/mbc'} \to (\eta_{4I}, z_{2I,1}, z_{2I,2}, z_{2I,3})_{P\bar{1}} = (2(z_4' \bmod 2), 000)_{P\bar{1}}. \tag{370}$$

Lastly, we study the effects of imposing \mathcal{T} symmetry. The double SSG 135.484 $P4_2/mbc1'$ – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ symmetry to double MSG 135.487 $P4_2'/mbc'$ – has the SI group \mathbb{Z}_4^{26} . The SIs in double SSG 135.484 $P4_2/mbc1'$ are in one-to-one correspondence with the SIs in double MSG 135.487 $P4_2'/mbc'$:

$$(z_4)_{P4_2/mbc'} \to (z'_4)_{P4'_2/mbc'} = (z_4)_{P4'_2/mbc'}.$$
 (371)

Nevertheless, because the EBRs in Type-II double SSG 135.484 $P4_2/mbc1'$ and the MEBRs in Type-III double MSG 135.487 $P4_2'/mbc'$ are not in one-to-one correspondence, then we will continue throughout this work to employ separate labels (z_4 and z_4' respectively) for the double SIs in double SSGs 135.484 $P4_2/mbc1'$ and 135.487 $P4_2'/mbc'$.

hh. Double SIs in Type-III Double MSG 184.195 P6c'c'

The double MSG 184.195 P6c'c' is generated by $\{E|100\}$, $\{E|010\}$, $\{E|001\}$, $\{C_{6z}|\mathbf{0}\}$ and $\{\mathcal{T}m_x|00\frac{1}{2}\}$, where the angle between the $\{E|100\}$ and $\{E|010\}$ translations is chosen to be $2\pi/3$ for consistency with the $\{C_{3z}|\mathbf{0}\}=(\{C_{6z}|\mathbf{0}\})^2$ rotation symmetry.

SI – The double MSG 184.195 P6c'c' has the SI group \mathbb{Z}_6 . As we will shortly demonstrate, in the physical basis, the double SI z'_{6R} indicates the *even-valued* Chern number in the $k_z = \pi$ plane (modulo 12): $C_{k_z = \pi} \mod 12 = 2z'_{6R}$. Hence, insulators with nontrivial values of z'_{6R} are 3D QAH states.

First, using the Corepresentations tool introduced in this work (detailed in SN 13), we determine that Bloch states at the $\{C_{nz}|\mathbf{0}\}$ -invariant (n=2,3,6) k points in the $k_z=\pi$ plane in double MSG 184.195 P6c'c' form doubly-degenerate pairs with the same $\{C_{nz}|\mathbf{0}\}$ rotation symmetry eigenvalues. We therefore define the \mathbb{Z}_6 SI to be half of the even-valued Chern number (modulo 6) of the occupied bands in the $k_z=\pi$ plane:

$$z'_{6R} = \frac{1}{2} \left(-\frac{1}{2} n_A^{\frac{1}{2}} + \frac{1}{2} n_A^{-\frac{1}{2}} - \frac{3}{2} n_A^{\frac{3}{2}} + \frac{3}{2} n_A^{-\frac{3}{2}} - \frac{5}{2} n_A^{\frac{5}{2}} + \frac{5}{2} n_A^{-\frac{5}{2}} - n_H^{\frac{1}{2}} + n_H^{-\frac{1}{2}} + 3n_H^{\frac{3}{2}} + \frac{3}{2} n_L^{\frac{1}{2}} - \frac{3}{2} n_L^{-\frac{1}{2}} \right) \mod 6$$

$$= \frac{C_{k_z = \pi}}{2} \mod 6,$$
(372)

where the superscripts n_A^j represent the $\{C_{6z}|\mathbf{0}\}$ eigenvalues $e^{-i\frac{2\pi}{6}j}$ at A, n_H^j is the number of occupied states with $\{C_{3z}|\mathbf{0}\}$ eigenvalue $e^{-i\frac{2\pi}{3}j}$ at H, and where n_L^j is the number of states with $\{C_{2z}|\mathbf{0}\}$ eigenvalue $e^{-i\frac{\pi}{2}j}$ at L.

Layer constructions – To diagnose the topology associated to nontrivial values of z_{6R}' , we employ the layer construction method. We begin by placing a $\hat{\mathbf{z}}$ -normal Chern layer with $C_z=1$ in the z=0 plane. Due to the $\{\mathcal{T}m_x|00\frac{1}{2}\}$ symmetry in double MSG 184.195 P6c'c', there must be another Chern layer with $C_z=1$ in the $z=\frac{1}{2}$ plane, such that the total Chern number per cell is $C_z=2$, and the Chern number of the occupied bands in the $k_z=\pi$ plane is $C_{k_z=\pi}=2$. Hence, in this layer construction of a 3D QAH state, $C_z=2$ and $z_{6R}'=1$.

Relationship with the SIs in other double SSGs – We next compute the subduction relations between the SIs in double MSG 184.195 P6c'c' and the SIs in the maximal unitary subgroup double MSG 168.109 P6 (see SN 31 n):

$$(z'_{6R})_{P6c'c'} \to (z_{6R})_{P6} = (2(z'_{6R} \mod 3))_{P6}.$$
 (373)

SEq. (373) implies that symmetry-indicated 3D QAH states with $z'_{6R} \mod 3 \neq 0$ in double MSG 184.195 P6c'c' subduce to symmetry-indicated 3D QAH states with even values of $(z_{6R})_{P6}$ in double MSG 168.109 P6, whereas symmetry-indicated 3D QAH states with $z'_{6R} \mod 3 = 0$ in double MSG 184.195 P6c'c' necessarily subduce to non-symmetry-indicated 3D QAH states with $(z_{6R})_{P6} = 0$ in double MSG 168.109 P6, in agreement with the physical-basis double SI relations $C_{k_z=\pi} \mod 12 = 2z'_{6R}$ and $C_{k_z=\pi} \mod 6 = z_{6R}$ [see SEq. (314) and the surrounding text].

Lastly, if we impose \mathcal{T} symmetry, then the position-space Chern numbers must vanish, which enforces z'_{6R} to be zero. Correspondingly, in double SSG 184.192 P6cc1' – the SSG generated by adding $\{\mathcal{T}|\mathbf{0}\}$ to double MSG 184.195 P6c'c' – the double SI group is trivial.

32. Summary of the Double SIs in the Minimal Double SSGs

In this section, we will summarize and review the results of the minimal double SI calculations performed in SN 31. In Supplementary Table 11, we present a summary of the complete, independent, minimal double SIs of spinful band topology in the 1,651 SSGs. All symmetry-indicated spinful SISM [specifically symmetry-indicated WSM, see the text following SEq. (236)], TI, and TCI phases in crystalline solids necessarily exhibit nontrivial values of at least one of the double SIs listed in Supplementary Table 11.

We note that, in Supplementary Table 11, some minimal double SSGs G are associated to a smaller set of SIs than the SI group Z^G . This occurs because, in some cases, some – but not all – of the double SIs in G have already been established in subgroups M of G (i.e., the double SIs in G are not dependent on the double SIs in M, even though some of the double SIs in G are the same as the double SIs in M, see SN 30 for the definition of dependent SIs). For example, the indicator group of double MSG 147.13 $P\bar{3}$ is $\mathbb{Z}_{12} \times \mathbb{Z}_2$, whereas double MSG 147.13 $P\bar{3}$ is only associated in Supplementary Table 11 to the \mathbb{Z}_3 -valued index z_{3R} . In the minimal double MSG 147.13 $P\bar{3}$ [SN 31 m], the double SIs $(\eta_{4I}, z_{3R}, z_{2I,3})$ are not dependent on the double SIs in any individual lower-symmetry double MSG. However, the double SIs η_{4I} and $z_{2I,3}$ also appear in the minimal double MSG 2.4 $P\bar{1}$, where the definitions of η_{4I} and $z_{2I,3}$ [the product of the parity eigenvalues of a set of bands at all of the \mathcal{I} -invariant \mathbf{k} points and in the $k_3 = \pi$ plane, respectively, see SEq. (235)] is the same in both double MSG 147.13 $P\bar{3}$ and double MSG 2.4 $P\bar{1}$. Correspondingly, when the spinful SI topological bands of double MSG 147.13 $P\bar{3}$ are subduced onto the subgroup double MSG 2.4 $P\bar{1}$, the values of $(\eta_{4I})_{P\bar{3}}$ and $(z_{2I,3})_{P\bar{3}}$ for the SI topological bands of double MSG 147.13 $P\bar{3}$ are the same as the values of $(\eta_{4I})_{P\bar{1}}$ and $(z_{2I,3})_{P\bar{1}}$ for the SI topological bands subduced onto double MSG 2.4 $P\bar{1}$. Hence, double MSG 147.13 $P\bar{3}$ is not associated to η_{4I} or $z_{2I,3}$ in Supplementary Table 11, even though the double SIs $(\eta_{4I}, z_{3R}, z_{2I,3})$ of double MSG 147.13 $P\bar{3}$ include η_{4I} and $z_{2I,3}$.

Additionally, in Supplementary Table 11, some double SIs are associated to more than one minimal double SSG. This occurs when minimal double SIs that indicate the same bulk topology arise in two minimal double SSGs G and M for which neither $G \not\subset M$ nor $M \not\subset G$. For example, z_4 in Supplementary Table 11 is associated to both double SG 2.5 $P\bar{1}1'$ and double MSG 47.249 Pmmm. In both double SG 2.5 $P\bar{1}1'$ and double MSG 47.249 Pmmm, $z_4 = 2$ indicates a non-axionic HOTI phase with helical hinge states through the \mathbb{Z}_4 -valued parity eigenvalue formula introduced in SRefs. 24,26,27 [reproduced in SEq. (259)]. We will further analyze the $z_4 = 2$ non-axionic magnetic HOTI phase protected by the symmetries of double MSG 47.249 Pmmm in SN 33.

	Independent Minimal Double SIs of St	oinful Band Topology in the 1,651 Magnetic and Nonmagnetic Double SSGs
SI	Bulk Topology	Minimal Double SSG(s) [Double SI Formula(s)]
η_{4I}	WSM/QAH/AXI	2.4 PĪ [SEq. (235)]
$z_{2I,i}$	QAH: $C_{k_i=\pi} \mod 2$	2.4 PĪ [SEq. (236)]
η_{2I}'	AXI	2.4 PĪ [SEq. (249)]
z_{2R}	QAH: $C_y \mod 2$	3.1 P2 [SEq. (253)], 41.215 Ab'a'2 [SEq. (344)]
δ_{2m}	QAH/AXI/TCI: $C_{k_y=\pi}^+ - C_{k_y=0}^- \mod 2$	$10.42 \ P2/m \ [SEq. (254)]$
$z_{2m,\pi}^{+}$	QAH/weak TI/weak TCI: $C_{k_y=\pi}^+ \mod 2$	$10.42 \ P2/m \ [SEq. (255)]$
$z_{2m,\pi}^-$	QAH/weak TI/weak TCI: $C_{k_y=\pi}^- \mod 2$	10.42 P2/m [SEq. (256)]
z_4	AXI/TCI/HOTI	2.5 P11', 47.249 Pmmm, 83.45 P4'/m [SEq. (259)]
$z_{2w,i}$	weak TI/weak TCI: $C_{k_i=\pi}^+ \mod 2$	2.5 PĪ1', 47.249 Pmmm, 83.45 P4'/m [SEq. (260)] (†)
z_{4R}	QAH: $C_z \mod 4$	75.1 P4 [SEq. (263)]
$z_{2R}^{\prime},z_{2R}^{\prime\prime}$	QAH: $C_{y,z}/2 \mod 2$	77.13 $P4_2$ [SEq. (264)], 27.81 $Pc'c'2$ [SEq. (338)], 54.342 $Pc'c'a$ [SEq. (338)],
		56.369 $Pc'c'n$ [SEq. (338)], 60.424 $Pb'cn'$ [SEq. (352)], 110.249 $I4_1c'd'$ [SEq. (365)] (‡)
z_{4S}	QAH: $C_z \mod 4$	81.33 $P\bar{4}$ [SEq. (266)]
δ_{2S}	WSM	$81.33 \ P\bar{4} \ [SEq. (269)]$
z_2	AXI	$81.33 \ P\bar{4} \ [SEq. (270)]$
δ_{4m}	QAH/AXI: $C_{k_z=\pi}^+ - C_{k_z=0}^- \mod 4$	$83.43 \ P4/m \ [SEq. (272)]$
$z_{4m,\pi}^+$	weak TI/weak TCI: $C_{k_z=\pi}^+ \mod 4$	83.43 P4/m [SEq. (273)]
$z_{4m,\pi}^-$	weak TI/weak TCI: $C_{k_z=\pi}^- \mod 4$	83.43 P4/m [SEq. (274)]
$z_{4m,0}^{+}$	QAH/weak TI/weak TCI: $C_{k_z=0}^+ \mod 4$	$84.51 \ P4_2/m \ [SEq. (278)]$
z_8	AXI/TCI/HOTI	83.44 P4/m1', 123.339 P4/mmm [SEq. (305)]
z_{3R}	QAH: $C_z \mod 3$	147.13 P3 [SEq. (310)]
z_{6R}	QAH: $C_z \mod 6$	168.109 P6 [SEq. (314)]
δ_{3m}	QAH/AXI/TCI: $C_{k_z=\pi}^+ - C_{k_z=\pi}^- \mod 3$	174.133 $P\bar{6}$ [SEq. (315)]
$z_{3m,\pi}^+$	weak TI/weak TCI: $C_{k_z=\pi}^+ \mod 3$	174.133 $P\bar{6}$ [SEq. (316)]
$z_{3m,\pi}^-$	weak TI/weak TCI: $C_{k_x=\pi}^- \mod 3$	$174.133 \ P\bar{6} \ [SEq. (317)]$
δ_{6m}	QAH/AXI/TCI: $C_{k_z=\pi}^+ - C_{k_z=\pi}^- \mod 6$	175.137 P6/m [SEq. (319)]
$z^+_{6m,\pi}$	weak TI/weak TCI: $C_{k_z=\pi}^+ \mod 6$	$175.137 \ P6/m \ [SEq. (320)]$
$z_{6m,\pi}^-$	weak TI/weak TCI: $C_{k_z=\pi}^- \mod 6$	175.137 P6/m [SEq. (321)]
$z_{6m,0}^{+}$	QAH/weak TI/weak TCI: $C_{k_z=0}^+ \mod 6$	$176.143 \ P6_3/m \ [SEq. (324)]$
z_{12}	AXI/TCI/HOTI	175.138 P6/m1', 191.233 P6/mmm [SEq. (327)]
z_{12}'	AXI/TCI/HOTI	$176.144 \ P6_3/m1' \ [SEq. (336)]$
z_{4R}'	QAH: $C_z/2 \mod 4$	$103.199 \ P4c'c' \ [SEq. (361)]$
z_4'	AXI/TCI	$135.487 \ P4'_2/mbc' \ [SEq. (369)]$
z_{6R}'	QAH: $C_z/2 \mod 6$	$184.195 \ P6c'c' \ [SEq. (372)]$

Supplementary Table 11: The independent minimal double SIs of spinful band topology in all 1,651 double SSGs. In order, this table contains the symbol of each double SI, the bulk topological phase(s) associated to nontrivial values of the double SI including – where applicable – the momentum- or position-space Chern numbers indicated by the double SI, and the minimal double SSG(s) associated to the double SI [i.e. the lowest-symmetry SSG(s) in which the double SI predicts nontrivial band topology, see SN 30 and 39], as well as the equation in SN 31 containing the explicit double SI formula in terms of crystal symmetry eigenvalues. All symmetry-indicated spinful SISM [specifically symmetry-indicated WSM, see the text following SEq. (236)], TI, and TCI phases in crystalline solids necessarily exhibit nontrivial values of at least one of the double SI slisted in this table. We note that, in this table, the symbol "AXI" refers to both magnetic AXIs and T-symmetric 3D TIs, because AXI and 3D TI phases are both defined by the nontrivial bulk axion angle $\theta = \pi^{28,32,38,40-60,160}$. Additionally, the symbols "TCI" and "HOTI" respectively indicate helical (i.e. non-axionic) mirror Chern insulators and HOTIs^{24–28,34–36,39,112,161,162,164}, which include the magnetic HOTIs introduced in this work (see SN 33). We have placed a † symbol after MSG 83.45 P4'/m (where minimal double SIs are defined in SN 30). We have placed a † symbol after MSG 110.249 $I4_1c'd'$ in the row for the indices z'_{2R} and z''_{2R} to emphasize that the position-space Chern number C_z (modulo 2) is indicated by z''_{2R} only in the primitive cell of a crystal in MSG 110.249 $I4_1c'd'$ in the conventional cell, the position-space Chern number is given by C_z mod 8 = $4z''_{2R}$ [see the text surrounding SEq. (365)].

33. Introduction to Non-Axionic Spinful Magnetic HOTIs

In the sections below, we will further analyze the spinful helical magnetic HOTI phases discovered in this work. As discussed in the main text and in SN 31 and 32, we have discovered helical magnetic (i.e. $\{\mathcal{T}|\mathbf{0}\}$ -broken) HOTI phases indicated by $z_4 = 2$ in double MSG 47.249 Pmmm, $z_8 = 4$ in double MSG 123.339 P4/mmm, and $z_{12} = 6$ in double MSG 191.233 P6/mmm, as well as trivial values for all other independent minimal double SIs in Supplementary Table 11. In this work, we refer to the helical magnetic HOTIs that will be analyzed in this section as non-axionic, because the helical HOTIs exhibit trivial axion angles θ mod $2\pi = 0$ [see SRefs. 28,32,38,40–60,160] for further discussions of chiral HOTIs (i.e. AXIs), which conversely exhibit nontrivial axion angles $\theta = \pi$]. When terminated in nanorod geometries, the helical magnetic HOTIs generically exhibit even numbers of massive or massless twofold surface Dirac cones, and domain walls between surfaces with oppositely-signed masses bind mirror-protected helical hinge states. As we will show in SN 35, the helical magnetic HOTIs discovered in this work can be connected to nonmagnetic "rotation-anomaly" TCIs^{25,36} without closing a bulk or surface gap or gapping the anomalous surface or hinge states. First, in SN 34, we will introduce the symmetry-enhanced fermion doubling theorems 36,39,74,111 for twofold Dirac fermions in the surface wallpaper groups of the helical magnetic HOTIs, which we will then use to diagnose the 2D surface states as anomalous. Unlike in SRef. 36, the twofold Dirac fermion doubling theorems introduced in SN 34 do not require $\{\mathcal{T}|\mathbf{0}\}$ to be enforced, and are instead only enforced by the spinful unitary magnetic symmetries of Type-I magnetic double wallpaper groups. Lastly, in SN 35, we will introduce tight-binding models for the helical magnetic HOTI phases, which we will use to explicitly demonstrate the presence of anomalous, mirror-protected 2D surface and 1D hinge states.

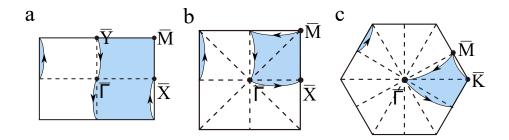
34. Symmetry-Enhanced Fermion Doubling Theorems for Non-Axionic Magnetic HOTIs

In this section, we will derive 2D symmetry-enhanced fermion doubling theorems ^{36,39,74,111} for the surface wallpaper groups ^{73,75} of spinful, helical magnetic HOTIs. Through the doubling theorems established in this section, we will demonstrate that the 2D, twofold Dirac surface states of helical magnetic HOTIs are anomalous (see SN 35 for tight-binding models and surface- and hinge-state calculations for helical magnetic HOTIs).

To begin, in each BZ of a 2D crystal, the parity anomaly excludes the presence of a single (i.e. unpaired) twofold-degenerate, linearly dispersing, ($\{T|0\}\}$ - or magnetic-) symmetry-stabilized Dirac fermion^{39,188,190–192}. However, on the 2D surfaces of 3D TIs^{32,160,193,194} (and some AXIs, see SRefs. 28,38,40–60), unpaired twofold Dirac fermions are anomalously stabilized by the combination of surface wallpaper group symmetries and spectral (Wannier) flow. As shown in SRefs. 36,39, for 3D crystals whose surface wallpaper groups contain additional rotation and reflection symmetries, there also exist *symmetry-enhanced* fermion doubling theorems that may similarly be evaded through a combination of wallpaper group symmetry and spectral flow.

In SRef. 36, the authors specifically defined the fermion multiplication theorem for twofold Dirac fermions in non-magnetic [Type-II, see SN 4] double wallpaper groups [which we will in this section take to be $\hat{\mathbf{z}}$ -normal] that contain the symmetries $\{\mathcal{T}|\mathbf{0}\}$ and $\{C_{2z}|\mathbf{0}\}$, as well as, optionally, $\{C_{4z}|\mathbf{0}\}$ or $\{C_{6z}|\mathbf{0}\}$. To derive the fermion multiplication for nonmagnetic double wallpaper groups, we begin by exploiting the formulas derived in SRef. 164 for Berry phase in 2D crystals with rotation symmetries. Specifically, in SRef. 164, it was shown that the Berry phase Θ_2 in one half of the BZ of a 2D crystal with $\{C_{2z}|\mathbf{0}\}$ symmetry [SFig. 22(a)] is given by:

$$e^{i\Theta_2} = (-1)^{N_{occ}} \prod_{m \in occ} \zeta_m(\bar{\Gamma}) \zeta_n(\bar{X}) \zeta_m(\bar{Y}) \zeta_m(\bar{M}), \tag{374}$$


that the Berry phase Θ_4 in one quarter of the BZ of a 2D crystal with $\{C_{4z}|\mathbf{0}\}$ symmetry [SFig. 22(b)] is given by:

$$e^{i\Theta_4} = (-1)^{N_{occ}} \prod_{m \in occ} \xi_m(\bar{\Gamma}) \xi_m(\bar{M}) \zeta_m(\bar{X}), \tag{375}$$

and that the Berry phase Θ_6 in one sixth of the BZ of a 2D crystal with $\{C_{6z}|\mathbf{0}\}$ symmetry [SFig. 22(c)] is given by:

$$e^{i\Theta_6} = (-1)^{N_{occ}} \prod_{m \in occ} \eta_m(\bar{\Gamma}) \theta_m(\bar{K}) \zeta_m(\bar{M}), \tag{376}$$

where $\zeta_m(K)$, $\xi_m(K)$, $\eta_m(K)$, $\theta_m(K)$ respectively refer to the C_{2z} , C_{4z} , C_{6z} , and C_{3z} eigenvalues of the m^{th} Bloch state at K, and where N_{occ} is the number of Bloch states at each high-symmetry \mathbf{k} point in a given energy range.

Supplementary Figure 22: The 2D BZs of wallpaper groups with even-fold rotation symmetries. (a) The 2D BZ of Type-I magnetic wallpaper group pmm [isomorphic to Type-I MSG 25.57 Pmm2 modulo out-of-plane lattice translations] or Type-II nonmagnetic wallpaper group pmm1' [isomorphic to Type-II SG 25.58 Pmm21' modulo out-of-plane lattice translations]. (b) The 2D BZ of Type-I magnetic wallpaper group p4m [isomorphic to Type-I MSG 99.163 P4mm modulo out-of-plane lattice translations] or Type-II nonmagnetic wallpaper group p4m1' [isomorphic to Type-II SG 99.164 P4mm1' modulo out-of-plane lattice translations]. (c) The 2D BZ of Type-I magnetic wallpaper group p6m [isomorphic to Type-I MSG 183.185 P6mm modulo out-of-plane lattice translations] or Type-II nonmagnetic wallpaper group p6m1' [isomorphic to Type-II SG 183.186 P6mm1' modulo out-of-plane lattice translations]. The dashed lines in (a-c) indicate mirror lines. The blue patches in (a-c) respectively indicate patches of the 2D BZ whose area is one half, one quarter, and one sixth of the first 2D BZ; the boundaries of the blue patches are explicitly chosen to avoid coinciding with the mirror lines. SEqs. (374), (375), and (376) respectively indicate the combinations of rotation symmetry eigenvalues that correspond to the quantized Berry phases $\Theta_{2,4,6} = 0$, π in the blue patches in (a-c).

In SRef. 164, it was shown that $\Theta_{2,4,6} = \pi$ in SEqs. (374), (375), and (376) respectively indicates a nontrivial bulk Chern number. However, in the presence of $\{\mathcal{T}|\mathbf{0}\}$ or in-plane mirror symmetries, the Chern number is required to vanish 32,36,38,41,42,47,154,160,173 . In wallpaper groups with C_{2z} , C_{4z} , or C_{6z} rotation symmetry and either $\{\mathcal{T}|\mathbf{0}\}$ or in-plane mirror lines, the disagreement between $\Theta_{2,4,6} = \pi$ and the symmetry restriction that the Chern number vanish can be resolved by recognizing that a twofold Dirac fermion respectively placed in each half, quarter, and sixth of the 2D BZ also provides a source of π Berry phase indicated by $\Theta_{2,4,6} = \pi^{32,39,160,188,190-194}$. In nonmagnetic (Type-II) wallpaper groups with C_{2z} , C_{4z} , or C_{6z} rotation symmetry, or in Type-I magnetic wallpaper groups with mirror and C_{2z} , C_{4z} , or C_{6z} rotation symmetry, $\Theta_{2,4,6}$ therefore respectively indicate the number of twofold Dirac cones in each BZ modulo 4, 8, and 12. Specifically, if $\Theta_{2,4,6} = \pi$ ($\Theta_{2,4,6} = 0$), there must be an odd (even) number of twofold Dirac cones in the blue BZ patches in SFig. 22(a-c), respectively implying the presence of 2 + 4a (4a), 4 + 8a (8a), or 6 + 12a (12a) twofold Dirac fermions in each BZ [where $a \in \{\mathbb{Z}^+, 0\}$]. In nonmagnetic wallpaper groups with C_{2z} , C_{4z} , or C_{6z} rotation symmetry, the Dirac fermions are stabilized by $\{C_{2z} \times \mathcal{T}|\mathbf{0}\}$ symmetry $\{C_{2z}, C_{4z}, C_{4z}$

However, in SRef. 164, it was shown that $\Theta_{2,4,6} = 0$ for all 2D spinful lattice models with $\{\mathcal{T}|\mathbf{0}\}$ symmetry, due to the constraints imposed by \mathcal{T} symmetry on the eigenvalues of spinful rotation symmetries. Below, we will show that $\Theta_{2,4,6} = 0$ is also required in all 2D spinful lattice models that respect the symmetries of Type-I magnetic double wallpaper groups containing $\{m_x|\mathbf{0}\}$ and $\{m_y|\mathbf{0}\}$ and C_{2z} , C_{4z} , or C_{6z} rotation symmetries (i.e. Type-I magnetic double wallpaper groups pmm, p4m, and p6m, respectively^{36,39,73-75}). We note that throughout this work, the symbols of wallpaper groups – which are also sometimes termed plane groups – are given in the short notation previously employed in SRefs. 39,71,73; in the long notation of the Get Plane Gen tool on the BCS^{13,14}, magnetic wallpaper groups pmm, p4m, and p6m are respectively labeled by the symbols p2mm, p4mm, and p6mm. For each C_{2z} -symmetric wallpaper group in SFig. 22(a-c), we will choose a patch of the 2D BZ whose boundary intersects the rotation-invariant \mathbf{k} points in SEqs. (374), (375), and (376), respectively, while avoiding the mirror lines, which may host mirror-symmetry-stabilized Dirac fermions.

First, in double magnetic wallpaper group pmm [isomorphic to Type-I MSG 25.57 Pmm2 modulo out-of-plane lattice translations], the matrix representatives of $\{C_{2z}|\mathbf{0}\}$ and $\{m_x|\mathbf{0}\}$ anticommute at each of the four C_{2z} -invariant \mathbf{k} points in SFig. 22(a) and SEq. (374) [this result can be obtained by applying the Corepresentations tool detailed in SN 13 to MSG 25.57 Pmm2]. Consequently, in 2D lattice models constructed from MEBRs, all of the small irreps σ at the four C_{2z} -invariant \mathbf{k} points are two-dimensional, and exhibit net-zero C_{2z} eigenvalues: $\chi_{\sigma}(\{C_{2z}|\mathbf{0}\}) = 0$. For any set of energetically isolated multiplets of Bloch states at the four C_{2z} -invariant points in SFig. 22(a) and SEq. (374), this implies that $\Theta_2 \mod 2\pi = 0$. Consequently, spinful lattice models in double magnetic wallpaper group pmm must exhibit even numbers of twofold Dirac fermions in each half of the 2D BZ in SFig. 22(a).

Similarly, for double magnetic wallpaper groups p4m [isomorphic to Type-I MSG 99.163 P4mm modulo out-of-plane lattice translations] and p6m [isomorphic to Type-I MSG 183.185 P6mm modulo out-of-plane lattice translations], it can be shown through the Corepresentations tool (see SN 13) that the spinful rotation eigenvalues of energetically

isolated multiplets of Bloch states must also appear in complex-conjugate pairs. This respectively implies that, for spinful lattice models in double magnetic wallpaper groups p4m and p6m, $\Theta_{4,6}$ mod $2\pi = 0$. Consequently, spinful lattice models in double magnetic wallpaper group p4m [p6m] must exhibit even numbers of twofold Dirac fermions in each quarter [sixth] of the 2D BZ in SFig. 22(b) [SFig. 22(c)].

As we will shortly see in SN 35, the surfaces of the helical magnetic HOTIs discovered in this work exhibit odd numbers of twofold Dirac cones in the blue regions of the 2D BZs shown in SFig. 22(a-c), representing anomalous exceptions to the magnetic fermion multiplication theorem derived in this section.

35. Tight-Binding Models and Boundary States for Non-Axionic Magnetic HOTIs

Through the double SIs computed in SN 31, we have discovered three novel variants of spinful, helical magnetic HOTIs with trivial axion angles θ mod $2\pi = 0$. In this section, we will provide tight-binding models and surface- and hinge-state calculations for the three non-axionic magnetic HOTI phases discovered in this work. For each phase, we will also demonstrate how the top ($\hat{\mathbf{z}}$ -normal) surface states circumvent a magnetic fermion multiplication theorem (see SN 34). We will leave the development of bulk (nested) Wilson loop invariants 28,38,39,112,123 for the helical magnetic HOTI phases for future works. However, we note that, like the fourfold-rotation-anomaly HOTI phase in SnTe 25,34,161,162 , in the helical magnetic HOTIs modeled in this section, the occupied bands in half of the bulk mirror planes that project to the $\hat{\mathbf{z}}$ -normal surface (e.g. $\{m_{x\pm y}|\mathbf{0}\}$) exhibit mirror Chern numbers C_m mod 4=2, whereas the other half (e.g. $\{m_{x,y}|\mathbf{0}\}$) exhibit C_m mod 4=0 (see SFig. 21).

D_{2h} HOTI in double MSG 47.249 Pmmm – We will here analyze the helical magnetic TCI phase protected by the symmetries of double MPG mmm 8.1.24 $[D_{2h}]$ (see SN 8 and 18 and SRefs. 7–18), which we term the D_{2h} HOTI (as previously in SN 8 and 18, we will continue to label MPGs in this section employing the notation of the MPOINT tool on the BCS^{15–18} in which an MPG is labeled by its number, followed by its symbol). As discussed in SN 31 d, the double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3}) = (2000)$ in double MSG 47.249 Pmmm indicate a mirror TCI for which the mirror Chern numbers $C_{m_x} \mod 2 = C_{m_y} \mod 2 = C_{m_z} \mod 2 = 0$, $C_{m_x} + C_{m_y} + C_{m_z} \mod 4 = 2$. Nevertheless, in this work, we refer to the (2000) phase in double MSG 47.249 Pmmm as a helical HOTI for two reasons. First, as discussed in SN 31 d, the (2000) phase of double MSG 47.249 can be connected to a $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{Pmmm1'} = (2000)_{Pmmm1'}$ mirror TCI phase in the \mathcal{T} -symmetric supergroup Type-II double SG 47.250 Pmmm1' without closing a bulk or surface gap. In turn, the $(2000)_{Pmmm1'}$ TCI phase subduces to an \mathcal{I} - and \mathcal{T} -protected $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})_{P\bar{1}1'} = (2000)_{P\bar{1}1'}$ helical HOTI in Type-II double SG 2.5 $P\bar{1}1'$ [see SN 31s and SRefs. 24,26–28]. Second, in each of the momentumspace mirror planes in double MSG 47.249 Pmmm, a nontrivial mirror Chern number cannot be identified by the 2D symmetry-based mirror Chern indices implied by the Chern number SI formulas in SRef. 164. Specifically, each momentum-space mirror plane in double MSG 47.249 Pmmm has only mirror, twofold rotation, and inversion symmetries, which can only indicate the mirror Chern number modulo 2. For example, in the $k_z = \pi$ plane of the bulk BZ in double MSG 47.249 Pmmm, the only SI of stable 2D topology is $z_{2w,3}$, which only indicates $C_{m_z}(k_z=\pi) \mod 2$ (see SN 31d). Hence, the nontrivial even mirror Chern numbers of the (2000) phase in double MSG 47.249 Pmmm can only be inferred from the 3D double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3})$, and cannot be inferred from symmetry-indicated momentum-space mirror Chern numbers evaluated in BZ planes. As we will show in this section, and as discussed in previous works^{26,27,34}, TCI surface states may in general be interpreted as HOTI hinge modes if a finite sample is cut into a geometry in which the bulk mirror planes project to 1D hinges, as opposed to flat 2D surfaces.

To model the D_{2h} HOTI phase in double MSG 47.249 Pmmm, we begin by introducing the Bernevig-Hughes-Zhang Hamiltonian for a 3D TI^{32,41,160,195}:

$$H_{\text{TI}}(\mathbf{k}) = -\tau^z \left(2 - \sum_{i=x,y,z} \cos k_i \right) + \sum_{i=x,y,z} \tau^x \sigma^i \sin k_i, \tag{377}$$

where τ^i and σ^j are each 2×2 Pauli matrices, and where we have employed a notation in which $\tau^i \sigma^j = \tau^i \otimes \sigma^j$ and factors of the 2×2 identity matrices τ^0 and σ^0 are suppressed. SEq. (377) respects \mathcal{I} and spinful \mathcal{T} symmetries, which are represented through the symmetry action:

$$\mathcal{I}H_{\mathrm{TI}}(\mathbf{k})\mathcal{I}^{-1} = \tau^{z}H_{\mathrm{TI}}(-\mathbf{k})\tau^{z}, \ \mathcal{T}H_{\mathrm{TI}}(\mathbf{k})\mathcal{T}^{-1} = \sigma^{y}H_{\mathrm{TI}}^{*}(-\mathbf{k})\sigma^{y}. \tag{378}$$

We next construct the helical D_{2h} HOTI phase by first superposing two copies of the 3D TI phase of SEq. (377), and then introducing perturbative couplings to break \mathcal{T} symmetry:

$$H_{\text{HOTI}}^{Pmmm}(\mathbf{k}) = \mu^{0} H_{\text{TI}}(\mathbf{k}) + \Delta_{0} \mu^{y} \tau^{y} \sin k_{x} + \Delta_{1} [\mu^{z} (\tau^{z} + \tau^{0}) + (\tau^{z} + \tau^{0}) \sigma^{z} \sin k_{x} \sin k_{y}], \tag{379}$$

Ι	Bands	$\Gamma(000)$	$X(\pi 00)$	$Y(0\pi0)$	$Z(00\pi)$	$S(\pi\pi0)$	$T(0\pi\pi)$	$U(\pi 0\pi)$	$R(\pi\pi\pi)$
	Energy	-1	-1.6	-1.6	-1.6	-3.6	-3.6	-3.6	-5.6
1-2	σ	$\overline{\Gamma}_6$	\overline{X}_5	\overline{Y}_5	\overline{Z}_5	\overline{S}_5	\overline{T}_5	\overline{U}_5	\overline{R}_5
	$\Delta_{\sigma}(\mathcal{I})$	$-\xi^0$	ξ^0						
	Energy	-1	-0.4	-0.4	-0.4	-2.4	-2.4	-2.4	-4.4
3-4	σ	$\overline{\Gamma}_6$	\overline{X}_5	\overline{Y}_5	\overline{Z}_5	\overline{S}_5	\overline{T}_5	\overline{U}_5	\overline{R}_5
	$\Delta_{\sigma}(\mathcal{I})$	$-\xi^0$	ξ^0						

Supplementary Table 12: The double-valued small irreps corresponding to the four occupied bulk bands of the helical D_{2h} magnetic HOTI phase of SEq. (379) [SFig. 23(b)]. At each of the eight \mathcal{I} -invariant \mathbf{k} points in MSG 47.249 Pmmm [given in the notation $\mathbf{k}(k_x k_y k_z)$ and obtained through MKVEC, see SN 12 and SFig. 23(a)], we list the occupied band index and energy, the label of the double-valued small irrep σ that corresponds to each pair of occupied Bloch states at \mathbf{k} in the notation of the Corepresentations tool [see SN 13], and the matrix representative $\Delta_{\sigma}(\mathcal{I})$ in the basis of the 2 × 2 Pauli matrices ξ^i .

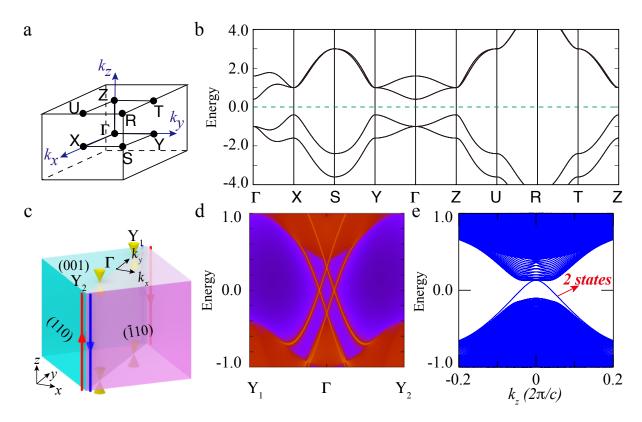
in which μ^i is a 2×2 Pauli matrix that indexes the two coupled 3D TI models, and where we have employed a notation in which $\mu^i \tau^j \sigma^k = \mu^i \otimes \tau^j \otimes \sigma^k$ and factors of the 2×2 identity matrices μ^0 , τ^0 , σ^0 are suppressed in terms other than $\mu^0 H_{\rm TI}(\mathbf{k})$ when the identity matrices are not summed with other Pauli matrices. $H_{\rm HOTI}^{Pmmm}(\mathbf{k})$ in SEq. (379) respects the symmetries of double MPG mmm 8.1.24 $[D_{2h}]$, whose generating elements are represented through the action:

$$\mathcal{I}H_{\text{HOTI}}^{Pmmm}(\mathbf{k})\mathcal{I}^{-1} = \tau^{z}H_{\text{HOTI}}^{Pmmm}(-\mathbf{k})\tau^{z},$$

$$C_{2x}H_{\text{HOTI}}^{Pmmm}(\mathbf{k})C_{2x}^{-1} = \sigma^{x}H_{\text{HOTI}}^{Pmmm}(C_{2x}\mathbf{k})\sigma^{x},$$

$$C_{2y}H_{\text{HOTI}}^{Pmmm}(\mathbf{k})C_{2y}^{-1} = \mu^{z}\sigma^{y}H_{\text{HOTI}}^{Pmmm}(C_{2y}\mathbf{k})\mu^{z}\sigma^{y}.$$
(380)

Because $H_{\text{HOTI}}^{Pmmm}(\mathbf{k})$ in SEq. (379) also respects the group of 3D orthogonal lattice translations, then SEq. (380) implies that $H_{\text{HOTI}}^{Pmmm}(\mathbf{k})$ respects the symmetries of double MSG 47.249 Pmmm. In SEq. (379), the Δ_0 and Δ_1 terms break \mathcal{T} symmetry. The Δ_0 term vanishes at the eight \mathcal{I} -invariant \mathbf{k} points $k_{x,y,z} = 0, \pi$ [SFig. 23(a)], whereas the Δ_1 term is generically nonzero at all values of \mathbf{k} .


To realize the helical D_{2h} HOTI phase of $H_{\text{HOTI}}^{Pmmm}(\mathbf{k})$, we choose $\Delta_0 = 1$, $\Delta_1 = 0.3$ in SEq. (379). We have chosen a relatively small value of Δ_1 to ensure that the band ordering remains the same as in the \mathcal{T} -symmetric limit in which $\Delta_{0,1}$ vanish. Specifically, as discussed in SN 31 d and earlier in this section, in the \mathcal{T} -symmetric limit, $H_{\text{HOTI}}^{Pmmm}(\mathbf{k})$ realizes a twofold-rotation-anomaly, helical, nonmagnetic HOTI phase with a nontrivial bulk mirror Chern number^{24,26–28,35,36} indicated by the double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3}) = (2000)$ in the Type-II double SG 47.250 Pmmm1'. In SFig. 23(b), we plot the bulk band structure of SEq. (379); we emphasize that SEq. (379) contains additional, extraneous (artificial) symmetries beyond those of double MSG 47.249 Pmmm. Hence, the band structure in SFig. 23(b) exhibits additional degeneracies away from the Fermi level – such as the occupied fourfold degeneracy at Γ – that are not robust to symmetry-preserving perturbations.

To diagnose the topology of SEq. (379), we will perform two sets of calculations. First, we will calculate the double SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and hinge states when SEq. (379) is terminated in a finite, D_{2h} -symmetric nanorod geometry [SFig. 23(c)]. To begin, in Supplementary Table 12, we list the double-valued small irreps that correspond to the four occupied spinful Bloch eigenstates at each of the eight \mathcal{I} -invariant \mathbf{k} points in MSG 47.249 Pmmm [SFig. 23(a)]. The matrix representative $\Delta_{\sigma}(\mathcal{I})$ of each two-dimensional small irrep σ in Supplementary Table 12 is diagonal, indicating that each pair of Bloch states at each \mathcal{I} -invariant \mathbf{k} point has two parity eigenvalues with the same sign. From Supplementary Table 12, we obtain the occupied parity eigenvalue multiplicities:

$$n_{\Gamma}^{-} = 4, \ n_{\Gamma}^{+} = 0, \ n_{K}^{-} = 0, n_{K}^{+} = 4 \text{ for } K = X, Y, Z, S, T, U, R.$$
 (381)

Substituting SEq. (381) into the double SI formulas in Type-I double MSG 47.249 *Pmmm* [SEqs. (259) and (260)], we find that:

$$z_4 = \sum_K \frac{1}{2} n_K^- \mod 2 = \sum_K \frac{n_K^- - n_K^+}{4} \mod 4 = \frac{4 - 28}{4} \mod 4 = 2, \tag{382}$$

Supplementary Figure 23: Surface and hinge states of the helical magnetic D_{2h} HOTI phase in double MSG 47.249 Pmmm. (a) The bulk BZ. (b) The bulk band structure obtained from SEq. (379) with $\Delta_0 = 1$ and $\Delta_1 = 0.3$. We note that SEq. (379) contains additional, extraneous symmetries beyond those of double MSG 47.249 Pmmm, such that the band structure in (b) exhibits additional degeneracies away from the Fermi level – such as the occupied fourfold degeneracy at Γ – that are not robust to symmetry-preserving perturbations. (c) Schematic of the top ($\hat{\mathbf{z}}$ -normal) surface states and nanorod hinge states. The top surface of the rectangular nanorod in (c) respects the symmetries of Type-I double magnetic wallpaper group pmm, and the hinges respect the symmetries of frieze groups that contain either $\{m_x|0\}$ or $\{m_y|0\}$ (see SN 31 and 34 and SRefs. 34,39,73–75). (d) The top surface spectrum plotted along k_y , obtained from surface Green's functions calculated for the model in (b) terminated in a z-directed slab geometry. In (d), the surface bands exhibit mirror Chern $C_{m_x} = 2$ spectral flow. We have verified through surface-state calculations that the slab surface spectrum along k_x does not exhibit spectral flow, and that $C_{m_z} = 0$. Together, this implies that the top surface exhibits two twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group pmm derived in SN 34, and implies that the bulk is a D_{2h} HOTI. (e) The spectrum of an infinite, z-directed, $m_{x,y}$ -symmetric nanorod of the model in (b) features two pairs of hinge-localized helical modes (four total hinge states), demonstrating that the model in (b) exhibits higher-order spectral flow.

and:

$$z_{2w,1} = \sum_{K=X,S,U,R} \frac{1}{2} n_K^- \mod 2 = 0,$$

$$z_{2w,2} = \sum_{K=Y,S,T,R} \frac{1}{2} n_K^- \mod 2 = 0,$$

$$z_{2w,3} = \sum_{K=Z,T,U,R} \frac{1}{2} n_K^- \mod 2 = 0,$$
(383)

such that the occupied bands of SEq. (379) shown in SFig. 23(b) exhibit the double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3}) = (2000)$. Previously, in SN 31 d, we showed that the double SIs $(z_4, z_{2w,1}, z_{2w,2}, z_{2w,3}) = (2000)$ in double MSG 47.249 Pmmm indicate a mirror TCI phase that we designate in this work to be a helical D_{2h} HOTI. To demonstrate that SEq. (379), with the parameters used to obtain SFig. 23(b), exhibits the anomalous surface and hinge states of a D_{2h} HOTI, we have performed two boundary state calculations. First, as shown in SFig. 23(d), we have calculated the top ($\hat{\mathbf{z}}$ -normal) surface spectrum of $H_{\text{HOTI}}^{Pmmm}(\mathbf{k})$ terminated in a z-directed slab geometry. The top surface of a crystal in MSG 47.249 Pmmm respects the symmetries of Type-I magnetic wallpaper group pmm (see SN 31 and 34

and SRefs. 34,39,73–75). The slab surface spectrum in SFig. 23(d) exhibits mirror Chern $C_{m_x}=2$ spectral flow, and we have additionally verified through surface-state calculations that $C_{m_y}=0$. Together, this implies that the top surface exhibits two twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group pmm derived in SN 34. We next calculate the spectrum of an infinite, z-directed, $m_{x,y}$ -symmetric nanorod of $H_{\rm HOTI}^{Pmmm}(\mathbf{k})$ [SFig. 23(e)]. We observe two pairs of hinge-localized helical modes in the nanorod spectrum in SFig. 23(e), confirming that $H_{\rm HOTI}^{Pmmm}(\mathbf{k})$ exhibits the higher-order spectral flow of a D_{2h} HOTI.

 D_{4h} HOTI in double MSG 123.339 P4/mmm – We will next analyze the helical magnetic HOTI phase protected by the symmetries of double MPG 15.1.53 4/mmm $[D_{4h}]$ (see SN 8 and 18 and SRefs. 7–18), which we term the D_{4h} HOTI. As discussed in SN 31 k, the double SIs $(z_8, z_{4m,\pi}^-, z_{2w,1}) = (400)$ in double MSG 123.339 P4/mmm either indicate a mirror TCI with mirror Chern number C_{m_z} mod 8 = 4, or indicate a helical D_{4h} HOTI phase in which half of the z-projecting mirror planes (e.g. the $\{m_{x\pm y}|\mathbf{0}\}$ -invariant planes) exhibit C_m mod 4 = 2, the other half (e.g. the $\{m_{x,y}|\mathbf{0}\}$ -invariant planes) exhibit C_m mod 4 = 0, and $C_{m_z} = 0$ [see SFig. 21(b)]. To construct the helical D_{4h} HOTI phase, we first superpose two copies of the 3D TI phase of SEq. (377), but crucially, in a manner in which the two 3D TIs are formed from different orbital hybridization [e.g. $s-p_z$ and $s-f_{xyz}$]. As we will see, this implies that the two superposed 3D TIs exhibit different valence C_{4z} eigenvalues (see SRef. 71 for closely related discussions of orbital hybridization and anomalous corner modes in 2D TIs and 3D Dirac semimetals). We next add perturbative couplings to break \mathcal{T} symmetry, resulting in the 3D Hamiltonian:

$$H_{\text{HOTI}}^{P4/mmm}(\mathbf{k}) = \mu^0 H_{\text{TI}}(\mathbf{k}) + \Delta_0(\mu^x + \mu^y)(2\tau^y - \sigma^z \sin k_z)(\cos k_x - \cos k_y) + \Delta_1 \mu^z, \tag{384}$$

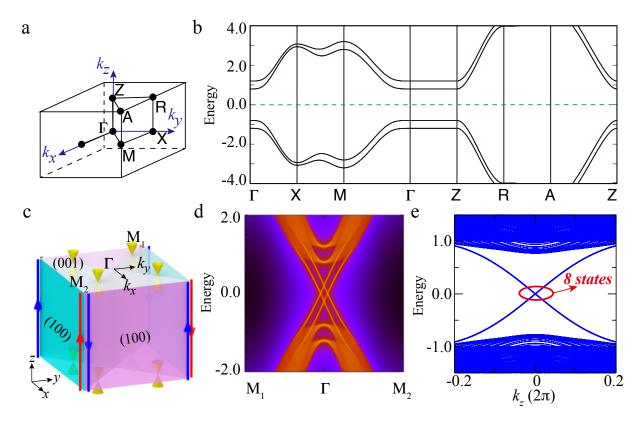
employing the notation detailed in the text following SEq. (379). $H_{\text{HOTI}}^{P4/mmm}(\mathbf{k})$ respects the symmetries of double MPG 15.1.53 4/mmm [D_{4h}], whose generating elements are represented through the action:

$$\mathcal{I}H_{\text{HOTI}}^{P4/mmm}(\mathbf{k})\mathcal{I}^{-1} = \mu^{z}\tau^{z}H_{\text{HOTI}}^{P4/mmm}(-\mathbf{k})\mu^{z}\tau^{z},
C_{4z}H_{\text{HOTI}}^{P4/mmm}(\mathbf{k})C_{4z}^{-1} = \mu^{z}e^{-i\frac{\pi}{4}\sigma^{z}}H_{\text{HOTI}}^{P4/mmm}(C_{4z}\mathbf{k})\mu^{z}e^{i\frac{\pi}{4}\sigma^{z}},
C_{2x}H_{\text{HOTI}}^{P4/mmm}(\mathbf{k})C_{2x}^{-1} = \sigma^{x}H_{\text{HOTI}}^{P4/mmm}(C_{2x}\mathbf{k})\sigma^{x}.$$
(385)

Because $H_{\rm HOTI}^{P4/mmm}(\mathbf{k})$ in SEq. (384) also respects the group of 3D tetragonal lattice translations, then SEq. (385) implies that $H_{\rm HOTI}^{P4/mmm}(\mathbf{k})$ respects the symmetries of double MSG 123.339 P4/mmm. In SEq. (384), the Δ_0 term breaks \mathcal{T} symmetry, and the Δ_1 term breaks the extraneous exchange symmetry represented by $\mu^x + \mu^y$ between the two superposed 3D TIs at all \mathbf{k} points.

To realize the helical D_{4h} HOTI phase of $H_{\text{HOTI}}^{P4/mmm}(\mathbf{k})$, we choose $\Delta_0 = 0.5$ and $\Delta_1 = 0.2$ in SEq. (384). We have chosen a relatively small value of Δ_1 to ensure that the band ordering remains the same as in the \mathcal{T} -symmetric limit in which Δ_0 vanishes. Specifically, as discussed in SN 31 k, in the \mathcal{T} -symmetric limit, $H_{\text{HOTI}}^{P4/mmm}(\mathbf{k})$ realizes the same fourfold-rotation-anomaly, helical, nonmagnetic HOTI phase indicated by the double SIs in $(z_8, z_{4m,\pi}^-, z_{2w,1}) = (400)$ in the Type-II double SG 123.340 P4/mmm1' as a tetragonal supercell of the well-studied TCI SnTe^{25-27,34,36,161,162}. In SFig. 24(b), we plot the bulk band structure of SEq. (384).

To diagnose the topology of SEq. (384), we will perform two sets of calculations. First, we will calculate the double SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and hinge states when SEq. (384) is terminated in a finite, D_{4h} -symmetric nanorod geometry [SFig. 24(c)]. To begin, in Supplementary Table 13, we list the double-valued small irreps that correspond to the four occupied spinful Bloch eigenstates at the six high-symmetry \mathbf{k} points shown in SFig. 24(a). From the matrix representative $\Delta_{\sigma}(h)$ of each two-dimensional small irrep for each of the representative unitary symmetries h of the little group $G_{\mathbf{k}}$ [e.g. C_{4z} and \mathcal{I} , see SEq. (71) and the surrounding text], we may infer the symmetry eigenvalues of the four occupied bands. Using the matrix representatives in Supplementary Table 13, we then compute the auxiliary variables [see SEq. (306) and the surrounding text]:


$$n^{\frac{3}{2},+} = \sum_{K=\Gamma,M,Z,A} n_K^{\frac{3}{2},+} + \sum_{K=X,R} n^{\frac{1}{2},+} = 1 + 4 = 5,$$

$$n^{\frac{3}{2},-} = \sum_{K=\Gamma,M,Z,A} n_K^{\frac{3}{2},-} + \sum_{K=X,R} n^{\frac{1}{2},-} = 3 + 4 = 7,$$

$$n^{\frac{1}{2},+} = \sum_{K=\Gamma,M,Z,A} n_K^{\frac{1}{2},+} + \sum_{K=X,R} n^{\frac{1}{2},+} = 1 + 4 = 5,$$

$$n^{\frac{1}{2},-} = \sum_{K=\Gamma,M,Z,A} n_K^{\frac{1}{2},-} + \sum_{K=X,R} n^{\frac{1}{2},-} = 3 + 4 = 7,$$

$$(386)$$

Supplementary Figure 24: Surface and hinge states of the helical magnetic D_{4h} HOTI phase in double MSG 123.339 P4/mmm. (a) The bulk BZ. (b) The bulk band structure obtained from SEq. (384) with $\Delta_0 = 0.5$ and $\Delta_1 = 0.2$. (c) Schematic of the top ($\hat{\mathbf{z}}$ -normal) surface states and nanorod hinge states. The top surface of the square nanorod in (c) respects the symmetries of Type-I double magnetic wallpaper group p4m, and the hinges respect the symmetries of frieze groups that contain either $\{m_{x\pm y}|0\}$ (see SN 31 and 34 and SRefs. 34,39,73–75). (d) The top surface spectrum plotted along k_{x-y} , obtained from surface Green's functions calculated for the model in (b) terminated in a z-directed slab geometry. In (d), the surface bands exhibit mirror Chern $C_{m_{x+y}} = 2$ spectral flow. We have verified through surface-state calculations that the C_{4z} -related slab surface spectrum along k_{x+y} also exhibits $C_{m_{x-y}} = 2$ spectral flow, that the surface spectrum along $k_{x,y}$ exhibits trivial $C_{m_y,x} = 0$ spectral flow, and that $C_{m_z} = 0$. Together, this implies that the top surface exhibits four twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group p4m derived in SN 34, and implies that the bulk is a D_{4h} HOTI. (e) The spectrum of an infinite, C_{4z} - and $m_{x\pm y}$ -symmetric nanorod of the model in (b) features four pairs of hinge-localized helical modes (eight total hinge states), demonstrating that the model in (b) exhibits higher-order spectral flow.

where $n_K^{j,\pm}$ is the number of occupied states with the C_{4z} eigenvalues $e^{-i\frac{\pi}{2}j}$ and the parity (\mathcal{I}) eigenvalues ± 1 at K [which is only well-defined at the four C_{4z} -invariant momenta $K = \Gamma, M, Z, A$, see SFig. 24(a)]. Additionally, in SEq. (386), $n_K^{\frac{1}{2},\pm}$ is the number of occupied states with the C_{2z} eigenvalues -i and the parity eigenvalues ± 1 at the points K = X, R. Substituting SEq. (386) into the double SI formula for z_8 in Type-I double MSG 123.339 P4/mmm [SEq. (305)], we obtain:

$$z_8 = \frac{3(n^{\frac{3}{2},+} - n^{\frac{3}{2},-}) - (n^{\frac{1}{2},+} - n^{\frac{1}{2},-})}{2} \mod 8 = \frac{3 \times (5-7) - (5-7)}{2} \mod 8 = 4.$$
 (387)

To complete the double SI calculation, we must also determine the values of $z_{4m,\pi}^-$ and $z_{2w,1}$ (see SN 31k). To compute $z_{4m,\pi}^-$ and $z_{2w,1}$, we first use Supplementary Table 13 to calculate the number of C_{4z} eigenvalues at Z and A in each mirror sector:

$$\begin{split} n_{Z}^{\frac{1}{2},-i} &= 1, \ n_{Z}^{-\frac{1}{2},-i} = 0, \ n_{Z}^{\frac{3}{2},-i} = 1, \ n_{Z}^{-\frac{3}{2},-i} = 0, \\ n_{A}^{\frac{1}{2},-i} &= 1, \ n_{A}^{-\frac{1}{2},-i} = 0, \ n_{A}^{\frac{3}{2},-i} = 1, \ n_{A}^{-\frac{3}{2},-i} = 0, \end{split} \tag{388}$$

	Bands	$\Gamma(000)$	$Z(00\pi)$	$M(\pi\pi0)$	$A(\pi\pi\pi)$		Bands	$X(0\pi0)$	$R(0\pi\pi)$
	Energy	-1.2	-1.2	-3.2	-5.2		Energy	-3.07	-4.27
	σ	$\overline{\Gamma}_6$	\overline{Z}_8	\overline{M}_8	\overline{A}_8		σ	\overline{X}_6	\overline{R}_6
1-2	$\Delta_{\sigma}(\mathcal{I})$	ξ^0	$-\xi^0$	$-\xi^0$	$-\xi^0$	1-2	$\Delta_{\sigma}(\mathcal{I})$	$-\xi^0$	$-\xi^0$
	$\Delta_{\sigma}(C_{4z})$	$e^{-i\frac{3\pi}{4}\xi^z}$	$e^{-i\frac{3\pi}{4}\xi^z}$	$e^{-i\frac{3\pi}{4}\xi^z}$	$e^{-i\frac{3\pi}{4}\xi^z}$		$\Delta_{\sigma}(C_{2z})$	$-i\xi^z$	$-i\xi^z$
	$\Delta_{\sigma}(m_z)$	$i\xi^z$	$-i\xi^z$	$-i\xi^z$	$-i\xi^z$		$\Delta_{\sigma}(m_z)$	$i\xi^z$	$i\xi^z$
	Energy	-0.8	-0.8	-2.8	-4.8		Energy	-2.94	-3.98
	σ	$\overline{\Gamma}_9$	\overline{Z}_7	\overline{M}_7	\overline{A}_7		σ	\overline{X}_5	\overline{R}_5
3-4	$\Delta_{\sigma}(\mathcal{I})$	$-\xi^0$	ξ^0	ξ^0	ξ^0	3-4	$\Delta_{\sigma}(\mathcal{I})$	ξ^0	ξ^0
	$\Delta_{\sigma}(C_{4z})$	$e^{-i\frac{\pi}{4}\xi^z}$	$e^{-i\frac{\pi}{4}\xi^z}$	$e^{-i\frac{\pi}{4}\xi^z}$	$e^{-i\frac{\pi}{4}\xi^z}$		$\Delta_{\sigma}(C_{2z})$	$-i\xi^z$	$-i\xi^z$
	$\Delta_{\sigma}(m_z)$	$i\xi^z$	$-i\xi^z$	$-i\xi^z$	$-i\xi^z$		$\Delta_{\sigma}(m_z)$	$-i\xi^z$	$-i\xi^z$

Supplementary Table 13: The double-valued small irreps corresponding to the four occupied bulk bands of the helical D_{4h} magnetic HOTI phase of SEq. (384) [SFig. 24(b)]. At one **k** point in each of the six maximal momentum stars in MSG 123.339 P4/mmm [given in the notation $\mathbf{k}(k_xk_yk_z)$ and obtained through MKVEC, see SN 12 and SFig. 24(a)], we list the occupied band index and energy, the label of the double-valued small irrep σ that corresponds to each pair of occupied Bloch states at **k** in the notation of the Corepresentations tool [see SN 13], and the matrix representatives $\Delta_{\sigma}(h)$ of the representative unitary symmetries h of the little group $G_{\mathbf{k}}$ [see SEq. (71) and the surrounding text] in the basis of the 2 × 2 Pauli matrices ξ^{i} .

as well as the number of C_{2z} eigenvalues at R in each mirror sector:

$$n_R^{\frac{1}{2},-i} = n_R^{-\frac{1}{2},-i} = 1. (389)$$

From SEqs. (388) and (389), we then compute $z_{4m,\pi}^-$ [SEq. (274)]:

$$z_{4m,\pi}^{-} = \sum_{K=Z,A} \left(-\frac{1}{2} n_K^{\frac{1}{2},-i} + \frac{1}{2} n_K^{-\frac{1}{2},-i} - \frac{3}{2} n_K^{\frac{3}{2},-i} + \frac{3}{2} n_K^{-\frac{3}{2},-i} \right) + n_R^{\frac{1}{2},-i} - n_R^{-\frac{1}{2},-i} \mod 4$$

$$= -\frac{1}{2} (1+1) + \frac{1}{2} (0+0) - \frac{3}{2} (1+1) + \frac{3}{2} (0+0) + 1 - 1 \mod 4 = 0.$$
(390)

Lastly, using SEqs. (386), (388), and (389), we compute $z_{2w,1}$ [SEq. (270)]:

$$z_{2w,1} = \sum_{K=X',R',M,A} \frac{1}{2} n_K^- \mod 2 = \frac{1}{2} (2+2+2+2) \mod 2 = 0, \tag{391}$$

where $X' = C_{4z}^{-1}X$ and $R' = C_{4z}^{-1}R$. SEq. (391) implies that the occupied bands of SEq. (384) shown in SFig. 24(b) exhibit the double SIs $(z_8, z_{4m,\pi}^-, z_{2w,1}) = (400)$.

Previously, in SN 31 k, we showed that the double SIs $(z_8, z_{4m,\pi}^-, z_{2w,1}) = (400)$ in double MSG 123.339 P4/mmm either indicate a mirror TCI with mirror Chern number $C_{mz} \mod 8 = 4$, or indicate a helical D_{4h} HOTI phase in which half of the z-projecting mirror planes (e.g. the $\{m_{x\pm y}|\mathbf{0}\}$ -invariant planes) exhibit $C_m \mod 4 = 2$, the other half (e.g. the $\{m_{x,y}|\mathbf{0}\}$ -invariant planes) exhibit $C_m \mod 4 = 0$, and $C_{mz} = 0$ [see SFig. 21(b)]. To demonstrate that SEq. (384), with the parameters used to obtain SFig. 24(b), is a D_{4h} HOTI, we have performed two boundary state calculations. First, as shown in SFig. 24(d), we have calculated the top ($\hat{\mathbf{z}}$ -normal) surface spectrum of $H_{HOTI}^{P4/mmm}(\mathbf{k})$ terminated in a z-directed slab geometry. The top surface of a crystal in double MSG 123.339 P4/mmm respects the symmetries of Type-I magnetic wallpaper group p4m (see SN 31 and 34 and SRefs. 34,39,73–75). The slab surface spectrum in SFig. 24(d) exhibits four twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group p4m derived in SN 34. We next calculate the spectrum of an infinite, z-directed, C_{4z} - and $m_{x\pm y}$ -symmetric nanorod of $H_{HOTI}^{P4/mmm}(\mathbf{k})$ [SFig. 24(e)]. We observe four pairs of hinge-localized helical modes in the nanorod spectrum in SFig. 24(e), confirming that $H_{HOTI}^{P4/mmm}(\mathbf{k})$ exhibits the higher-order spectral flow of a D_{4h} HOTI.

 D_{6h} HOTI in double MSG 191.233 P6/mmm – Finally, we will now analyze the helical magnetic HOTI phase protected by the symmetries of double MPG 27.100 6/mmm [D_{6h}] (see SN 8 and 18 and SRefs. 7–18), which we term the D_{6h} HOTI. As discussed in SN 31r, the double SIs ($z_{12}, z_{6m,\pi}^+$) = (60) in double MSG 191.233 P6/mmm either indicate a mirror TCI with mirror Chern number C_{m_z} mod 12 = 6, or indicate a helical D_{6h} HOTI in which half

of the z-projecting mirror planes (e.g. the $\{m_x|\mathbf{0}\}$ -, $\{C_{6z}m_xC_{6z}^{-1}|\mathbf{0}\}$ -, and $\{C_{6z}^{-1}m_xC_{6z}|\mathbf{0}\}$ -invariant planes) exhibit $C_m \mod 4 = 2$, the other half (e.g. the $\{m_y|\mathbf{0}\}$ -, $\{C_{6z}m_yC_{6z}^{-1}|\mathbf{0}\}$ -, and $\{C_{6z}^{-1}m_yC_{6z}|\mathbf{0}\}$ -invariant planes) exhibit $C_m \mod 4 = 0$, and $C_{m_z} = 0$ [see SFig. 21(c)].

To construct the helical D_{6h} HOTI phase, we begin by introducing the hexagonal lattice vectors:

$$\mathbf{t}_1 = (0, -1, 0), \ \mathbf{t}_2 = (\sqrt{3}/2, 1/2, 0), \ \mathbf{t}_3 = (0, 0, 1),$$
 (392)

and reciprocal lattice vectors:

$$\mathbf{b}_1 = (\sqrt{3}/3, -1, 0), \ \mathbf{b}_2 = (2\sqrt{3}/3, 0, 0), \ \mathbf{b}_3 = (0, 0, 1).$$
 (393)

We define the first BZ to consist of the points $\mathbf{k} = \sum_{i=1,2,3} k_i \mathbf{b}_i, k_i \in [-\pi, \pi)$ [see SFig. 25(a)].

Next, we introduce a model for a 3D TI with hexagonal lattice vectors:

$$H_{\text{TI}}^{P6/mmm1'}(\mathbf{k}) = \tau^z M(\mathbf{k}) + \tau^x \bar{\sigma}^1 \sin(2k_1 + k_2) + \tau^x \bar{\sigma}^2 \sin(k_2 - k_1) + \tau^x \bar{\sigma}^3 \sin(k_1 + 2k_2) + \tau^x \sigma^z \sin(k_3), \quad (394)$$

where we have employed the notation detailed in the text following SEq. (377), and where:

$$M(\mathbf{k}) = 3 - \sum_{i=1,2,3} \cos(k_i) - \cos(k_1 + k_2). \tag{395}$$

In SEq. (394), we have employed a canonical Pauli matrix transformation given by:

$$\bar{\sigma}^1 = \frac{\sqrt{3}}{2}\sigma^x - \frac{1}{2}\sigma^y, \ \bar{\sigma}^2 = \sigma^y, \ \bar{\sigma}^3 = \frac{\sqrt{3}}{2}\sigma^x + \frac{1}{2}\sigma^y. \tag{396}$$

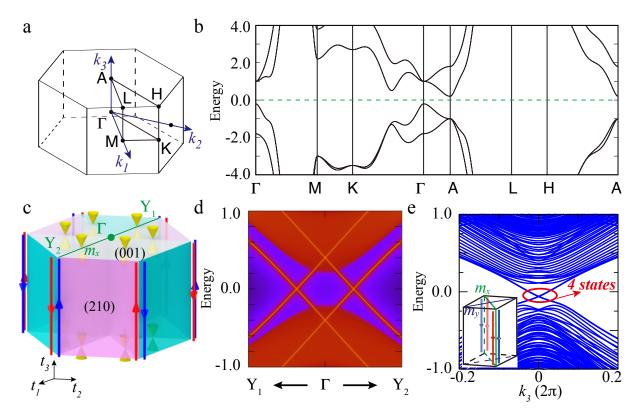
SEq. (394) respects \mathcal{I} and spinful \mathcal{T} symmetries, which are represented through the symmetry action:

$$\mathcal{I}H_{\text{TI}}^{P6/mmm1'}(\mathbf{k})\mathcal{I}^{-1} = \tau^z H_{\text{TI}}^{P6/mmm1'}(-\mathbf{k})\tau^z, \ \mathcal{T}H_{\text{TI}}^{P6/mmm1'}(\mathbf{k})\mathcal{T}^{-1} = \sigma^y [H_{\text{TI}}^{P6/mmm1'}(-\mathbf{k})]^*\sigma^y. \tag{397}$$

As was done for the D_{4h} HOTI earlier in this section, we next superpose two copies of the 3D TI phase of SEq. (394), but again in a manner in which the two 3D TIs are formed from different orbital hybridization, such that the occupied bands of the two 3D TIs exhibit different C_{6z} and C_{3z} eigenvalues [see SRef. 71 and the text preceding SEq. (384)]. We then add perturbative couplings to break \mathcal{T} symmetry, resulting in the 3D Hamiltonian:

$$H_{\text{HOTI}}^{P6/mmm}(\mathbf{k}) = \mu^0 H_{\text{TI}}^{P6/mmm1'}(\mathbf{k}) + (\mu^x + \mu^y)[(\tau^x + \tau^y) + \frac{1}{2}\sigma^z \sin(k_3)]f(\mathbf{k}) + \Delta_1 \mu^z (\tau^z + \tau^0), \tag{398}$$

where we have employed the notation detailed in the text following SEq. (379), and where:


$$f(\mathbf{k}) = \Delta_0 [\sin(k_2 - k_1) + \sin(2k_1 + k_2) - \sin(k_1 + 2k_2)]. \tag{399}$$

 $H_{\mathrm{HOTI}}^{P6/mmm}(\mathbf{k})$ respects the symmetries of double MPG 27.1.100 6/mmm [D_{6h}], whose generating elements are represented through the action:

$$\mathcal{I}H_{\text{HOTI}}^{P6/mmm}(\mathbf{k})\mathcal{I}^{-1} = \tau^{z}H_{\text{HOTI}}^{P6/mmm}(-\mathbf{k})\tau^{z},
C_{6z}H_{\text{HOTI}}^{P6/mmm}(\mathbf{k})C_{6z}^{-1} = \mu^{z}e^{-i\frac{\pi}{6}\sigma^{z}}H_{\text{HOTI}}^{P6/mmm}(C_{6z}\mathbf{k})\mu^{z}e^{i\frac{\pi}{6}\sigma^{z}},
C_{2y}H_{\text{HOTI}}^{P6/mmm}(\mathbf{k})C_{2y}^{-1} = \mu^{z}\sigma^{x}H_{\text{HOTI}}^{P6/mmm}(C_{2y}\mathbf{k})\mu^{z}\sigma^{x}.$$
(400)

Because $H_{\text{HOTI}}^{P6/mmm}(\mathbf{k})$ in SEq. (399) also respects the group of 3D hexagonal lattice translations, then SEq. (400) implies that $H_{\text{HOTI}}^{P6/mmm}(\mathbf{k})$ respects the symmetries of double MSG 191.233 P6/mmm. In SEqs. (398) and (399), the Δ_0 term breaks \mathcal{T} symmetry, and the Δ_1 term breaks the extraneous exchange symmetry represented by $\mu^x + \mu^y$ between the two superposed hexagonal 3D TIs in the $\tau^+ = \frac{1}{2}[\tau^z + \tau^0]$ subspace at all \mathbf{k} points.

To realize the helical D_{6h} HOTI phase of $H_{\rm HOTI}^{P6/mmm}(\mathbf{k})$, we choose $\Delta_0=2$ and $\Delta_1=0.4$ in SEqs. (398) and (399). We have chosen a relatively small value of Δ_1 to ensure that the band ordering remains the same as in the \mathcal{T} -symmetric limit in which Δ_0 vanishes. Specifically, as discussed in SN 31r, in the \mathcal{T} -symmetric limit, $H_{\rm HOTI}^{P6/mmm}(\mathbf{k})$ realizes a sixfold-rotation-anomaly, helical, nonmagnetic HOTI phase^{26,27,36} indicated by the double SIs $(z_{12}, z_{6m,\pi}^+) = (60)$ in

Supplementary Figure 25: Surface and hinge states of the helical magnetic D_{6h} HOTI phase in double MSG 191.233 P6/mmm. (a) The bulk BZ. (b) The bulk band structure obtained from SEqs. (398) and (399) with $\Delta_0 = 2$ and $\Delta_1 = 0.4$. We note that SEq. (398) contains additional symmetries beyond those of double MSG 191.233 P6/mmm, such that the band structure in (b) exhibits additional degeneracies away from the Fermi level – such as the unoccupied fourfold degeneracy at Γ – that are not robust to symmetry-preserving perturbations. (c) Schematic of the top ($\hat{\mathbf{z}}$ -normal) surface states and nanorod hinge states. The top surface of the hexagonal nanorod in (c) respects the symmetries of Type-I double magnetic wallpaper group p6m, and the hinges respect the symmetries of frieze groups with mirror lines parallel to the hinge translation direction (see SN 31 and 34 and SRefs. 34,39,73-75). (d) The top surface spectrum plotted along $k_y = 0$ [see SEqs. (392) and (393)] obtained from surface Green's functions calculated for the model in (b) terminated in a $\hat{\mathbf{z}}$ - (\mathbf{t}_3 -) normal slab geometry. In (d), the surface bands exhibit mirror Chern $C_{m_x} = 2$ spectral flow. We have verified through surface-state calculations that the C_{6z} -related slab surface spectrum along the $C_6m_xC_6^{-1}$ - and $C_6^{-1}m_xC_6$ -invariant surface mirror lines in p6m [see SFig. 22(c)] also exhibits mirror Chern $C_m = 2$ spectral flow, that the surface spectrum along the other three surface mirror lines [i.e. the m_y -, $C_6m_yC_6^{-1}$ -, and $C_6^{-1}m_yC_6$ -invariant lines] exhibits trivial $C_m=0$ spectral flow, and that $C_{m_z}=0$. Together, this implies that the top surface exhibits six twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group p6mderived in SN 34, and implies that the bulk is a D_{6h} HOTI. (e) Unlike in SFigs. 23(e) and 24(e), it is numerically simpler to implement a hinge-state calculation in which the bulk insulator in (b) is cut into a z-directed nanorod that preserves \mathcal{I} and $m_{x,y}$ symmetries, but does not preserve C_{3z} and C_{6z} rotation symmetries [see the inset panel in (e)]. In (e), we show the spectrum of a z-directed, $m_{x,y}$ -symmetric nanorod of the model in (b); the nanorod in (e) features two pairs of helical hinge states along the m_x -invariant hinges (four total hinge states), and does not exhibit any other states crossing the gap. The nanorod spectrum in (e) implies that a D_{6h} -symmetric nanorod of the model in (b) [i.e. a nanorod with m_x , $C_{6z}m_xC_{6z}^{-1}$, and $C_{6z}^{-1}m_xC_{6z}$ symmetries], would feature six pairs of hinge-localized helical modes [twelve total hinge states], demonstrating that the model in (b) exhibits the higher-order spectral flow of a D_{6h} helical magnetic HOTI.

the Type-II double SG 191.234 P6/mmm1'. In SFig. 25(b), we plot the bulk band structure of SEqs. (398) and (399); we emphasize that SEqs. (398) and (399) contain additional, extraneous (artificial) symmetries beyond those of double MSG 191.233 P6/mmm. Hence, the band structure in SFig. 25(b) exhibits additional degeneracies away from the Fermi level – such as the unoccupied fourfold degeneracy at Γ – that are not robust to symmetry-preserving perturbations.

To diagnose the topology of SEqs. (398) and (399), we will perform two sets of calculations. First, we will calculate the double SIs of the four occupied bands. Then, we will demonstrate the presence of anomalous surface and hinge states when SEqs. (398) and (399) are terminated in a finite, D_{6h} -symmetric nanorod geometry [SFig. 25(c)]. To begin, in Supplementary Table 14, we list the double-valued small irreps that correspond to the four occupied spinful Bloch eigenstates at the six high-symmetry \mathbf{k} points shown in SFig. 25(a). From the matrix representative $\Delta_{\sigma}(h)$ of

	Bands	$\Gamma(000)$	$A(00\pi)$								
	Energy	-1.8	-1		Bands	$K(\frac{2\pi}{3}\frac{2\pi}{3}0)$	$H(\frac{2\pi}{3}\frac{2\pi}{3}\pi)$]	Bands	$M(\pi 00)$	$L(\pi 0\pi)$
	σ	$\overline{\Gamma}_8$	\overline{A}_{11}		Energy	-3.5	-5.5		Energy	-3	-5
1-2	$\Delta_{\sigma}(\mathcal{L})$	ξ^0	$-\xi^0$		σ	\overline{K}_8	\overline{H}_8		σ	\overline{M}_6	\overline{L}_6
	$\Delta_{\sigma}(C_{6z})$	$e^{-i\frac{5\pi}{6}\xi^z}$	$e^{-i\frac{5\pi}{6}\xi^z}$	1-2	$\Delta_{\sigma}(C_{3z})$	$e^{-i\frac{\pi}{3}\xi^z}$	$e^{-i\frac{\pi}{3}\xi^z}$	1-2	$\Delta_{\sigma}(\mathcal{I})$	$-\xi^0$	$-\xi^0$
	$\Delta_{\sigma}(m_z)$	$-i\xi^z$	$i\xi^z$		$\Delta_{\sigma}(m_z)$	$-i\xi^z$	$-i\xi^z$		$\Delta_{\sigma}(m_z)$	$i\xi^z$	$i\xi^z$
	Energy	-0.2	-1		Energy	-3.5	-5.5		Energy	-3	-5
	σ	$\overline{\Gamma}_9$	\overline{A}_{12}	l	σ	\overline{K}_9	\overline{H}_9		σ	\overline{M}_6	\overline{L}_6
3-4	$\Delta_{\sigma}(\mathcal{I})$	ξ^0	$-\xi^0$	3-4	$\Delta_{\sigma}(C_{3z})$	$e^{i\frac{\pi}{3}\xi^z}$	$e^{i\frac{\pi}{3}\xi^z}$	3-4	$\Delta_{\sigma}(\mathcal{I})$	$-\xi^0$	$-\xi^0$
	$\Delta_{\sigma}(C_{6z})$	$e^{-i\frac{\pi}{6}\xi^z}$	$e^{-i\frac{\pi}{6}\xi^z}$		$\Delta_{\sigma}(m_z)$	$-i\xi^z$	$-i\xi^z$		$\Delta_{\sigma}(m_z)$	$i\xi^z$	$i\xi^z$
	$\Delta_{\sigma}(m_z)$	$-i\xi^z$	$i\xi^z$								

Supplementary Table 14: The double-valued small irreps corresponding to the four occupied bulk bands of the helical D_{6h} magnetic HOTI phase of SEq. (398) [SFig. 25(b)]. At one **k** point in each of the six maximal momentum stars in MSG 191.233 P6/mmm [given in the notation $\mathbf{k}(k_1k_2k_3)$ and obtained through MKVEC, see SN 12 and SFig. 25(a)], we list the occupied band index and energy, the label of the double-valued small irrep σ that corresponds to each pair of occupied Bloch states at **k** in the notation of the Corepresentations tool [see SN 13], and the matrix representatives $\Delta_{\sigma}(h)$ of the representative unitary symmetries h of the little group $G_{\mathbf{k}}$ [see SEq. (71) and the surrounding text] in the basis of the 2 × 2 Pauli matrices ξ^{i} .

each two-dimensional small irrep for each of the representative unitary symmetries h of the little group $G_{\mathbf{k}}$ [e.g. C_{6z} , C_{3z} , and \mathcal{I} , see SEq. (71) and the surrounding text], we may infer the symmetry eigenvalues of the four occupied bands.

In SN 31 r, we previously expressed the double SI z_{12} in terms of other double SIs in double MSGs with lower symmetry than double MSG 191.233 P6/mmm [SEq. (327)]:

$$z_{12} = \delta_{6m} + 3[(\delta_{6m} - z_4) \mod 4] \mod 12, \tag{401}$$

where z_4 and δ_{6m} are respectively defined in SEqs. (259) and (319). Using the matrix representatives in Supplementary Table 14, we first determine the parity eigenvalue multiplicities:

$$n_{\Gamma}^{-} = 0, \ n_{\Gamma}^{+} = 4, \ n_{A}^{-} = 4, \ n_{A}^{+} = 0, \ n_{M}^{-} = 4, \ n_{M}^{+} = 0, \ n_{L}^{-} = 4, \ n_{L}^{+} = 0.$$
 (402)

In MSG 191.233 P6/mmm, the M and L points lie within multiplicity-3 momentum stars (see SN 12 and MKVEC); therefore, the eight \mathcal{I} -invariant momenta in MSG 191.233 P6/mmm are given by:

$$k_{\mathcal{I}} = \left\{ \Gamma, A, M, (C_{6z})M, (C_{6z})^2 M, L, (C_{6z})L, (C_{6z})^2 L \right\}. \tag{403}$$

SEqs. (402) and (403) imply that:

$$z_{4} = \sum_{K \in K_{\mathcal{I}}} \frac{n_{K}^{-} - n_{K}^{+}}{4} \mod 4$$

$$= \frac{n_{\Gamma}^{-} - n_{\Gamma}^{+}}{4} + \frac{n_{A}^{-} - n_{A}^{+}}{4} + 3\frac{n_{M}^{-} - n_{M}^{+}}{4} + 3\frac{n_{L}^{-} - n_{L}^{+}}{4} \mod 4$$

$$= -1 + 1 + 3 + 3 \mod 4 = 2. \tag{404}$$

Next, to compute δ_{6m} , we use Supplementary Table 14 to obtain the rotation eigenvalues in each mirror sector:

$$\begin{array}{llll} n_A^{\frac{1}{2},i} &=& 1, & n_A^{-\frac{1}{2},i} = 0, & n_A^{\frac{3}{2},i} = 0, & n_A^{\frac{3}{2},i} = 1, & n_A^{-\frac{5}{2},i} = 0, \\ n_H^{\frac{1}{2},i} &=& 1, & n_H^{-\frac{1}{2},i} = 1, & n_H^{\frac{3}{2},i} = 0, & n_L^{\frac{1}{2},i} = 2, & n_L^{-\frac{1}{2},i} = 0, \\ n_\Gamma^{\frac{1}{2},-i} &=& 1, & n_\Gamma^{-\frac{1}{2},-i} = 0, & n_\Gamma^{\frac{3}{2},-i} = 0, & n_\Gamma^{-\frac{3}{2},-i} = 0, & n_\Gamma^{\frac{5}{2},-i} = 1, & n_\Gamma^{-\frac{5}{2},-i} = 0, \\ n_K^{\frac{1}{2},-i} &=& 1, & n_K^{-\frac{1}{2},-i} = 1, & n_K^{\frac{3}{2},-i} = 0, & n_M^{\frac{1}{2},-i} = 0, & n_M^{-\frac{1}{2},-i} = 2. \end{array} \tag{405}$$

Using SEqs. (319) and (405), we then compute δ_{6m} :

$$\delta_{6m} = -\frac{1}{2}n_A^{\frac{1}{2},+i} + \frac{1}{2}n_A^{-\frac{1}{2},+i} - \frac{3}{2}n_A^{\frac{3}{2},+i} + \frac{3}{2}n_A^{-\frac{3}{2},+i} - \frac{5}{2}n_A^{\frac{5}{2},+i} + \frac{5}{2}n_A^{-\frac{5}{2},+i}$$

$$- n_H^{\frac{1}{2},+i} + n_H^{-\frac{1}{2},+i} + 3n_H^{\frac{3}{2},+i} + \frac{3}{2}n_L^{\frac{1}{2},+i} - \frac{3}{2}n_L^{-\frac{1}{2},+i}$$

$$+ \frac{1}{2}n_\Gamma^{\frac{1}{2},-i} - \frac{1}{2}n_\Gamma^{-\frac{1}{2},-i} + \frac{3}{2}n_\Gamma^{\frac{3}{2},-i} - \frac{3}{2}n_\Gamma^{-\frac{3}{2},-i} + \frac{5}{2}n_\Gamma^{\frac{5}{2},-i} - \frac{5}{2}n_\Gamma^{-\frac{5}{2},-i}$$

$$+ n_K^{\frac{1}{2},-i} - n_K^{-\frac{1}{2},-i} - 3n_K^{\frac{3}{2},-i} - \frac{3}{2}n_M^{\frac{1}{2},-i} + \frac{3}{2}n_M^{-\frac{1}{2},-i} \bmod 6$$

$$= (-\frac{1}{2} - \frac{5}{2} - 1 + 1 + 3) + (\frac{1}{2} + \frac{5}{2} + 1 - 1 + 3) \bmod 6 = 0. \tag{406}$$

From SEqs. (401), (404), and (406), we next compute z_{12} :

$$z_{12} = \delta_{6m} + 3[(\delta_{6m} - z_4) \mod 4] \mod 12 = 0 + 3 \times 2 \mod 12 = 6. \tag{407}$$

Lastly, to complete the calculation of the double SIs in MSG 191.233 P6/mmm, we compute $z_{6m,\pi}^+$ [SEq. (320)]:

$$z_{6m,\pi}^{+} = -\frac{1}{2}n_{A}^{\frac{1}{2},+i} + \frac{1}{2}n_{A}^{-\frac{1}{2},+i} - \frac{3}{2}n_{A}^{\frac{3}{2},+i} + \frac{3}{2}n_{A}^{-\frac{3}{2},+i} - \frac{5}{2}n_{A}^{\frac{5}{2},+i} + \frac{5}{2}n_{A}^{-\frac{5}{2},+i}$$

$$-n_{H}^{\frac{1}{2},+i} + n_{H}^{-\frac{1}{2},+i} + 3n_{H}^{\frac{3}{2},+i} + \frac{3}{2}n_{L}^{\frac{1}{2},+i} - \frac{3}{2}n_{L}^{-\frac{1}{2},+i} \mod 6$$

$$= -\frac{1}{2} - \frac{5}{2} - 1 + 1 + 3 \mod 6 = 0. \tag{408}$$

From SEqs. (407) and (408), we determine that the occupied bands of SEqs. (398) and (399) shown in SFig. 25(b) exhibit the double SIs $(z_{12}, z_{6m,\pi}^+) = (60)$.

Previously, in SN 31 r, we showed that the double SIs $(z_{12}, z_{6m,\pi}^+) = (60)$ in double MSG 191.233 P6/mmm either indicate a mirror TCI with mirror Chern number C_{m_z} mod 12 = 6 or indicate a helical D_{6h} HOTI phase in which half of the z-projecting mirror planes [e.g. the $\{m_x|\mathbf{0}\}$ -, $\{C_{6z}m_xC_{6z}^{-1}|\mathbf{0}\}$ -, and $\{C_{6z}^{-1}m_xC_{6z}|\mathbf{0}\}$ -invariant planes] exhibit C_m mod 4 = 2, the other half [e.g. the $\{m_y|\mathbf{0}\}$ -, $\{C_{6z}m_yC_{6z}^{-1}|\mathbf{0}\}$ -, and $\{C_{6z}^{-1}m_yC_{6z}|\mathbf{0}\}$ -invariant planes] exhibit C_m mod 4 = 0, and $C_{m_z} = 0$ [see SFig. 21(c)]. To demonstrate that SEq. (398), with the parameters used to obtain SFig. 25(b), is a D_{6h} HOTI, we have performed two boundary state calculations. First, as shown in SFig. 25(d), we have calculated the top surface spectrum of $H_{\text{HOTI}}^{P6/mmm}(\mathbf{k})$ terminated in a $\hat{\mathbf{z}}$ - (\mathbf{t}_3 -) normal slab geometry. The top surface of a crystal in double MSG 191.233 P6/mmm respects the symmetries of Type-I magnetic wallpaper group p6m (see SN 31 and 34 and SRefs. 34,39,73–75). The slab surface spectrum in SFig. 25(d) exhibits six twofold Dirac cones, circumventing the fermion multiplication theorem for double magnetic wallpaper group p6m derived in SN 34. We then calculate the spectrum of an infinite, z-directed, $m_{x,y}$ -symmetric nanorod of $H_{\text{HOTI}}^{P6/mmm}(\mathbf{k})$, which we find to exhibit the higher-order spectral flow of a D_{6h} HOTI [SFig. 25(e)].

36. Guide to the Larger Supplementary Tables

In the sections below, we will provide further supplementary tables containing additional data generated for this work. First, in SN 37, we will provide a complete tabulation of the exceptional composite band (co)reps of the 1,651 single and double SSGs [see SN 24]. Then, in SN 38, we will tabulate the minimum and maximum EBR dimension in each single and double SSG. Finally, in SN 39, we will list the minimal double SSG with the minimal double SIs on which the double SIs in each double SSGs are dependent (see SN 30).

37. Exceptional Composite Band Coreps Induced from Maximal Site-Symmetry Groups

In this section, we provide a complete tabulation of the exceptional cases [defined in detail in SN 24] in the 1,651 single and double SSGs in which an irreducible (co)rep of a site-symmetry group of a site in a maximal Wyckoff position does not induce an elementary band (co)rep [EBR]. For the Type-I MSGs and Type-II SGs analyzed in TQC¹⁻⁶, the exceptional cases listed in the tables below agree with the previous tabulations performed in SRefs. 1,4. Among the tables provided in this section, there is no table of exceptional cases in the Type-II double SGs, because, as previously shown in SRefs. 1,4 and in Supplementary Table 9, there are no exceptional composite band coreps in the Type-II double SGs.

Supplementary Table 15: Exceptional composite band reps induced from site-symmetry irreps in the Type-I single MSGs (SN 3). In order, the columns in this table list the number of the MSG in the BNS setting and the symbol of the MSG, the letter of the maximal Wyckoff position containing $\bf q$ and the single-valued irrep of the site-symmetry group $G_{\bf q}$, the symbol of the MPG isomorphic to the site-symmetry group $G_{\bf q}$ in the Hermann-Mauguin notation of the MPOINT tool on the BCS^{15–18} and the number of the MPG isomorphic to $G_{\bf q}$ in the convention established by Litvin in SRef. 10, the symbol and number of the MPG isomorphic to the reducing group $G_{\bf q'}$, the symbol and number of the MPG isomorphic to the intersection group $G_{\bf q0} = G_{\bf q} \cap G_{\bf q'}$, and the dimension d of the exceptional composite band reps. See SN 24 for further information regarding exceptional composite band reps.

N	ISG	Irrep		$G_{\mathbf{q}}$	G	rq'	(\mathbf{q}_0	d
124.351	P4/mcc	a,E	422	12.1.40	4/m	11.1.35	4	9.1.29	4
124.351	P4/mcc	c,E	422	12.1.40	4/m	11.1.35	4	9.1.29	4
131.435	$P4_2/mmc$	e,E	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	4
131.435	$P4_2/mmc$	f,E	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	4
132.447	$P4_2/mcm$	$_{\mathrm{b},E}$	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	4
132.447	$P4_2/mcm$	$_{\mathrm{d},E}$	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	4
139.531	I4/mmm	$\mathrm{d}E$	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	4
140.541	I4/mcm	a,E	422	12.1.40	4/m	11.1.35	4	9.1.29	4
140.541	I4/mcm	$_{\mathrm{b},E}$	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	4
163.79	$P\bar{3}1c$	a,E	32	18.1.65	$\bar{3}$	17.1.62	3	16.1.60	4
165.91	$P\bar{3}c1$	a,E	32	18.1.65	33366666	17.1.62	3	16.1.60	4
167.103	$R\bar{3}c$	a,E	32	18.1.65	$\bar{3}$	17.1.62	3	16.1.60	4
188.215	$P\bar{6}c2$	a,E	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	4
188.215	$P\bar{6}c2$	c,E	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	$\mid 4 \mid$
188.215	$P\underline{6}c2$	e,E	32	18.1.65	$\underline{6}$	22.1.79	3	16.1.60	$\mid 4 \mid$
190.227	$P\bar{6}2c$	a,E	32	18.1.65		22.1.79	3	16.1.60	4
192.243	P6/mcc	a,E_2	622	24.1.87	6/m	23.1.82	6	21.1.76	4
192.243	P6/mcc	a,E_1	622	24.1.87	6/m	23.1.82	6	21.1.76	$\mid 4 \mid$
192.243	P6/mcc	c,E	32	18.1.65	$\underline{6}$	22.1.79	3	16.1.60	8
193.253	$P6_{\underline{3}}/mcm$	$_{\mathrm{d},E}$	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	8
207.40	P432	c,E	422	12.1.40	432	30.1.112	4	9.1.29	6
207.40	P432	d,E	422	12.1.40	432	30.1.112	4	9.1.29	6
208.44	$P4_{2}32 \\ P4_{2}32$	$\begin{array}{c c} b,E \\ c,E \end{array}$	$\frac{32}{32}$	18.1.65 18.1.65	$\frac{23}{23}$	28.1.107 $28.1.107$	3	16.1.60 $16.1.60$	8
210.52	$F4_{1}32$	c,E	$\frac{32}{32}$	18.1.65	$\frac{23}{23}$	28.1.107 $28.1.107$	3	16.1.60	$\begin{vmatrix} 6 \\ 8 \end{vmatrix}$
210.52	$F4_{1}32$	d.E	$\frac{32}{32}$	18.1.65	$\frac{23}{23}$	28.1.107	3 3 3	16.1.60	$ \stackrel{\circ}{8} $
211.56	I432	b, E	422	12.1.40	432	30.1.112	4	9.1.29	6
211.56	I432	c,E	_32	18.1.65	432	30.1.112	3	16.1.60	8
215.70	$P\bar{4}3m$	c,E	$\bar{4}2m$	14.1.48	$\bar{4}3m$	31.1.115	mm2	7.1.20	6
215.70	$P\bar{4}3m$	$_{\mathrm{d},E}$	$\bar{4}2m$	14.1.48	$\bar{4}3m$	31.1.115	mm2	7.1.20	6
217.78	$I\bar{4}3m$	b, E	$ \bar{4}2m $	14.1.48	$\bar{4}3m$	31.1.115	mm2	7.1.20	6

222.98	$Pn\bar{3}n$	b, <i>E</i>	422	12.1.40	432	30.1.112	4	9.1.29	12
223.104	$Pm\bar{3}n$	c,E	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	12
223.104	$Pm\bar{3}n$	d,E	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	12
223.104	$Pm\bar{3}n$	e,E	_32	18.1.65	$m\bar{3}$	29.1.109	3	16.1.60	16
224.110	$Pn\bar{3}m$	$_{\mathrm{d},E}$	$\bar{4}2m$	14.1.48	$\bar{4}3m$	31.1.115	mm2	7.1.20	12
226.122	$Fm\bar{3}c$	c,E	$\bar{4}2m$	14.1.48	$m\bar{3}$	29.1.109	mm2	7.1.20	12
228.134	$Fd\bar{3}c$	$_{\mathrm{b},E}$	32	18.1.65	23	28.1.107	3	16.1.60	16
	_ =			18.1.65		17.1.62		16.1.60	
229.140	Im3m	d,E	42m	14.1.48	4/mmm	15.1.53	mm2	7.1.20	12
230.145	$Ia\bar{3}d$	$_{\mathrm{b},E}$	32	18.1.65	$\bar{3}$	17.1.62	3	16.1.60	16

Supplementary Table 16: Exceptional composite band reps induced from site-symmetry irreps in the Type-I double MSGs (SN 3). In order, the columns in this table list the number of the MSG in the BNS setting and the symbol of the MSG, the letter of the maximal Wyckoff position containing ${\bf q}$ and the double-valued irrep of the site-symmetry group $G_{\bf q}$, the symbol of the MPG isomorphic to the site-symmetry group $G_{\bf q}$ in the Hermann-Mauguin notation of the MPOINT tool on the BCS^{15–18} and the number of the MPG isomorphic to $G_{\bf q}$ in the convention established by Litvin in SRef. 10, the symbol and number of the MPG isomorphic to the reducing group $G_{{\bf q}'}$, the symbol and number of the MPG isomorphic to the intersection group $G_{{\bf q}0} = G_{\bf q} \cap G_{{\bf q}'}$, and the dimension d of the exceptional composite band rep. See SN 24 for further information regarding exceptional composite band reps.

S	SG	Irrep	($G_{\mathbf{q}}$		$G_{{f q}'}$		$G_{\mathbf{q}_0}$	d
49.265	Pccm	e, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
49.265	Pccm	f,\overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
49.265	Pccm	g, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
49.265	Pccm	h, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
51.289	Pmma	e, \overline{E}	mm2	7.1.20	2/m	5.1.12	m	4.1.9	4
51.289	Pmma	f, \overline{E}	mm2	7.1.20	2/m	5.1.12	m	4.1.9	4
63.457	Cmcm	c, \overline{E}	mm2	7.1.20	2/m	5.1.12	m	4.1.9	4
66.491	Cccm	a, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
66.491	Cccm	b, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
67.501	Cmma	a, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
67.501	Cmma	b, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
67.501	Cmma	g, \overline{E}	mm2	7.1.20	2/m	5.1.12	m	4.1.9	4
69.521	Fmmm	f, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
72.539	Ibam	a, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
72.539	Ibam	b, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	4
74.554	Imma	e, \overline{E}	mm2	7.1.20	2/m	5.1.12	m	4.1.9	4
89.87	P422	e, \overline{E}	222	6.1.17	422	12.1.40	2	3.1.6	4
89.87	P422	f,\overline{E}	222	6.1.17	422	12.1.40	2	3.1.6	4
97.151	I422	c, \overline{E}	222	6.1.17	422	12.1.40	2	3.1.6	4
99.163	P4mm	c, \overline{E}	mm2	7.1.20	4mm	13.1.44	m	4.1.9	4
107.227	I4mm	$\mathrm{b},\!\overline{E}$	mm2	7.1.20	4mm	13.1.44	m	4.1.9	4
111.251	$P\bar{4}2m$	e, \overline{E}	222	6.1.17	$\bar{4}2m$	14.1.48	2	3.1.6	4
111.251	$P\bar{4}2m$	f,\underline{E}	222	6.1.17	42m	14.1.48	2	3.1.6	4
112.259	$P_{-}^{\bar{4}}2c$	a, \overline{E}	222	6.1.17	$\frac{1}{2}$	10.1.32	2	3.1.6	4
112.259	$P\bar{4}2c$	c, \overline{E}	222	6.1.17	$-\bar{4}$	10.1.32	2	3.1.6	4
115.283	$P\bar{4}m2$	g, \overline{E}	mm2	7.1.20	$\bar{4}2m$	14.1.48	m	4.1.9	4
116.291	$P\bar{4}c2$	a, \overline{E}	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	4
116.291	$P\bar{4}c2$	$b, \overline{\underline{E}}$	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	4
120.321	$I\bar{4}c2$	a, \overline{E}	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	4
120.321	$I\bar{4}c2$	$\mathrm{d},\!\overline{E}$	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	4
121.327	$I\bar{4}2m$	c, \overline{E}	222	6.1.17	$\bar{4}2m$	14.1.48	2	3.1.6	4
124.351	P4/mcc	a, \overline{E}_2	222 222 422	6.1.17 $12.1.40$	$\begin{vmatrix} \bar{4} \\ 4/m \end{vmatrix}$	10.1.32 $11.1.35$	$\begin{bmatrix} 2\\2\\4 \end{bmatrix}$	$3.1.6 \\ 9.1.29$	$\frac{4}{4}$
124.351	P4/mcc	a, \overline{E}_1	422	12.1.40	$\frac{1}{4/m}$	11.1.35	4	9.1.29	4
124.351	P4/mcc	c, \overline{E}_2	422	12.1.40	$\frac{1}{4/m}$	11.1.35	4	9.1.29	4
124.351	P4/mcc	$c, \underline{\overline{E}}_1^2$	422	12.1.40	$\frac{1}{4/m}$	11.1.35	4	9.1.29	4
124.351	P4/mcc	f, \overline{E}	222	6.1.17	422	12.1.40	2	3.1.6	8
121.001	1 1/11000	1,2	222	6.1.17	$\frac{122}{2/m}$	5.1.12	$\frac{2}{2}$	3.1.6	8

126.375	P4/nnc	c, \overline{E}	222	6.1.17	422	12.1.40	2	3.1.6	8
	/	,	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	8
128.399	P4/mnc	d,\overline{E}	$\frac{1}{222}$	6.1.17	2/m	5.1.12	$\bar{2}$	3.1.6	$ \tilde{8} $
130.423	P4/ncc	a, \overline{E}	222		$\frac{2}{4}$		2		8
				6.1.17		10.1.32		3.1.6	1 1
132.447	$P4_2/mcm$	e,E	222	6.1.17	$\bar{4}2m$	14.1.48	2	3.1.6	8
			222	6.1.17	2/m	5.1.12	2	3.1.6	8
133.459	$P4_2/nbc$	b, \overline{E}	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	8
	$P4_2/nnm$	$c, \overline{\overline{E}}$	222	6.1.17	$\bar{4}2m$	14.1.48	2	3.1.6	8
					l				
134.471	$P4_2/nnm$	$\mathrm{d},\!\overline{E}$	222	6.1.17	2/m	5.1.12	2	3.1.6	8
135.483	$P4_2/mbc$	d, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	8
137.507	$P4_2/nmc$	d,\overline{E}	mm2	7.1.20	$\bar{4}2m$	14.1.48	m	4.1.9	8
138.519	$P4_2/ncm$	a, \overline{E}	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	8
130.313	1 42/110111	a, L	222		2/m		$\frac{2}{2}$		8
	D. /	_		6.1.17	. ,	5.1.12		3.1.6	
138.519	$P4_2/ncm$	e, \overline{E}	mm2	7.1.20	2/m	5.1.12	m	4.1.9	8
140.541	I4/mcm	a,E_2	422	12.1.40	4/m	11.1.35	4	9.1.29	4
140.541	$I4^{'}/mcm$	a, \overline{E}_1	422	12.1.40	4/m	11.1.35	4	9.1.29	4
1							l .		
142.561	$I4_1/acd$	b, \overline{E}	222	6.1.17	$\frac{1}{4}$	10.1.32	2	3.1.6	8
163.79	$P\bar{3}1c$	a,\underline{E}_1	32	18.1.65	$\bar{3}$	17.1.62	3	16.1.60	4
165.91	$P\bar{3}c1$	a, \overline{E}_1	32	18.1.65	$\bar{3}$	17.1.62	3	16.1.60	4
167.103	$R\bar{3}c$	a, \overline{E}_1	32	18.1.65	$\bar{3}$	17.1.62	3	16.1.60	4
177.149	P622	f, \overline{E}	222	6.1.17	622	24.1.87		3.1.6	6
1111149	1 022	1,2	$\frac{222}{222}$	6.1.17	32	18.1.65	$\frac{2}{2}$	$\frac{3.1.0}{3.1.6}$	$\begin{vmatrix} 6 \\ 6 \end{vmatrix}$
177.149	P622	g,\overline{E}	$\frac{222}{222}$	6.1.17	622	24.1.87	$\bar{2}$	3.1.6	$\begin{vmatrix} 6 \\ 6 \end{vmatrix}$
111111111111111111111111111111111111111	1 022		$\frac{222}{222}$	6.1.17	32	18.1.65	$\frac{1}{2}$	3.1.6	$ \breve{6} $
183.185	P6mm	c, \overline{E}	mm^2	7.1.20	6mm	25.1.91	m	4.1.9	$ \breve{6} $
			mm2	$7.1.20 \\ 7.1.20$	$3\underline{m}$	19.1.68	m	4.1.9	$ \check{6} $
188.215	$P\bar{6}c2$	a, \overline{E}_1	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	4
188.215	$P\bar{6}c2$	c, \overline{E}_1	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	4
188.215	$P\bar{6}c2$	e, \overline{E}_1	32	18.1.65	$\frac{\ddot{6}}{6}$	22.1.79	3	16.1.60	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
		$e, \underline{\underline{E}}_1$							1
190.227	$P\bar{6}2c$	$a, \underline{\overline{E}}_1$	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	4
192.243	P6/mcc	a, \overline{E}_3	622	24.1.87	6/m	23.1.82	6	21.1.76	4
192.243	P6/mcc	a, \overline{E}_2	622	24.1.87	6/m	23.1.82	6	21.1.76	4
192.243	P6/mcc	a, \overline{E}_1	622	24.1.87	6/m	23.1.82	6	21.1.76	4
									1 1
100 040	DC /								
192.243	P6/mcc	$c, \overline{\underline{E}}_1$	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	8
192.243 192.243	P6/mcc $P6/mcc$	f, \overline{E}_1	222	6.1.17	622	24.1.87		3.1.6	12
1			222	6.1.17	622 32	24.1.87 $18.1.65$		3.1.6	12
192.243	P6/mcc	f,\overline{E}	$ \begin{array}{c} 222 \\ 222 \\ 222 \end{array} $	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \end{array}$	$\begin{bmatrix} 622 \\ 32 \\ 2/m \end{bmatrix}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \end{array}$	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{c} 3.1.6 \\ 3.1.6 \\ 3.1.6 \end{array}$	$\begin{vmatrix} 12 \\ 12 \\ 12 \end{vmatrix}$
192.243			222	6.1.17	622 32	24.1.87 $18.1.65$		3.1.6	12
192.243 193.253	$P6/mcc$ $P6_3/mcm$	$\begin{vmatrix} f, \overline{E} \\ a, \overline{E}_3 \end{vmatrix}$	$ \begin{array}{c} 222 \\ 222 \\ 222 \\ \hline 6m2 \end{array} $	6.1.17 6.1.17 6.1.17 26.1.95	$\begin{bmatrix} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \end{bmatrix}$	24.1.87 18.1.65 5.1.12 20.1.71	$\frac{2}{2}$ 3 m	3.1.6 $3.1.6$ $3.1.6$ $19.1.68$	12 12 12 4
192.243 193.253 193.253	P6/mcc P63/mcm P63/mcm	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \end{array}$	$ \begin{array}{c} 222 \\ 222 \\ 222 \\ \hline 6m2 \\ 32 \end{array} $	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65	$\begin{bmatrix} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \end{bmatrix}$	24.1.87 18.1.65 5.1.12 20.1.71 22.1.79	2 2 2 3m 3	3.1.6 $3.1.6$ $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$	12 12 12 4 8
192.243 193.253 193.253 194.263	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$	$\begin{bmatrix} f, \overline{E} \\ a, \overline{E}_3 \\ d, \overline{E}_1 \\ b, \overline{E}_3 \end{bmatrix}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \bar{6}m2 \\ \bar{6}m2 \\ \bar{6}m2 \end{array}$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95	$\begin{bmatrix} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \end{bmatrix}$	24.1.87 18.1.65 5.1.12 20.1.71 22.1.79 20.1.71	2 2 3m 3 3m	3.1.6 $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$	12 12 12 4 8 4
192.243 193.253 193.253 194.263 195.1	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$	$\begin{array}{c} \text{f,}\overline{E} \\ \text{a,}\overline{E}_3 \\ \text{d,}\overline{E}_1 \\ \text{b,}\overline{E}_3 \\ \text{c,}\overline{E} \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \bar{6}m2 \\ \bar{6}m2 \\ 222 \\ \end{array}$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17	$\begin{bmatrix} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \end{bmatrix}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \end{array}$	2 2 2 3m 3 3m 2	3.1.6 $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$ $3.1.6$	12 12 12 4 8 4 6
192.243 193.253 193.253 194.263	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$	$\begin{array}{c} \text{f,}\overline{E} \\ \text{a,}\overline{E}_3 \\ \text{d,}\overline{E}_1 \\ \text{b,}\overline{E}_3 \\ \text{c,}\overline{E} \\ \text{d,}\overline{E} \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline 6m2 \\ \hline 6m2 \\ 222 \\ 222 \\ \end{array}$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95	$\begin{bmatrix} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ \end{bmatrix}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \end{array}$	2 2 3m 3 3m 2 2	3.1.6 $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$	12 12 12 4 8 4
192.243 193.253 193.253 194.263 195.1	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$	$\begin{array}{c} \text{f,}\overline{E} \\ \text{a,}\overline{E}_3 \\ \text{d,}\overline{E}_1 \\ \text{b,}\overline{E}_3 \\ \text{c,}\overline{E} \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \bar{6}m2 \\ \bar{6}m2 \\ 222 \\ \end{array}$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17	$\begin{bmatrix} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \end{bmatrix}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \end{array}$	2 2 2 3m 3 3m 2	$\begin{array}{c} 3.1.6 \\ 3.1.6 \\ 3.1.6 \\ 19.1.68 \\ 16.1.60 \\ 19.1.68 \\ 3.1.6 \\ 3.1.6 \end{array}$	12 12 12 4 8 4 6
192.243 193.253 193.253 194.263 195.1 195.1 197.7	$P6/mcc$ $P6_{3}/mcm$ $P6_{3}/mcm$ $P6_{3}/mmc$ $P23$ $P23$ $I23$	$\begin{array}{c} \text{f}, \overline{E} \\ \text{a}, \overline{E}_3 \\ \text{d}, \overline{E}_1 \\ \text{b}, \overline{E}_3 \\ \text{c}, \overline{E} \\ \text{d}, \overline{E} \\ \text{b}, \overline{E} \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline 6m2 \\ 32 \\ \hline 6m2 \\ 222 \\ 222 \\ 222 \\ 222 \\ \end{array}$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17	$\begin{bmatrix} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ \end{bmatrix}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \end{array}$	2 2 3m 3 3m 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6	12 12 12 4 8 4 6 6 6
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18	$P6/mcc$ $P6_{3}/mcm$ $P6_{3}/mcm$ $P6_{3}/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$	$\begin{array}{c} \text{f}, \overline{E} \\ \text{a}, \overline{E}_3 \\ \text{d}, \overline{E}_1 \\ \text{b}, \overline{E}_3 \\ \text{c}, \overline{E} \\ \text{d}, \overline{E} \\ \text{d}, \overline{E} \\ \text{d}, \overline{E} \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline 6m2 \\ 32 \\ \hline 6m2 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \end{array}$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 6.1.17	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 23 \end{array}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \end{array}$	2 2 3m 3 3m 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 3.1.6	12 12 12 4 8 4 6 6 6 12
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$	$\begin{array}{c} \mathrm{f}, \overline{E} \\ \mathrm{a}, \overline{E}_3 \\ \mathrm{d}, \overline{E}_1 \\ \mathrm{b}, \overline{E}_3 \\ \mathrm{c}, \overline{E} \\ \mathrm{d}, \overline{E} \\ \mathrm{d}, \overline{E} \\ \mathrm{c}, \overline{E}_2 \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline 6m2 \\ 32 \\ \hline 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ \end{array}$	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \end{array}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \end{array}$	2 2 3m 3 3m 2 2 2 4	$\begin{array}{c} 3.1.6 \\ 3.1.6 \\ 3.1.6 \\ 19.1.68 \\ 16.1.60 \\ 19.1.68 \\ 3.1.6 \\ 3.1.6 \\ 3.1.6 \\ 3.1.6 \\ 9.1.29 \\ \end{array}$	12 12 12 4 8 4 6 6 6 6 12 6
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E} \\ \mathbf{c}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_1 \end{array}$	222 222 222 5m2 32 6m2 222 222 222 222 422 422	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ \end{array}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \end{array}$	2 2 3m 3 3m 2 2 2 4 4	$\begin{array}{c} 3.1.6\\ 3.1.6\\ 3.1.6\\ 19.1.68\\ 16.1.60\\ 19.1.68\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 9.1.29\\ 9.1.29\\ \end{array}$	12 12 12 4 8 4 6 6 6 12 6 6
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$	$\begin{array}{c} \mathrm{f}, \overline{E} \\ \mathrm{a}, \overline{E}_3 \\ \mathrm{d}, \overline{E}_1 \\ \mathrm{b}, \overline{E}_3 \\ \mathrm{c}, \overline{E} \\ \mathrm{d}, \overline{E} \\ \mathrm{c}, \overline{E}_2 \\ \mathrm{c}, \overline{E}_1 \\ \mathrm{d}, \overline{E}_2 \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline 6m2 \\ 32 \\ \hline 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \end{array}$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 6.1.17 12.1.40 12.1.40	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 432 \end{array}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \end{array}$	2 2 3m 3 3m 2 2 2 4 4 4	3.1.6 $3.1.6$ $3.1.6$ $19.1.68$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.29$ $9.1.29$ $9.1.29$	12 12 12 4 8 4 6 6 6 6 12 6 6 6
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{d}, \overline{E}_1 \end{array}$	222 222 222 5m2 32 6m2 222 222 222 222 422 422	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ \end{array}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \end{array}$	2 2 3m 3 3m 2 2 2 4 4	$\begin{array}{c} 3.1.6\\ 3.1.6\\ 3.1.6\\ 19.1.68\\ 16.1.60\\ 19.1.68\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 9.1.29\\ 9.1.29\\ \end{array}$	12 12 12 4 8 4 6 6 6 12 6 6
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$	$\begin{array}{c} \mathrm{f}, \overline{E} \\ \mathrm{a}, \overline{E}_3 \\ \mathrm{d}, \overline{E}_1 \\ \mathrm{b}, \overline{E}_3 \\ \mathrm{c}, \overline{E} \\ \mathrm{d}, \overline{E} \\ \mathrm{c}, \overline{E}_2 \\ \mathrm{c}, \overline{E}_1 \\ \mathrm{d}, \overline{E}_2 \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline 6m2 \\ 32 \\ \hline 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \end{array}$	6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 432 \end{array}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \end{array}$	2 2 3m 3 3m 2 2 2 4 4 4	$\begin{array}{c} 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 19.1.68\\ 16.1.60\\ 19.1.68\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ \end{array}$	12 12 12 4 8 4 6 6 6 6 12 6 6 6
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40 207.40 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P432$ $P432$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{c}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_1 \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 32 \\ \end{array}$	6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 18.1.65	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 432 \\ 23 \\ \end{array}$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \end{array}$	2 2 3m 3 3m 2 2 2 4 4 4 4 3	$\begin{array}{c} 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 19.1.68\\ 19.1.68\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 16.1.60\\ \end{array}$	12 12 12 4 8 4 6 6 6 6 12 6 6 6 6 8
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{c}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{c}, \overline{E}_1 \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 32 \\ 3$	6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 18.1.65 18.1.65	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \end{array}$	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 3	3.1.6 $3.1.6$ $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $16.1.60$	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 6 8 8
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P432$ $P432$ $P4232$ $P4_232$ $P4_232$ $P4_232$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_2 \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{d}, \overline{E} \\ \mathbf{d}, \overline{E}_1 \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 32 \\ 3$	6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 18.1.65 18.1.65 6.1.17	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \overline{3}m1 \\ \overline{6} \\ \overline{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \end{array}$	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 4 4 3 3 2	3.1.6 $3.1.6$ $3.1.6$ $3.1.6$ $19.1.68$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $16.1.60$ 11.60 11.60	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 12
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P432$ $P432$ $P4232$ $P4_232$ $P4_232$ $P4_232$ $P4_232$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{e}, \overline{E} \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 32 \\ 3$	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 18.1.65 \end{array}$	2 2 2 3m 3 3m 2 2 2 4 4 4 4 3 3 3 2 2 2 2 2 4 4 4 4 2 2 2	3.1.6 $3.1.6$ $3.1.6$ $3.1.6$ $19.1.68$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $16.1.60$ 11.60 11.60 11.60 11.60	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 8 12 12
192.243 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P23$ $P23$ $P23$ $P3$ $P432$ $P432$ $P432$ $P432$ $P432$ $P4232$ $P4232$ $P4232$ $P4232$ $P4232$ $P4232$ $P4232$	$\begin{array}{c} \mathrm{f}, \overline{E} \\ \mathrm{a}, \overline{E}_3 \\ \mathrm{d}, \overline{E}_1 \\ \mathrm{b}, \overline{E}_3 \\ \mathrm{c}, \overline{E}_2 \\ \mathrm{d}, \overline{E}_2 \\ \mathrm{d}, \overline{E}_2 \\ \mathrm{d}, \overline{E}_1 \\ \mathrm{d}, \overline{E}_1 \\ \mathrm{d}, \overline{E}_1 \\ \mathrm{d}, \overline{E}_1 \\ \mathrm{f}, \overline{E} \end{array}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 32 \\ 3$	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 18.1.65 \\ 18.1.65 \end{array}$	2 2 2 3m 3 3m 2 2 2 4 4 4 4 4 4 3 3 2 2 2 2 2 2 2 2 2	3.1.6 $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $16.1.60$ 11.60 11.60 11.60 11.60 11.60 11.60	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 6 8 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P432$ $P432$ $P4232$ $P4_232$ $P4_232$ $P4_232$ $P4_232$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_2 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{c}, \overline{E}_1 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{e}, \overline{E} \end{array}$	222 222 222 5m2 32 6m2 222 222 222 422 422 422 422 422 222 2	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 18.1.65 18.1.65 6.1.17 6.1.17 6.1.17	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3m 3 3m 2 2 2 4 4 4 4 4 4 3 3 2 2 2 2 2 2 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6 3.1.6 3.1.6 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P432$ $P4_232$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_{11} \\ \mathbf{b}, \overline{E}_{33} \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E} \\ \mathbf{d}, \overline{E} \\ \mathbf{c}, \overline{E}_{22} \\ \mathbf{d}, \overline{E}_{11} \\ \mathbf{d}, \overline{E}_{22} \\ \mathbf{d}, \overline{E}_{13} \\ \mathbf{d}, \overline{E}_{24} \\ \mathbf{d}, \overline{E}_{25} \\ \mathbf{d}, \overline{E}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 222 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222$	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 18.1.65 \\ 18.1.65 \\ 30.1.112 \\ 28.1.107 \end{array}$	2 2 2 3m 3 3m 2 2 2 4 4 4 4 3 3 3 2 2 2 2 2 2 2 2	$\begin{array}{c} 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 19.1.68\\ 16.1.60\\ 19.1.68\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 16.1.60\\ 3.1.6\\ 3.1$	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 6 8 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P432$ $P4232$ $P4_232$ $P4_232$ $P4_232$ $P4_232$ $P4_232$ $P4_232$ $P4_232$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_{11} \\ \mathbf{b}, \overline{E}_{33} \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E} \\ \mathbf{d}, \overline{E} \\ \mathbf{c}, \overline{E}_{22} \\ \mathbf{d}, \overline{E}_{11} \\ \mathbf{d}, \overline{E}_{22} \\ \mathbf{d}, \overline{E}_{13} \\ \mathbf{d}, \overline{E}_{24} \\ \mathbf{d}, \overline{E}_{25} \\ \mathbf{d}, \overline{E}$	222 222 222 5m2 32 6m2 222 222 222 422 422 422 422 422 222 2	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 18.1.65 18.1.65 6.1.17 6.1.17 6.1.17	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 2 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6 3.1.6 3.1.6 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 208.44	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P432$ $P4_232$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_{11} \\ \mathbf{b}, \overline{E}_{33} \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E} \\ \mathbf{d}, \overline{E} \\ \mathbf{c}, \overline{E}_{22} \\ \mathbf{d}, \overline{E}_{11} \\ \mathbf{d}, \overline{E}_{22} \\ \mathbf{d}, \overline{E}_{13} \\ \mathbf{d}, \overline{E}_{24} \\ \mathbf{d}, \overline{E}_{25} \\ \mathbf{d}, \overline{E}$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 222 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222$	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 18.1.65 \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 18.1.65 \\ 18.1.65 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \end{array}$	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 2 2 2 2	$\begin{array}{c} 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 19.1.68\\ 16.1.60\\ 19.1.68\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 9.1.29\\ 16.1.60\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 3.1.6\\ 16.1.60\\ \end{array}$	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 210.52	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $P23$ $P432$ $P432$ $P432$ $P432$ $P4_232$ $P4_$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_{11} \\ \mathbf{b}, \overline{E}_{33} \\ \mathbf{c}, \overline{E} \\ \mathbf{d}, \overline{E}_{12} \\ \mathbf{d}, \overline{E}_{12} \\ \mathbf{d}, \overline{E}_{13} \\ \mathbf{d}, \overline{E}_{14} \\ \mathbf{d}, \overline{E}_{15} \\ $	222 222 222 5m2 32 222 222 222 422 422 422 422 422 222 2	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 31.1.107 \\ 28.1.107 \\ $	2 2 2 3m 3 3m 2 2 2 4 4 4 4 3 3 2 2 2 2 2 2 3 3 3 3 3	3.1.6 $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $16.1.60$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $P23$ $P432$ $P432$ $P432$ $P432$ $P4_232$ P	$\begin{array}{c} \mathbf{f},\overline{E} \\ \mathbf{a},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{b},\overline{E}_{3} \\ \mathbf{c},\overline{E}_{\overline{E}} \\ \mathbf{d},\overline{E}_{\overline{E}} \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{c},\overline{E}_{1} \\ \mathbf{d},\overline{E} \\ \mathbf{f},\overline{E} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{\overline{E}} \\ \mathbf{d},\overline{E}_{$	222 222 222 5m2 32 222 222 222 422 422 422 422 422 222 2	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 61.17 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 12.1.40 18.1.65 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 18.1.65 18.1.65 18.1.65	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline{3}m1 \\ \hline{6} \\ \hline{3}m1 \\ 23 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 2 2 2 2	3.1.6 $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $16.1.60$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $P23$ $P432$ $P432$ $P432$ $P432$ $P4232$ $P4_232$ $P4$	$\begin{array}{c} \mathbf{f},\overline{E}\\ \mathbf{a},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{b},\overline{E}_{3}\\ \mathbf{c},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{c},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{5}\\ d$	222 222 222 5m2 32 222 222 222 222 422 422 422 422 32 222 22	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 18.1.65 \\ 18.1.65 \\ 12.1.40 \\ 1$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 2 2 2 2	3.1.6 $3.1.6$ $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ 10.10	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 16 16 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
192.243 193.253 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $P23$ $P3$ $P432$ $P432$ $P432$ $P432$ $P4232$ $P432$ $P432$ $P4332$	$\begin{array}{c} \mathbf{f},\overline{E}\\ \mathbf{a},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{b},\overline{E}_{3}\\ \mathbf{c},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{c},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ d$	222 222 222 5m2 32 6m2 222 222 222 422 422 422 422 32 222 222	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.165 \\ 18.1.65 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 12.1.40 \\ 18.1.65 \end{array}$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3 3 3 4 4 3 3 3 2 2 2 2 2 2 3 3 3 4 4 3 3 3 3	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.29 9.1.29 9.1.29 16.1.60 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 8 12 12 12 12 12 12 12 8 8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $P23$ $P432$ $P432$ $P432$ $P432$ $P4232$ $P4_232$ $P4$	$\begin{array}{c} \mathbf{f},\overline{E}\\ \mathbf{a},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{b},\overline{E}_{3}\\ \mathbf{c},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{c},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{5}\\ d$	222 222 222 5m2 32 6m2 222 222 222 422 422 422 422 32 222 222	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 13.1.65 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 18.1.65 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ $	2 2 2 3 3 3 4 4 3 3 3 2 2 2 2 2 2 3 3 3 4 4 3 3 3 3	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 8 12 12 12 12 12 12 12 8 8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
192.243 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P4232$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P433$ $P4$	$\begin{array}{c} \mathbf{f},\overline{E} \\ \mathbf{a},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{b},\overline{E}_{3}\\ \mathbf{c},\overline{E} \\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{4}\\ \mathbf{d},\overline{E}_{5}\\ \mathbf{d},$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222 \\ 222 \\ 222 \\ 32 \\ 422 \\ 422 \\ 422 \\ 32 \\ 422 \\ 422 \\ 32 \\ 222 \\ 2$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 12.1.7 6.1.17	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 12.1.40 \\ 18.1.65 \end{array}$	2 2 2 3 3 3 3 2 2 2 2 4 4 4 4 4 3 3 2 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 8 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56 214.67	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P4_232$ $P4_32$ $P4_33$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E}_{\overline{E}} \\ \mathbf{d}, \overline{E}_{\overline{E}_2} \\ \mathbf{d}, \overline{E}_{\overline{E}_1} \\ \mathbf{d}, \overline{E}_{\overline{E}_2} \\ \mathbf{d}, \overline{E}_{\overline{E}_1} \\ \mathbf{d}, \overline{E}_{\overline{E}_2} \\ \mathbf{d}, \overline{E}_{\overline{E}_1} \\ \mathbf{d}, \overline{E}_{\overline{E}_1} \\ \mathbf{d}, \overline{E}_{\overline{E}_2} \\ d$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 32 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222 \\$	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 18.1.65 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 12.1.40 \\ 18.1.65 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 12.1.40 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ \end{array}$	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 2 2 2 2	3.1.6 $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $16.1.60$ $3.1.6$	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P4232$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P432$ $P433$ $P4$	$\begin{array}{c} \mathbf{f},\overline{E} \\ \mathbf{a},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{b},\overline{E}_{3}\\ \mathbf{c},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ $	$\begin{array}{c} 222 \\ 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222 \\ 222 \\ 222 \\ 32 \\ 422 \\ 422 \\ 422 \\ 32 \\ 422 \\ 422 \\ 32 \\ 222 \\ 2$	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 12.1.7 6.1.17	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 12.1.40 \\ 18.1.65 \end{array}$	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 2 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 8 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56 214.67	$P6/mcc$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mcm$ $P6_3/mmc$ $P23$ $P23$ $I23$ $Pn\bar{3}$ $P432$ $P432$ $P432$ $P4_232$ $P4_32$ $P4_33$	$\begin{array}{c} \mathbf{f},\overline{E} \\ \mathbf{a},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{1}\\ \mathbf{b},\overline{E}_{3}\\ \mathbf{c},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ \mathbf{d},\overline{E}_{2}\\ \mathbf{d},\overline{E}_{3}\\ $	$\begin{array}{c} 222 \\ 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222 \\ 222 \\ 222 \\ 222 \\ 32 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222 \\$	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 18.1.65 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 12.1.40 \\ 18.1.65 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 12.1.40 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ \end{array}$	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 2 2 2 2	3.1.6 $3.1.6$ $3.1.6$ $19.1.68$ $16.1.60$ $19.1.68$ $3.1.6$ $3.1.6$ $3.1.6$ $3.1.6$ $9.1.29$ $9.1.29$ $9.1.29$ $16.1.60$ $16.1.60$ $3.1.6$	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56 211.56 214.67 214.67	$\begin{array}{c} P6/mcc \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mmc \\ P23 \\ I23 \\ Pn\bar{3} \\ P432 \\ P432 \\ P432 \\ P432 \\ P4_232 \\ P4_232 \\ P4_232 \\ P4_232 \\ F4_32 \\ I432 \\ I431 \\ I432 \\ I432 \\ I432 \\ I432 \\ I433 \\ I433 \\ I433 \\ I433 \\ I431 \\ I432 \\ I432 \\ I432 \\ I433 \\ I434 \\ I434 \\ I434 \\ I435 \\ I43$	$\begin{array}{c} \mathbf{f}, \overline{E} \\ \mathbf{a}, \overline{E}_3 \\ \mathbf{d}, \overline{E}_1 \\ \mathbf{b}, \overline{E}_3 \\ \mathbf{c}, \overline{E}_{\overline{E}} \\ \mathbf{d}, \overline{E}_{\overline{E}_2} \\ \mathbf{d}, \overline{E}_{\overline{E}_1} \\ \mathbf{d}, \overline{E}_{\overline{E}_2} \\ \mathbf{d}, \overline{E}_{\overline{E}_1} \\ \mathbf{d}, \overline{E}_{\overline{E}_2} \\ \mathbf{d}, \overline{E}_{\overline{E}_1} \\ \mathbf{d}, \overline{E}_{\overline{E}_1} \\ \mathbf{d}, \overline{E}_{\overline{E}_2} \\ d$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 \\ 222 \\ 222 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222 \\ 222 \\ 222 \\ 222 \\ 222 \\ 32 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 422 \\ 222 \\$	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 61.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 18.1.65 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17 \\ 6.1$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \bar{3}m1 \\ \bar{6} \\ \bar{3}m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 12.1.40 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ \end{array}$	2 2 3 m 3 3 m 2 2 2 4 4 4 4 3 3 2 2 2 2 2 2 3 3 3 4 4 4 3 2 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56 211.56 214.67 214.67	$\begin{array}{c} P6/mcc \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mcm \\ P23 \\ P23 \\ P23 \\ I23 \\ Pn\bar{3} \\ P432 \\ P432 \\ P432 \\ P4232 \\ P4232 \\ P4232 \\ P4232 \\ P4232 \\ F432 \\ I432 \\ I433 \\ I433 \\ I4432 \\ $	$\begin{array}{c} \mathbf{f},\overline{E} \\ \mathbf{a},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{b},\overline{E}_{3} \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{4} \\ \mathbf{d},\overline{E}_{5} \\ \mathbf{d},\overline{E}_{$	222 222 222 5m2 32 222 222 222 422 422 422 422 422 222 2	6.1.17 6.1.17 6.1.17 26.1.95 18.1.65 26.1.95 6.1.17 6.1.17 6.1.17 12.1.40 12.1.40 12.1.40 12.1.40 12.1.40 18.1.65 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17 6.1.17	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3 3 3 3 2 2 2 4 4 4 4 4 3 3 2 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56 214.67 214.67 218.81 222.98	$\begin{array}{c} P6/mcc \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mmc \\ P23 \\ I23 \\ Pn\bar{3} \\ P432 \\ P432 \\ P432 \\ P432 \\ P4_232 \\ P4_232 \\ P4_232 \\ P4_232 \\ F4_32 \\ I432 \\ I432 \\ I432 \\ I432 \\ I432 \\ I432 \\ I431 \\ I432 \\ I432 \\ I432 \\ I431 \\ I432 \\ I432 \\ I432 \\ I433 \\ I431 \\ I433 \\ I434 \\ I434 \\ I434 \\ I435 \\ I43$	$\begin{array}{c} \mathbf{f},\overline{E} \\ \mathbf{a},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{b},\overline{E}_{3} \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{4} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{4} \\ \mathbf{d},\overline{E}_{5} \\ \mathbf{d},\overline{E}_{$	222 222 222 6m2 32 6m2 222 222 222 422 422 422 422 32 222 222	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 13.1.65 \\ 14.17 \\ 6.1.17 $	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3 3 3 4 4 3 3 2 2 2 2 2 2 4 4 4 3 3 3 2 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 194.263 195.1 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56 214.67 214.67 218.81 222.98 222.98	$\begin{array}{c} P6/mcc \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mmc \\ P23 \\ I23 \\ Pn\bar{3} \\ P432 \\ P432 \\ P432 \\ P432 \\ P4_232 \\ P4_232 \\ P4_232 \\ P4_232 \\ P4_232 \\ I432 \\ I431 \\ I432 \\ I432 \\ I431 \\ I432 \\ I431 \\ I432 \\ I432 \\ I432 \\ I433 \\ I431 \\ I431 \\ I432 \\ I432 \\ I432 \\ I433 \\ I434 \\ I434 \\ I434 \\ I435 \\ I4$	$\begin{array}{c} \mathbf{f},\overline{E} \\ \mathbf{a},\overline{E}_3 \\ \mathbf{d},\overline{E}_{13} \\ \mathbf{b},\overline{E}_3 \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{12} \\ \mathbf{d},\overline{E}_{23} \\ \mathbf{d},\overline{E}_{14} \\ \mathbf{e},\overline{E}_{15} \\ \mathbf{d},\overline{E}_{15} \\ \mathbf{d},\overline{E}_{$	$\begin{array}{c} 222 \\ 222 \\ 222 \\ 222 \\ \hline \\ 6m2 \\ 32 \\ \hline \\ 6m2 \\ 222 $	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 18.1.65 \\ 6.1.17$	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 30.1.112 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3 3 3 4 4 3 3 2 2 2 2 2 2 2 4 4 4 4	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6 9.1.29 9.1.29 9.1.29 9.1.29	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12
192.243 193.253 193.253 194.263 195.1 197.7 201.18 207.40 207.40 207.40 208.44 208.44 208.44 208.44 209.48 210.52 211.56 211.56 211.56 214.67 214.67 218.81 222.98	$\begin{array}{c} P6/mcc \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mcm \\ P6_3/mmc \\ P23 \\ I23 \\ Pn\bar{3} \\ P432 \\ P432 \\ P432 \\ P432 \\ P4_232 \\ P4_232 \\ P4_232 \\ P4_232 \\ F4_32 \\ I432 \\ I432 \\ I432 \\ I432 \\ I432 \\ I432 \\ I431 \\ I432 \\ I432 \\ I432 \\ I431 \\ I432 \\ I432 \\ I432 \\ I433 \\ I431 \\ I433 \\ I434 \\ I434 \\ I434 \\ I435 \\ I43$	$\begin{array}{c} \mathbf{f},\overline{E} \\ \mathbf{a},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{b},\overline{E}_{3} \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{c},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{1} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{2} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{4} \\ \mathbf{d},\overline{E}_{3} \\ \mathbf{d},\overline{E}_{4} \\ \mathbf{d},\overline{E}_{5} \\ \mathbf{d},\overline{E}_{$	222 222 222 6m2 32 6m2 222 222 222 422 422 422 422 32 222 222	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 26.1.95 \\ 18.1.65 \\ 26.1.95 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 6.1.17 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 12.1.40 \\ 13.1.65 \\ 14.17 \\ 6.1.17 $	$\begin{array}{c} 622 \\ 32 \\ 2/m \\ \hline 3m1 \\ \hline 6 \\ \hline 3m1 \\ 23 \\ 23 \\ 23 \\ 432 \\ 432 \\ 432 \\ 23 \\ 23$	$\begin{array}{c} 24.1.87 \\ 18.1.65 \\ 5.1.12 \\ 20.1.71 \\ 22.1.79 \\ 20.1.71 \\ 28.1.107 \\ 30.1.112 \\ $	2 2 2 3 3 3 4 4 3 3 2 2 2 2 2 2 4 4 4 3 3 2 2 2 2	3.1.6 3.1.6 3.1.6 19.1.68 16.1.60 19.1.68 3.1.6 3.1.6 3.1.6 9.1.29 9.1.29 9.1.29 16.1.60 3.1.6	12 12 12 4 8 4 6 6 6 6 6 6 6 6 8 8 12 12 12 12 12 12 12 12 12 12 12 12 12

224.110	$Pn\bar{3}m$	f, \overline{E}	222	6.1.17	$\bar{3}m1$	20.1.71	2	3.1.6	24
	_	l "	222	6.1.17				3.1.6	24
225.116	Fm3m	c, \overline{F}	43m	31.1.115	m3m	32.1.118	3m	19.1.68	8
227.128	$Fd\bar{3}m$	a, \overline{F}	$\bar{4}3m$	31.1.115	$\bar{3}m1$	20.1.71	3m	19.1.68	8
227.128	$Fd\bar{3}m$	b, \overline{F}	$\bar{4}3m$	31.1.115	$\bar{3}m1$	20.1.71	3m	19.1.68	8
228.134	$Fd\bar{3}c$	b, \overline{E}_1	32	18.1.65	23	28.1.107	3	16.1.60	16
	_	_	32	18.1.65	3/3	17.1.62	3	16.1.60	16
230.145	$Ia\bar{3}d$	b, \overline{E}_1	32	18.1.65	3	17.1.62	3	16.1.60	16
230.145	$Ia\bar{3}d$	c, \overline{E}	222	6.1.17	32	18.1.65	2	3.1.6	24
			222	6.1.17	$\overline{4}$	10.1.32	2	3.1.6	24

Supplementary Table 17: Exceptional composite band coreps induced from site-symmetry coreps in the Type-II single SGs (SN 4). In order, the columns in this table list the number of the SG in the BNS setting and the symbol of the SG, the letter of the maximal Wyckoff position containing ${\bf q}$ and the single-valued corep of the site-symmetry group $G_{\bf q}$, the symbol of the SPG isomorphic to the site-symmetry group $G_{\bf q}$ in the Hermann-Mauguin notation of the MPOINT tool on the BCS^{15–18} and the number of the SPG isomorphic to $G_{\bf q}$ in the convention established by Litvin in SRef. 10, the symbol and number of the SPG isomorphic to the reducing group $G_{{\bf q}'}$, the symbol and number of the SPG isomorphic to the intersection group $G_{{\bf q}0} = G_{\bf q} \cap G_{{\bf q}'}$, and the dimension d of the exceptional composite band corep. See SN 24 for further information regarding exceptional composite band coreps.

	SG			$\vec{r}_{\mathbf{q}}$	$G_{\mathbf{q}}$	1'	$G_{\mathbf{c}}$	1 0	d
84.52	$P4_2/m1'$	$e^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2/m1'	5.2.13	21'	3.2.7	4
84.52	$P4_2/m1'$	$f^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2/m1'	5.2.13	21'	3.2.7	4
87.76	I4/m1'	$d^{1}, E^{2}E$	$\bar{4}1'$	10.2.33	2/m1'	5.2.13	21'	3.2.7	4
112.260	$P\overline{4}2c1'$	$e^{1}_{1}E^{2}_{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21,	3.2.7	$ $ $_4$ $ $
112.260	$P\bar{4}2c1'$	$f^{1}_{*}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	$\frac{1}{21}$,	3.2.7	$ \bar{4} $
116.292	$P\bar{4}c21'$	$c^{'}_{,1}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	4
116.292	$P\bar{4}c21'$	$d^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	4
120.322	$I\bar{4}c21'$	$b^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	4
120.322	$I\bar{4}c21'$	$ c ^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	4
121.328	$I\bar{4}2m1'$	$d^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	4
126.376	P4/nnc1'	$d^{'}_{,}{}^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	8
130.424	P4/ncc1'	$b^{1}_{,}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	8
131.436	$P4_2/mmc1'$	e,E	$ \bar{4}2m1' $	14.2.49	mmm1'	8.2.25	mm21'	7.2.21	4
131.436	$P4_2/mmc1'$	f,E	$ \bar{4}2m1' $	14.2.49	mmm1'	8.2.25	mm21'		4
	$P4_2/mcm1'$	$_{\mathrm{b},E}$	$ \bar{4}2m1' $	14.2.49	mmm1'	8.2.25	mm21'	7.2.21	4
132.448	$P4_2/mcm1'$	$_{\mathrm{d},E}$	$ \bar{4}2m1' $	14.2.49	mmm1'	8.2.25	mm21'	7.2.21	4
133.460	$P4_2/nbc1'$	$d^{1}E^{2}E$	$ \bar{4}1' $	10.2.33	2221'	6.2.18	21'	3.2.7	8
135.484	$P4_2/mbc1'$	$b^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2/m1'	5.2.13	21'	3.2.7	8
136.496	$P4_2/mnm1'$	$d^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2/m1'	5.2.13	21'	3.2.7	8
138.520	$P4_2/ncm1'$	$b^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	8
139.532	I4/mmm1'	$^{\prime}_{\mathrm{d},E}$	$\bar{4}2m1'$	14.2.49	mmm1'	8.2.25	mm21'		4
140.542	I4/mcm1'	$_{\mathrm{b},E}$	$ \bar{4}2m1' $	14.2.49	mmm1'	8.2.25	mm21'	7.2.21	4
142.562	$I4_1/acd1'$	$a^{1}E^{2}E$	$\bar{4}1'$	10.2.33	2221'	6.2.18	21'	3.2.7	8
215.71	$P\vec{4}3m1'$	c,E	$ \bar{4}2m1' $	14.2.49	$\bar{4}3m'$	31.2.116		7.2.21	6
215.71	$P\bar{4}3m1'$	$_{\mathrm{d},E}$	$ \bar{4}2m1' $		$\bar{4}3m'$	31.2.116			6
217.79	$I\bar{4}3m1'$	b,E	$ \bar{4}2m1' $	14.2.49	$\bar{4}3m'$	31.2.116			6
217.79	$I\bar{4}3m1'$	$d, {}^{1}E^{2}E$	$\frac{1}{4}1'$	10.2.33	$\bar{4}2m1'$	14.2.49	21'	3.2.7	12
218.82	$P\bar{4}3n1'$	$c, {}^{1}E {}^{2}E$	$\frac{1}{4}1'$	10.2.33	2221′	6.2.18	21'	3.2.7	12
218.82	$P\bar{\underline{4}}3n1'$	$d, {}^{1}E^{2}E$	$\frac{1}{4}1'$	10.2.33	2221′	6.2.18	21'	3.2.7	12
219.86	F43c1'	$c, {}^{1}E {}^{2}E$	$\frac{\bar{4}1'}{2}$	10.2.33	231′	28.2.108		3.2.7	12
219.86	$F\bar{4}3c1'$	$d, {}^{1}E {}^{2}E$	$\frac{\bar{4}1'}{2}$	10.2.33	231′	28.2.108	21'	3.2.7	12
222.99	$Pn\bar{3}n1'$	$d, {}^{1}E^{2}E$	$\frac{1}{4}$ 1'	10.2.33	4221′	12.2.41	21'	3.2.7	24
223.105	$Pm\bar{3}n1'$	c,E	$\frac{1}{4}2m1'$	14.2.49	$mm1'_1$	8.2.25	mm21'	7.2.21	12
223.105	$Pm\bar{3}n1'$	$_{\mathrm{d},E}$	$\frac{1}{4}2m_{1}'$		$m_{\overline{1}}mm_{1}^{1}$	8.2.25	mm21'	7.2.21	12
224.111	Pn3m1'	d,E	$ \frac{\bar{4}2m1'}{\bar{4}2m1'} $	14.2.49	$43m'_{\bar{2}1'}$	31.2.116	mm21',		12
226.123	Fm3c1'	$d, {}^{\mathrm{c},E}_{1E^{2}E}$	$\begin{vmatrix} 42m1' \\ \bar{4}1' \end{vmatrix}$	14.2.49	$m\bar{3}1'$	29.2.110		7.2.21	12
$\begin{vmatrix} 228.135 \\ 229.141 \end{vmatrix}$	$Fdar{3}c1' \ Imar{3}m1'$	d, E = E	$ \bar{4}^{41}_{42m1'} $	10.2.33	$\begin{vmatrix} 231' \\ 4/mmm1' \end{vmatrix}$	28.2.108 15.2.54	21' mm21'	3.2.7 $7.2.21$	24 12
	$Im5m1$ $Ia\bar{3}d1'$	$d, {}^{1}E^{2}E$	$\frac{42m1}{41'}$	14.2.49	$\begin{vmatrix} 4/mmm1 \\ 2221' \end{vmatrix}$		21		$\begin{vmatrix} 12\\24 \end{vmatrix}$
230.146	1a5a1	$\mathbf{u}, E E$	41	10.2.33	2221	6.2.18	<u> </u>	3.2.7	24

Supplementary Table 18: Exceptional composite band coreps induced from site-symmetry coreps in the Type-III single MSGs (SN 5). In order, the columns in this table list the number of the MSG in the BNS setting and the symbol of the MSG, the letter of the maximal Wyckoff position containing ${\bf q}$ and the single-valued corep of the site-symmetry group $G_{\bf q}$, the symbol of the MSG isomorphic to the site-symmetry group $G_{\bf q}$ in the Hermann-Mauguin notation of the MPOINT tool on the BCS^{15–18} and the number of the MSG isomorphic to $G_{\bf q}$ in the convention established by Litvin in SRef. 10, the symbol and number of the MPG isomorphic to the reducing group $G_{{\bf q}'}$, the symbol and number of the MPG isomorphic to the intersection group $G_{{\bf q}0} = G_{\bf q} \cap G_{{\bf q}'}$, and the dimension d of the exceptional composite band corep. See SN 24 for further information regarding exceptional composite band coreps.

	MSG	Corep	G_{ϵ}	n	$G_{\mathbf{q}}$,	G	a o	d
84.53	$P4_2'/m$	eBB	$\overline{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	4
84.53	$P4_2^{\prime\prime}/m$	f_*BB	$\bar{\bar{4}}'$	10.3.34	$\frac{1}{2}/m$	5.1.12	$\frac{1}{2}$	3.1.6	$ \bar{4} $
84.54	$P4_{2}/m'$	e,BB	$\frac{1}{\overline{\Delta}}'$	10.3.34	$\frac{2}{m'}$	5.4.15	$\frac{1}{2}$	3.1.6	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
84.54	$P4_{2}/m'$	f_*BB	$ar{4}' \ ar{4}'$	10.3.34	$\frac{2}{2}/m'$	5.4.15	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
87.77	$I4^{\prime\prime}/m$	$d_{\bullet}BB$	$\frac{4}{4}$	10.3.34	$\frac{2}{1}m$	5.1.12	$\frac{1}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
87.78	I4/m'	d.BB	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10.3.34 $10.3.34$	$\frac{2}{1}m'$	5.1.12 $5.4.15$	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
1	P4'2'c	,	4/		$\frac{2}{1}$ $\frac{2}{2}$ $\frac{2}{2}$		$\frac{2}{2}$		$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
112.261	P42c $P\overline{4}'2'c$	e,BB	$\frac{4}{4}$	10.3.34		6.3.19		3.1.6	1
112.261	$P\bar{4}'2c'$	f,BB	$\frac{4}{4}$	10.3.34	$\frac{2'2'2}{222}$	6.3.19	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
112.262	$P4\ 2c \\ P\overline{4}'2c'$	$_{ m f}^{ m e}, BB$	4' 4'4'4'4'4'4'4'4'4'4'4'4'4'4'4'4'4'4'	10.3.34	$\begin{array}{c} 222 \\ 222 \end{array}$	6.1.17	$\frac{2}{2}$	3.1.6	$\left egin{array}{c} 4 \\ 4 \end{array} \right $
112.262	$P\overline{4}'c'2$,	$\frac{4}{7}$	10.3.34		6.1.17	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
116.293 116.293	$P\overline{4}^{\prime}c^{\prime}2$	$_{ m d}^{ m c},\! BB$	4/	10.3.34 $10.3.34$	$\frac{222}{222}$	6.1.17 $6.1.17$	$\frac{2}{2}$	$3.1.6 \\ 3.1.6$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
116.293	$P\overline{4}^{\prime}c2^{\prime}$	c,BB	$\frac{4}{4}$		$2^{22} 2^{2}$	6.3.19	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
	$P\overline{4}'c2'$	d.BB	$\frac{4}{7}$	10.3.34	$\frac{2}{2}, \frac{2}{2}, \frac{2}{2}$		$\frac{2}{2}$		
116.294 120.323	$I\overline{4}^{\prime}c^{\prime}2$	b.BB	$\frac{4}{4}$	10.3.34	$\frac{2}{222}$	6.3.19 $6.1.17$	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
$\begin{vmatrix} 120.323 \\ 120.323 \end{vmatrix}$	$I_{4}^{4}c_{2}^{2}$	c,BB	$\frac{4}{4}$	10.3.34 $10.3.34$	$\frac{222}{222}$	6.1.17 $6.1.17$	$\frac{2}{2}$	$3.1.6 \\ 3.1.6$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
	I4 c 2 I4 c2'		4/7/		$2^{1}2^{1}2^{1}2^{1}$		$\frac{2}{2}$		- 1
$\begin{vmatrix} 120.324 \\ 120.324 \end{vmatrix}$	I4 c2 I4'c2'	$_{\mathrm{c},BB}^{\mathrm{b},BB}$	$\frac{4}{4}$	10.3.34	$\frac{2}{2}, \frac{2}{2}, \frac{2}{2}$	6.3.19 $6.3.19$	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
120.324	$I^{4}_{1}^{62}$ $I^{4}_{2}^{7}$ m	d.BB	$\frac{4}{4}$ '	10.3.34 $10.3.34$	$\frac{2}{2}, \frac{2}{2}, \frac{2}{2}$	6.3.19	$\frac{2}{2}$	$3.1.6 \\ 3.1.6$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
	$I\overline{4}^{\prime }2m^{\prime }$	d.BB	$\frac{4}{4}$		$\frac{2}{222}$		$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
121.330	P4/m'cc	$b, {}^{1}E^{2}E$	4/m'	10.3.34	42'2'	6.1.17	1		
124.353	P4/mcc	$d, {}^{1}E {}^{2}E$		11.4.38		12.4.43	4	9.1.29	4
124.353	P4/m'cc		4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	4
126.377	P4/n'nc	$_{\mathrm{d},BB}$	$\frac{4}{4}$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
126.378	P4'/nn'c	$_{ m d}$, $_{ m BB}$	$\frac{\bar{4}'}{\bar{a}'}$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
126.379	P4'/nnc'	$_{ m d}$, $_{ m BB}$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
126.383	P4/n'n'c'	$_{ m d}$, $_{BB}$	$\bar{\underline{4}}'$	10.3.34	222	6.1.17	2	3.1.6	8
130.425	P4/n'cc	$_{\mathrm{b},BB}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
130.426	P4'/nc'c	$_{\mathrm{b},BB}$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
130.427	P4'/ncc'	$_{\mathrm{b},BB}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
130.431	P4/n'c'c'	$_{\mathrm{b},BB}$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
131.437	$P4_2/m'mc$	$e, B_1 B_2$	$\bar{4}'2'm$	14.3.50	m'mm	8.3.26	mm2	7.1.20	$\mid 4 \mid$
131.437	$P4_2/m'mc$	$f_*B_1B_2$	$\bar{4}'2'm$	14.3.50	m'mm	8.3.26	mm2	7.1.20	4
131.438	$P4_2^{\bar{\prime}}/mm'c$	$e, B_2 B_3$	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
131.438	$P4_2^{7}/mm'c$	$f_1B_2B_3$	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
131.439	$P4_2^{7}/mmc'$	$e, B_1 B_2$	$\bar{4}'2'm$	14.3.50	mmm	8.1.24	mm2	7.1.20	4
131.439	$P4_2^{7}/mmc'$	$f_1B_1B_2$	$\bar{4}'2'm$	14.3.50	mmm	8.1.24	mm2	7.1.20	4
131.442	$P4_2'/m'mc'$	e,E	$\bar{4}2m$	14.1.48	m'mm	8.3.26	mm2	7.1.20	$ \bar{4} $
131.442	$P4_2^{\prime}/m^{\prime}mc^{\prime}$	f, E	$\overline{4}2m$	14.1.48	m'mm	8.3.26	mm2	7.1.20	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
	$P4_2/m'm'c'$	e, B_2B_3	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
131 443	$P4_2/m'm'c'$	$f_1B_2B_3$	$\frac{1}{4}$ $2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
132.449	$P4_2/mmc$ $P4_2/m'cm$	$b_1B_1B_2$	$\frac{4}{4}'2'm$	14.3.50	m'mm	8.3.26	$\frac{m}{mm2}$	7.4.23 $7.1.20$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
132.449	$P4_2/m$ cm $P4_2/m'$ cm	$d_1B_1B_2$	$\frac{4}{4}'2'm$	14.3.50 $14.3.50$	m'mm	8.3.26	$\frac{mm2}{mm2}$	7.1.20 $7.1.20$	$\begin{vmatrix} 4\\4 \end{vmatrix}$
	$P4_2/mc'm$		$\frac{4}{4} \frac{2}{2} \frac{m}{m}$			8.1.24			
132.450		b, B_1B_2		14.3.50	mmm		mm2	7.1.20	$\left \begin{array}{c} 4 \\ 4 \end{array} \right $
132.450	$P4_2'/mc'm$	d, B_1B_2	$\frac{\bar{4}'2'm}{\bar{4}'2\cdots'}$	14.3.50	mmm	8.1.24	mm2	7.1.20	$\left \begin{array}{c} 4 \\ 4 \end{array} \right $
132.451	$P4_2'/mcm'$	$b_1B_2B_3$	$\frac{\bar{4}'2m'}{\bar{4}'2}$	14.4.51	$m'_{,}m'_{,}m$	8.4.27	m'm'2	7.4.23	4
132.451	$P4_2^{\prime}/mcm^{\prime}$	$d_1B_2B_3$	$\frac{\bar{4}'2m'}{\bar{4}}$	14.4.51	$m'_{p}m'm$	8.4.27	m'm'2	7.4.23	4
132.452	$P4_2^{\prime\prime}/m'c'm$	$_{\mathrm{b},E}$	$\frac{\bar{4}2m}{\bar{4}2}$	14.1.48	$m'_{,}mm$	8.3.26	mm2	7.1.20	4
132.452	$P4_2'/m'c'm$	$_{\mathrm{d},E}$	$\frac{\bar{4}2m}{\bar{7}}$	14.1.48	m'mm	8.3.26	mm2	7.1.20	4
	$P4_2/m'c'm'$	b, B_2B_3	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	$\mid 4 \mid$
	$P4_2/m'c'm'$	$\mathrm{d}_{,}B_{2}B_{3}$	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	$\mid 4 \mid$
133.461	$P4_2/n'bc$	$_{ m d}$, $_{BB}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
133.462	$P4_2'/nb'c$	$_{\mathrm{d},BB}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8

			-,						
133.463	$P4_2'/nbc'$	d,BB	$ \bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
133.467	$P4_2/n'b'c'$	dBB	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
135.485	$P4_2/m'bc$	$_{\mathrm{b},BB}$	$\bar{4}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
			$\frac{1}{4}$				$\frac{2}{2}$		
135.486	$P4_2'/mb'c$	b,BB	4 7,	10.3.34	$\frac{2}{m}$	5.1.12		3.1.6	8
135.487	$P4_2^{7}/mbc'$	$_{ m b,}BB$	$\bar{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	8
135.491	$P4_2/m'b'c'$	b,BB	$\bar{4}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
136.497	$P4_2/m'nm$	dBB	$\bar{\Lambda}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
136.498	$P4_2'/mn'm$	d,BB	$\bar{\Lambda}'$	10.3.34	$\frac{2}{m}$	5.1.12	$\frac{1}{2}$	3.1.6	$\left \begin{array}{c} \ddot{8} \end{array}\right $
	$\frac{14_2}{111111111111111111111111111111111111$		$\frac{4}{4}$				1		
136.499	$P4_2^{7}/mnm'$	$_{\mathrm{d},BB}$	4	10.3.34	2/m	5.1.12	2	3.1.6	8
136.503	$P4_2/m'n'm'$	d,BB	$\bar{4}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
138.521	$P4_2/n'cm$	b,BB	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
138.522	$P4_2^{7}/nc'm$	b,BB	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
138.523	$P4_2^{\prime\prime}/ncm^{\prime}$	b,BB	$\frac{1}{4}$	10.3.34	2'2'2	6.3.19	2	3.1.6	$\begin{vmatrix} 0 \\ 8 \end{vmatrix}$
			4 7,						
138.527	$P4_2/n'c'm'$	$_{ m b,}BB$	$-\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
139.533	I4/m'mm	d, B_1B_2	$\bar{4}'2'm$	14.3.50	m'mm	8.3.26	mm2	7.1.20	$\mid 4 \mid$
139.534	I4'/mm'm	$d_1B_2B_3$	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
139.535	I4'/mmm'	d, B_1B_2	$\bar{4}'2'm$	14.3.50	mmm	8.1.24	mm2	7.1.20	4
			$\bar{4}2m$						
139.538	I4'/m'mm'	d,E		14.1.48	m'mm	8.3.26	mm2	7.1.20	4
139.539	I4/m'm'm'	d,B_2B_3	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	$\mid 4 \mid$
140.543	I4/m'cm	b, B_1B_2	$\bar{4}'2'm$	14.3.50	m'mm	8.3.26	mm2	7.1.20	4
140.543	I4/m'cm	$c, E^{2}E$	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	4
	I4/mcm		$\frac{4}{4}'2'm$					7.1.20	
140.544	14 / THC TH	b, B_1B_2		14.3.50	mmm	8.1.24	mm2		$\left \begin{array}{c}4\\4\end{array}\right $
140.545	I4'/mcm'	b,B_2B_3	$\bar{4}'_22m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
140.546	I4'/m'c'm	$_{\mathrm{b},E}$	$\bar{4}2m$	14.1.48	m'mm	8.3.26	mm2	7.1.20	$\mid 4 \mid$
140.549	I4/m'c'm'	$\mathrm{b}, B_2 B_3$	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	4
142.563	$I4_1/a'cd$	a,BB	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
142.564		a,BB	$\frac{1}{4}$	10.3.34	$\frac{2}{222}$	6.1.17	$\frac{2}{2}$	3.1.6	$\left \begin{array}{c} 8 \\ 8 \end{array} \right $
	$I4'_1/ac'd$		4/						
142.565	$I4_1^{\prime\prime}/acd^{\prime}$	a,BB	$\bar{\underline{4}}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
142.569	$I4_1/a'c'd'$	a,BB	$\begin{bmatrix} \bar{4}'\\ \bar{3}'\\ \bar{3}' \end{bmatrix}$	10.3.34	222	6.1.17	2	3.1.6	8
163.81	$P\bar{3}'1c$	$b, {}^{1}E{}^{2}E$	$\bar{3}'$	17.3.64	32'1	18.3.67	3	16.1.60	4
165.93	$P\bar{3}'c1$	$b^{7}_{1}E^{2}E$	<u>\$</u> '	17.3.64	32'1	18.3.67	3	16.1.60	$ \bar{4} $
	$R\bar{3}'c$	1 - 1 - 9 -	$\frac{3}{3}$						
167.105	$n_0 c$	$ b, {}_{1}^{1}E {}_{2}^{2}E $	3,	17.3.64	32'1	18.3.67	3	16.1.60	4
176.145	$P6_3'/m$	$b, {}^{1}E^{2}E$	$\bar{3}'$	17.3.64	$\overline{6}$	22.1.79	3	16.1.60	$\mid 4 \mid$
176.147	$P6_3'/m'$	$a^{'}_{1}E^{2}E$	$\bar{6}'$	22.3.81	$\bar{3}$	17.1.62	3	16.1.60	4
182.181	$P6_{3}^{''}2'2$	b,E	32	18.1.65	32'1	18.3.67	3	16.1.60	4
182.182	$P6_{3}^{7}22'$	a, E	32	18.1.65	32'1	18.3.67	$\ddot{3}$	16.1.60	$ \stackrel{\cdot}{4} $
	$P\bar{6}'c2'$	$b, {}^{1}E^{2}E$	$\bar{6}'$	22.3.81	32'1		3		
188.218		$0, E_2E$	0			18.3.67		16.1.60	4
188.218	$P\bar{\underline{6}}'c2'$	$d, {}^{1}E, {}^{2}E$	$\bar{6}'$	22.3.81	32'1	18.3.67	3	16.1.60	$\mid 4 \mid$
188.218	$P\bar{6}'c2'$	$f^{1}_{,}E^{2}E$	$\bar{6}'$	22.3.81	32'1	18.3.67	3	16.1.60	$\mid 4 \mid$
190.229	$P\bar{6}'2'c$	$b_{1}^{1}E_{2}^{2}E$	$\bar{6}'$	22.3.81	32'1	18.3.67	3	16.1.60	4
192.245	P6/m'cc	$b, {}^{1}E_{1} {}^{2}E_{1}$	6/m'	23.4.85	62'2'	24.4.90	6	21.1.76	$ \bar{4} $
1		$\begin{bmatrix} 1, & E & E \\ b, & E^2 E \\ b, & E_1^2 E_1 \end{bmatrix}$							
192.245	P6/m'cc	$D, E_2 E_2$	6/m'	23.4.85	62'2'	24.4.90	6	21.1.76	$\mid 4 \mid$
192.245	P6/m'cc	d , 1E 2E	$\bar{6}'$	22.3.81	32'1	18.3.67	3	16.1.60	8
192.247	P6'/mcc'	c,E	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	8
192.249	P6'/m'cc'	$d^{1}E^{2}E$	$\bar{6}'$	22.3.81	32'1	18.3.67	3	16.1.60	8
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{6}{6}$		32'1		3		1 1
193.255	$P6_3/m'cm$		5,0	22.3.81		18.3.67	3,1	16.1.60	8
193.257	$P6_3'/mcm'$ $P6_3'/mcm'$	$_{\mathrm{b},E}$	$\bar{3}'m'1$	20.4.74	$\bar{6}m_{\underline{-}}^{\prime}2^{\prime}$	26.5.99	3m'1	19.3.70	4
193.257	$P6_3^{\prime}/mcm^{\prime}$	$_{\mathrm{d},E}$	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	8
193.259	$P6_3'/m'cm'$	a,E	$\bar{6}'m'2$	26.3.97	$\bar{3}m'1$	20.5.75	3m'1	19.3.70	4
193.259	$P6_3'/m'cm'$	$c, {}^{1}E^{2}E$	$\bar{6}'$	22.3.81	32'1	18.3.67	3	16.1.60	8
193.259	D6' / 200 200' -		$\bar{3}'m'1$		$\bar{6}m'2'$			19.3.70	
1	$P6_3''/mm'c$	a,E	$\begin{bmatrix} 5m_1 \\ 6l' \end{bmatrix}$	20.4.74		26.5.99	3m'1		4
194.268	$P6_3'/m'm'c$	b,E	$\bar{6}'m'2$	26.3.97	$\bar{3}m'1$	20.5.75	3m'1	19.3.70	$\mid 4 \mid$
201.20	$Pn'\bar{3}'$	$b^{1}E^{2}E$	$ \bar{3}' $	17.3.64	23	28.1.107	3	16.1.60	8
201.20	$Pn'\bar{3}'$	$c^{1}E^{2}E$	$\bar{3}'$	17.3.64	23	28.1.107	3	16.1.60	8
203.28	$Fd'\bar{3}'$		3' 3' 3'	17.3.64	23	28.1.107	3	16.1.60	$\left \begin{array}{c} 8 \\ 8 \end{array}\right $
	$Fd'\bar{3}'$		$\frac{3}{3}$						1 1
203.28	$\Gamma u \mathfrak{Z}$	$d, {}^{1}E {}^{2}E$	ခ်	17.3.64	$\frac{23}{\sqrt{5}}$	28.1.107	3	16.1.60	$\left \begin{array}{c} 8 \\ 0 \end{array} \right $
204.32	$Im'\bar{3}'$	$c, {}^{1}E {}^{2}E$	$\bar{3}'$	17.3.64	$m'\bar{3}'$	29.3.111	.3	16.1.60	8
215.72	$P\bar{4}'3m'$	c,B_2B_3	$\bar{4}'2m'$	14.4.51	$\bar{4}'3m'$	31.3.117		7.4.23	6
215.72	$P\bar{4}'3m'$	d, B_2B_3	$\bar{4}'2m'$	14.4.51	$\bar{4}'3m'$	31.3.117		7.4.23	6
217.80	$I\bar{4}'3m'$	$b, B_2 B_3$	$\bar{4}'2m'$	14.4.51	$\bar{4}'3m'$	31.3.117		7.4.23	6
217.80	$I\bar{4}'3m'$	d,BB	$\bar{4}'$	10.3.34	$\bar{4}'2m'$	14.4.51	2	3.1.6	12
218.83	$P\bar{4}'3n'$	c,BB	$\frac{1}{2}$	10.3.34	$\frac{4277}{222}$	6.1.17	2	3.1.6	12
	$P\bar{4}'3n'$		$rac{ar{4}'}{ar{4}'}$				2		
218.83	$r_4 3n$	d,BB	47,	10.3.34	222	6.1.17	2	3.1.6	12
219.87	$F\bar{4}'3c'$	c,BB	$\frac{1}{4}$	10.3.34	23	28.1.107	2	3.1.6	12
219.87	$F\bar{4}'3c'$	$_{\mathrm{d},BB}$	$\bar{4}'$	10.3.34	23	28.1.107	2	3.1.6	12
221.96	$Pm'\bar{3}'m'$	c, E	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122	4m'm'	13.4.47	6
221.96	$Pm'\bar{3}'m'$	dE	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122	4m'm'	13.4.47	6
222.100	$Pn'\bar{3}'n$	$c, {}^{1}E^{2}E$	$\bar{3}'$	17.3.64	4'32'	30.3.114	3		16
222.100	$Pn\bar{3}n'$	d,BB	$\frac{3}{4}$	10.3.34	4'22'	12.3.42	2	3.1.6	$\begin{vmatrix} 10 \\ 24 \end{vmatrix}$
			499						
222.102	$Pn'\bar{3}'n'$	b,E	422	12.1.40	432	30.1.112	4	9.1.29	12
222.102	$Pn'\bar{3}'n'$	$c, \tilde{E}^{2}E$	$\bar{3}'$	17.3.64	432	30.1.112	3	16.1.60	116

222.102	$Pn'\bar{3}'n'$	d,BB	$\bar{4}'$	10.3.34	422	12.1.40	2	3.1.6	24
223.107	$Pm\bar{3}n'$	c,B_1B_2	$\bar{4}'2'm$	14.3.50	mmm	8.1.24	mm2	7.1.20	12
223.107	$Pm\bar{3}n'$	d, B_1B_2	$\bar{4}'2'm$	14.3.50	mmm	8.1.24	mm2	7.1.20	12
223.108	$Pm'\bar{3}'n'$	c,B_2B_3	$\bar{4}'2m'$	14.4.51	$\mid m'm'm'$	8.5.28	m'm'2	7.4.23	12
223.108	$Pm'\bar{3}'n'$	d, B_2B_3	$\bar{4}'2m'$	14.4.51	$m'm'_m'$	8.5.28	m'm'2	7.4.23	12
223.108	$Pm'\bar{3}'n'$	e,E	_32	18.1.65	$m'\bar{3}'$	29.3.111	3	16.1.60	16
224.112	$Pn'\bar{3}'m$	$_{\mathrm{d},E}$	-42m	14.1.48	-43m	31.1.115	mm2	7.1.20	12
224.113	$Pn\bar{3}m'$	d, B_2B_3	$\bar{4}'2m'$	14.4.51	$\bar{4}'3m'$	31.3.117	m'm'2	7.4.23	12
224.114	$Pn'_{\bar{2}}m'_{\bar{2}}$	d,B_2B_3	$\bar{4}'2m'$	14.4.51	$\bar{4}'_{,3}m'_{,}$	31.3.117		7.4.23	12
224.114	$Pn'\bar{3}'m'$	b, \underline{E}	$\bar{3}'m'1$	20.4.74	$= \bar{4}'_{1}3m'_{1}$	31.3.117	3m'1	19.3.70	8
224.114	$Pn'\bar{3}'m'$	$_{\mathrm{c},E}$	$\bar{\underline{3}}'m'1$	20.4.74	$\bar{4}'3\underline{m}'$	31.3.117	3m'1	19.3.70	8
226.125	$Fm\bar{3}c'$	c,B_1B_2	$\frac{\bar{4}'2'm}{\bar{4}'2'm}$	14.3.50	$m_{\bar{2}}$	29.1.109	mm2	7.1.20	12
226.126	$Fm'\bar{3}'c'$	$c, B_2 B_3$	$\bar{4}'2m'$	14.4.51	$m'\bar{3}'$	29.3.111	m'm'2	7.4.23	12
226.126	$Fm'\bar{3}'c'$	d, E^2E	$\frac{4}{m'}$	11.4.38	_432	30.1.112	4	9.1.29	12
227.132	$Fd'_{\cdot}\bar{3}'m'_{\cdot}$	c,E	$\bar{3}'m'1$	20.4.74	$\bar{4}'3m'$	31.3.117	3m'1	19.3.70	8
227.132	$Fd'\bar{3}'m'$	d,E	$\bar{3}'m'1$	20.4.74	$\bar{4}'3m'$	31.3.117	3m'1	19.3.70	8
228.136	$Fd'\bar{3}'c$	$c, {}^{1}E^{2}E$	$\begin{bmatrix} \bar{3}'\\ \bar{3}'\\ 4'\\ \bar{4}' \end{bmatrix}$	17.3.64	23	28.1.107	3	16.1.60	16
000 107	T 15 /	1.00	3',	17.3.64	32′1	18.3.67	$\frac{3}{2}$	16.1.60	16
228.137	$Fd\bar{3}c'$	d,BB	$\frac{4}{4}$	10.3.34	23	28.1.107	2	3.1.6	$\begin{vmatrix} 24 \\ 24 \end{vmatrix}$
228.138	$Fd'\bar{3}'c'$	$_{1}^{d}$, $_{E}^{B}$		10.3.34	23	28.1.107	2	3.1.6	24
228.138	$Fd'\bar{3}'c'$	$_{\mathrm{b},E}$	32	18.1.65	$\frac{23}{3'}$	28.1.107	3	16.1.60	16
228.138	$Fd'\bar{3}'c'$	$c, {}^{1}E^{2}E$	32/	18.1.65 $17.3.64$	$\stackrel{\circ}{23}$	17.3.64 $28.1.107$	$\frac{3}{3}$	16.1.60 $16.1.60$	$\begin{vmatrix} 16 \\ 16 \end{vmatrix}$
220.130	1 4 5 6	C, L L	3'		32	18.1.65	3	16.1.60	16
229.143	$Im\bar{3}m'$	$d_1B_1B_2$	$\frac{32}{3'}$ $\bar{3}'$ $\bar{4}'2'm$	$\begin{array}{c} 17.3.64 \\ 14.3.50 \end{array}$	4'/mm'm	15.4.56	mm2	7.1.20	10
229.144	$Im'\bar{3}'m'$	b,E	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122	4m'm'	13.4.47	6
229.144	$Im'\bar{3}'m'$	c,E	$\bar{3}'m'1$	20.4.74	$m'\bar{3}'m'$	32.5.122	3m'1	19.3.70	8
229.144	$Im'\bar{3}'m'$	d,B_2B_3	$\bar{4}'2m'$	14.4.51	4/m'm'm'	15.7.59	m'm'2	7.4.23	12
230.147	$Ia'\bar{3}'d$	$a^{1}E^{2}E$	$\bar{3}'$	17.3.64	32'1	18.3.67	3	16.1.60	16
230.148	$Ia\bar{3}d'$	d,BB	$\begin{bmatrix} \bar{3}'\\ \bar{4}'\\ \bar{4}' \end{bmatrix}$	10.3.34	2'2'2	6.3.19	2	3.1.6	24
230.149	$Ia'\bar{3}'d'$	d,BB	$ \bar{4}' $	10.3.34	222	6.1.17	2	3.1.6	24

Supplementary Table 19: Exceptional composite band coreps induced from site-symmetry coreps in the Type-III double MSGs (SN 5). In order, the columns in this table list the number of the MSG in the BNS setting and the symbol of the MSG, the letter of the maximal Wyckoff position containing ${\bf q}$ and the double-valued corep of the site-symmetry group $G_{\bf q}$, the symbol of the MSG isomorphic to the site-symmetry group $G_{\bf q}$ in the Hermann-Mauguin notation of the MPOINT tool on the BCS^{15–18} and the number of the MSG isomorphic to $G_{\bf q}$ in the convention established by Litvin in SRef. 10, the symbol and number of the MPG isomorphic to the reducing group $G_{{\bf q}'}$, the symbol and number of the MPG isomorphic to the intersection group $G_{{\bf q}_0} = G_{\bf q} \cap G_{{\bf q}'}$, and the dimension d of the exceptional composite band corep. See SN 24 for further information regarding exceptional composite band coreps.

MSC	3	Corep	G_{ϵ}	q	$G_{\mathbf{c}}$	1'	(\mathbf{q}_0	d
11.52 I	$22'_{1}/m$	a, \overline{AA}	$\bar{1}'$	2.3.5	m	4.1.9	1	1.1.1	4
11.52 I	$22_1'/m$	b, \overline{AA}	$\bar{1}'$	2.3.5	m	4.1.9	1	1.1.1	4
11.52 I	$22_1'/m$	c, \overline{AA}	$\bar{1}'$	2.3.5	m	4.1.9	1	1.1.1	4
11.52 I	$22_1'/m$	$\mathrm{d}, \overline{AA}$	$\bar{1}'$	2.3.5	m	4.1.9	1	1.1.1	4
11.53 P	$P2_1/m'$	a, \overline{AA}	$\bar{1}'$	2.3.5	m'	4.3.11	1	1.1.1	4
11.53 P	$P2_1/m'$	b, \overline{AA}	$\bar{1}'$	2.3.5	m'	4.3.11	1	1.1.1	4
11.53 P	$22_1/m'$	c, \overline{AA}	$\bar{1}'$	2.3.5	m'	4.3.11	1	1.1.1	4
11.53 P	$P2_1/m'$	d, \overline{AA}	$\bar{1}'$	2.3.5	m'	4.3.11	1	1.1.1	4
12.60	C2'/m	e, \overline{AA}	$\bar{1}'$	2.3.5	2'/m	5.3.14	1	1.1.1	4
12.60	C2'/m	f, \overline{AA}	$\bar{1}'$	2.3.5	2'/m	5.3.14	1	1.1.1	4
12.61	C2/m'	e, \overline{AA}	$\bar{1}'$	2.3.5	2/m'	5.4.15	1	1.1.1	4
12.61	C2/m'	f, \overline{AA}	$\bar{1}'$	2.3.5	2/m'	5.4.15	1	1.1.1	4
13.67	P2'/c	a, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	4
13.67	P2'/c	b, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	4
13.67	P2'/c	c, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	4
13.67	P2'/c	d, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	4
13.68	P2/c'	a, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	4
13.68	P2/c'	b, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	4
13.68	P2/c'	c, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	4

13.68	P2/c'	d, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	4
1					1				
15.87	C2'/c	a, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	4
	$C2^{\prime}/c$		$\bar{1}'$		2'		1		1
15.87		b, \overline{AA}		2.3.5		3.3.8	1	1.1.1	$\mid 4 \mid$
15.87	C2'/c	c, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	4
15.87	C2'/c	d, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	$\mid 4 \mid$
15.88	C2/c'	a, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	4
	02/0								
15.88	C2/c'	b, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	4
15.88	C2/c'	c, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	4
15.88	C2/c'	d, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	$\mid 4 \mid$
48.259	Pn'nn	e,\overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
1									
48.259	Pn'nn	f, \overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
48.261	Pn'n'n'	e, \overline{AA}	$\bar{1}'$	2.3.5	222	6.1.17	1	1.1.1	8
48.261	Pn'n'n'	f, \overline{AA}	$\bar{1}'$	2.3.5	222	6.1.17	1	1.1.1	8
49.267	Pc'cm	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2	3.3.8	4
1		1, 1, 2, 2, 2, 1							
49.267	Pc'cm	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	4
49.267	Pc'cm	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2	3.3.8	4
					2/2/2				
49.267	Pc'cm	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2	3.3.8	4
49.268	Pccm'	a, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	4
1		$b, {}^{1}\overline{E}{}^{2}\overline{E}$	9/ /		2'2'2				
49.268	Pccm'		2/m'	5.4.15		6.3.19	2	3.1.6	$\mid 4 \mid$
49.268	Pccm'	$c^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	4
	Pccm'	$d, {}^{1}\overline{E}{}^{2}\overline{E}$			2'2'2				1
49.268			2/m'	5.4.15		6.3.19	2	3.1.6	4
50.279	Pb'an	e, \overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
50.279	Pb'an	f,\overline{AA}	$\overline{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
50.280	Pban'	e, \overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
50.280	Pban'	f,\overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
50.283	Pb'a'n'	e,\overline{AA}	$\bar{1}'$	2.3.5	222	6.1.17	1	1.1.1	8
50.283	Pb'a'n'	f, \overline{AA}	$\bar{1}'$	2.3.5	222	6.1.17	1	1.1.1	8
		$a, \overline{{}^{1}E}{}^{2}\overline{E}$							i i
51.291	Pm'ma	a, <u>E</u> <u>E</u>	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	$\mid 4 \mid$
51.291	Pm'ma	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	4
	Pm'ma	$c, {}^{1}\overline{E}{}^{2}\overline{E}$							
51.291	Pm ma		2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	4
51.291	Pm'ma	$d^{1}_{E} \overline{E}^{2} \overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	4
		/ 1 — 0 —	2/m'						
51.292	Pmm'a			5.4.15	m'm2'	7.3.22	m'	4.3.11	4
51.292	Pmm'a	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	4
			2/m'		m'm2'	7.3.22			
51.292	Pmm'a	$\left[c, {}^{1}\overline{E} {}^{2}\overline{E} \right]$		5.4.15			m'	4.3.11	4
51.292	Pmm'a	$d^{1}_{E} \overline{E}^{2} \overline{E}$	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	4
51.297	Pm'm'a'	$a, \overline{E}^{2}\overline{E}$	2/m'		m'm'2	7.4.23		4.3.11	4
		a, E		5.4.15			m'		
51.297	Pm'm'a'	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	4
51.297	Pm'm'a'	$c, \overline{E}^{2}\overline{E}$	$2^{'}\!/m'$	5.4.15	m'm'2	7.4.23			1
							m'	4.3.11	4
51.297	Pm'm'a'	$d^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	4
52.307	Pn'na	a, \overline{AA}	$^{'}\overline{1}^{\prime}$	2.3.5	2'	3.3.8	1	1.1.1	8
52.507	rnna	a,AA	<u>1</u> ,						1 1
		l . .	$ar{1}'_1$	2.3.5	2 2' 2 2'	3.1.6	1	1.1.1	8
52.307	Pn'na	b,AA	1'	2.3.5	2'	3.3.8	1	1.1.1	8
		,	Ī′	2.3.5	2	3.1.6	1	1.1.1	8
52.308	Pnn'a	a, \overline{AA}	$rac{ar{1}'}{1'}$	2.3.5	$\bar{2'}$	3.3.8	1	1.1.1	$ \tilde{8} $
1	_ ,								_
52.308	Pnn'a	b, <u>AA</u>	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	8
52.309	Pnna'	a,\overline{AA}	1'	2.3.5	2	3.1.6	1	1.1.1	8
		[$\frac{\overline{1}'}{\overline{1}'}$ $\frac{\overline{1}'}{\overline{1}'}$	2.3.5	2'	$\frac{3.3.8}{3.1.6}$	1	1.1.1	8
52.309	Pnna'	b, \overline{AA}		$\frac{2.3.5}{2.3.5}$	2	3 1 6	ī	1.1.1	$ \stackrel{\circ}{8} $
02.003	1 10100	5,2171	±,	2.5.5	5/	9.1.0			0
F0.010	D / / /	<u> </u>	$\frac{1}{4}$	2.3.5	4	3.3.8	1	1.1.1	8
52.313	Pn'n'a'	a, \overline{AA}	$\frac{1}{2}$.	2.3.5	2	3.1.6	1	1.1.1	8
52.313	Pn'n'a'	b, \overline{AA}	1'	2.3.5	2	3.1.6	1	1.1.1	8
54.339	Pc'ca	$a, \underline{\overline{AA}}$	$rac{ar{1}'}{ar{1}'}$	2.3.5	9/	3.3.8	1	1.1.1	8
		a, <u>AA</u>	<u>,</u>		_ <u>_</u> ,				1 1
54.339	Pc'ca	b, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	8
54.340	Pcc'a	a, \overline{AA}	ī′	2.3.5	2	3.1.6	1	1.1.1	8
01.010	1 00 W	ω,2121	<u>†</u> /	$\frac{2.3.5}{2.3.5}$	27	3.3.8			8
F 4 0 40	D /	1 4 4	$\frac{1}{4}$	2.3.5	2	0.0.0	1	1.1.1	
54.340	Pcc'a	b, \overline{AA}	Ξ'.	2.3.5	2	3.1.6	1	1.1.1	8
			1'	2.3.5	$1 \qquad 2'$	3.3.8	1	1.1.1	8
54.341	Pcca'	a, \overline{AA}	ī′	2.3.5	2'	3.3.8	1	1.1.1	8
01.011	1	u,2121	T' T' T' T' T' T'	2.5.5	2 2' 2' 2 2' 2' 2' 2' 2' 2' 2' 2' 2' 2'	916			
F4 941	D /	1 4 4	$\frac{1}{2}$,	2.3.5	$\frac{2}{3}$	$\frac{3.1.6}{3.3.8}$	1	1.1.1	8
54.341	Pcca'	b, \overline{AA}	<u>1</u> ′.	2.3.5	2'	3.3.8	1	1.1.1	8
			$ar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
54.345	Pc'c'a'	a, \overline{AA}		$\frac{2.3.5}{2.3.5}$	5	3.1.6	1	1.1.1	$ \stackrel{\circ}{8} $
			± ,		2				
54.345	Pc'c'a'	b, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
56.367	Pc'cn	a, \overline{AA}	$\bar{1}'$	2.3.5	2' 2'	3.3.8	1	1.1.1	8
	Pc'cn	b 4 4	$\overline{1}'$		2/				1 1
56.367		b, \overline{AA}	<u> </u>	2.3.5		3.3.8	1	1.1.1	8
56.368	Pccn'	a, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
56.368	Pccn'	b, \overline{AA}	$\overline{1}'$	2.3.5	$\frac{1}{2}$	3.1.6	1	1.1.1	8
			±,		2				1 1
56.371	Pc'c'n'	a, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
56.371	Pc'c'n'	b, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
1 00.011	1 0 0 10	. ~,	-	2.5.5	_	J.1.0	-		1 ~ 1

		. —							
57.379	Pb'cm	a, \overline{AA}	$egin{array}{c} ar{1}' \ ar{1}' \ ar{1}' \end{array}$	2.3.5	2	3.1.6	1	1.1.1	8
			l Ī′	2.3.5	m	4.1.9	1	1.1.1	8
57.379	Pb'cm	b, \overline{AA}	l <u>1</u>	2.3.5	2	3.1.6	$\bar{1}$	1.1.1	8
01.010	1 0 0110	0,2121		2.3.5		4.1.9	1	1.1.1	8
E7 200	Pbc'm	a, \overline{AA}	±1/	2.3.3	$m \\ 2'$				
57.380	Pocm	a,AA	$\frac{1}{4}$	2.3.5		3.3.8	1	1.1.1	8
	D1 /	, , , ,	<u> </u>	2.3.5	$m \\ 2'$	4.1.9	1	1.1.1	8
57.380	Pbc'm	b, \overline{AA}		2.3.5		3.3.8	1	1.1.1	8
			1'.	2.3.5	$m \\ 2'$	4.1.9	1	1.1.1	8
57.381	Pbcm'	a, \overline{AA}	1'	2.3.5	2'	3.3.8	1	1.1.1	8
			Ī′	2.3.5	m'	4.3.11	1	1.1.1	8
57.381	Pbcm'	b, \overline{AA}	Ī′	2.3.5	2'	3.3.8	1	1.1.1	$\tilde{8}$
01.001	1 00110	5,2121	<u> </u>	$\frac{2.3.5}{2.3.5}$	\bar{m}'	4.3.11	ī	1.1.1	8
57.385	Pb'c'm'	a, \overline{AA}	<u>†</u> ,	$\frac{2.3.5}{2.3.5}$	2	3.1.6	1	1.1.1	8
31.303	100111	а,лл	<u> </u>	$\frac{2.3.5}{2.3.5}$	m'				
F7 90F	DI/I/I	1 4 4	$\frac{1}{1}$	2.3.5		4.3.11	1	1.1.1	8
57.385	Pb'c'm'	b, \overline{AA}	<u>Ι</u> ΄,	2.3.5	2,	3.1.6	1	1.1.1	8
			$\frac{1}{1}'$	2.3.5	m'	4.3.11	1	1.1.1	8
59.407	Pm'mn	c, \overline{AA}	1'	2.3.5	m'm2'	7.3.22	1	1.1.1	8
59.407	Pm'mn	d,\overline{AA}	$\bar{1}'$	2.3.5	m'm2'	7.3.22	1	1.1.1	8
59.408	Pmmn'	c, \overline{AA}	$\bar{1}'$	2.3.5	mm2	7.1.20	1	1.1.1	8
			1 1,					1	
59.408	Pmmn'	d, \overline{AA}	$\bar{1}'$	2.3.5	mm2	7.1.20	1	1.1.1	8
59.411	Pm'm'n'	c, \overline{AA}	$\bar{1}'$	2.3.5	m'm'2	7.4.23	1	1.1.1	8
59.411	Pm'm'n'	d, \overline{AA}	$\bar{1}'$	2.3.5	m'm'2	7.4.23	1	1.1.1	8
1			$\frac{1}{1}$		2'		1		
60.419	Pb'cn	a, \underline{AA}		2.3.5	\ \frac{2}{5},	3.3.8		1.1.1	8
60.419	Pb'cn	b, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	8
60.420	Pbc'n	a, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
60.420	Pbc'n	b, \overline{AA}	$=$ $\frac{1}{1}$ '	2.3.5	2	3.1.6	1	1.1.1	8
			1 1						
60.421	Pbcn'	a, \overline{AA}	$\bar{\underline{1}}'$	2.3.5	2'	3.3.8	1	1.1.1	8
60.421	Pbcn'	b, \overline{AA}	$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	8
60.425	Pb'c'n'	a, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
60.425	Pb'c'n'	b, \overline{AA}	$=$ $\frac{1}{1}$ '	2.3.5	$\frac{1}{2}$	3.1.6	1	1.1.1	8
			$\frac{1}{2}$						
62.443	Pn'ma	a,AA	$\bar{1}'$	2.3.5	m	4.1.9	1	1.1.1	8
62.443	Pn'ma	b, \overline{AA}	$\bar{1}'$	2.3.5	m	4.1.9	1	1.1.1	8
62.444	Pnm'a	a, \overline{AA}	$\bar{1}'$	2.3.5	m'	4.3.11	1	1.1.1	8
1			$\frac{1}{1}$						
62.444	Pnm'a	b, \underline{AA}	<u> </u>	2.3.5	m'	4.3.11	1	1.1.1	8
62.445	Pnma'	a, \overline{AA}	$\bar{1}'$	2.3.5	m	4.1.9	1	1.1.1	8
62.445	Pnma'	b, \overline{AA}	$\bar{1}'$	2.3.5	m	4.1.9	1	1.1.1	8
62.449	Pn'm'a'	a, \overline{AA}	$=$ $\frac{1}{1}$ '	2.3.5	m'		1	l l	8
	FHHH		$\frac{1}{2}$			4.3.11		1.1.1	- 1
62.449	Pn'm'a'	b, \overline{AA}	$\bar{1}'$	2.3.5	m'	4.3.11	1	1.1.1	8
63.459	Cm'cm	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'm2'	7.3.22	\mathbf{m}'	4.3.11	4
63.459	Cm'cm	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	4
63.459	Cm'cm	d,AA	$\bar{\underline{1}}'$	2.3.5	2/m'	5.4.15	1	1.1.1	8
			1'	2.3.5	m'm2'	7.3.22	1	1.1.1	8
63.460	Cmc'm	d, \overline{AA}	$rac{ar{1}'}{1'}$	2.3.5	2'/m	5.3.14	1	1.1.1	8
		, , , , , , , , , , , , , , , , , , ,	1 1	2.3.5	mm2	7.1.20	1	1.1.1	8
63.461	Cmcm'	$a^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	$\overset{\circ}{4}$
1		1, 1 = 2 = E	2///						
63.461	Cmcm'	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	$4 \mid$
63.461	Cmcm'	d,AA	$\bar{1}'$	2.3.5	2'/m	5.3.14	1	1.1.1	8
		, , , , , , , , , , , , , , , , , , ,	$\bar{1}'$	2.3.5	m'm2'	7.3.22	1	1.1.1	8
63.465	Cm'c'm'	$a^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$m'm'^{2}$	7.4.23	m'	4.3.11	$\check{4}$
63.465	Cm'c'm'	$b, {}^{1}\overline{E} {}^{2}\overline{E}$	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	$\frac{1}{4}$
			4/1/1						- 1
63.465	Cm'c'm'	d,\overline{AA}	$\bar{\underline{1}}'$	2.3.5	2/m'	5.4.15	1	1.1.1	8
1	~ .		$ \underline{1}'$	2.3.5	m'm'2	7.4.23	1	1.1.1	8
64.471	Cm'ca	c, \overline{AA}	1'	2.3.5	2/m'	5.4.15	1	1.1.1	8
			$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	8
64.472	Cmc'a	c, \overline{AA}	<u>†</u> '	$\frac{2.3.5}{2.3.5}$	$2^{\prime}/m$	5.3.14	ī	1.1.1	$\stackrel{\circ}{8}$
` 1.1,2	J 1100 W	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 /	2.3.5	$\frac{2}{2}$	3.1.6		1.1.1	
64.473	Cmca'	c, \overline{AA}	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$2.3.5 \\ 2.3.5$	2'/m		1		8 8
04.473	Crnca	C,AA	$\left \frac{1}{4} \right $	2.3.3	² / ^{III}	5.3.14	1	1.1.1	
04.4==	a 111		$ar{1}'$	2.3.5	2'	3.3.8	1	1.1.1	8
64.477	Cm'c'a'	c, \overline{AA}	$\underline{1}'$	2.3.5	2/m'	5.4.15	1	1.1.1	8
			$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
65.483	Cm'mm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	m'mm	8.3.26	\mathbf{m}	4.1.9	$\overline{4}$
65.483	Cm'mm	$f^{,1}\overline{E}^{2}\overline{E}$	$\frac{1}{2'/m}$	5.3.14	m'mm	8.3.26		4.1.9	$\frac{1}{4}$
1		1, 1, 2, 2, 2, 2, 3					m,	l l	
65.484	Cmmm'	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	m'mm	8.3.26	m'	4.3.11	$4 \mid$
65.484	Cmmm'	$f, \overline{E}^{2}\overline{E}$	2/m'	5.4.15	m'mm	8.3.26	m'	4.3.11	4
65.487	Cm'm'm'	$e^{1}, \frac{2}{E}, \frac{2}{E}$	$\frac{1}{2/m'}$	5.4.15	m'm'm'	8.5.28	m'	4.3.11	$\frac{1}{4}$
1									
65.487	Cm'm'm'	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	m'm'm'	8.5.28	m'	4.3.11	$4 \mid$
66.493	Cc'cm	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	2'2'2	6.3.19	2'	3.3.8	4
66.493	Cc'cm	$d, {}^{1}\overline{E} {}^{2}\overline{E}$	$\frac{1}{2'/m}$	5.3.14	2'2'2	6.3.19	2,	3.3.8	$\frac{1}{4}$
								1	
66.494	Cccm'	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	$4 \mid$
66.494	Cccm'	$d^{1}_{,}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	4
67.503	Cm'ma	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{1}{2/m'}$	5.4.15	2'2'2	6.3.19	$\frac{1}{2}$	3.1.6	$\frac{1}{4}$
107.505	Cm ma	c, E E	2/111	9.4.19	444	0.0.19	4	0.1.0	4

1		1	2//			= 0.00		4011	
	~ /	, 1=2=	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	4
67.503	Cm'ma	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	$\begin{vmatrix} 4 \end{vmatrix}$
C7 509	α /	177277	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
67.503	Cm'ma	$e^{1}\overline{E}^{2}\overline{E}$	$\frac{2'}{m}$ $\frac{2'}{m}$	5.3.14	2'2'2	6.3.19	2'	$3.3.8 \\ 4.1.9$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
C7 509	<i>a</i> /	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/111	5.3.14	$ \begin{array}{c c} m'm2'\\ 2'2'2 \end{array} $	7.3.22	m		4
67.503	Cm'ma	I, E E	$\frac{2'}{m}$ $\frac{2'}{m}$	5.3.14	m'm2'	6.3.19 $7.3.22$	2'	$3.3.8 \\ 4.1.9$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
67 504	C	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2}{2'/m}$	5.3.14	2'2'2		m 2'		
67.504	Cmma'	C, E E	$\frac{2}{2'}/m$	5.3.14 $5.3.14$	mm2	6.3.19 $7.1.20$		$3.3.8 \\ 4.1.9$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
67.504	Cmma'	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2}{2'/m}$	5.3.14	2'2'2	6.3.19	m 2'	3.3.8	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
07.504	Citina	u, <i>L L</i>	$\frac{2}{2'/m}$	5.3.14	mm2	7.1.20	m	4.1.9	$\begin{vmatrix} 4\\4 \end{vmatrix}$
67.504	Cmma'	$e^{1}\overline{E}^{2}\overline{E}$	$\frac{2}{2'}/m$	5.3.14	2'2'2	6.3.19	2,	3.3.8	4
07.504	Citima	e, <i>E E</i>	$\frac{2}{2'}/m$	5.3.14	mm2	7.1.20	m	4.1.9	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
67.504	Cmma'	$f^{1}\overline{E}^{2}\overline{E}$	$\frac{2}{2'}/m$	5.3.14	2'2'2	6.3.19	$2^{,}$	3.3.8	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
01.001	Onima	1, L L	$\frac{2}{2'}/m$	5.3.14	mm2	7.1.20	m	4.1.9	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
67.504	Cmma'	$g.\overline{E}$	mm2	7.1.20	2'/m	5.3.14	m	4.1.9	$\frac{1}{4}$
67.507	Cm'm'a'	$c, {}^{\mathrm{g}, \overline{E}}_{\overline{E}} {}^{2}\overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6	4
01.001	0 m m a	, 2 2	$\frac{1}{2}/m'$	5.4.15	m'm'2	7.4.23	m'	4.3.11	$\frac{1}{4}$
67.507	Cm'm'a'	$d^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6	4
		,	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	4
67.507	Cm'm'a'	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6	4
			2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	4
67.507	Cm'm'a'	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6	4
			2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	4
67.507	Cm'm'a'	a, \overline{E}	222	6.1.17	2/m'	5.4.15	2	3.1.6	4
67.507	Cm'm'a'	b, \overline{E}	222	6.1.17	2/m'	5.4.15	2	3.1.6	4
68.513	Cc'ca	c, \overline{AA}	$\bar{\underline{1}}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
CO 719	αI	1 4 4	$ar{ar{1}}' \ 1'$	2.3.5	2' $2'2'2$	3.3.8	1	1.1.1	8
68.513	Cc'ca	$\mathrm{d}, \overline{AA}$	$\frac{1}{1}$	$2.3.5 \\ 2.3.5$	2.5.5	$6.3.19 \\ 3.3.8$	1 1	$1.1.1 \\ 1.1.1$	8 8
68.514	Ccca'	c, \overline{AA}	1' 1' 1' 1' 1'	$\frac{2.3.5}{2.3.5}$	$2^{2}2^{2}$	6.3.19	1	$1.1.1 \\ 1.1.1$	8
			$ar{ar{1}}'$	2.3.5	2	3.1.6	1	1.1.1	8
68.514	Ccca'	d,\overline{AA}	$\bar{\underline{1}}'_{,}$	2.3.5	$2'\bar{2}'2$	6.3.19	1	1.1.1	8
60 517	Cololal	c, \overline{AA}	$\frac{1}{1}'$	$\frac{2.3.5}{2.3.5}$	$\begin{array}{c} 2\\222\end{array}$	3.1.6	1	1.1.1	8
68.517	Cc'c'a'	C,AA	$\frac{1}{1}$	$2.3.5 \\ 2.3.5$	$\frac{222}{2}$	$6.1.17 \\ 3.1.6$	$\frac{1}{1}$	$1.1.1 \\ 1.1.1$	8 8
68.517	Cc'c'a'	d, \overline{AA}	$rac{ar{1}'}{1'}$	$\frac{2.3.5}{2.3.5}$	222	6.1.17	1	1.1.1	$\begin{vmatrix} 8 \\ 8 \end{vmatrix}$
		, , , , , , , , , , , , , , , , , , ,	$ar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
69.523	Fm'mm	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	m'mm	8.3.26	m'	4.3.11	4
		. 1=0=	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	4
69.523	Fm'mm	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2'}{m}$	5.3.14	m'mm	8.3.26	m	4.1.9	4
	 /	1 = 2 =	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	4
69.523	Fm'mm	$e^{1}\overline{E}^{2}\overline{E}$	$\frac{2'}{m}$	5.3.14	m'mm	8.3.26	m	4.1.9	4
00 505	T / / /	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2',	3.3.8	4
69.525	Fm'm'm'	c, 'E'E	$\frac{2}{m'}$	5.4.15	m'm'm'	8.5.28	m'	4.3.11	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
60 505	Em' '	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2/m'}{2/m'}$	5.4.15	222	6.1.17	2,	3.1.6	4
69.525	Fm'm'm'	a, E E	$\frac{2/m'}{2/m'}$	$5.4.15 \\ 5.4.15$	m'm'm' 222	$8.5.28 \\ 6.1.17$	m' 2	$4.3.11 \\ 3.1.6$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
69.525	Fm'm'm'	$e^{1}\overline{E}^{2}\overline{E}$	$\frac{2/m}{2/m'}$	5.4.15 $5.4.15$	m'm'm'	8.5.28	m'	$\frac{3.1.0}{4.3.11}$	
03.020	1. 110 110 110	e, <i>E</i>	$\frac{2}{m}$	5.4.15 $5.4.15$	$\begin{array}{c c} m\ m\ m\ \end{array}$	6.1.17	2	$\frac{4.5.11}{3.1.6}$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
69.525	Fm'm'm'	f,\overline{E}	$\frac{2/m}{222}$	6.1.17	2/m'	5.4.15	$\frac{2}{2}$	3.1.6	4
70.529	Fd'dd	c, \overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
70.529	Fd'dd	d,\overline{AA}	$\frac{1}{1}$ '	2.3.5	2'2'2	6.3.19	1	1.1.1	8
70.531	Fd'd'd'	c,\overline{AA}	$\frac{1}{1}'$	2.3.5	222	6.1.17	1	1.1.1	8
70.531	Fd'd'd'	d, \overline{AA}	$\overline{1}'$	2.3.5	222	6.1.17	1	1.1.1	8
71.535	Im'mm	k, \overline{AA}	$\bar{1}'$	2.3.5	m'mm	8.3.26	1	1.1.1	8
71.537	Im'm'm'	k, \overline{AA}	$\bar{1}'$	2.3.5	m'm'm'	8.5.28	1	1.1.1	8
72.541	Ib'am	c , ${}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	4
72.541	Ib'am	$d^{'}, {}^{1}\overline{E}{}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	2'2'2	6.3.19	2'	3.3.8	4
72.541	Ib'am	e, \overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
			$\bar{1}'$	2.3.5	2'/m	5.3.14	1	1.1.1	8
72.542	Ibam'	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	4
72.542	Ibam'	$d^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	4
72.542	Ibam'	e, \overline{AA}	$ar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	8
			$\bar{\underline{1}}'$	2.3.5	2/m'	5.4.15	1	1.1.1	8
72.545	Ib'a'm'	e, \overline{AA}	$\bar{\underline{1}}'$	2.3.5	222	6.1.17	1	1.1.1	8
	T1/		$\bar{1}'_{\bar{1}'}$	2.3.5	2/m'	5.4.15	1	1.1.1	8
73.550	Ib'ca	a, \overline{AA}	$rac{ar{1}'}{1'}$	2.3.5	$\frac{2}{2'}$	3.1.6	1	1.1.1	8
I		I	1	2.3.5	1 2	3.3.8	1	1.1.1	8

1 50 550	T1/	1 44	<u> </u>	ا ممحا	0	010	1		اما
73.550	Ib'ca	b, \overline{AA}	$\frac{\overline{1}'}{1'}$	$2.3.5 \\ 2.3.5$	$\begin{array}{c} 2 \\ 2' \\ 2 \end{array}$	$\frac{3.1.6}{3.3.8}$	1 1	$1.1.1 \\ 1.1.1$	8 8
73.552	Ib'c'a'	a, \overline{AA}	$ar{ar{1}}' \ ar{1}'$	$\frac{2.3.5}{2.3.5}$	$\frac{2}{2}$	3.1.6	i	1.1.1	$ \stackrel{\circ}{8} $
73.552	Ib'c'a'	b, \overline{AA}	$\bar{1}'$	2.3.5	2	3.1.6	1	1.1.1	8
74.556	Im'ma	$ a, {}^{1}\overline{E}{}^{2}\overline{E} $	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	4
74.556	Im'ma	$b^{1}, \overline{E}^{2}\overline{E}$	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	4
74.556	Im'ma	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	4
74.556	Im'ma	$d^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	\mathbf{m}	4.1.9	4
74.560	Im'm'a'	a, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	4
74.560	Im'm'a'	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'm'2	7.4.23	\mathbf{m}'	4.3.11	4
74.560	Im'm'a'	$c, {}^{1}\overline{\underline{E}} {}^{2}\overline{\underline{E}}$	2/m'	5.4.15	m'm'2	7.4.23	\mathbf{m}'	4.3.11	4
74.560	Im'm'a'	$d, 1\overline{E}^{2}\overline{E}$	2/m'	5.4.15	m'm'2	7.4.23	\mathbf{m}'	4.3.11	4
83.46	P4/m'	$e, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	4/m'	11.4.38	m'	4.3.11	4
83.46	P4/m'	$f, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	4/m'	11.4.38	m'	4.3.11	4
83.47	P4'/m'	$e, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	4'/m'	11.5.39	m'	4.3.11	4
83.47	P4'/m'	$f, {}^{1}\overline{E} {}^{2}\overline{E}$	2/m'	5.4.15	4'/m'	11.5.39	m'	4.3.11	4
84.53	$P4_2'/m$	$e, \frac{1}{\overline{E}}, \frac{2}{\overline{E}}$	$ar{4}' \ ar{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	4
84.53	$P4_2'/m$	$f, {}^{1}\overline{E}{}^{2}\overline{E}$		10.3.34	2/m	5.1.12	2	3.1.6	4
84.55	$P4_2'/m'$	$\begin{array}{c c} a, {}^{1}\overline{E} {}^{2}\overline{E} \\ b, {}^{1}\overline{E} {}^{2}\overline{E} \end{array}$	2/m'	5.4.15	$rac{ar{4}}{ar{4}}$	10.1.32	2	3.1.6	4
84.55	$P4_2/m'$	$\left \begin{array}{c} D, \ \underline{E} \ \underline{E} \end{array} \right $	$\frac{2/m'}{\bar{1}'}$	5.4.15	$\overline{4}'$	10.1.32	$\frac{2}{1}$	3.1.6	4
85.62	P4/n'	d,AA		$2.3.5 \\ 2.3.5$		$\begin{array}{c} 10.3.34 \\ 9.1.29 \end{array}$	1	$1.1.1 \\ 1.1.1$	8 8
85.62	P4/n'	e, \overline{AA}	$rac{ar{1}'}{1'}$	$\frac{2.3.5}{2.3.5}$	$rac{4}{4'}$	10.3.34	1	1.1.1	8
	,		$ar{1}'_1$	2.3.5	$\frac{4}{4}$	9.1.29	1	1.1.1	8
85.63	P4'/n'	$\mathrm{d}, \overline{AA}$	$\frac{1}{1}'$	2.3.5	4	10.1.32	1	1.1.1	8
85.63	P4'/n'	e, \overline{AA}	$ar{1}' 1'$	$\begin{array}{c} 2.3.5 \\ 2.3.5 \end{array}$	$rac{4'}{4}$	9.3.31 $10.1.32$	$\frac{1}{1}$	$1.1.1 \\ 1.1.1$	8 8
00.00	14/11		<u>†</u> ′	$\frac{2.3.5}{2.3.5}$	$\underline{\underline{4}}'_{\cdot}$	9.3.31	1	1.1.1	8
86.70	$P4_2/n'$	c, \overline{AA}	$ar{1}'_1$	$\frac{2.3.5}{2.3.5}$	4'	10.3.34	ī	1.1.1	$ \breve{8} $
00.70	D4 / /	1 4 4	$ar{1}'_1$	2.3.5	$\frac{2}{4}$	3.1.6	1	1.1.1	8
86.70	$P4_2/n'$	d, \overline{AA}	$\frac{\Gamma}{1}$	2.3.5	4′	10.3.34	$\frac{1}{1}$	1.1.1	8
86.71	$P4_2'/n'$	c, \overline{AA}	$\frac{\overline{1}'}{\overline{1}'}$ $\frac{\overline{1}'}{\overline{1}'}$	$\begin{array}{c} 2.3.5 \\ 2.3.5 \end{array}$	$\frac{2}{4}$	$3.1.6 \\ 10.1.32$	1	$1.1.1 \\ 1.1.1$	8 8
	•		$\bar{\bar{1}}'$	2.3.5	$\frac{2}{4}$	3.1.6	1	1.1.1	8
86.71	$P4_2'/n'$	$\mathrm{d}, \overline{AA}$	$\frac{1}{\pi}'$	2.3.5	4	10.1.32	1	1.1.1	8
87.77	I4'/m	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$ar{1}'_4$	$ \begin{array}{c c} 2.3.5 \\ 10.3.34 \end{array} $	$\frac{2}{2/m}$	$\begin{array}{c} 3.1.6 \\ 5.1.12 \end{array}$	$\frac{1}{2}$	$\frac{1.1.1}{3.1.6}$	$\begin{vmatrix} 8 \\ 4 \end{vmatrix}$
87.78	I4/m'	$\begin{bmatrix} \mathbf{c}, \mathbf{E} \mathbf{E} \\ \mathbf{c}, \mathbf{E} \mathbf{E} \end{bmatrix}$	2/m'	5.4.15	$\frac{2}{m'}$	11.4.38	m'	4.3.11	4
01.10	14/11	\mid c, $E \mid E \mid$	$\frac{2}{m'}$	5.4.15	$\frac{4}{4}$	10.3.34	2	3.1.6	4
87.78	I4/m'	f, \overline{AA}	$\bar{1}'$	2.3.5	4/m'	11.4.38	1	1.1.1	8
	,	,	$\bar{1}'$	2.3.5	2/m'	5.4.15	1	1.1.1	8
	T. / /	, 1=2=	$\bar{\underline{1}}'$	2.3.5	$\bar{4}'$	10.3.34	1	1.1.1	8
87.78	I4/m'	$d, {}^{1}\overline{E} {}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2/m'	5.4.15	2.	3.1.6	4
87.79	I4'/m'	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2}{m'}$	5.4.15	$\frac{4'/m'}{\bar{4}}$	11.5.39	m'	4.3.11	4
87.79	I4'/m'	f,\overline{AA}	$2/m' \ \bar{1}'$	$5.4.15 \\ 2.3.5$	4'/m'	$10.1.32 \\ 11.5.39$	$\frac{2}{1}$	3.1.6 $1.1.1$	$\begin{vmatrix} 4 \\ 8 \end{vmatrix}$
01.19	14/111	1,44	$\frac{1}{1}'$	$\frac{2.3.5}{2.3.5}$	$\frac{4}{2/m'}$	5.4.15	1	1.1.1	8
			<u>†</u> ′	2.3.5	$\frac{2}{4}$	10.1.32	1	1.1.1	8
88.84	$I4_1/a'$	c, \overline{AA}	$ar{1}'_1$	2.3.5	$\frac{1}{4}$	10.3.34	1	1.1.1	8
88.84	$I4_1/a'$	d, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{4}'$	10.3.34	1	1.1.1	8
88.85	$I4'_1/a'$	c, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{4}$	10.1.32	1	1.1.1	8
88.85	$I4'_1/a'$	$d, \overline{\overline{AA}}$	$\bar{1}'$	2.3.5	$\bar{4}$	10.1.32	1	1.1.1	8
89.89	P4'22'	e, \overline{E}	222	6.1.17	4'22'	12.3.42	2	3.1.6	4
89.89	P4'22'	$f, \overline{\overline{E}}$	222	6.1.17	4'22'	12.3.42	2	3.1.6	4
93.121 93.121	$P4_{2}'22' \\ P4_{2}'22'$	a, \overline{E} b, \overline{E}	$\frac{222}{222}$	$6.1.17 \\ 6.1.17$	$2'2'2 \\ 2'2'2$	6.3.19 $6.3.19$	$\frac{2}{2}$	$3.1.6 \\ 3.1.6$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
93.121 93.123	$P4_{2}^{2}2_{2}^{2}$	e, \overline{E}	$\begin{array}{c} 222 \\ 222 \end{array}$	6.1.17	$\frac{2}{2'}\frac{2}{2'}\frac{2}{2}$	6.3.19	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
93.123	$P4_{2}^{\prime}2^{\prime}2$	f, \overline{E}	222	6.1.17	$\frac{2}{2},\frac{2}{2},\frac{2}{2}$	6.3.19	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
97.153	14'22'	c, \overline{E}	222	6.1.17	4'22'	12.3.42	2	3.1.6	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
			222	6.1.17	2'2'2 2'2'2	6.3.19	$\frac{2}{2}$	3.1.6	4
97.155	I4'2'2	d, \overline{E}	222	6.1.17	2′2′2	6.3.19		3.1.6	4
99.166	P4'mm' I4'mm'	c, \overline{E}	mm2	7.1.20	4'm'm $4'm'm$	13.3.46	m	4.1.9	$\left \begin{array}{c} 4 \\ 4 \end{array} \right $
$\begin{vmatrix} 107.230 \\ 111.254 \end{vmatrix}$	$P\bar{4}'2m'$	b, \overline{E} e, \overline{E}	$\begin{array}{c} mm2 \\ 222 \end{array}$	$7.1.20 \\ 6.1.17$	$\frac{4mm}{4'2m'}$	$13.3.46 \\ 14.4.51$	$\frac{\mathrm{m}}{2}$	$4.1.9 \\ 3.1.6$	$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$
111.254	$P\bar{4}'2m'$	f, \underline{E}	$\begin{array}{c} 222 \\ 222 \end{array}$	6.1.17	$\frac{4}{4}'2m'$	14.4.51 $14.4.51$	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
112.261	$P\bar{4}'2'c$	$e^{1}, \overline{E}^{2}, \overline{E}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	$\frac{2}{2}$	3.1.6	4
112.261	$P\bar{4}'2'c$	$\int f^{1}_{x} \overline{E}^{2} \overline{E}$	$\overline{4}'$	10.3.34	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	6.3.19	2	3.1.6	4
115.286	$P\bar{4}'m2'$	$g.\overline{E}$	mm2	7.1.20	$\bar{4}'2'm$	14.3.50	\mathbf{m}	4.1.9	4
116.294	$P_{-}^{\underline{4}'}c2'$	$\int c^{1} \overline{E}^{2} \overline{E}$	$\bar{\underline{4}}'$	10.3.34	$2'_{1}2'_{1}2$	6.3.19	2	3.1.6	4
116.294	$P\bar{4}'c2'$	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	4

$120.324 \\ 120.324$	$I\bar{4}'c2'$ $I\bar{4}'c2'$	$\begin{array}{c c} b, {}^{1}\overline{E} {}^{2}\overline{E} \\ c, {}^{1}\overline{E} {}^{2}\overline{E} \end{array}$	$ar{4}' \ ar{4}'$	10.3.34 10.3.34	$2'2'2 \\ 2'2'2$	6.3.19 6.3.19	$\begin{vmatrix} 2\\2 \end{vmatrix}$	3.1.6 3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$	
121.329 121.330	$I\overline{4}'2'm$ $I\overline{4}'2m'$	$\begin{array}{ccc} d, {}^{1}\overline{E} {}^{2}\overline{E} \\ c, \overline{E} \end{array}$	$ar{4}'$ 222	10.3.34 6.1.17	$\frac{2'2'2}{4'2m'}$	6.3.19 14.4.51	2 2	3.1.6 3.1.6	$\begin{array}{ c c }\hline 4\\ 4\end{array}$	
121.330	$I\bar{4}'2m'$	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{222}{4}$	$\begin{array}{c} 6.1.17 \\ 10.3.34 \end{array}$	$\frac{\bar{4}'}{222}$	$\begin{array}{c} 10.3.34 \\ 6.1.17 \end{array}$	2 2	$3.1.6 \\ 3.1.6$	$\begin{array}{ c c c c }\hline 4\\ 4\end{array}$	
123.341 123.341	P4/m'mm P4/m'mm	e,\overline{E} f,\overline{E}	$m'mm \ m'mm$	8.3.26 8.3.26	4/m'mm $4/m'mm$	15.3.55 15.3.55	m'm2' m'm2'	7.3.22 7.3.22	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$	
	P4/m mm P4'/m'm'm	$e, \overline{\overline{E}}$	m'm'm'	8.5.28	4/m mm 4'/m'm'm	15.5.57	m'm'2	7.4.23	$\begin{vmatrix} 4\\4 \end{vmatrix}$	
	P4'/m'm'm	f, \overline{E}	m'm'm'	8.5.28	4'/m'm'm	15.5.57	m'm'2	7.4.23	4	
	P4'/m'mm'	$e, \overline{\underline{E}}$	m'mm	8.3.26	4'/m'm'm	15.5.57	m'm2'	7.3.22	4	
	P4'/m'mm'	$f,\overline{\overline{E}}$ $e,\overline{\overline{E}}$	$m'mm \ m'm'm'$	8.3.26	4'/m'm'm	15.5.57	m'm2'	7.3.22	4	
	P4/m'm'm' P4/m'm'm'	$f.\overline{E}$	$m\ m\ m$ m'	$8.5.28 \\ 8.5.28$	$\begin{vmatrix} 4/m'm'm'\\ 4/m'm'm' \end{vmatrix}$	15.7.59 15.7.59	m'm'2 m'm'2	7.4.23 7.4.23	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$	
124.353	P4/m'cc	$\left \mathbf{b}, \mathbf{b}^{1} \overline{E}_{2} \mathbf{E}_{2} \right $	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	4	
124.353	P4/m'cc	$\left \mathbf{b}, 1 \overline{E}_{1} 2 \overline{E}_{1} \right $	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	4	
124.353	P4/m'cc	$\left d, {}^{1}_{1}\overline{E}_{2} {}^{2}_{\overline{E}}\overline{E}_{2} \right $	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	4	
$124.353 \\ 124.353$	P4/m'cc P4/m'cc	$\begin{vmatrix} d, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1} \\ e, {}^{1}\overline{E} {}^{2}\overline{E} \end{vmatrix}$	$4/m' \ 2/m'$	11.4.38 $5.4.15$	42'2' 4/m'	12.4.43 11.4.38	$\frac{4}{m}$	9.1.29 4.3.11	$\begin{vmatrix} 4 \\ 8 \end{vmatrix}$	
121.000	1 1/111 00	C, L L	$\frac{2}{2}/m'$	5.4.15	2'2'2	6.3.19	2	3.1.6	8	
124.355	P4'/mcc'	f, \overline{E}	222	6.1.17	4'22'	12.3.42	2	3.1.6	8	
124.356	P4'/m'c'c	$e^{1}\overline{E}^{2}\overline{E}$	$\frac{222}{2/m'}$	6.1.17 $5.4.15$	2/m $4'/m'$	5.1.12 11.5.39	2 m'	3.1.6 4.3.11	8	
124.550	14/11166	e, <i>E E</i>	$\frac{2}{1}m'$	5.4.15 $5.4.15$	222	6.1.17	2	3.1.6	8	
124.356	P4'/m'c'c	f,\overline{E}	222	6.1.17	4'22'	12.3.42	2	3.1.6	8	
124.358	D4' /m' oo'	$e^{1}\overline{E}^{2}\overline{E}$	222	6.1.17	2/m'	5.4.15	2,	3.1.6	8	
124.558	P4'/m'cc'	e, <i>E E</i>	$\frac{2/m'}{2/m'}$	5.4.15 $5.4.15$	$\frac{4'/m'}{2'2'2}$	11.5.39 $6.3.19$	m' 2	4.3.11 3.1.6	8	
124.359	P4/m'c'c'	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	4/m'	11.4.38	m'	4.3.11	8	
104.250	D4//./././	f,\overline{E}	2/m'	5.4.15	222	6.1.17	2	3.1.6	8	
124.359	P4/m'c'c'	$_{\rm I,\it E}$	$\frac{222}{222}$	6.1.17 $6.1.17$	$\begin{array}{c c} 422 \\ 2/m' \end{array}$	12.1.40 $5.4.15$	$\frac{2}{2}$	$3.1.6 \\ 3.1.6$	8	
125.365	P4/n'bm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	42'2'	12.4.43	2,	3.3.8	8	
105 005	DA/A	c 1 77 2 77	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	m	4.1.9	8	
125.365	P4/n'bm	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2'/m}{2'/m}$	5.3.14 $5.3.14$	$\begin{array}{c c} 42'2' \\ \bar{4}'2'm \end{array}$	12.4.43 14.3.50	2' m	$3.3.8 \\ 4.1.9$	8	
125.368	P4'/n'b'm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	4'22'	12.3.42	2,	3.3.8	8	
105 000	D4/ /11/	c 1 = 2 =	2'/m	5.3.14	$\bar{4}2m$	14.1.48	m	4.1.9	8	
125.368	P4'/n'b'm	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2'/m}{2'/m}$	5.3.14 $5.3.14$	$\begin{array}{c c} 4'22' \\ \bar{4}2m \end{array}$	12.3.42 14.1.48	2' m	$3.3.8 \\ 4.1.9$	8	
125.370	P4'/n'bm'	$e^{1}\overline{E}^{2}\overline{E}$	$\frac{2}{m'}$	5.4.15	4'22'	12.3.42	2	3.1.6	8	
		41=2=	2/m'	5.4.15	$\bar{4}2'm'$	14.5.52	m'	4.3.11	8	
125.370	P4'/n'bm'	f , ${}^1\overline{E}$ ${}^2\overline{E}$	$\frac{2/m'}{2/m'}$	5.4.15 $5.4.15$	$\begin{array}{c c} 4'22' \\ \bar{4}2'm' \end{array}$	12.3.42 $14.5.52$	2 m'	3.1.6 4.3.11	8	
125.371	P4/n'b'm'	$e^{1}\overline{E}^{2}\overline{E}$	$\frac{2}{m'}$	5.4.15	422	12.1.40	2	3.1.6	8	
			2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	m'	4.3.11	8	
125.371	P4/n'b'm'	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2/m'}{2/m'}$	$5.4.15 \\ 5.4.15$	$\begin{array}{c c} 422 \\ \bar{4}'2m' \end{array}$	12.1.40 $14.4.51$	2 m'	$3.1.6 \\ 4.3.11$	8	
126.377	P4/n'nc	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2}{4}$	10.3.34	2'2'2	6.3.19	2	3.1.6	8	
126.377	P4/n'nc	f,\overline{AA}	$\bar{\underline{1}}'$	2.3.5	42'2'	12.4.43	1	1.1.1	16	
			$egin{array}{c} ar{1}' \ ar{1}' \ ar{4}' \end{array}$	$\frac{2.3.5}{2.3.5}$	$\frac{2'2'2}{4'}$	$\begin{array}{c} 6.3.19 \\ 10.3.34 \end{array}$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$1.1.1 \\ 1.1.1$	16 16	
126.378	P4'/nn'c	$d, {}^{1}\overline{E}_{\overline{\overline{E}}}{}^{2}\overline{E}$		10.3.34	2'2'2	6.3.19	2	3.1.6	8	
126.379	P4'/nnc'	c, \overline{E}	$\frac{222}{222}$	6.1.17 $6.1.17$	$\begin{array}{c c} 4'22' \\ \bar{4}' \end{array}$	12.3.42 10.3.34	2 2	$3.1.6 \\ 3.1.6$	8	
126.379	P4'/nnc'	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{222}{4'}$	10.3.34	222	6.1.17	2	3.1.6	8	
126.380	P4'/n'n'c	c, \overline{E}	222	6.1.17	$4'_{\frac{1}{4}}2'$	12.3.42	2	3.1.6	8	
126.380	P4'/n'n'c	f, \overline{AA}	$\frac{222}{1'}$	$\begin{array}{c} 6.1.17 \\ 2.3.5 \end{array}$	$\frac{4}{4'22'}$	10.1.32 $12.3.42$	$\frac{2}{1}$	$3.1.6 \\ 1.1.1$	$\frac{8}{16}$	
	,		$\bar{1}'_{1}$	$\frac{2.3.5}{2.3.5}$	$\frac{222}{4}$	$\begin{array}{c} 6.1.17 \\ 10.1.32 \end{array}$	$\frac{1}{1}$	$1.1.1 \\ 1.1.1$	16 16	
126.382	P4'/n'nc'	f,\overline{AA}	1' 1' 1' 1' 1'	2.3.5	4'22'	12.3.42	1	1.1.1	16	
	•		$\bar{1}'_{1}$	$\frac{2.3.5}{2.3.5}$	$\frac{2'2'2}{4}$	$\begin{array}{c} 6.3.19 \\ 10.1.32 \end{array}$	$\frac{1}{1}$	$1.1.1 \\ 1.1.1$	16 16	
126.383	P4/n'n'c'	c, \overline{E}	222	6.1.17	422	12.1.40	2	3.1.6	8	
126.383	P4/n'n'c'	f,\overline{AA}	$\frac{222}{1'}$	$6.1.17 \\ 2.3.5$	$egin{array}{c} ar{4}' \ 422 \end{array}$	10.3.34 $12.1.40$	$\frac{2}{1}$	$3.1.6 \\ 1.1.1$	$\frac{8}{16}$	
5.505	/ 0	-,	$\bar{\bar{1}}'_{1}$	$2.3.5 \\ 2.3.5$	$\frac{222}{4'}$	6.1.17 10.3.34	1 1	1.1.1 1.1.1	16	
126.383	P4/n'n'c'	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$egin{array}{c} ar{1}' \ ar{4}' \end{array}$	$\frac{2.3.5}{10.3.34}$	$\frac{4}{222}$	6.1.17	$\begin{vmatrix} 1\\2 \end{vmatrix}$	$\frac{1.1.1}{3.1.6}$	$\begin{vmatrix} 16 \\ 8 \end{vmatrix}$	

128.401	P4/m'nc	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	4/m'	11.4.38	m'	4.3.11	8
	,		2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
128.402	P4'/mn'c	d, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	8
128.404	P4'/m'n'c	c , ${}^1\overline{E}{}^2\overline{E}$	2/m'	5.4.15	$4^{\prime\prime}/m^{\prime}$	11.5.39	m'	4.3.11	8
	,	,	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
128.406	P4'/m'nc'	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	4'/m'	11.5.39	m'	4.3.11	8
	,	,	2/m'	5.4.15	222	6.1.17	2	3.1.6	8
128.406	P4'/m'nc'	d, \overline{E}	222	6.1.17	2/m'	5.4.15	2	3.1.6	8
128.407	P4/m'n'c'	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	4/m'	11.4.38	m'	4.3.11	8
			2/m'	5.4.15	222	6.1.17	2	3.1.6	8
128.407	P4/m'n'c'	d, \overline{E}	222	6.1.17	2/m'	5.4.15	2	3.1.6	8
129.413	P4/n'mm	$\mathrm{d}, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	$\bar{4}^{\prime}2^{\prime}m$	14.3.50	2'	3.3.8	8
	,	,	2'/m	5.3.14	4mm	13.1.44	m	4.1.9	8
129.413	P4/n'mm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	2'	3.3.8	8
	,		2'/m	5.3.14	4mm	13.1.44	m	4.1.9	8
129.416	P4'/n'm'm	$d^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	$\bar{4}2'm'$	14.5.52	2'	3.3.8	8
	,	Í	2'/m	5.3.14	4'm'm	13.3.46	m	4.1.9	8
129.416	P4'/n'm'm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	$\bar{4}2'm'$	14.5.52	2'	3.3.8	8
	,	,	2'/m	5.3.14	4'm'm	13.3.46	m	4.1.9	8
129.418	P4'/n'mm'	$d^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}2m$	14.1.48	2	3.1.6	8
	,		2/m'	5.4.15	4'm'm	13.3.46	m'	4.3.11	8
129.418	P4'/n'mm'	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}2m$	14.1.48	2	3.1.6	8
	,	,	2/m'	5.4.15	4'm'm	13.3.46	m'	4.3.11	8
129.419	P4/n'm'm'	$\mathrm{d},{}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	2	3.1.6	8
			2/m'	5.4.15	4m'm'	13.4.47	m'	4.3.11	8
129.419	P4/n'm'm'	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	2	3.1.6	8
	·		2/m'	5.4.15	4m'm'	13.4.47	m'	4.3.11	8
130.425	P4/n'cc	b , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
130.425	P4/n'cc	$\mathrm{d}, \overline{AA}$	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	16
			$\frac{\bar{1}'}{1'}$	$\frac{2.3.5}{2.3.5}$	$\bar{4}'$	$10.3.34 \\ 9.1.29$	1	1.1.1	16
130.427	P4'/ncc'	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{1}{4}$	$\frac{2.3.5}{10.3.34}$	$\frac{4}{2'2'2}$	$9.1.29 \\ 6.3.19$	$\frac{1}{2}$	$\frac{1.1.1}{3.1.6}$	$\frac{16}{8}$
130.427	P4'/n'c'c	d, \overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	$\begin{vmatrix} 8 \\ 16 \end{vmatrix}$
130.426	F4/11 CC	u,AA	$\frac{1}{1}$			10.1.32	1	1.1.1 $1.1.1$	16
			$ar{1}'_{1'}$	$\frac{2.3.5}{2.3.5}$	$egin{array}{c} ar{4}' \ 4' \end{array}$	9.3.31	1	1.1.1	$ \overset{10}{16} $
130.430	P4'/n'cc'	${ m a}, \overline{E}$	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	8
130.430	P4'/n'cc'	$\mathrm{d}, \overline{AA}$	$\bar{1}'$	2.3.5	222	6.1.17	1	1.1.1	16
			$\frac{\bar{1}'}{1'}$	$\frac{2.3.5}{2.3.5}$	$\begin{bmatrix} \bar{4} \\ 4' \end{bmatrix}$	$ \begin{array}{c} 10.1.32 \\ 9.3.31 \end{array} $	1	1.1.1	16
130.431	P4/n'c'c'	d, \overline{AA}	$\frac{1}{1}$	$\frac{2.3.5}{2.3.5}$	222	$9.3.31 \\ 6.1.17$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$1.1.1 \\ 1.1.1$	16
130.431	F 4/11 C C	u,AA	$\frac{1}{1}$		$\frac{222}{\bar{4}'}$	10.3.34	1	1.1.1 $1.1.1$	$\begin{vmatrix} 16 \\ 16 \end{vmatrix}$
			1'	$\begin{array}{c} 2.3.5 \\ 2.3.5 \end{array}$	$\overline{4}$	9.1.29	1	1.1.1	16
131.438	$P4_2'/mm'c$	$\mathrm{e},\!\overline{E}$	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
131.438	$P4_2'/mm'c$	f, \overline{E}	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
131.440	$P4_2'/m'm'c$	a, \overline{E}	m'm'm'	8.5.28	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
131.440	$P4_2'/m'm'c$	b, \overline{E}	m'm'm'	8.5.28	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
132.449	$P4_2/m'cm$	f , ${}^1\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'mm	8.3.26	m'	4.3.11	8
	,	,	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
132.451	$P4_2'/mcm'$	$\mathrm{b},\!\overline{E}$	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
132.451	$P4_2'/mcm'$	$\mathrm{d},\!\overline{E}$	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
132.451	$P4_2^{7}/mcm'$	e, \overline{E}	222	6.1.17	$\bar{4}'2m'$	14.4.51	2	3.1.6	8
			222	6.1.17	2/m	5.1.12	2	3.1.6	8
132.452	$P4_2'/m'c'm$	${ m e,}\overline{E}$	222	6.1.17	$\bar{4}2m$	14.1.48	2	3.1.6	8
		1-0-	222	6.1.17	2/m'	5.4.15	2	3.1.6	8
132.452	$P4_2'/m'c'm$	f , ${}^1\overline{E}{}^2\overline{E}$	2/m'	5.4.15	m'mm	8.3.26	m'	4.3.11	8
		_	2/m'	5.4.15	_222	6.1.17	2	3.1.6	8
	$P4_2'/m'cm'$	$a, \overline{\underline{E}}$	m'm'm'	8.5.28	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
132.454	$P4_2'/m'cm'$	$_{\mathrm{c},E}$	m'm'm'	8.5.28	$= \bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
132.454	$P4_2'/m'cm'$	f , ${}^1\overline{E}{}^2\overline{E}$	2/m'	5.4.15	m'm'm'	8.5.28	m'	4.3.11	8
			2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
132.455	$P4_2/m'c'm'$	e, \overline{E}	222	6.1.17	$\bar{4}'2m'$	14.4.51	2	3.1.6	8
		- 1=0=	222	6.1.17	2/m'	5.4.15	2	3.1.6	8
132.455	$P4_2/m'c'm'$	f , ${}^1\overline{E}{}^2\overline{E}$	2/m'	5.4.15	m'm'm'	8.5.28	m'	4.3.11	8
		. 1=2=	2/m'	5.4.15	222	6.1.17	2	3.1.6	8
133.461	$P4_2/n'bc$	$d^{1} \overline{E}^{2} \overline{E}$	$\frac{\bar{4}'}{\bar{a}'}$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
133.461	$P4_2/n'bc$	e,AA	$\bar{\underline{1}}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	16
133.462	$P4_2'/nb'c$	c, \overline{E}	$\frac{\bar{1}'}{222}$	$\begin{array}{c} 2.3.5 \\ 6.1.17 \end{array}$	$\begin{vmatrix} \bar{4}' \\ 2'2'2 \end{vmatrix}$	$10.3.34 \\ 6.3.19$	$\frac{1}{2}$	$\frac{1.1.1}{3.1.6}$	$\begin{vmatrix} 16 \\ 8 \end{vmatrix}$
	$P4_2/nb'c$	$d^{1}_{E} \overline{E}^{2}_{E}$	$\bar{4}'$		2'2'2		2		1 1
133.462	1 42/110 C	u, <i>E</i> E	4	10.3.34	444	6.3.19		3.1.6	8

1100 400	D4/ / 1 /		1 000	0 1 15	1 0/0/0	0.010	0	0.1.0	Lol
133.463	$P4_2'/nbc'$	a,E	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
133.463	$P4_2'/nbc'$	b, \overline{E}	222	6.1.17	$\bar{4}'$	10.3.34	2	3.1.6	8
1		1 1 7 2 7							1 1
133.463	$P4_2'/nbc'$	$\mathrm{d}, {}^1\overline{E}{}^2\overline{E}$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
133.464	$P4_2'/n'b'c$	a, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
1			l .		_				1 1
133.464	$P4_2'/n'b'c$	b, \overline{E}	222	6.1.17	4	10.1.32	2	3.1.6	8
133.464	$P4_2'/n'b'c$	e, \overline{AA}	$\bar{1}'$	2.3.5	222	6.1.17	1	1.1.1	16
100.101	1 12/1000	0,7171		2.3.5	2'2'2				1 1
			$\bar{1}'_{1}$	$\frac{2.3.5}{2.3.5}$		$\begin{array}{c} 6.3.19 \\ 10.1.32 \end{array}$	1	1.1.1	16
100 100	D. / / /2 /	_			4	10.1.32	1	1.1.1	16
133.466	$P4_2'/n'bc'$	${ m c}, \overline{E}$	222	6.1.17	$2'\bar{2}'2$	6.3.19	2	3.1.6	8
133.466	$P4_2'/n'bc'$	e, \overline{AA}	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	16
100.100	1 12/1000	0,2121		2.0.0					1 1
			$1 \frac{\overline{1}'}{1'}$	$\frac{2.3.5}{2.3.5}$	$^{222}_{4}$	6.1.17	1	$\frac{1}{1}.\frac{1}{1}.\frac{1}{1}$	16
100 407	D4 / /1/ /	4.4	$\left \frac{1}{4} \right $	2.3.5	4	10.1.32	1	1.1.1	16
133.467	$P4_2/n'b'c'$	e, \overline{AA}	$\bar{\underline{1}}'$	2.3.5	222	6.1.17	1	1.1.1	16
			$\bar{1}'$	2.3.5	ar4'	10.3.34	1	1.1.1	16
134.473	$P4_2/n'nm$	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	\mathbf{m}	4.1.9	8
101.110	1 12/10/10/10	O, L L							
		1-0-	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
134.473	$P4_2/n'nm$	f , ${}^1\overline{E}{}^2\overline{E}$	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	m	4.1.9	8
	-/	,	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
104 474	DALL	1 =							1 1
134.474	$P4_2'/nn'm$	d, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
			222	6.1.17	2/m	5.1.12	2	3.1.6	8
134.475	$P4_2'/nnm'$	c, \overline{E}	222		$\bar{4}'2m'$				1 1
134.473	r_{42}/mm	c, E		6.1.17		14.4.51	2	3.1.6	8
			222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
134.476	$P4_2'/n'n'm$	${ m c}, \overline{E}$	222	6.1.17	$\bar{4}2m$	14.1.48	2	3.1.6	8
	-7	,	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
134 476	$P4_2'/n'n'm$	$e^{1}\overline{E}^{2}\overline{E}$	$2^{\frac{7}{7}m}$	5.3.14	$\frac{2}{4}2m$	14.1.48		4.1.9	$\begin{vmatrix} 8 \\ 8 \end{vmatrix}$
194.410	1 ±2/11 11 111	e, <i>E</i> E	2/111				m		
			2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
134.476	$P4_2'/n'n'm$	f , ${}^1\overline{E}{}^2\overline{E}$	2'/m	5.3.14	$\bar{4}2m$	14.1.48	$^{\mathrm{m}}$	4.1.9	8
101.1.0	1 12/10/10/10	1, 2 2		5.3.14	2'2'2		2,		8
		. —	2'/m			6.3.19		3.3.8	1 1
134.478	$P4_2'/n'nm'$	d, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
	-,	,	222	6.1.17	2/m'	5.4.15	2	3.1.6	8
104 470	DALLL	1 = 2 =	l .						1 1
134.478	$P4_2'/n'nm'$	e , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}2'm'$	14.5.52	\mathbf{m}'	4.3.11	8
			2/m'	5.4.15	222	6.1.17	2	3.1.6	8
194 470	$P4_2'/n'nm'$	$f^{1}\overline{E}^{2}\overline{E}$			$\bar{4}2'm'$				1 1
134.478	$P4_2/n nm$	1, <i>L L</i>	2/m'	5.4.15		14.5.52	m'	4.3.11	8
			2/m'	5.4.15	222	6.1.17	2	3.1.6	8
134 479	$P4_2/n'n'm'$	c, \overline{E}	222	6.1.17	$\bar{4}'2m'$	14.4.51	2	3.1.6	8
									1 1
134.479	$P4_2/n'n'm'$	$e^{1}E^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	\mathbf{m}'	4.3.11	8
	,		2/m'	5.4.15	222	6.1.17	2	3.1.6	8
194 470	D4 / / / /	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$							1 1
134.479	$P4_2/n'n'm'$	I, E E	2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	\mathbf{m}'	4.3.11	8
			2/m'	5.4.15	222	6.1.17	2	3.1.6	8
134 470	$P4_2/n'n'm'$	d,\overline{E}	222	6.1.17	2/m'	5.4.15	2	3.1.6	8
									1 1
135.485	$P4_2/m'bc$	c , ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
135.485	$P4_2/m'bc$	a , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}'$	10.3.34	2	3.1.6	8
									1 1
135.485	$P4_2/m'bc$	b , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$ \bar{4}' $	10.3.34	2/m'	5.4.15	2	3.1.6	8
135.486	$P4_2'/mb'c$	$b^{1}\overline{E}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	8
1									1 1
135.486	$P4_2'/mb'c$	d, \overline{E}	222	6.1.17	2/m	5.1.12	2	3.1.6	8
135.487	$P4_2'/mbc'$	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	8
135.488	$P4_2'/m'b'c$	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}$	10.1.32	$\overline{2}$	3.1.6	8
		a, E E							
135.488	$P4_2'/m'b'c$	c , ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
135.490	$P4_2^{7}/m'bc'$	$a, \overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}$	10.1.32	2	3.1.6	8
1		1 = 2 = =							1 1
135.490	$P4_2'/m'bc'$	c , ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6	8
135.490	$P4_2'/m'bc'$	d, \overline{E}	222	6.1.17	2/m'	5.4.15	2	3.1.6	8
1									1 1
136.497	$P4_2/m'nm$	c , ${}^1\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	$m'\underline{m}m$	8.3.26	m'	4.3.11	8
			2/m'	5.4.15	$ \bar{4}' $	10.3.34	2	3.1.6	8
136.497	$P4_2/m'nm$	$\mathrm{d},{}^{1}\overline{E}{}^{2}\overline{E}$	$\overline{4}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
136.498	$P4_2'/mn'm$	$\mathrm{d}, {}^1\overline{E}{}^2\overline{E}$	$ \bar{4}' $	10.3.34	2/m	5.1.12	2	3.1.6	8
136.499	$P4_2^{\bar{i}}/mnm'$	$\mathrm{d},{}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	8
		1 = 2 =							1 1
130.500	$P4_2'/m'n'm$	$c, \overline{E}^{2}\overline{E}$	2/m'	5.4.15	$m' \underline{m} m$	8.3.26	\mathbf{m}'	4.3.11	8
			2/m'	5.4.15	$\bar{4}$	10.1.32	2	3.1.6	8
136 502	$P4_2'/m'nm'$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$		5.4.15	m'm'm'			4.3.11	1 1
150.502	1 42/111 TITI	C, E E	2/m'			8.5.28	m'		8
			2/m'	5.4.15	4	10.1.32	2	3.1.6	8
136 503	$P4_2/m'n'm'$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	m'm'm'	8.5.28	\mathbf{m}'	4.3.11	8
150.505	- 12/110 10 110	\sim , L			$\frac{1}{4}$				1 1
		1-0-	2/m'	5.4.15	_	10.3.34	2	3.1.6	8
136.503	$P4_2/m'n'm'$	d , $\mathrm{^{1}}\overline{E}$ $\mathrm{^{2}}\overline{E}$	$\bar{4}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
		d,\overline{E}	l _		$\bar{4}'2'm$				8
137.509	$P4_2/n'mc$		mm2	7.1.20		14.3.50	m	4.1.9	1 1
137.509	$P4_2/n'mc$	e,\overline{AA}	$ \bar{1}' $	2.3.5	$\bar{4}'2'm$	14.3.50	1	1.1.1	16
	'	_	$\bar{1}'$	2.3.5	$\underline{m}\underline{m}2$	7.1.20	1	1.1.1	16
137.511	$P4_2'/nmc'$	d, \overline{E}	mm2	7.1.20	$\frac{77772}{4'2'm}$	14.3.50	m	4.1.9	8
1									1 1
137.512	$P4_2'/n'm'c$	e,AA	$\bar{1}'$	2.3.5	$\bar{4}2'm'$	14.5.52	1	1.1.1	16
			$\bar{1}'$	2.3.5	m'm'2	7.4.23	1	1.1.1	16

137.514	$P4_2'/n'mc'$	d, \overline{E}	mm2	7.1.20	$\bar{4}2m$	14.1.48	m	4.1.9	8
1	D4/ ///						1		
137.514	$P4_2^{1}/n'mc'$	e,\overline{AA}	$= \frac{\bar{1}'}{\bar{1}'}$	2.3.5	$\bar{4}2m$	14.1.48	1	1.1.1	16
			$ \bar{\underline{1}}'$	2.3.5	$\underline{m}m2$	7.1.20	1	1.1.1	16
137.515	$P4_2/n'm'c'$	e, \overline{AA}	<u> </u>	2.3.5	4'2m'	14.4.51	1	1.1.1	16
			$\bar{1}'$	2.3.5	m'm'2	7.4.23	1	1.1.1	16
138.521	$P4_2/n'cm$	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	$-\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
138.521	$P4_2/n'cm$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
130.021	1 42/11 0111	C, E E							
		1-0-	2'/m	5.3.14	mm2	7.1.20	m	4.1.9	8
138.521	$P4_2/n'cm$	$d^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
	-7	'	2'/m	5.3.14	mm2	7.1.20	m	4.1.9	8
190 591	D4 /21 2000	e, \overline{E}	· '						
138.521	$P4_2/n'cm$		mm2	7.1.20	2'/m	5.3.14	m	4.1.9	8
138.522	$P4_2'/nc'm$	a, \overline{E}	222	6.1.17	$= \bar{4}'$	10.3.34	2	3.1.6	8
	•		222	6.1.17	2/m	5.1.12	2	3.1.6	8
138.522	$P4_2'/nc'm$	e, \overline{E}	mm2	7.1.20	2/m	5.1.12	m	4.1.9	8
							1		
138.522	$P4_2'/nc'm$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
138.523	$P4_2'/ncm'$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
138.524	$P4_2^{7}/n'c'm$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2	3.3.8	8
150.524	1 42/11 6 111	C, L L	2//11		1				
		1-0-	2'/m	5.3.14	mm2	7.1.20	m	4.1.9	8
138.524	$P4_2'/n'c'm$	$d^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
	-,	,	2'/m	5.3.14	mm2	7.1.20	m	4.1.9	8
138.524	$P4_2'/n'c'm$	e, \overline{E}	mm2	7.1.20	2'/m	5.3.14		4.1.9	8
							m		1 1
138.526	$P4_2'/n'cm'$	a, \overline{E}	222	6.1.17	4	10.1.32	2	3.1.6	8
			222	6.1.17	2/m'	5.4.15	2	3.1.6	8
138.526	$P4_2'/n'cm'$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6	8
130.020	1 42/11 0111	C, E E			1				
		1-0-	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
138.526	$P4_2'/n'cm'$	$d^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6	8
	•		2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
138.527	$P4_2/n'c'm'$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{1}{2}/m'$	5.4.15	222	6.1.17	2	3.1.6	8
136.527	1 42/11 6 111	C, E E							
			2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
138.527	$P4_2/n'c'm'$	$d^{1}_{E} \overline{E}^{2} \overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6	8
	-7	,	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
190 597	D4 /21 2/22/	a, \overline{E}			4'		1		1 1
138.527	$P4_2/n'c'm'$	a,E	222	6.1.17	·	10.3.34	2	3.1.6	8
			222	6.1.17	2/m'	5.4.15	2	3.1.6	8
138.527	$P4_2/n'c'm'$	$b^{1}\overline{E}^{2}\overline{E}$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
139.533	I4/m'mm	c, \overline{E}	m'mm	8.3.26	4/m'mm	15.3.55	m'm2'	7.3.22	$ \stackrel{\circ}{4} $
									1
139.533	I4/m'mm	f , ${}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	4/m'mm	15.3.55	m	4.1.9	8
			2'/m	5.3.14	$= \bar{4}'2'm$	14.3.50	2'	3.3.8	8
139.534	I4'/mm'm	d,\overline{E}	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
					1				
139.536	I4'/m'm'm	c, \overline{E}	m'm'm'	8.5.28	4'/m'm'm	15.5.57	m'm'2	7.4.23	4
		1-0-	m'm'm'	8.5.28	42'm'	14.5.52	m'm'2	7.4.23	$\mid 4 \mid$
139.536	I4'/m'm'm	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2'/m	5.3.14	4'/m'm'm	15.5.57	m	4.1.9	8
	,	,	2'/m	5.3.14	$\bar{4}2'm'$	14.5.52	2'	3.3.8	8
139.538	I4'/m'mm'	c, \overline{E}	m'mm	8.3.26	4'/m'm'm	15.5.57	m'm2'	7.3.22	4
		1 7 2 7					1 .		1 1
139.538	I4'/m'mm'	f , ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	$ 4'/\underline{m}'m'm$	15.5.57	m'	4.3.11	8
			2/m'	5.4.15	$\bar{4}2m$	14.1.48	2	3.1.6	8
139.539	I4/m'm'm'	c, \overline{E}	m'm'm'	8.5.28	4/m'm'm'	15.7.59	m'm'2	7.4.23	4
-55.555	,	0,2	m'm'm'	8.5.28	$\bar{4}'2m'$		m'm'2	7.4.23	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
120 520	I4/m'm'm'	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/~/	5 / 15	4/m'm'm'	14.4.51	III III 4	4.3.11	
159.559	14/111 III III	1, 15 15	2/m'	5.4.15		15.7.59	m'		8
1			$\frac{2}{m'}$	5.4.15	$\bar{4}'2m'$	14.4.51	2	3.1.6	8
139.539	I4/m'm'm'	d, \overline{E}	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	4
140.543	I4/m'cm	c , ${}^{1}\overline{E}_{2}$ ${}^{2}\overline{E}_{2}$	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	4
1	, .	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ \overline{E} \end{bmatrix}^2 = \begin{bmatrix} 2 \\ \overline{E} \end{bmatrix}^2$							1 . 1
140.543	I4/m'cm	$c, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1}$	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	4
140.543	I4/m'cm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	42'2'	12.4.43	2'	3.3.8	8
			2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	m	4.1.9	8
			$\frac{1}{2}$ /m	5.3.14	m'mm	8.3.26	m	4.1.9	8
140 545	TA! /!	1. 77	7/2/						1
140.545	I4'/mcm'	b, \overline{E}	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	4
140.546	I4'/m'c'm	$e^{1\overline{E}^2}\overline{E}$	2'/m	5.3.14	4'22'	12.3.42	2'	3.3.8	8
	•		2'/m	5.3.14	$\bar{4}2m$	14.1.48	m	4.1.9	8
			$\frac{1}{2}$ /m	5.3.14	m'mm	8.3.26	m	4.1.9	8
140 540	TA! /m=!!	J 77							
140.548	I4'/m'cm'	dE_1	m'm'm'	8.5.28	42'm'	14.5.52	m'm'2	7.4.23	4
140.548	I4'/m'cm'	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	4'22'	12.3.42	2	3.1.6	8
	•	1	2/m'	5.4.15	$\bar{4}2'm'$	14.5.52	m'	4.3.11	8
			2/m'	5.4.15	m'm'm'	8.5.28	m'	4.3.11	8
140 540	T4////	17727					1		
140.549	I4/m'c'm'	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	422	12.1.40	2,	3.1.6	8
			2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	m'	4.3.11	8
			2/m'	5.4.15	m'm'm'	8.5.28	m'	4.3.11	8
141.553	$I4_1/a'md$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	m	4.1.9	8
1		$d, {}^{1}\overline{E} {}^{2}\overline{E}$							1 1
141.553	$I4_1/a'md$	a, E - E	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	m	4.1.9	8

		1-0-				,		
141.556	$I4'_1/a'm'd$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	$= \bar{4}2'm'$	14.5.52	\mathbf{m}'	4.3.11 8
141.556	$I4'_1/a'm'd$	$d^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}2'm'$	14.5.52	m'	4.3.11 8
141.558	$I4'_1/a'md'$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{1}{2}$ /m	5.3.14	$\bar{4}2m$	14.1.48	m	4.1.9 8
					_			
141.558	$I4_1^\prime/a^\prime md^\prime$	$d, {}^{1}\overline{E} {}^{2}\overline{E}$	2'/m	5.3.14	42m	14.1.48	m	4.1.9 8
141.559	$I4_1/a'm'd'$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	\mathbf{m}'	4.3.11 8
141.559	$I4_1/a'm'd'$	$d^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	m'	4.3.11 8
142.563	$I4_1/a'cd$	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6 8
		· —						
142.563	$I4_1/a'cd$	c,AA	$\bar{\underline{1}}'$	2.3.5	$\bar{4}'$	10.3.34	1	1.1.1 16
			$rac{ar{1}'}{ar{4}'}$	2.3.5	2'2'2	6.3.19	1	1.1.1 16
140 505	T 4/ / 1/	1 7 2 7	$\frac{1}{4}$	2.3.5	2'	3.3.8	1	1.1.1 16
142.565	$I4_1'/acd'$	$a, {}^{1}\overline{\underline{E}}{}^{2}\overline{\underline{E}}$	4	10.3.34	2'2'2	6.3.19	2	3.1.6 8
142.566	$I4'_1/a'c'd$	c, \overline{AA}	$\bar{1}'$	2.3.5	4	10.1.32	1	1.1.1 16
	•		$ar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1 16
		_		$\frac{2.3.5}{2.3.5}$	$\frac{2'2'2}{2}$	3.1.6	1	$\begin{bmatrix} 1.1.1 & 16 \\ 1.1.1 & 16 \end{bmatrix}$
142.568	$I4'_1/a'cd'$	b, \overline{E}	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6 8
142.568	$I4_1'/a'cd'$	c, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{4}$	10.1.32	1	1.1.1 16
112.000	1 11/ 0 00	0,1111		235			1	1.1.1 16
			$ar{1}'$	$\frac{2.3.5}{2.3.5}$	$\frac{222}{2'}$	$\frac{6.1.17}{3.3.8}$	i	1.1.1 16
142.569	$I4_1/a'c'd'$	c, \overline{AA}	$ \bar{1}' $	2.3.5	$ar{4}'$	10.3.34	$\bar{1}$	1.1.1 16
112.000	11/0000	0,1111			222	6.1.17	1	1.1.1 16
			1' 1' 1' 1' 1'	$\frac{2.3.5}{2.3.5}$	$\begin{array}{c} 222 \\ \frac{2}{3'} \end{array}$	3.1.6	$\dot{1}$	1:1:1 16
147.15	$P\bar{3}'$	e, \overline{AA}	1 1 1 1 1 1 1	$\frac{2.3.5}{2.3.5}$	\ \ <u>\$</u> 7	17.3.64	$\dot{1}$	1.1.1 6
111.10	1.0	0,2121	<u> </u>	2.3.5	3	16.1.60	1	1.1.1 6
147.15	$P\bar{3}'$	f, \overline{AA}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{2.3.5}{2.3.5}$	จั/	17.3.64	1	1.1.1 6
147.10	1 0	1,2121	$\frac{1}{1}$ '.	2.3.5	9	16.1.60	1	1.1.1 6
148.19	$R\bar{3}'$	$\mathrm{d}, \overline{AA}$	$\frac{1}{1}'$	$\frac{2.3.5}{2.3.5}$	3 ₃ ' 3 ₃ '	17.3.64	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	$R\bar{3}'$		$\frac{1}{1}'$		$\frac{3}{3}$			
148.19		e,AA		2.3.5		17.3.64	1	1.1.1 6
162.75	$P\bar{3}'1m$	$f, \overline{E}^{2}\overline{E}$	2'/m	5.3.14	$\bar{3}'1m$	20.3.73	2'	3.3.8 6
			2'/m	5.3.14	$\bar{3}'1m$	20.3.73	$^{\mathrm{m}}$	4.1.9 6
			2'/m	5.3.14	32'	18.3.67	2'	3.3.8 6
162.75	$P\bar{3}'1m$	$g, {}^{1}\overline{E}{}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	$\bar{3}'1m$	20.3.73	m	4.1.9 6
102.70	1 0 1116	8, L L			$\frac{3}{3}$ '1m		2,	3.3.8 6
			$\frac{2'}{m}$	5.3.14		20.3.73		
		1-0-	2'/m	5.3.14	32'	18.3.67	2'	3.3.8 6
162.76	$P\bar{3}'1m'$	f , ${}^1\overline{E}{}^2\overline{E}$	2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	2	3.1.6 6
			2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	\mathbf{m}'	$4.3.11 \mid 6 \mid$
			2/m'	5.4.15	32	18.1.65	2	3.1.6 6
162.76	$P\bar{3}'1m'$	$g^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	m'	4.3.11 6
102.70	1 9 1111	g, <i>L</i> L			$\frac{3}{3}'1m'$			
			2/m'	5.4.15		20.4.74	2	3.1.6 6
			2/m'	5.4.15	32	18.1.65	2	3.1.6 6
163.81	$P\bar{3}'1c$	b, \overline{EE}	$\bar{3}'$	17.3.64	32'	18.3.67	3	16.1.60 4
163.81	$P\bar{3}'1c$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{3}'$	17.3.64	32'	18.3.67	3	16.1.60 4
163.81	$P\bar{3}'1c$	g, \overline{AA}	1'	2.3.5	32'	18.3.67	1	1.1.1 12
100.01	1010	8,2121	$rac{ar{1}'}{ar{3}'}$	$\frac{2.3.5}{2.3.5}$	$\bar{3}'$	17.3.64	1	1.1.1 12
163.82	$P\bar{3}'1c'$	b, \overline{EE}	₹′	17.3.64	$\frac{3}{32}$	18.1.65	3	$16.1.60 \begin{vmatrix} 12 \\ 4 \end{vmatrix}$
163.82	$P\bar{3}'1c'$	$g, \underline{\underline{A}}\underline{\underline{A}}$	$\frac{5}{1}'$	2.3.5	32	18.1.65	1	1.1.1 12
103.62	F 3 1C	g,AA	$\frac{1}{1}'$		$\frac{32}{3}$			1 1
164.87	$P\bar{3}'m1$	$e^{1}\overline{E}^{2}\overline{E}$	$2'^{1}/m$	2.3.5	$\bar{3}'1m$	17.3.64	$\frac{1}{2}$,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
104.07	F 3 IIl 1	e, <i>E</i> E		5.3.14	5/1	20.3.73		3.3.8 6
			2'/m	5.3.14	$\bar{3}'1m$	20.3.73	m	4.1.9 6
			2'/m	5.3.14	3m	19.1.68	m	4.1.9 6
164.87	$P\bar{3}'m1$	f , ${}^1\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	$\bar{3}'1m$	20.3.73	\mathbf{m}	4.1.9 6
			2'/m	5.3.14	$\bar{3}'1m$	20.3.73	2'	3.3.8 6
			2'/m	5.3.14	3m	19.1.68	\mathbf{m}	4.1.9 6
164.88	$P\bar{3}'m'1$	$e^{1}\overline{E}^{2}\overline{E}$	$\frac{2}{2/m'}$	5.4.15	$\bar{3}'1m'$		2	
104.00	1 3 111 1	e, <i>E</i>			5/1/1t 5/1/	20.4.74		3.1.6 6
			2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	m'	4.3.11 6
		1-6-	2/m'	5.4.15	3m'	19.3.70	m'	4.3.11 6
164.88	$P\bar{3}'m'1$	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	\mathbf{m}'	4.3.11 6
			2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	2	3.1.6 6
			2/m'	5.4.15	3m'	19.3.70	m'	4.3.11 6
165.93	$P\bar{3}'c1$	b, \overline{EE}	-/···	17.3.64	32'	18.3.67	3	16.1.60 4
		$1 \frac{0.EL}{1.7}$						
165.93	$P\bar{3}'c1$	$b, {}^{1}\overline{\underline{E}}{}^{2}\overline{E}$	3' 1' 1' 3' 1'	17.3.64	32'	18.3.67	3	16.1.60 4
165.93	$P\bar{3}'c1$	e, \overline{AA}	$\frac{1}{2}$,	2.3.5	32′	18.3.67	1	1.1.1 12
			$\frac{1}{3}$,	$\frac{2.3.5}{2.3.5}$	32' 3' 3	17.3.64	1	$\begin{bmatrix} 1.1.1 & 12 \\ 1.1.1 & 12 \end{bmatrix}$
105.04	D0/ /1	1 77	$\frac{1}{2}$	2.3.5	$\frac{3}{2}$	16.1.60	1	1.1.1 12
165.94	$P\bar{3}'c'1$	b, \overline{EE}	<u>3</u> ,	17.3.64	32	18.1.65	3	16.1.60 4
165.94	$P\bar{3}'c'1$	e,AA	$\underline{1}'$	2.3.5	32	18.1.65	1	1.1.1 12
			1′,	$2.3.5 \\ 2.3.5$	$\begin{bmatrix} 32\\ \bar{3}'\\ -3 \end{bmatrix}$	$\begin{array}{c} 17.3.64 \\ 16.1.60 \end{array}$	$\frac{1}{1}$	$\begin{bmatrix} 1.1.1 & 12 \\ 1.1.1 & 12 \end{bmatrix}$
100	p3/	, 1=2=	1,1,	2.3.5	,3	16.1.60		1.1.1 12
166.99	$R\bar{3}'m$	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m	5.3.14	$\bar{3}'_{1}1m$	20.3.73	m	$4.1.9 \mid 6 \mid$
			2'/m	5.3.14	$\bar{3}'1m$	20.3.73	2'	3.3.8 6
166.99	$R\bar{3}'m$	$e^{1}\overline{E}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	$\bar{3}'1m$	20.3.73	2'	3.3.8 6
			$\frac{1}{2}$ /m	5.3.14	$\bar{3}'1m$	20.3.73	m	4.1.9 6
166.100	$R\bar{3}'m'$	$d^{1}\overline{E}^{2}\overline{E}$	$\frac{2}{2/m'}$		$\bar{3}'1m'$		m'	
1100.100	m m	u, <i>E</i> E	4/111	5.4.15) 1 <i>1111</i>	20.4.74	111	4.3.11 6

1		1 1	2 /222/	E / 1E	J 7/1/	20.4.74		216	
100 100	75/ /	1 = 2 =	2/m'	5.4.15	$\frac{\bar{3}'1m'}{\bar{5}'1}$	20.4.74	2	3.1.6	$\frac{6}{6}$
166.100	$R\bar{3}'m'$	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\frac{\bar{3}'1m'}{\bar{5}'1}$	20.4.74	2	3.1.6	6
	p=/	, ==	2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	m'	4.3.11	6
167.105	$R\bar{3}'c$	b, \overline{EE}	$\bar{3}'$	17.3.64	32'	18.3.67	3	16.1.60	4
167.105	$R\bar{3}'c$	$b, \frac{1}{\overline{E}} \overline{E} \overline{E}$	$\bar{\underline{3}}'$	17.3.64	32'	18.3.67	3	16.1.60	4
167.105	$R\bar{3}'c$	d,AA	$\bar{\underline{1}}'$	2.3.5	32'	18.3.67	1	1.1.1	12
167.106	$R\bar{3}'c'$	b, \overline{EE}	$ar{1}' \ 3'$	$2.3.5 \\ 17.3.64$	$\frac{\bar{3}'}{32}$	17.3.64	$\frac{1}{2}$	1.1.1	$\frac{12}{4}$
167.106	$R\bar{3}'c'$	d, \overline{AA}	$\frac{3}{1}'$	$\frac{17.3.04}{2.3.5}$	32	18.1.65	$\frac{3}{1}$	16.1.60 $1.1.1$	$\begin{vmatrix} 4 \\ 12 \end{vmatrix}$
107.100	по с	u,AA	<u>†</u> ′	$\frac{2.3.5}{2.3.5}$	$\frac{32}{3}$	18.1.65 $17.3.64$	1	1.1.1 $1.1.1$	$\frac{12}{12}$
175.139	P6'/m	$f^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	6' $2m$	23.3.84	m	4.1.9	6
-,-,-	- 0 /	-,	$\frac{1}{2}$ /m	5.3.14	6	22.1.79	m	4.1.9	6
175.139	P6'/m	$g^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	6'/m	23.3.84	m	4.1.9	6
1101200	1 0 /	8, 2 2	$\frac{1}{2}$ /m	5.3.14	6	22.1.79	m	4.1.9	6
175.140	P6/m'	$f^{1}\overline{E}^{2}\overline{E}$	$\frac{1}{2}/m'$	5.4.15	6/m'	23.4.85	m'	4.3.11	6
	- 0/	-,	$\frac{1}{2}/m'$	5.4.15	$\overline{6}'$	22.3.81	m'	4.3.11	6
175.140	P6/m'	$g^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	6/m'	23.4.85	m'	4.3.11	6
	- 0/	6,	$\frac{1}{2}/m'$	5.4.15	<u></u>	22.3.81	m'	4.3.11	6
176.145	$P6_3'/m$	b, \overline{EE}	$\bar{3}'$	17.3.64	$\bar{6}$	22.1.79	3	16.1.60	4
176.145	$P6_3'/m$	$b, \overline{{}^{1}E}^{2}\overline{E}$	$\ddot{\bar{3}}'$	17.3.64	$\ddot{\bar{6}}$	22.1.79	3	16.1.60	$\frac{1}{4}$
176.145	$P6_3'/m$	$g, \overline{\overline{A}}\overline{A}$	$\frac{\ddot{1}}{1}'$	2.3.5	$\frac{\ddot{6}}{6}$	22.1.79	1	1.1.1	$ _{12}$
110.110	1 03/11	8,2121	$\frac{1}{1}$ '	$\frac{2.3.5}{2.3.5}$	$\bar{\underline{3}}'$	17.3.64	1	1.1.1	12
176.146	$P6_3/m'$	b, \overline{EE}	$\bar{ar{3}}'$	17.3.64	$ $ $\tilde{\overline{6}}'$	22.3.81	$\overline{3}$	16.1.60	4
176.146	$P6_3/m'$	g, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{6}'$	22.3.81	1	1.1.1	12
	,		$\bar{1}'$	2.3.5	$\bar{\bar{3}}'$	17.3.64	1	1.1.1	12
176.147	$P6_3'/m'$	$a, {}^{1}\overline{\underline{E}}{}^{2}\overline{E}$	$\bar{6}'$	22.3.81		17.1.62	3	16.1.60	4
182.181	$P6_{3}^{\prime}2^{\prime}2$	b,\underline{E}_1	32	18.1.65	32'	18.3.67	3	16.1.60	4
182.182	$P6_{3}'22'$	a,E_1	32	18.1.65	32'	18.3.67	3	16.1.60	4
188.218	$P\bar{6}'c2'$	$b, {}^{1}\overline{E}{}^{\overline{2}}\overline{E}$	$\bar{6}'$	22.3.81	32'	18.3.67	3	16.1.60	4
188.218	$P\bar{6}'c2'$	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{6}'$	22.3.81	32'	18.3.67	3	16.1.60	4
188.218	$P\bar{6}'c2'$	$f, \overline{E}^{2} \overline{E}$	$\bar{6}'$	22.3.81	32′	18.3.67	3	16.1.60	4
190.229	$P\bar{6}'2'c$	$b, {}^{1}\overline{\underline{E}}{}^{2}\overline{E}$	$\bar{6}'$	22.3.81	32'	18.3.67	3	16.1.60	4
191.235	P6/m'mm	f,E	$m'_{,}mm$	8.3.26	$6/\underline{m}'mm$	27.3.102		7.3.22	6
191.235	P6/m'mm	g,\overline{E}	$m'mm \ m'mm$	$8.3.26 \\ 8.3.26$	$\begin{bmatrix} \bar{6}'m2' \\ 6/m'mm \end{bmatrix}$	26.4.98 $27.3.102$	m'm2' m'm2'	$7.3.22 \\ 7.3.22$	$\begin{bmatrix} 6 \\ 6 \end{bmatrix}$
191.200	1 0/111 111111	g,E	$m'_{.}mm$	8.3.26	$\frac{6'm2'}{6'm2'}$	26.4.98	m'm2'	7.3.22	6
191.236	P6'/mm'm	f, \overline{E}	m'mm	8.3.26	$\begin{bmatrix} \overline{6}'m2' \\ \overline{6}m'2' \end{bmatrix}$	26.5.99	m'm2'	7.3.22	$ \breve{6} $
191.236	P6'/mm'm	g, \overline{E}	m'mm	8.3.26	$\bar{6}m'2'$	26.5.99	m'm2'	7.3.22	6
191.237	P6'/mmm'	f, \overline{E}	m'mm	8.3.26	6'/mmm'	27.4.103	m'm2'	7.3.22	6
191.237	P6'/mmm'	g, \overline{E}	m'mm	8.3.26	6'/mmm'	27.4.103	m'm2'	7.3.22	6
191.241	P6/m'm'm'	f, \overline{E}	m'm'm'	8.5.28	6/m'm'm'	27.7.106	m'm'2	7.4.23	6
	,	, , , , , , , , , , , , , , , , , , ,	m'm'm'	8.5.28	$\bar{6}'m'2$	26.3.97	m'm'2	7.4.23	6
191.241	P6/m'm'm'	g,\overline{E}	m'm'm'	8.5.28	$6/\underline{m}'m'm'$		m'm'2	7.4.23	6
100.045	Da / /	1 7 2 7	$m'_{c}m'm'$	8.5.28	$\bar{6}'m'_{22}$	26.3.97	m'm'2	7.4.23	6
192.245	P6/m'cc	$b, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1}$	6/m'	23.4.85	62'2'	24.4.90	6	21.1.76	4
192.245	P6/m'cc	$\left b, {}^{1}_{1}\overline{E}3 {}^{2}\overline{E}3 \right $	6/m'	23.4.85	62'2'	24.4.90	6	21.1.76	4
	P6/m'cc	$\left \mathbf{b}, 1 \overline{E}_{2} \mathbf{\overline{E}}_{2} \right $	6/m'	23.4.85	62'2'	24.4.90	6	21.1.76	
192.245	P6/m'cc	$d, 1\overline{E}, 2\overline{E}$	<u></u>	22.3.81	32'	18.3.67	3.	16.1.60	8
192.245	P6/m'cc	$g, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	6/m'	23.4.85	m',	4.3.11	12
			$\frac{2}{m'}$	5.4.15	$\begin{array}{c c} \overline{6}' \\ 2'2'2 \end{array}$	22.3.81	m'	4.3.11	12
102 246	P6'/mc'c	$\left \mathbf{b}, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1} \right $	$\frac{2/m'}{6'/m}$	5.4.15	$\frac{2}{6'}\frac{2}{22'}$	6.3.19	2 6'	3.1.6 $21.3.78$	$\frac{12}{4}$
192.246 192.246	P6'/mc'c	$\begin{bmatrix} \mathbf{g}, & E_1 \\ \mathbf{g}, & ^1\overline{E} & ^2\overline{E}^1 \end{bmatrix}$	$\frac{0}{2'}/m$	23.3.84	6'/m	24.3.89 23.3.84		4.1.9	$\begin{vmatrix} 4 \\ 12 \end{vmatrix}$
192.240	1 0 / mc c	\mid g, $E \mid E \mid$	$\frac{2}{2'/m}$	5.3.14 $5.3.14$	$\frac{6}{6}$	23.3.34 $22.1.79$	m m	4.1.9	12
			$\frac{2}{2'/m}$	5.3.14	2'2'2	6.3.19	$\frac{111}{2}$	3.3.8	12
192.247	P6'/mcc'	$\left \mathbf{b}, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1} \right $	$\frac{2}{6'}/m$	23.3.84	6'22'	24.3.89	6'	21.3.78	4
192.247	P6'/mcc'	$\begin{bmatrix} c, E_1 \\ c, \overline{E}_1 \end{bmatrix}$	$\frac{32}{32}$	18.1.65	$\frac{6}{6}$	22.1.79	3	16.1.60	8
192.247	P6'/mcc'	$g, \overline{E}^{1} \overline{E}^{2} \overline{E}$	2'/m	5.3.14	6'/m	23.3.84	m	4.1.9	12
102.211	10/11100	S, L L	$\frac{2}{2}/m$	5.3.14	$\begin{bmatrix} 0 & \frac{7}{6} & 0 \\ 6 & 0 \end{bmatrix}$	22.1.79	m	4.1.9	12
			$\frac{1}{2}$ /m	5.3.14	2'2'2	6.3.19	$\frac{1}{2}$	3.3.8	12
192.249	P6'/m'cc'	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{-\frac{7}{6}}{6}$	22.3.81	32'	18.3.67	3	16.1.60	8
192.251	P6/m'c'c'	f, \overline{E}	222	6.1.17	622	24.1.87		3.1.6	12
	-,	-,-	222	6.1.17	39	18.1.65	$\frac{2}{2}$	3.1.6	12
102.5=	Del III	1=2=	222	6.1.17	2/m'	5.4.15		3.1.6	12
192.251	P6/m'c'c'	$g, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	6/m'	23.4.85	m',	4.3.11	12
			$\frac{2}{m'}$	5.4.15	$\bar{6}'$	22.3.81	m'	4.3.11	12
102 055	DG /~~!	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2/m'}{\bar{2}'1m}$	5.4.15	$\frac{222}{\bar{\epsilon}'m2'}$	6.1.17	2 21m	3.1.6	$\frac{12}{4}$
193.255	$P6_3/m'cm$	$\left[\begin{array}{cc} 0, E \ \overline{E} \end{array}\right]$	$\bar{3}'_{\bar{e}'}$ 1m	20.3.73	$\bar{6}'m2'$	26.4.98	31m	19.1.68	
193.255	$P6_3/m'cm$	$ c, {}^{1}\overline{E}{}^{2}\overline{E} $	$\bar{6}'$	22.3.81	32'	18.3.67	3	16.1.60	0

193.255	$P6_3/m'cm$	$f^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	$\bar{6}'m2'$	26.4.98	m	4.1.9	12
190.200	1 03/111 0111	1, 12 12	2//11						
			2'/m	5.3.14	$\bar{3}'1m$	20.3.73	2'	3.3.8	12
			2'/m	5.3.14	32'	18.3.67	2	3.3.8	12
193.256	$P6_3^{\prime}/mc^{\prime}m$	f , ${}^1\overline{E}{}^2\overline{E}$	2'/m	5.3.14	$\bar{6}m2$	26.1.95	m	4.1.9	12
150.200	1 03/1100 110	1, L L	2///	5.3.14			$\frac{111}{2}$		
			2'/m		$\bar{3}'1m$	20.3.73		3.3.8	12
			2'/m	5.3.14	32'	18.3.67	2'	3.3.8	12
193.257	$P6_3'/mcm'$	$b^{1}\overline{E}^{2}\overline{E}$	$\bar{3}'1m'$	20.4.74	$\bar{6}m'2'$	26.5.99	31m'	19.3.70	4
1			$\bar{3}'1m'$		$\overline{6}m'2'$				
193.257	$P6_3^{\prime}/mcm^{\prime}$	$b, \overline{\underline{E}}_1$	1	20.4.74		26.5.99	31m'	19.3.70	4
193.257	$P6_3'/mcm'$	$\mathrm{d}_{,}\overline{E}_{1}$	32	18.1.65	$\bar{6}$	22.1.79	3	16.1.60	8
193.257	$P6_3'/mcm'$	$f^{1}E^{2}\overline{E}$	2/m'	5.4.15	$\bar{6}m'2'$	26.5.99	\mathbf{m}'	4.3.11	12
100.201	1 03/1100110	1, 2 2	$\frac{2}{m'}$	5.4.15	$\bar{3}'1m'$		2	3.1.6	12
						20.4.74			
			2/m'	5.4.15	32	18.1.65	2	3.1.6	12
193.259	$P6_3'/m'cm'$	$a.\overline{E}_1$	$\bar{6}'m'2$	26.3.97	$\bar{3}1m'$	20.5.75	31m'	19.3.70	4
193.259	$P6_3'/m'cm'$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\bar{6}'$	22.3.81	32'	18.3.67	3	16.1.60	8
		$C, E = \overline{E}$			_				
193.261	$P6_3/m'c'm'$	b , ${}^1\overline{E}{}^2\overline{E}$	$\bar{3}'1m'$	20.4.74	$\overline{6}'m'2$	26.3.97	31m'	19.3.70	$\mid 4 \mid$
193.261	$P6_3/m'c'm'$	$f^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	$\bar{6}'m'2$	26.3.97	\mathbf{m}'	4.3.11	12
	- 00/ 0	-,	$\frac{1}{2}/m'$	5.4.15	$\bar{3}'1m'$	20.4.74	2	3.1.6	12
		1-0-	$\frac{2}{m'}$	5.4.15	32	18.1.65	2	3.1.6	12
194.265	$P6_3/m'mc$	a , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\bar{3}'1m$	20.3.73	$\bar{6}'m2'$	26.4.98	31m	19.1.68	4
194.265	$P6_3/m'mc$	g , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2'/m	5.3.14	$\bar{3}'1m$	20.3.73	2'	3.3.8	12
101.200	1 03/110 1100	8, 2 2		5.3.14	$\bar{6}'m2'$	26.4.98		4.1.9	12
1		1=2=	$\frac{2'}{m}$				m		
194.266	$P6_3'/mm'c$	a , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\bar{3}'1m'$	20.4.74	$\bar{6}m'2'$	26.5.99	31m'	19.3.70	4
194.266	$P6_3'/mm'c$	${f a.\overline{E}}_1$	$\bar{3}'1m'$	20.4.74	$\bar{6}m'2'$	26.5.99	31m'	19.3.70	4
194.266	$P6_3'/mm'c$	$g, \overline{E}_{1}^{1} \overline{E}^{2} \overline{E}$	2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	2	3.1.6	12
194.200	1 03/111111 C	g, E E	2/111,		5 1111				
			2/m'	5.4.15	$\bar{6}m'2'$	26.5.99	m'	4.3.11	12
194.267	$P6_3'/mmc'$	g , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2'/m	5.3.14	$\bar{3}'1m$	20.3.73	2'	3.3.8	12
	- 37	67	2'/m	5.3.14	$\bar{6}m2$	26.1.95	m	4.1.9	12
104.000	Del / / /	1 77			_				
	$P6_3'/m'm'c$	b, \overline{E}_1	$\bar{6}'m'2$	26.3.97	$\bar{3}1m'$	20.5.75	31m'	19.3.70	$\mid 4 \mid$
194.271	$P6_3/m'm'c'$	$a^{1}\overline{E}^{2}\overline{E}$	$\bar{3}'1m'$	20.4.74	$\bar{6}'m'2$	26.3.97	31m'	19.3.70	4
	$P6_3/m'm'c'$	$g, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	$\bar{3}'1m'$	20.4.74	2	3.1.6	12
134.211	1 03/11/11/0	8, L L							
1	- 1=1	_	2/m'	5.4.15	$\bar{6}'m'_{\bar{2}}$	26.3.97	m'	4.3.11	12
200.16	$Pm'\bar{3}'$	${ m c}, \overline{E}$	m'm'm'	8.5.28	$m'\bar{3}'$	29.3.111	m'm'2	7.4.23	6
200.16	$Pm'\bar{3}'$	$\mathrm{d}_{,}\overline{E}$	m'm'm'	8.5.28	$m'\bar{3}'$	29.3.111	m'm'2	7.4.23	6
201.20	$Pn'\bar{3}'$	b, \overline{EE}	3'	17.3.64	23	28.1.107	3	16.1.60	8
201.20	$Pn'\bar{3}'$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	3'	17.3.64	23	28.1.107	3	16.1.60	8
201.20	$Pn'\bar{3}'$	c,EE	$\bar{3}'$	17.3.64	23	28.1.107	3	16.1.60	8
201.20	$Pn'\bar{3}'$	c , ${}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{3}'$	17.3.64	23	28.1.107	3	16.1.60	8
201.20	$Pn'\bar{3}'$	$d.\overline{E}$	222	6.1.17	23	28.1.107	$\overset{\circ}{2}$	3.1.6	
									12
202.24	$Fm'\bar{3}'$	$\mathrm{d}, {}^1\overline{E}{}^2\overline{E}$	2/m'	5.4.15	$m'\bar{3}'$	29.3.111	m'	4.3.11	12
			2/m'	5.4.15	23	28.1.107	2	3.1.6	12
203.28	$Fd'\bar{3}'$	${ m c}, \overline{EE}$	3'	17.3.64	23	28.1.107	3	16.1.60	8
1		$c, {}^{1}\overline{E}{}^{2}\overline{E}$							1 1
203.28	$Fd'\bar{3}'$	· —	$\bar{\underline{3}}'$	17.3.64	23	28.1.107	3	16.1.60	8
203.28	$Fd'\bar{3}'$	$_{ m d,}EE$	$\bar{3}'$	17.3.64	23	28.1.107	3	16.1.60	8
203.28	$Fd'\bar{3}'$	$\mathrm{d}, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{3}'$	17.3.64	23	28.1.107	3	16.1.60	8
204.32	$Im'\bar{3}'$	$^{'}$ b, \overline{E}	m'm'm'	8.5.28	$m'\bar{3}'$	29.3.111	m'm'2		6
	1,110 0								
204.32	$Im'\bar{3}'$	c, \underline{EE}_{2}	$\bar{\underline{3}}'$	17.3.64	$m'\bar{3}'$	29.3.111	3	16.1.60	
204.32	$Im'\bar{3}'$	c , ${}^{1}\overline{E}{}^{2}\overline{E}$	3'	17.3.64	$m'\bar{3}'$	29.3.111	3	16.1.60	8
208.46	$P4'_{2}32'$	d,\overline{E}	222	6.1.17	23	28.1.107	2	3.1.6	12
		·	222	6.1.17	2'2'2	6.3.19	2	3.1.6	12
215.72	$P\bar{4}'3m'$	${ m c}, \overline{E}$	$\bar{4}'2m'$	14.4.51	$\bar{4}'\bar{3}\bar{m}'$	31.3.117	m'm'2	7.4.23	6
215.72	$P\bar{4}'3m'$	$d, \overline{\overline{E}}$	$\bar{4}'2m'$	14.4.51	$\bar{4}'3m'$			7.4.23	6
			7/0 /						i i
217.80	$I\bar{4}'3m'$	b, \overline{E}	$\bar{4}'2m'$	14.4.51	$\bar{4}'3m'$	31.3.117			6
217.80	$I\bar{4}'3m'$	$d^{1}E^{2}\overline{E}$	$ \bar{4}' $	10.3.34	$\bar{4}'2m'$	14.4.51	2	3.1.6	12
218.83	$P\bar{4}'3n'$	b, \overline{E}	222	6.1.17	23	28.1.107	2	3.1.6	12
	- 10.0	~,_	222	6.1.17	$\bar{4}'$	10.3.34	$\frac{1}{2}$	3.1.6	12
218.83	$P\bar{4}'3n'$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{222}{4'}$	10.3.34	222	6.1.17	$\frac{2}{2}$	3.1.6	12
		$d, {}^{1}\overline{E} {}^{2}\overline{E}$							
218.83	$P\bar{4}'3n'$	u, E = E	$\frac{\bar{4}'}{\bar{4}'}$	10.3.34	222	6.1.17	2	3.1.6	12
219.87	$F\bar{4}'3c'$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	23	28.1.107	2	3.1.6	12
219.87	$F\bar{4}'3c'$	$d^{1}_{,}\overline{E}^{2}\overline{E}$	$\bar{4}'$	10.3.34	23	28.1.107	2	3.1.6	12
221.96	$Pm'\bar{3}'m'$	c, \overline{E}_2	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122		13.4.47	6
1									
221.96	$Pm'\bar{3}'m'$	$\mathrm{c},\!\overline{\underline{E}}_1$	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122		13.4.47	
221.96	$Pm'\bar{3}'m'$	$\mathrm{d}, \overline{E}_2$	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122	4m'm'	13.4.47	6
221.96	$Pm'\bar{3}'m'$	d, \overline{E}_1	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122		13.4.47	
222.100	$Pn'\bar{3}'n$	c, \overline{EE}	$\bar{\underline{3}}'$	17.3.64	4'32'	30.3.114	3	16.1.60	
222.100	$Pn'\bar{3}'n$	c , ${}^1\overline{E}{}^2\overline{E}$	3'	17.3.64	4'32'	30.3.114	3	16.1.60	16
222.101	$Pn\bar{3}n'$	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	4'22'	12.3.42	2	3.1.6	24
222.102	$Pn'\bar{3}'n'$	b, \overline{E}_2	422	12.1.40	432	30.1.112	$\frac{2}{4}$	9.1.29	12
									1 1
222.102	$Pn'\bar{3}'n'$	$_{\mathrm{b},E_{1}}$	422	12.1.40	432	30.1.112	4	9.1.29	12

1000 100	D /5/ /		l 5/	15001	100	00 1 110	۱ ۵	10100	امدا
222.102	$Pn'\bar{3}'n'$	c, <u>EE</u>	$\frac{\bar{3}'}{\bar{a}'}$	17.3.64	432	30.1.112	3	16.1.60	
222.102	$Pn'\bar{3}'n'$	$c, 1 \overline{E}^{2} \overline{E}$	$\bar{\underline{3}}'_{1}$	17.3.64	432	30.1.112	3	16.1.60	16
222.102	$Pn'\bar{3}'n'$	d , ${}^{1}\overline{E}{}^{2}\overline{E}$	$ $ $,\bar{4}'$	10.3.34	422	12.1.40	2	3.1.6	24
223.106	$Pm'\bar{3}'n$	$_{\mathrm{b},\overline{E}}$	$m'_{,}m'_{,}m'_{,}$	8.5.28	$m'\bar{3}'$	29.3.111	m'm'2	7.4.23	12
000 100	D /5/ /	1 =	$m'_{,}m'_{,}m'_{,}$	8.5.28	$\bar{4}2'm'_{\bar{2}'}$	14.5.52	m'm'2	7.4.23	12
223.108	$Pm'\bar{3}'n'$	b, \overline{E}	m'm'm'	8.5.28	$m'\bar{3}'$	29.3.111	m'm'2	7.4.23	12
$ _{223.108}$	$Pm'\bar{3}'n'$	e, \overline{E}_1	m'm'm' 32	$8.5.28 \\ 18.1.65$	$a'2m' \\ m'\bar{3}'$	14.4.51 $29.3.111$	m'm'2	7.4.23 16.1.60	12 16
$\begin{vmatrix} 223.108 \\ 223.108 \end{vmatrix}$	$Pm'\bar{3}'n'$	c, \overline{E}	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	$\begin{vmatrix} 10 \\ 12 \end{vmatrix}$
223.108 223.108	$Pm'\bar{3}'n'$	d, \overline{E}	$\frac{4}{4}i^{2}m'$	14.4.51 $14.4.51$	m'm'm'	8.5.28	m'm'2	7.4.23 $7.4.23$	$\begin{vmatrix} 12\\12\end{vmatrix}$
1	$Pn\bar{3}m'$	d, \underline{E}	$\frac{4}{4}i^{2}m'$		$\bar{4}'3m'$		m'm'2		
224.113	Pn3m $Pn'\bar{3}'m'$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{4}{3}$ $2m$	14.4.51	$\frac{4}{4}3m'$	31.3.117		7.4.23	$\frac{12}{9}$
224.114				20.4.74		31.3.117	31m'	19.3.70	8
224.114	$Pn'\bar{3}'m'$	b, \overline{E}_1	$\frac{\bar{3}'1m'}{\bar{5}'1}$	20.4.74	$\frac{\bar{4}'3m'}{\bar{4}'9}$	31.3.117	31m'	19.3.70	8
224.114	$Pn'\bar{3}'m'$	$c, {}^{1}\overline{\underline{E}}{}^{2}\overline{E}$	$\frac{\bar{3}'1m'}{\bar{5}'1}$	20.4.74	$\frac{\bar{4}'3m'}{\bar{7}'2}$	31.3.117	31m'	19.3.70	8
224.114	$Pn'\bar{3}'m'$	c, \overline{E}_1	$\frac{\bar{3}'1m'}{\bar{3}'2}$	20.4.74	$\frac{\bar{4}'3m'}{\bar{7}'2}$	31.3.117	31m'	19.3.70	8
224.114	$Pn'\bar{3}'m'$	d, \underline{E}	$\bar{4}'2m'$	14.4.51	$\frac{\bar{4}'3m'}{\bar{5}'1}$	31.3.117	m'm'2	7.4.23	12
224.114	$Pn'\bar{3}'m'$	f, \overline{E}	222	6.1.17	$\frac{\bar{3}'1m'}{4'2}$	20.4.74	2	3.1.6	24
225.118	$Fm'\bar{3}'m$	c, \overline{F}	$\frac{222}{43m}$	6.1.17 $31.1.115$	$\bar{4}'2m' \\ m'\bar{3}'m$	14.4.51 $32.3.120$	$\frac{2}{31m}$	$3.1.6 \\ 19.1.68$	$\frac{24}{\circ}$
225.118 225.118	$Fm'\bar{3}'m$	d, \overline{E}	m'mm	8.3.26	$m'\bar{3}'m$	32.3.120	m'm2'	7.3.22	$\begin{vmatrix} 8 \\ 12 \end{vmatrix}$
225.116 225.120	$Fm'\bar{3}'m'$	d, \underline{E}	m'm'm'	8.5.28	$m'\bar{3}'m'$	32.5.120 $32.5.122$	m'm'2	7.4.23	$\begin{vmatrix} 12\\12\end{vmatrix}$
223.120	r m s m	a,E	m'm'm'	8.5.28	$\frac{m}{4}3m'$	31.3.117	m'm'2	7.4.23	$\begin{vmatrix} 12 \\ 12 \end{vmatrix}$
226.126	$Fm'\bar{3}'c'$	$c.\overline{E}$	$\frac{1}{4}i^{\prime\prime}2m^{\prime\prime}$	14.4.51	$m'\bar{3}'$	29.3.111	m'm',2	7.4.23	$ \frac{12}{12} $
226.126	$Fm'\bar{3}'c'$	d , ${}^{1}\overline{E}_{2}{}^{2}\overline{E}_{2}$	4/m'	11.4.38	432	30.1.112	4	9.1.29	12
226.126	$Fm'\bar{3}'c'$	$d, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1}$	4/m'	11.4.38	432	30.1.112	4	9.1.29	12
227.132	$Fd'\bar{3}'m'$	$\begin{bmatrix} c, \frac{D_1}{E} {}^2\overline{E} \end{bmatrix}$	$\bar{3}'1m'$	20.4.74	$\bar{4}'3m'$	31.3.117	31m'	19.3.70	8
227.132	$Fd'\bar{3}'m'$	$\left \begin{array}{c} c, \underline{E} \\ c, \overline{E}_1 \end{array} \right $	$\frac{3}{3}'1m'$	20.4.74 $20.4.74$	$\frac{4}{4}3m'$	31.3.117	31m'	19.3.70	8
227.132	$Fd'\bar{3}'m'$	$d, \overline{E}^{\frac{1}{2}} \overline{E}$	$\frac{3}{3}'1m'$	20.4.74	$\bar{4}'3m'$	31.3.117	31m'	19.3.70	8
227.132	$Fd'\bar{3}'m'$	d, \overline{E}_1	$\bar{3}'1m'$	20.4.74	$\bar{4}'3m'$	31.3.117	31m'	19.3.70	8
228.136	$Fd'\bar{3}'c$	c, \overline{EE}	$\bar{3}'$	17.3.64	23	28.1.107	3	16.1.60	16
220.100	1 4 5 0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	17.3.64	32'	18.3.67	3	16.1.60	16
228.136	$Fd'\bar{3}'c$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$ $ $\bar{3}'$	17.3.64	23	28.1.107	$\ddot{3}$	16.1.60	16
	= <i>'</i>	. 1=2=	$ar{ ilde{3}'}_{4'}$	17.3.64	32'	18.3.67	3	16.1.60	16
228.137	$Fd\bar{3}c'$	$d, \overline{E}^{2}\overline{E}$	4'	10.3.34	23	28.1.107	2	3.1.6	24
228.138	$Fd'\bar{3}'c'$	b,E_1	32	18.1.65	23	28.1.107	3	16.1.60	16
228.138	$Fd'\bar{3}'c'$	c, \overline{EE}	$\frac{32}{3'}$	18.1.65 $17.3.64$	$\begin{bmatrix} \bar{3}' \\ 23 \end{bmatrix}$	17.3.64 $28.1.107$	$\frac{3}{3}$	$16.1.60 \\ 16.1.60$	$\begin{vmatrix} 16 \\ 16 \end{vmatrix}$
220.130	rasc	C,EE	$\frac{3}{3}$	17.3.64 $17.3.64$	$\frac{23}{32}$	18.1.65	3	16.1.60	$\frac{10}{16}$
228.138	$Fd'\bar{3}'c'$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	17.3.64	23	28.1.107	$\frac{3}{3}$	16.1.60	16
		'	$\frac{\tilde{3}'}{4'}$	17.3.64	32	18.1.65	3	16.1.60	16
228.138	$Fd'\bar{3}'c'$	$d, {}^{1}\overline{E} {}^{2}\overline{E}$		10.3.34	$\frac{32}{23}$	28.1.107	2	3.1.6	24
229.142	$Im'\bar{3}'m$	c , ${}^{1}\overline{\underline{E}}{}^{2}\overline{E}$	$\bar{3}'1m$	20.3.73	$m'\bar{3}'m$	32.3.120	31m	19.1.68	8
229.144	$Im'\bar{3}'m'$	b, \overline{E}_2	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122	4m'm'	13.4.47	6
229.144	$Im'\bar{3}'m'$	b, \overline{E}_1	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122	4m'm'	13.4.47	6
229.144	$Im'\bar{3}'m'$	c , ${}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{3}'1m'$	20.4.74	$m'\bar{3}'m'$	32.5.122	31m'	19.3.70	8
229.144	$Im'\bar{3}'m'$	c, \overline{E}_1	$\bar{3}'1m'$	20.4.74	$m'\bar{3}'m'$	32.5.122	31m'	19.3.70	8
229.144	$Im'\bar{3}'m'$	d,\overline{E}	$\bar{4}'2m'$	14.4.51	4/m'm'm'	15.7.59	m'm'2	7.4.23	12
230.147	$Ia'\bar{3}'d$	a, \overline{EE}	$\bar{3}'$	17.3.64	32'	18.3.67	3	16.1.60	16
230.147	$Ia'\bar{3}'d$	$a^{1}\overline{E}^{2}\overline{E}$	$\bar{3}'$	17.3.64	32'	18.3.67	3	16.1.60	16
230.148	$Ia\bar{3}d'$	$d^{1}_{,} \overline{E}^{2} \overline{E}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	24
230.149	$Ia'\bar{3}'d'$	a, \overline{EE}	$\bar{\bar{3}}'$	17.3.64	32	18.1.65	3	16.1.60	16
230.149	$Ia'\bar{3}'d'$	c, \overline{E}	222	6.1.17	32	18.1.65	2	3.1.6	24
			222	6.1.17	$\bar{4}'$	10.3.34	2	3.1.6	24
230.149	$Ia'\bar{3}'d'$	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	24

Supplementary Table 20: Exceptional composite band coreps induced from site-symmetry coreps in the Type-IV single MSGs (SN 6). In order, the columns in this table list the number of the MSG in the BNS setting and the symbol of the MSG, the letter of the maximal Wyckoff position containing ${\bf q}$ and the single-valued corep of the site-symmetry group $G_{\bf q}$, the symbol of the MSG isomorphic to the site-symmetry group $G_{\bf q}$ in the Hermann-Mauguin notation of the MPOINT tool on the BCS^{15–18} and the number of the MSG isomorphic to $G_{\bf q}$ in the convention established by Litvin in SRef. 10, the symbol and number of the MPG isomorphic to the reducing group $G_{{\bf q}'}$, the symbol and number of the MPG isomorphic to the intersection group $G_{{\bf q}0} = G_{\bf q} \cap G_{{\bf q}'}$, and the dimension d of the exceptional composite band corep. See SN 24 for further information regarding exceptional composite band coreps.

<u> </u>	MSG	Corep	$G_{\mathbf{q}}$		$G_{\mathbf{q}}$,	G	\mathbf{q}_0	d
81.36	$P_c \overline{4}$	b.BB	4'	10.3.34	4	10.1.32	2	$\frac{\mathbf{q}_{0}}{3.1.6}$	4
81.36	$P_c \bar{4}$	$d_{,BB}$	$\frac{4}{4}$	10.3.34 $10.3.34$	$\frac{4}{4}$	10.1.32 $10.1.32$	$\frac{2}{2}$	3.1.6	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
			$\frac{4}{4}$						
82.42	$I_c \frac{4}{4}$	$_{\rm o}^{\rm b,}BB$	$\frac{4}{4}$	10.3.34	$egin{array}{c} ar{4} \ ar{4} \end{array}$	10.1.32	2	3.1.6	4
82.42	$I_c 4$	c,BB		10.3.34		10.1.32	2	3.1.6	4
83.48	P_c4/m	$b, {}^{1}_{1}E {}^{2}E$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	4
83.48	P_c4/m	$d^{1}E^{2}E$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	4
83.50	P_I4/m	$_{\mathrm{d},BB}$	$=\bar{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	8
84.57	$P_C 4_2/m$	f_*BB	$\bar{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	8
85.64	$P_c 4/n$	\dot{b},BB	$\bar{4}'$	10.3.34	$\overline{4}$	10.1.32	2	3.1.6	8
86.72	$P_c 4_2/n$	aBB	$\bar{4}'$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
86.73	$P_C 4_2/n$	e,BB	$\bar{4}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
86.74	$P_I 4_2/n$	d.BB	$\frac{1}{4}$	10.3.34	2/m'	5.4.15	$\frac{2}{2}$	3.1.6	8
		$b, {}^{1}E^{2}E$	4/m'			11.1.35	1		$\frac{3}{4}$
87.80	$I_c 4/m$			11.4.38	4/m		4	9.1.29	
88.86	$I_c 4_1/a$	$_{\mathrm{b},BB}$	4′	10.3.34	4	10.1.32	2	3.1.6	8
89.92	P_c422	a,E	422	12.1.40	42'2'	12.4.43	4	9.1.29	4
89.92	P_c422	c,E	422	12.1.40	42'2'	12.4.43	4	9.1.29	4
97.156	I_c422	a,E	422	12.1.40	42'2'	12.4.43	4	9.1.29	4
111.258	$P_{I}\bar{4}2m$	$_{\mathrm{d},BB}$	$\bar{4}'$	10.3.34	_222	6.1.17	2	3.1.6	8
112.264	$P_c \overline{4}2c$	b, B_2B_3	$\bar{4}'_{1}2m'_{1}$	14.4.51	$= \frac{1}{4}2'm'$	14.5.52	m'm'2	7.4.23	4
112.264	$P_c\bar{4}2c$	$c, B_2 B_3$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
112.265	$P_{\underline{C}}\bar{4}2c$	$_{ m d,}BB$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
113.272	$P_c \bar{4} 2_1 m$	$_{\mathrm{b},BB}$	$\bar{4}'$	10.3.34	$\frac{4}{2}$	10.1.32	2	3.1.6	8
114.280	$P_c\bar{4}2_1c$	$_{\mathrm{a},BB}$	$\bar{4}'$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
114.281	$P_C \bar{4} 2_1 c$	$_{\mathrm{c},BB}$	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
114.282	$P_I \overline{4} 2_1 c$	$_{ m d,}BB$	$-\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
116.296	$P_c \overline{4} c2$	a, B_2B_3	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
116.296	$P_c \bar{4}c2$	$b_1B_2B_3$	$\bar{4}'2m'$	14.4.51	$= \bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
116.297	$P_C \bar{4}c2$	f_*BB	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
116.298	$P_I \bar{4}c2$	c,BB	$\bar{4}'$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
117.304	$P_c \bar{4}b2$	$_{\mathrm{b},BB}$	$egin{array}{c} ar{4}' \ ar{4}' \ ar{4}' \end{array}$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
117.306	$P_I \bar{4}b2$	c,BB	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
118.312	$P_c\bar{4}n2$	a,BB	$\bar{4}'$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
118.313	$P_C \bar{4}n2$	e,BB	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
120.326	$I_c\bar{4}c2$	a,B_2B_3	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
120.326	$I_c \bar{4} c2$	$b, B_2 B_3$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
121.332	$I_c \bar{4}2m$	$b, B_2 B_3$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
122.338	$I_c\bar{4}2d$	$\dot{\mathrm{b}}, ar{B}B$	$\bar{4}'$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
123.350	P_I4/mmm	d,B_1B_2	$\bar{4}'2'm$	14.3.50	mmm	8.1.24	mm2	7.1.20	8
124.360	P_c4/mcc	b,E	4/m'm'm'	15.7.59	4/mm'm'	15.6.58		13.4.47	4
124.360	P_c4/mcc	d, E	4/m'm'm'	15.7.59	4/mm'm'	15.6.58		13.4.47	$\frac{1}{4}$
124.361	P_C4/mcc	a,E	422	12.1.40	$\frac{1}{4/m}$	11.1.35	4	9.1.29	8
124.362	P_I4/mcc	a,E	422	12.1.40	$\frac{1}{4/m}$	11.1.35	$\frac{1}{4}$	9.1.29	8
124.362	$P_I 4/mcc$	b, B_2B_3	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	8
124.302 125.372	P_c4/nbm	a,E	422	12.1.40	42'2'	12.4.43	4	9.1.29	8
1			$\bar{4}2m$						
125.374	$P_I 4/nbm$	$_{\mathrm{b},E}$		14.1.48	m'mm	8.3.26	$\frac{\text{mm2}}{4}$	7.1.20	8
126.384	P_c4/nnc	b,E	422	12.1.40	42'2'	12.4.43	4,	9.1.29	8
126.384	P_c4/nnc	$d_{1}B_{2}B_{3}$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2		8
127.396	P_c4/mbm	$b, E^{2}E$	$\frac{4}{m'}$	11.4.38	4/m	11.1.35	4	9.1.29	8
127.398	P_I4/mbm	b, B_1B_2	$\bar{4}'2'm$	14.3.50	mmm	8.1.24	mm2	7.1.20	8
128.408	P_c4/mnc	$b, {}^{1}E {}^{2}E$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	8
128.410	P_I4/mnc	d, B_2B_3	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	8
129.422	P_I4/nmm	d,E	$\bar{4}2m$	14.1.48	m'mm	8.3.26	mm2	7.1.20	8
130.432	P_c4/ncc	b, B_2B_3	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
130.433	P_C4/ncc	$b, {}^{1}E {}^{2}E$	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	8
		${}^{0}, {}^{E}{}^{E}{}^{E}$					1		
130.434	P_I4/ncc		$\frac{4/m'}{42m}$	11.4.38	42'2'	12.4.43	4	9.1.29	8
131.445	P_C4_2/mmc	$_{\mathrm{b},E}$	42m	14.1.48	mmm	8.1.24	mm2	7.1.20	8

131.445	P_C4_2/mmc	d,B_1B_2	$\bar{4}'2'm$	14.3.50	mmm	8.1.24	mm2	7.1.20	8
	$P_I 4_2 / mmc$	$\mathrm{d}_{,E}$	$\bar{4}2m$	14.1.48	mmm	8.1.24	mm2	7.1.20	8
		e,E	$\bar{4}2m$			8.1.24		7.1.20	$\left \begin{array}{c} 6 \\ 8 \end{array} \right $
132.437	$P_C 4_2/mcm$		42111	14.1.48	mmm		mm2		
	P_C4_2/mcm	$f_1B_2B_3$	$\bar{4}'_{2}2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	8
132.458	P_I4_2/mcm	$_{\mathrm{b},E}$	42m	14.1.48	mmm	8.1.24	mm2	7.1.20	8
133.468	$P_c 4_2/nbc$	$c, B_2 B_3$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
133.469	$P_C 4_2/nbc$	$d_1B_2B_3$	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	8
			$\frac{1}{4}$ $2m'$						
133.470	$P_I 4_2/nbc$	b, B_2B_3		14.4.51	m'm'm'	8.5.28	m'm'2		8
134.481	P_C4_2/nnm	e,E	$\bar{4}2m$	14.1.48	m'mm	8.3.26	mm2	7.1.20	8
134.481	P_C4_2/nnm	$f_1B_2B_3$	$\bar{4}'2m'$	14.4.51	$\mid m'm'm'$	8.5.28	m'm'2	7.4.23	8
	P_I4_2/nnm	d, B_2B_3	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	8
135.493	$P_C 4_2/mbc$	b, B_2B_3	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	8
	$P_C 4_2/mnm$		$\frac{1}{4}$ $\frac{2}{2}$ m	14.3.50		8.1.24		7.1.20	$\left \begin{array}{c} 8 \\ 8 \end{array} \right $
		f, B_1B_2	4 2 111		mmm		mm2		
	P_C4_2/nmc	b, B_1B_2	$\bar{4}'_{2}2'm$	14.3.50	$m'_{,mm}$	8.3.26	mm2	7.1.20	8
137.517	P_C4_2/nmc	$_{\mathrm{d},E}$	$\bar{4}2m$	14.1.48	m'mm	8.3.26	mm2	7.1.20	8
137.518	$P_I 4_2/nmc$	$\mathrm{d}_{,}B_{1}B_{2}$	$\bar{4}'2'm$	14.3.50	m'mm	8.3.26	mm2	7.1.20	8
138.528	P_c4_2/ncm	a, B_2B_3	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
138.529	$P_C 4_2/ncm$	e, B_1B_2	$\bar{4}'2'm$	14.3.50	m'mm	8.3.26	mm2	7.1.20	8
			$\frac{1}{4}$ $\frac{2}{2}$ m						
138.530	$P_I 4_2/ncm$	b, B_1B_2	42 m	14.3.50	m'mm	8.3.26	mm2	7.1.20	8
140.550	I_c4/mcm	$_{ m b,}E$	$4/\underline{m}'m'm'$	15.7.59	$4/\underline{m}m'm'$	15.6.58	4m'm'	13.4.47	$\mid 4 \mid$
142.570	I_c4_1/acd	b, B_2B_3	$\bar{4}'2m'$	14.4.51	42'm'	14.5.52	m'm'2	7.4.23	8
147.16	$P_c\bar{3}$	$b^{1}E^{2}E$	3'	17.3.64	$\bar{3}$	17.1.62	3	16.1.60	$\mid 4 \mid$
148.20	$R_I^{\bar{3}}$	$b^{,1}E^{2}E$	$\bar{\bar{3}}'$	17.3.64	$\bar{\bar{3}}$	17.1.62	3	16.1.60	
149.24	$P_{c}312$		32	18.1.65	32'1	18.3.67	3	16.1.60	
		a,E		18.1.65					
149.24	$P_{c}312$	c,E	32		32'1	18.3.67	3	16.1.60	
149.24	$P_{c}312$	e,E	32	18.1.65	32′1	18.3.67	3	16.1.60	
150.28	$P_{c}321$	a,E	32	18.1.65	32′1	18.3.67	3	16.1.60	
155.48	$R_I 32$	a,E	32	18.1.65	32'1	18.3.67	3	16.1.60	$\mid 4 \mid$
162.78	$P_c\bar{3}1m$	c,E	32	18.1.65	32'1	18.3.67	3	16.1.60	8
163.84	$P_c\bar{3}1c$	b,E	$\bar{3}'m'1$	20.4.74	$\bar{3}m'1$	20.5.75	3m'1	19.3.70	$\mid 4 \mid$
163.84	$P_c \bar{3} 1 c$	$\tilde{\mathrm{d}}, E$	32	18.1.65	32'1	18.3.67	3	16.1.60	
165.96	$P_c\bar{3}c1$	b, E	$\bar{3}'m'1$	20.4.74	$\bar{3}m'1$	20.5.75	3m'1	19.3.70	
	$R_I \bar{3}c$	b,E	$\frac{3}{3}m'1$	20.4.74 $20.4.74$	$\frac{3m'}{3m'}$ 1		3m'1	19.3.70	
167.108						20.5.75			
174.136	$P_c\bar{\bar{6}}$	$b, {}^{1}E^{2}E$	$\bar{\underline{6}}'$	22.3.81	$\bar{\underline{6}}$	22.1.79	3	16.1.60	
174.136	$P_c\bar{6}$	$d^{1}E^{2}E$	$\bar{6}'$	22.3.81	$\bar{6}$	22.1.79	3	16.1.60	4
1-1-00	- 00							10.1.00	
174.136	$P_c \overline{6}$	$f^{,1}_{,1}E^{2}E$	$\bar{6}'$	22.3.81	$\bar{6}$	22.1.79	3	16.1.60	
174.136	$P_c\bar{6}$	$f^{,1}_{,1}E^{2}E$	6/m'	22.3.81	$\bar{6}$	22.1.79	3	16.1.60	4
174.136 175.142	$P_car{6} \ P_c6/m$	$\int_{b_1}^{1} E^2 E$	$\frac{\bar{6}'}{6/m'}$	22.3.81 $23.4.85$	$ar{6} \\ 6/m$	$\begin{array}{c} 22.1.79 \\ 23.1.82 \end{array}$	$\frac{3}{6}$	$\begin{array}{c} 16.1.60 \\ 21.1.76 \end{array}$	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
174.136 175.142 175.142	$P_car{6} \ P_c6/m \ P_c6/m$	$\begin{array}{c} f, {}^{1}E {}^{2}E \\ b, {}^{1}E_{1} {}^{2}E_{1} \\ b, {}^{1}E_{2} {}^{2}E_{2} \end{array}$	$ \begin{array}{c c} \bar{6}'\\ 6/m'\\ 6/m' \end{array} $	22.3.81 23.4.85 23.4.85	$egin{array}{c} ar{6} \ 6/m \ 6/m \end{array}$	22.1.79 23.1.82 23.1.82	3 6 6	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \end{array}$	$egin{array}{c c} 4 \\ 4 \\ 4 \end{array}$
174.136 175.142 175.142 175.142	$P_car{6}$ P_c6/m P_c6/m P_c6/m	$ \begin{array}{c} f, {}^{1}E {}^{2}E \\ b, {}^{1}E_{1} {}^{2}E_{1} \\ b, {}^{1}E_{2} {}^{2}E_{2} \\ d, {}^{1}E {}^{2}E \end{array} $	$\begin{bmatrix} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \end{bmatrix}$	22.3.81 23.4.85 23.4.85 22.3.81	$egin{array}{c} ar{6} \ 6/m \ 6/m \ ar{6} \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79	3 6 6 3	$16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60$	4 4 4 8
174.136 175.142 175.142	$P_car{6} \ P_c6/m \ P_c6/m$	$\begin{array}{c} f, {}^{1}E {}^{2}E \\ b, {}^{1}E_{1} {}^{2}E_{1} \\ b, {}^{1}E_{2} {}^{2}E_{2} \end{array}$	$ \begin{array}{c c} \bar{6}'\\ 6/m'\\ 6/m' \end{array} $	22.3.81 23.4.85 23.4.85	$egin{array}{c} ar{6} \ 6/m \ 6/m \ ar{6} \ ar{6} \end{array}$	22.1.79 23.1.82 23.1.82	3 6 6	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \end{array}$	4 4 4 8
174.136 175.142 175.142 175.142	$P_car{6}$ P_c6/m P_c6/m P_c6/m P_c6/m	$ \begin{array}{c} f, {}^{1}E {}^{2}E \\ b, {}^{1}E_{1} {}^{2}E_{1} \\ b, {}^{1}E_{2} {}^{2}E_{2} \\ d, {}^{1}E {}^{2}E \end{array} $	$ \begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \end{array} $	22.3.81 23.4.85 23.4.85 22.3.81	$egin{array}{c} ar{6} \ 6/m \ 6/m \ ar{6} \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79	3 6 6 3	$16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60$	4 4 4 8 8
174.136 175.142 175.142 175.142 176.148 177.154	$P_{c}ar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}622$	$\begin{array}{c} \text{f,} {}^{1}E{}^{2}E\\ \text{b,} {}^{1}E_{1}{}^{2}E_{1}\\ \text{b,} {}^{1}E_{2}{}^{2}E_{2}\\ \text{d,} {}^{1}E{}^{2}E\\ \text{d,} {}^{1}E{}^{2}E\\ \text{a,} E_{2} \end{array}$	$egin{array}{cccc} ar{6}' & & & & & & & & \\ 6/m' & & & & & & & & \\ 6/m' & & & & & & & \\ ar{6}' & & & & & & & \\ 622 & & & & & & & \\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87	$egin{array}{ccc} ar{6} & & & & & & & & & & & & & & & & & & &$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90	3 6 6 3 3 6	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \end{array}$	4 4 4 8 8 4
174.136 175.142 175.142 175.142 176.148 177.154 177.154	$P_{c}ar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}622$ $P_{c}622$	$\begin{array}{c} \mathrm{f},^{1}_{1}E^{2}E\\ \mathrm{b},^{1}_{1}E_{1}^{2}E_{1}\\ \mathrm{b},^{1}_{1}E_{2}^{2}E_{2}\\ \mathrm{d},^{1}_{1}E^{2}E\\ \mathrm{d},^{1}_{1}E^{2}E\\ \mathrm{a},E_{2}\\ \mathrm{a},E_{1} \end{array}$	$ \begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \end{array} $	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87	$ \begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \end{array} $	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90	3 6 6 3 3 6 6	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \end{array}$	4 4 4 8 8 4 4
174.136 175.142 175.142 175.142 176.148 177.154 177.154	$P_car{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_32 P_c622 P_c622	$\begin{array}{c} \mathrm{f},^{1}E^{2}E \\ \mathrm{b},^{1}E_{1}^{2}E_{1} \\ \mathrm{b},^{1}E_{2}^{2}E_{2} \\ \mathrm{d},^{1}E^{2}E \\ \mathrm{d},^{1}E^{2}E \\ \mathrm{a},E_{2} \\ \mathrm{a},E_{1} \\ \mathrm{c},E \end{array}$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65	$egin{array}{ccc} ar{6} & 6/m & 6/m & 6/m & 6 & 6 & 6 & 6 & 62'2' & 62'2' & 32'1 & 62'1 & 62'2' & 62'1 &$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67	3 6 6 3 6 6 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \end{array}$	4 4 4 8 8 4 4 8
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184	$P_car{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_32 P_c6_2 P_c6_2 P_c6_3	$\begin{array}{c} \mathrm{f},^{1}E^{2}E\\ \mathrm{b},^{1}E_{1}^{2}E_{1}\\ \mathrm{b},^{1}E_{2}^{2}E_{2}\\ \mathrm{d},^{1}E^{2}E\\ \mathrm{d},^{1}E^{2}E\\ \mathrm{a},E_{2}\\ \mathrm{a},E_{1}\\ \mathrm{c},E\\ \mathrm{d},E \end{array}$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ 32 \\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65	$ar{6}$ $6/m$ $6/m$ $ar{6}$ $ar{6}$ $62'2'$ $62'2'$ $32'1$ $32'1$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67	3 6 6 3 6 6 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \end{array}$	4 4 8 8 8 4 4 8 8
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220	$P_car{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_3 P_c6_3 P_c6_3 P_c6_3 P_c6_3	$\begin{array}{c} \text{f,} ^1E^2E\\ \text{b,} ^1E_1{}^2E_1\\ \text{b,} ^1E_2{}^2E_2\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{a,} E_2\\ \text{a,} E_1\\ \text{c,} E\\ \text{d,} E\\ \text{a,} E\\ \text{a,} E\\ \end{array}$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97	$ar{6}$ $6/m$ $6/m$ $ar{6}$ $ar{6}$ 6 6 6 $62'2'$ $62'2'$ $32'1$ $32'1$ $ar{6}m'2'$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 18.3.67 18.3.67 26.5.99	3 6 6 3 3 6 6 3 3 3 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \end{array}$	4 4 8 8 4 4 8 8 4
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220	$P_car{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_3 P_c6_3 P_c6_3 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2	$\begin{array}{c} \text{f,}^1 E^2 E \\ \text{b,}^1 E_1^{\ 2} E_1 \\ \text{b,}^1 E_2^{\ 2} E_2 \\ \text{d,}^1 E^2 E \\ \text{d,}^1 E^2 E \\ \text{a,} E_2 \\ \text{a,} E_1 \\ \text{c,} E \\ \text{d,} E \\ \text{c,} E \end{array}$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99	3 6 6 3 3 6 6 3 3 3 3m'1 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \end{array}$	4 4 8 8 4 4 8 8 4
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220	$P_car{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_2	$\begin{array}{c} \mathrm{f},^{1}E^{2}E\\ \mathrm{b},^{1}E_{1}^{2}E_{1}\\ \mathrm{b},^{1}E_{2}^{2}E_{2}\\ \mathrm{d},^{1}E^{2}E\\ \mathrm{d},^{1}E^{2}E\\ \mathrm{a},E_{2}\\ \mathrm{a},E_{1}\\ \mathrm{c},E\\ \mathrm{d},E\\ \mathrm{e},E \end{array}$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ \bar{3}2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \end{array}$	4 4 8 8 8 4 4 4 4 4
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_3 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2	$\begin{array}{c} \text{f,}^1E^2E\\ \text{b,}^1E_1^2E_1\\ \text{b,}^1E_2^2E_2\\ \text{d,}^1E^2E\\ \text{d,}^1E^2E\\ \text{d,}^1E_2^2E\\ \text{a,}E_1\\ \text{c,}E\\ \text{d,}E\\ \text{d,}E^2E\\ \end{array}$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6} \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \end{array}$	4 4 8 8 8 4 4 4 4 4
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_3 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2	$\begin{array}{c} \text{f,}^1E^2E\\ \text{b,}^1E_1^2E_1\\ \text{b,}^1E_2^2E_2\\ \text{d,}^1E^2E\\ \text{d,}^1E^2E\\ \text{d,}^1E_2^2E\\ \text{a,}E_1\\ \text{c,}E\\ \text{d,}E\\ \text{d,}E^2E\\ \end{array}$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 18.1.65 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6} \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ \end{array}$	4 4 8 8 4 4 8 8 4 4 4 8 8
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232	$P_car{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_2	$\begin{array}{c} \mathrm{f},^{1}E^{2}E\\ \mathrm{b},^{1}E_{1}^{2}E_{1}\\ \mathrm{b},^{1}E_{2}^{2}E_{2}\\ \mathrm{d},^{1}E^{2}E\\ \mathrm{d},^{1}E^{2}E\\ \mathrm{d},^{1}E^{2}E\\ \mathrm{d},^{2}E_{1}\\ \mathrm{c},E\\ \mathrm{d},E\\ \mathrm$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ \bar{3}2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 26.3.97	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ \bar{3}2'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6} \\ \bar{6}m'2' \\ \bar{6} \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3m'1 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ \end{array}$	4 4 8 8 4 4 4 4 4 8 8 4
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 188.220 189.226 190.232	$P_car{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_2	$\begin{array}{c} \text{f,} ^1E^2E\\ \text{b,} ^1E_1{}^2E_1\\ \text{b,} ^1E_2{}^2E_2\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{a,} E_1\\ \text{c,} E\\ \text{d,} E\\ \text{d,} E\\ \text{c,} E\\ \text{c,} E\\ \text{c,} E\\ \text{c,} E\\ \text{c,} E^2E\\ \text{c,} ^1E^2E\\ \end{array}$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ \bar{3}2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' \\ \bar{6}'m'2 \\ \bar{6}' \\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 26.3.97 22.3.81	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ \bar{3}2'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6} \\ \bar{6}m'2' \\ \bar{6} \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3 3m'1 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 19.3.70 \\ 16.1.60 \\ \end{array}$	4 4 4 8 8 8 4 4 4 4 4 8 8 8 4 4 4 8
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_2 P_c6_3	$\begin{array}{c} \text{f,} ^1E^2E\\ \text{b,} ^1E_1{}^2E_1\\ \text{b,} ^1E_2{}^2E_2\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{a,} E_1\\ \text{c,} E\\ \text{d,} E\\ \text{e,} E\\ \text{d,} ^1E^2E\\ \text{c,} E\\ \text{c,} $	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ \bar{3}2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'm'm' \\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 26.3.97 22.3.81 27.7.106	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ \underline{32'1} \\ \underline{6m'2'} \\ \bar{6m'2'} \\ \bar{6m'2'} \\ \bar{6} \\ \underline{6m'2'} \\ \bar{6} \\ 6/mm'm' \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3 3m'1 3 6m'm'	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \end{array}$	4 4 8 8 8 4 4 8 8 4 4 4 8 8 4 4 4 4 8 8 8 4 4 4 4 4 4 4 8 8 8 8 4 4 4 8
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_3 P_c6_2 P_c6_3 P_c6_3 P_c6_4 P_c6_5 P_c6_5	$\begin{array}{c} \text{f,} ^1E^2E\\ \text{b,} ^1E_1{}^2E_1\\ \text{b,} ^1E_2{}^2E_2\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{a,} E_2\\ \text{a,} E_1\\ \text{c,} E\\ \text{d,} E\\ \text{e,} E\\ \text{d,} ^1E^2E\\ \text{c,} E\\ \text{c,} E\\ \text{e,} E\\ \text{d,} E^2E\\ \text{b,} E_2\\ \text{b,} E_1\\ \end{array}$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' \\ \bar{6}'m'2 \\ \bar{6}' \\ 6/m'm'm' \\ 6/m'm'm' \end{array}$	$\begin{array}{c} 22.3.81 \\ 23.4.85 \\ 23.4.85 \\ 22.3.81 \\ 22.3.81 \\ 24.1.87 \\ 18.1.65 \\ 18.1.65 \\ 26.3.97 \\ 26.3.97 \\ 22.3.81 \\ 26.3.97 \\ 22.3.81 \\ 27.7.106 \\ 27.7.106 \end{array}$	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ 6/mm'm' \\ 6/mm'm' \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105 27.6.105	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3 6m'm' 6m'm'	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \end{array}$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 4 8 8 4
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}\bar{6}2$	$\begin{array}{c} \mathbf{f}, ^{1}E^{2}E\\ \mathbf{b}, ^{1}E_{1}^{2}E_{1}\\ \mathbf{b}, ^{1}E_{2}^{2}E_{2}\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{2}E_{1}\\ \mathbf{d}, ^{2}E_{2}\\ \mathbf{d}, ^{2}E_{2}\\ \mathbf{d}, ^{2}E_{3}\\ \mathbf{d}, ^{2}E_{4}\\ \mathbf{d}, ^{2}E_{5}\\ \mathbf{d}, ^{2}E$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ m'm'm' \\ \bar{6}'m'm'm' \\ 6/m'm'm' \\ \bar{6}'m'2 \\ \end{array}$	$\begin{array}{c} 22.3.81 \\ 23.4.85 \\ 23.4.85 \\ 22.3.81 \\ 22.3.81 \\ 24.1.87 \\ 24.1.87 \\ 24.1.87 \\ 26.3.97 \\ 26.3.97 \\ 22.3.81 \\ 26.3.97 \\ 22.3.81 \\ 27.7.106 \\ 27.7.106 \\ 26.3.97 \end{array}$	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6} \\ 6/mm'm' \\ 6/mm'm' \\ 6/mm'm' \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105 27.6.105 26.5.99	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3 6m'm' 6m'm' 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \end{array}$	4 4 8 8 8 4 4 4 8 8 4 4 4 4 8 8 8 4 4 4 8 8 8 8 4 4 8
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 190.232 192.252 192.252 193.262	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}\bar{6}2$ $P_{c}\bar{6}3$	$\begin{array}{c} \text{f,}^{1}E^{2}E\\ \text{b,}^{1}E_{1}^{2}E_{1}\\ \text{b,}^{1}E_{2}^{2}E_{2}\\ \text{d,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \text{a,}E_{1}\\ \text{c,}E\\ \text{d,}E\\ \text{d,}E\\ \text{c,}E\\ \text{e,}E\\ \text{d,}^{1}E^{2}E\\ \text{b,}E_{2}\\ \text{b,}E_{1}\\ \text{d,}E\\ \text{d,}E\end{array}$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' m'2 \\ \bar{6}' m'2 \\ \bar{6}'m'm'm' \\ 6/m'm'm' \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \end{array}$	$\begin{array}{c} 22.3.81 \\ 23.4.85 \\ 23.4.85 \\ 22.3.81 \\ 22.3.81 \\ 24.1.87 \\ 24.1.87 \\ 18.1.65 \\ 26.3.97 \\ 26.3.97 \\ 22.3.81 \\ 26.3.97 \\ 22.3.81 \\ 26.3.97 \\ 22.3.81 \\ 26.3.97 \\ 22.3.81 \\ 26.3.97 \\ 26.3.97 \\ 26.3.97 \end{array}$	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6} \\ 6/mm'm' \\ 6/mm'm' \\ 6/mm'm' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105 27.6.105 26.5.99 26.5.99	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3 6m'm' 6m'm' 3m'1 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 21.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 19.3.70 \\$	4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 8 4 4 4 8
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 190.232 192.252 192.252 192.252 193.262 200.17	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_3 P_c6_4 P_c6_5 $P_c6_$	$\begin{array}{c} \mathbf{f}, ^1E^2E\\ \mathbf{b}, ^1E_1{}^2E_1\\ \mathbf{b}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, ^1E^2E\\ \mathbf{a}, E_1\\ \mathbf{c}, E\\ \mathbf{d}, E\\ \mathbf{d}, E\\ \mathbf{c}, E\\ \mathbf{d}, E\\ \mathbf{c}, E\\ \mathbf{c}, E\\ \mathbf{d}, E^2E\\ \mathbf{d}, E^2E\\ \mathbf{d}, E^2E\\ \mathbf{c}, E^2E\\ \mathbf{c}, E^2\\ \mathbf{c}, E^2$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' m'2 \\ \bar{6}' m'2 \\ \bar{6}'m'm'm' \\ 6/m'm'm' \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 26.3.97 22.3.81 26.3.97 22.3.81 26.3.97 22.3.81 26.3.97 27.7.106 27.7.106 26.3.97 17.3.64	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ 6/mm'm' \\ 6/mm'm' \\ 6m'2' \\ \bar{6}m'2' \\ m\bar{3} \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105 27.6.105 26.5.99	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3 6m'm' 6m'm' 3m'1 3m'1 3m'1 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 21.3.70 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ \end{array}$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 8 1 1 1 1
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 190.232 192.252 192.252 192.252 193.262 200.17	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_3 P_c6_4 P_c6_5 $P_c6_$	$\begin{array}{c} \mathbf{f}, ^1E^2E\\ \mathbf{b}, ^1E_1{}^2E_1\\ \mathbf{b}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, ^1E^2E\\ \mathbf{a}, E_1\\ \mathbf{c}, E\\ \mathbf{d}, E\\ \mathbf{d}, E\\ \mathbf{c}, E\\ \mathbf{d}, E\\ \mathbf{c}, E\\ \mathbf{c}, E\\ \mathbf{d}, E^2E\\ \mathbf{d}, E^2E\\ \mathbf{d}, E^2E\\ \mathbf{c}, E^2E\\ \mathbf{c}, E^2\\ \mathbf{c}, E^2$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' \\ m'2 \\ \bar{6}' \\ m'm'm' \\ 6/m'm'm' \\ 6/m'm'm' \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 26.3.97 22.3.81 26.3.97 22.3.81 26.3.97 22.3.81 26.3.97 27.7.106 27.7.106 26.3.97 17.3.64	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ 6/mm'm' \\ 6/mm'm' \\ 6m'2' \\ \bar{6}m'2' \\ m\bar{3} \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 27.6.105 26.5.99 29.1.109	3 6 6 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3 6m'm' 6m'm' 3m'1 3m'1 3m'1 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 21.3.70 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ \end{array}$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 8 1 1 1 1
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 190.232 192.252 192.252 193.262	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}\bar{6}2$ $P_{c}\bar{6}3$	$\begin{array}{c} \text{f,} ^1E^2E\\ \text{b,} ^1E_1{}^2E_1\\ \text{b,} ^1E_2{}^2E_2\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{a,} E_1\\ \text{c,} E\\ \text{d,} E\\ \text{d,} E\\ \text{e,} E\\ \text{d,} E^2E\\ \text{b,} E_2\\ \text{b,} E_1\\ \text{d,} E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \end{array}$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' \\ m'2 \\ \bar{6}' \\ m'm'm' \\ 6/m'm'm' \\ 6/m'm'm' \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 27.7.106 27.7.106 27.7.106 26.3.97 17.3.64 17.3.64	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}mm'm' \\ 6/mm'm' \\ 6/mm'm' \\ 6m'2' \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 27.6.105 27.6.105 26.5.99 29.1.109 28.1.109	3 6 6 6 3 3 6 6 6 3 3 3 3 m'1 3 m'1 3 3 6 m'm' 6 m'm' 3 m'1 3 3 m'1 3 3 m'1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\ 19.3.70 \\ 16.1.60 \\ 19.3.70 \\ 10.000000000000000000000000000000000$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 16 16 16 16 16 16
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_3$ $P_c\bar{6}_4$ $P_c\bar{6}_5$ $P_c\bar{6}_$	$\begin{array}{c} \text{f,} ^1E^2E\\ \text{b,} ^1E_1{}^2E_1\\ \text{b,} ^1E_2{}^2E_2\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{d,} ^1E^2E\\ \text{a,} E_1\\ \text{c,} E\\ \text{d,} E\\ \text{d,} E\\ \text{e,} E\\ \text{d,} E^2E\\ \text{b,} E_2\\ \text{b,} E_1\\ \text{d,} E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \text{c,} ^1E^2E\\ \end{array}$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' \\ m'2 \\ \bar{6}' \\ m'm'm' \\ 6/m'm'm' \\ 6/m'm'm' \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 27.7.106 26.3.97 26.3.97 17.3.64 17.3.64 17.3.64	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}mm'm' \\ 6/mm'm' \\ 6/mm'm' \\ 6m'2' \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 27.6.105 27.6.105 26.5.99 29.1.109 28.1.109	3 6 6 6 3 3 6 6 6 3 3 3 3 m'1 3 m'1 3 3 6 m'm' 6 m'm' 3 m'1 3 3 m'1 3 3 m'1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.60 \\ 10.$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 8 16 16 16 16 16 16 16 16 16 16 16 16 16
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_3$ $P_c\bar{6}_3$ $P_c\bar{6}_3$ $P_c\bar{6}_3$ $P_c\bar{6}_3$ $P_c\bar{6}_3$ $P_c\bar{6}_3$ $P_c\bar{6}_3$	$\begin{array}{c} \text{f,}^{1}E^{2}E\\ \text{b,}^{1}E_{1}^{2}E_{1}\\ \text{b,}^{1}E_{1}^{2}E_{2}\\ \text{d,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \text{c,}^{1}E^{2}E\\ \text{b,}E_{1}\\ \text{d,}E\\ \text{c,}^{1}E^{2}E\\ \text{c,}^{1}E^{2}E\\ \text{c,}^{1}E^{2}E\\ \text{d,}^{1}E^{2}E\\ \end{array}$	$\begin{array}{c} \bar{6}'\\ 6/m'\\ 6/m'\\ \bar{6}'\\ \bar{6}'\\ 622\\ 622\\ 32\\ \bar{3}2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'm'm'\\ 6/m'm'm'\\ \bar{6}'m'2\\ \bar{3}'\\ \bar{3}'\\ \bar{3}'\\ \bar{3}'\\ \bar{3}'\\ \bar{3}'\\ \bar{3}'\\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 27.7.106 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ \bar{3}2'1 \\ \bar{6}m'2' \\ \bar{3}3 \\ 23 \\ \bar{3} \\ 3 \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62 17.1.62	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 8 16 16 16 16 16 16 16 16 16 16 16 16 16
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 192.252 200.17 203.29 205.36 207.43	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_3$	$\begin{array}{c} \mathbf{f}, ^{1}E^{2}E\\ \mathbf{b}, ^{1}E_{1}^{2}E_{1}\\ \mathbf{b}, ^{1}E_{2}^{2}E_{2}\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{2}E_{1}\\ \mathbf{d}, ^{2}E\\ $	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ 3' \\ 422 \\ \end{array}$	$\begin{array}{c} 22.3.81 \\ 23.4.85 \\ 23.4.85 \\ 22.3.81 \\ 22.3.81 \\ 24.1.87 \\ 24.1.87 \\ 24.1.87 \\ 26.3.97 \\ 26.3.97 \\ 22.3.81 \\ 26.3.97 \\ 22.3.81 \\ 27.7.106 \\ 26.3.97 \\ 22.3.81 \\ 27.7.106 \\ 27.7.106 \\ 26.3.97 \\ 26.3.97 \\ 17.3.64 \\ 17.3.6$	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ \bar{3} \\ 3 \\ 432 \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 26.5.99 22.1.79 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62 17.1.62 30.1.112	3 6 6 3 3 6 6 3 3 3m'1 3m'1 3m'1 3 6m'm' 6m'm' 3m'1 3m'1 3m'1 3m'1 3m'1 3m'1 3m'1	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 9.1.29 \end{array}$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 8 16 16 16 112
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}3$ $P_{c}\bar{6}3$ $P_{c}\bar{6}3$ $P_{c}6$	$\begin{array}{c} \mathbf{f}, ^{1}E^{2}E\\ \mathbf{b}, ^{1}E_{1}^{2}E_{1}\\ \mathbf{b}, ^{1}E_{2}^{2}E_{2}\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{2}E\\ \mathbf{d}$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}' m'2 \\ \bar{6}' m'2 \\ \bar{6}'m'm'm' \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ 3' \\ 422 \\ 32 \\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 26.3.97 22.3.81 26.3.97 17.106 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ 6/mm'm' \\ 6/mz'm' \\ 323 \\ 33 \\ 432 \\ 4'32' \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62 17.1.62 30.1.112 30.3.114	3 6 6 3 3 3 6 6 6 3 3 3m'1 3m'1 3m'1 3 6m'm' 6m'm' 3m'1 3m'1 3 3m'1 3m'1 3m'1 3m'1 3m'	16.1.60 21.1.76 21.1.76 16.1.60 21.1.76 21.1.76 21.1.76 21.1.76 16.1.60 19.3.70 19.3.70 16.1.60 25.4.94 19.3.70 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60 16.1.60	4 4 4 8 8 8 4 4 4 4 8 8 4 4 4 8 8 16 16 16 116 112 116
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 192.252 200.17 203.29 205.36 207.43	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_3$	$\begin{array}{c} \mathbf{f}, ^{1}E^{2}E\\ \mathbf{b}, ^{1}E_{1}^{2}E_{1}\\ \mathbf{b}, ^{1}E_{2}^{2}E_{2}\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{2}E_{1}\\ \mathbf{d}, ^{2}E\\ $	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'm'm' \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ 3' \\ 422 \\ 32 \\ 32 \\ 32 \\ \end{array}$	$\begin{array}{c} 22.3.81 \\ 23.4.85 \\ 23.4.85 \\ 22.3.81 \\ 22.3.81 \\ 24.1.87 \\ 24.1.87 \\ 18.1.65 \\ 18.1.65 \\ 26.3.97 \\ 26.3.97 \\ 22.3.81 \\ 27.7.106 \\ 27.7.106 \\ 27.7.106 \\ 26.3.97 \\ 17.3.64 \\ 17.3.64 \\ 17.3.64 \\ 17.3.64 \\ 12.1.40 \\ 18.1.65 \\ 18.1.65 \\ \end{array}$	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ 32'1 \\ 32'2 \\ 33' \\ 432 \\ 4'32' \\ 23 \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.5.99 26.5.99 22.1.79 27.6.105 27.6.105 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62 17.1.62 30.1.112 30.3.114 28.1.107	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 9.1.29 \\ 16.1.60 \\ $	4 4 4 8 8 8 4 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_3$ $P_c\bar{6}_4$ $P_c\bar{6}_5$ $P_c\bar{6}_$	$\begin{array}{c} \text{f,}^1 E^2 E \\ \text{b,}^1 E_1^2 E_1 \\ \text{b,}^1 E_2^2 E_2 \\ \text{d,}^1 E^2 E \\ \text{d,}^1 E^2 E \\ \text{d,}^1 E^2 E \\ \text{d,}^1 E^2 E \\ \text{d,} E_1 \\ \text{c,} E \\ \text{d,} E_2 \\ \text{d,} E_3 \\ \text{d,} E_4 \\ \text{d,} E_5 \\ \text$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{6}'m'm'm' \\ \bar{6}'m'2 \\ \bar{6}'m'2 \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ 3' \\ 422 \\ 32 \\ 32 \\ 32 \\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 18.1.65 26.3.97 22.3.81 27.7.106 26.3.97 22.3.81 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 18.1.65 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ 32'1 \\ 32'2 \\ 33' \\ 432 \\ 4'32' \\ 23 \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.5.99 26.5.99 22.1.79 27.6.105 27.6.105 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62 17.1.62 30.1.112 30.3.114 28.1.107	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 16 16 16 16 16 16
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 190.232 192.252 192.252 192.252 200.17 203.29 205.36 207.43 208.47 210.55	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 P_c6_2 $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_3$ $P_c\bar{6}_3$ $P_c\bar{6}_4$ $P_c\bar{6}_5$ P_c6_5 $P_c6_$	$\begin{array}{c} \text{f,}^1 E^2 E \\ \text{b,}^1 E_1^2 E_1 \\ \text{b,}^1 E_2^2 E_2 \\ \text{d,}^1 E^2 E \\ \text{d,}^1 E^2 E \\ \text{d,}^1 E^2 E \\ \text{a,} E_1 \\ \text{c,} E \\ \text{d,} E_2 \\ \text{a,} E_1 \\ \text{c,} E \\ \text{d,} E_2 \\ \text{b,} E_2 \\ \text{b,} E_1 \\ \text{d,} E \\ \text{c,}^1 E^2 E \\ \text{d,} E \\ d$	$\begin{array}{c} \bar{6}'\\ 6/m'\\ 6/m'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ 622\\ 622\\ 32\\ \bar{3}2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{3}'\\ 3'\\ 3'\\ 3'\\ 422\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ $	22.3.81 23.4.85 23.4.85 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 26.3.97 22.3.81 27.7.106 26.3.97 7.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 18.1.65 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ \bar{3}2'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{3}2'1 \\ 32'1 \\ $	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 21.109 28.1.107 17.1.62 17.1.62 30.1.112 30.3.114 28.1.107 18.3.67	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 10.1.60 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 16 16 16 16 16 16
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c6_3/m P_c6_3/m P_c6_2 P_c6_2 P_c6_2 P_c6_2 $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_2$ $P_c\bar{6}_3$ P_c	$\begin{array}{c} \mathbf{f}, ^{1}E^{2}E\\ \mathbf{b}, ^{1}E_{1}^{2}E_{1}\\ \mathbf{b}, ^{1}E_{2}^{2}E_{2}\\ \mathbf{d}, ^{1}E_{2}^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{2}E_{1}\\ \mathbf{d}, ^{2}E\\ \mathbf{d}, ^{2$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ 3' \\ 422 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 3$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 24.1.87 26.3.97 26.3.97 22.3.81 26.3.97 22.3.81 27.7.106 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 18.1.65 18.1.65 18.1.65 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ 33 \\ 432 \\ 4'32' \\ 23 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105 26.5.99 21.1.09 28.1.107 17.1.62 30.1.112 30.3.114 28.1.107 18.3.67 18.3.67	3 6 6 3 3 3 6 6 6 3 3 3m'1 3m'1 3 3m'1 3 6m'm' 6m'm' 3m'1 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 8 8 16 16 16 16 16 16 16 16
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}\bar{6}2$ $P_{c}6/mcc$ $P_{c}6/mc$ $P_{$	$\begin{array}{c} \mathbf{f}, ^{1}E^{2}E\\ \mathbf{b}, ^{1}E_{1}^{2}E_{1}\\ \mathbf{b}, ^{1}E_{2}^{2}E_{2}\\ \mathbf{d}, ^{1}E_{2}^{2}E_{2}\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{2}E_{1}\\ \mathbf{d}, ^{2}E_{2}\\ d$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ 32 \\ 32 \\ 32 \\ 32 \\ \bar{4}2m \\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 24.1.87 26.3.97 26.3.97 22.3.81 27.7.106 26.3.97 22.3.81 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6} \\ 6/mm'm' \\ 6/mm'm' \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ \bar{3} \\ 32'1 \\ 32'1 \\ 32'1 \\ \bar{4}3m \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62 30.1.112 30.3.114 28.1.107 18.3.67 18.3.67 31.1.115	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 1 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 16 11 16 16 11 16 16
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 192.252 200.17 203.29 205.36 207.43 208.47 210.55 212.62 213.66 215.73 215.73	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}62$ $P_{c}63/m$ $P_{c}6$	$\begin{array}{c} \mathbf{f}, ^{1}E^{2}E\\ \mathbf{b}, ^{1}E_{1}^{2}E_{1}\\ \mathbf{b}, ^{1}E_{1}^{2}E_{2}\\ \mathbf{d}, ^{1}E_{2}^{2}E_{2}\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{2}E_{1}\\ \mathbf{d}, ^{2}E_{2}\\ d$	$\begin{array}{c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ \bar{3}' \\ 3' \\ 422 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 42m \\ \bar{4}' \\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 24.1.87 26.3.97 26.3.97 22.3.81 27.7.106 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 12.1.40 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ 33 \\ 432 \\ 4'32' \\ 23 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32m \\ \bar{4}2m \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 29.1.109 28.1.107 17.1.62 17.1.62 17.1.62 17.1.62 17.1.62 17.1.63 30.1.112 30.3.114 28.1.107 18.3.67 18.3.67 31.1.115 14.1.48	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 1 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 12 24
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55 212.62 213.66 215.73 215.73 216.77	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}2$ $P_{c}\bar{6}3/m$ $P_{c}\bar{6}3/m$ $P_{f}m\bar{3}$ $F_{s}d\bar{3}$ $P_{I}432$ $P_{I}432$ $P_{I}432$ $P_{I}432$ $P_{I}433$	$\begin{array}{c} \mathbf{f}, ^{1}E^{2}E\\ \mathbf{b}, ^{1}E_{1}^{2}E_{1}\\ \mathbf{b}, ^{1}E_{1}^{2}E_{2}\\ \mathbf{d}, ^{1}E^{2}E_{2}\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{1}E^{2}E\\ \mathbf{d}, ^{2}E_{1}\\ \mathbf{d}, ^{2}E_{2}\\ \mathbf{d}, ^{2}E_{2}\\ \mathbf{d}, ^{2}E_{2}\\ \mathbf{d}, ^{2}E_{3}\\ \mathbf{d}, ^{2}E_{4}\\ \mathbf{d}, ^{2}E_{5}\\ \mathbf{d}, ^$	$\begin{array}{c} \bar{6}'\\ 6/m'\\ 6/m'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ \\ \bar{6}'\\ \\ \bar{6}'\\ \\ 622\\ \underline{622}\\ 32\\ \underline{32}\\ \underline{32}\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{3}'\\ \bar{3}'\\ \underline{3}'\\ \underline{3}'$	$\begin{array}{c} 22.3.81 \\ 23.4.85 \\ 23.4.85 \\ 22.3.81 \\ 22.3.81 \\ 24.1.87 \\ 24.1.87 \\ 24.1.87 \\ 24.1.87 \\ 26.3.97 \\ 26.3.97 \\ 26.3.97 \\ 22.3.81 \\ 27.7.106 \\ 27.7.106 \\ 27.7.106 \\ 26.3.97 \\ 17.3.64 \\ 17.3.64 \\ 17.3.64 \\ 17.3.64 \\ 12.1.40 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ 18.1.65 \\ 14.1.48 \\ 10.3.34 \\ 14.3.50 \\ \end{array}$	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 33m \\ \bar{4}3m \\ $	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 24.4.90 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 1 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 16 12 24 12
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55 212.62 213.66 215.73 215.73 216.77 216.77	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}2m$ $P_{c}\bar{6}2c$ $P_{c}\bar{6}2c$ $P_{c}6/mcc$	$\begin{array}{c} \mathbf{f}, ^1E^2E\\ \mathbf{b}, ^1E_1{}^2E_1\\ \mathbf{b}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E_2{}^2E\\ \mathbf{d}, ^1E_2{}^2E\\ \mathbf{d}, ^1E_2{}^2E\\ \mathbf{d}, E_2\\ \mathbf{d}, E_3\\ \mathbf{d}, E_4\\ \mathbf{d}, E_5\\ \mathbf{d}, E_6\\ \mathbf{d}, E_$	$\begin{array}{c} \bar{6}'\\ 6/m'\\ 6/m'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ 622\\ 622\\ 32\\ 32\\ 32\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{3}'\\ \bar{3}'\\ 3'\\ 422\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 42m\\ \bar{4}'\\ 2'm\\ \bar{4}'2'm\\ \bar{4}'2'm\\ \bar{4}'2'm\\ \end{array}$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 22.3.81 27.7.106 26.3.97 22.3.81 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 12.1.40 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 14.1.48 10.3.34 14.3.50 14.3.50	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ 32'1 $	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62 17.1.62 17.1.62 30.1.112 30.1.112 31.1.115 14.1.48 31.1.115 31.1.115	3 6 6 6 3 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 17.1.20 \\ 3.1.6 \\ 7.1.20 \\ 7.1.20 \\ 7.1.20 \end{array}$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 12 12 12 12 12 12 12 12 12 12 12 12 12
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55 212.62 213.66 215.73 215.73 216.77 218.84	$\begin{array}{c} P_c\bar{6} \\ P_c6/m \\ P_c6/m \\ P_c6/m \\ P_c63/m \\ P_c63/m \\ P_c622 \\ P_c622 \\ P_c622 \\ P_c622 \\ P_c\bar{6}22 \\ P_c\bar{6}23 \\ P_c\bar{6}32 \\ P_$	$\begin{array}{c} \mathbf{f}, ^1E^2E\\ \mathbf{b}, ^1E_1{}^2E_1\\ \mathbf{b}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, E_2\\ \mathbf{d}, E_3\\ \mathbf{d}, E_4\\ \mathbf{d}, E_5\\ \mathbf{d}, E_6\\ \mathbf{d}, E_7\\ \mathbf{d}, E_8\\ \mathbf{d}, E$	$\begin{array}{c} \bar{6}'\\ 6/m'\\ 6/m'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ 622\\ 622\\ 32\\ 32\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{3}'\\ 3'\\ 3'\\ 3'\\ 3'\\ 3'\\ 3'\\ 422\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ $	22.3.81 23.4.85 23.4.85 22.3.81 24.1.87 24.1.87 24.1.87 18.1.65 18.1.65 18.1.65 26.3.97 22.3.81 27.7.106 26.3.97 22.3.81 27.7.106 26.3.97 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 11.3.64 12.1.40 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 14.1.48 10.3.34 14.3.50 14.3.50 14.3.50 14.4.51	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 33m \\ \bar{4}3m \\ $	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 27.6.105 27.6.105 27.6.105 26.5.99 28.1.107 17.1.62 17.1.62 17.1.62 30.1.112 30.3.114 28.1.107 18.3.67 18.3.67 31.1.115 14.1.48 31.1.115 31.3.117	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 1 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 16 12 24 12
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55 212.62 213.66 215.73 215.73 216.77 216.77	$P_{c}\bar{6}$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}6/m$ $P_{c}63/m$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}622$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}22$ $P_{c}\bar{6}2m$ $P_{c}\bar{6}2c$ $P_{c}\bar{6}2c$ $P_{c}6/mcc$	$\begin{array}{c} \mathbf{f}, ^1E^2E\\ \mathbf{b}, ^1E_1{}^2E_1\\ \mathbf{b}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E_2{}^2E\\ \mathbf{d}, ^1E_2{}^2E\\ \mathbf{d}, ^1E_2{}^2E\\ \mathbf{d}, E_2\\ \mathbf{d}, E_3\\ \mathbf{d}, E_4\\ \mathbf{d}, E_5\\ \mathbf{d}, E_6\\ \mathbf{d}, E_$	$\begin{array}{c} \bar{6}'\\ 6/m'\\ 6/m'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ 622\\ 622\\ 32\\ 32\\ \bar{3}\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{3}'\\ \bar{3}'$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 26.3.97 22.3.81 27.7.106 26.3.97 22.3.81 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 12.1.40 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 14.1.48 10.3.34 14.3.50 14.3.50	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ 32'1 $	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 27.6.105 26.5.99 29.1.109 28.1.107 17.1.62 17.1.62 17.1.62 30.1.112 30.1.112 31.1.115 14.1.48 31.1.115 31.1.115	3 6 6 6 3 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 16.1.60 \\ 17.1.20 \\ 3.1.6 \\ 7.1.20 \\ 7.1.20 \\ 7.1.20 \\ 7.1.20 \end{array}$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 12 12 12 12 12 12 12 12 12 12 12 12 12
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55 212.62 213.66 215.73 215.73 216.77 218.84 221.97	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c63/m P_c63/m P_c62 P_c62 P_c62 P_c62 $P_c\bar{6}2$ $P_c\bar{6}3$	$\begin{array}{c} \mathbf{f}, ^1E^2E\\ \mathbf{b}, ^1E_1{}^2E_1\\ \mathbf{b}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, E_2\\ \mathbf{a}, E_1\\ \mathbf{c}, E\\ \mathbf{d}, E_2\\ \mathbf{d}, E_3\\ \mathbf{d}, E_4\\ \mathbf{d}, E_5\\ \mathbf{d}, E_6\\ \mathbf{d}, E_7\\ \mathbf{d}, E_8\\ \mathbf{d}, E_8$	$\begin{array}{c} \bar{6}'\\ 6/m'\\ 6/m'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ 622\\ 622\\ 32\\ 32\\ \bar{3}\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{3}'\\ \bar{3}'$	22.3.81 23.4.85 23.4.85 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 18.1.65 26.3.97 22.3.81 27.7.106 26.3.97 22.3.81 27.7.106 26.3.97 17.3.64 17.3.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ 33 \\ 432 \\ 4'32' \\ 23 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 43m \\ 43m \\ 43m \\ 4'3m' \\ 4/mmm \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 21.109 28.1.107 17.1.62 17.1.62 30.1.112 30.3.114 30.3.114 31.1.115 31.3.117 15.1.53	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 8 16 16 16 16 16 16 16 16 12 24
174.136 175.142 175.142 175.142 176.148 177.154 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55 212.62 213.66 215.73 216.77 218.84 221.97 222.103	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c63/m P_c63/m P_c62 P_c62 P_c62 P_c62 $P_c\bar{6}2$ $P_c\bar{6}3$	$\begin{array}{c} \mathbf{f}, ^1E^2E\\ \mathbf{b}, ^1E_1{}^2E_1\\ \mathbf{b}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E_2{}^2E\\ d$	$\begin{array}{c c} \bar{6}' \\ 6/m' \\ 6/m' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ \bar{6}' \\ 622 \\ 622 \\ 32 \\ 32 \\ \bar{6}'m'2 \\ \bar{3}' \\ \bar{4}'2'm \\ \bar{4}'2'm \\ \bar{4}'2'm \\ \bar{4}'2'm \\ \bar{4}'2'm \\ \bar{4}'m'm'm' \\ \bar{4}'m'm'm'm' \\ \bar{4}'m'm'm'm'm' \\ \bar{4}'m'm'm'm'm' \\ \bar{4}'m'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm$	22.3.81 23.4.85 23.4.85 22.3.81 22.3.81 24.1.87 24.1.87 24.1.87 26.3.97 26.3.97 22.3.81 27.7.106 27.7.106 26.3.97 22.3.81 27.7.106 27.7.106 26.3.97 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 17.3.64 17.3.65 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ 33'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 33'm \\ 43m \\ \bar{4}3m \\ \bar{4}3m \\ \bar{4}3m' \\ 4/mmm \\ m'3'm' \\ \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 27.6.105 26.5.99 22.1.79 27.6.105 26.5.99 22.1.79 27.6.105 26.5.99 22.1.79 27.6.105 26.5.99 21.1.09 28.1.107 17.1.62 30.1.112 30.3.114 28.1.107 18.3.67 18.3.67 31.1.115 31.3.117 15.1.53 32.5.122	3 6 6 6 3 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\$	4 4 4 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 12 24 12 22 12 12 12 12 12 12 12 12 12 12 12
174.136 175.142 175.142 175.142 176.148 177.154 177.154 182.184 188.220 188.220 189.226 190.232 190.232 192.252 192.252 193.262 200.17 203.29 205.36 207.43 208.47 210.55 212.62 213.66 215.73 215.73 216.77 218.84 221.97	$P_c\bar{6}$ P_c6/m P_c6/m P_c6/m P_c63/m P_c63/m P_c62 P_c62 P_c62 P_c62 $P_c\bar{6}2$ $P_c\bar{6}3$	$\begin{array}{c} \mathbf{f}, ^1E^2E\\ \mathbf{b}, ^1E_1{}^2E_1\\ \mathbf{b}, ^1E_2{}^2E_2\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, ^1E^2E\\ \mathbf{d}, E_2\\ \mathbf{a}, E_1\\ \mathbf{c}, E\\ \mathbf{d}, E_2\\ \mathbf{d}, E_3\\ \mathbf{d}, E_4\\ \mathbf{d}, E_5\\ \mathbf{d}, E_6\\ \mathbf{d}, E_7\\ \mathbf{d}, E_8\\ \mathbf{d}, E_8$	$\begin{array}{c} \bar{6}'\\ 6/m'\\ 6/m'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ \bar{6}'\\ 622\\ 622\\ 32\\ 32\\ \bar{3}\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{6}'m'2\\ \bar{3}'\\ \bar{3}'$	22.3.81 23.4.85 23.4.85 22.3.81 24.1.87 24.1.87 18.1.65 18.1.65 18.1.65 26.3.97 22.3.81 27.7.106 26.3.97 22.3.81 27.7.106 26.3.97 17.3.64 17.3.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65 18.1.65	$\begin{array}{c} \bar{6} \\ 6/m \\ 6/m \\ \bar{6} \\ \bar{6} \\ \bar{6} \\ 62'2' \\ 62'2' \\ 32'1 \\ 32'1 \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ \bar{6}m'2' \\ m\bar{3} \\ 23 \\ 33 \\ 432 \\ 4'32' \\ 23 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 32'1 \\ 43m \\ 43m \\ 43m \\ 4'3m' \\ 4/mmm \end{array}$	22.1.79 23.1.82 23.1.82 22.1.79 24.4.90 24.4.90 18.3.67 18.3.67 26.5.99 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 22.1.79 26.5.99 21.109 28.1.107 17.1.62 17.1.62 30.1.112 30.3.114 30.3.114 31.1.115 31.3.117 15.1.53	3 6 6 6 3 3 6 6 6 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 16.1.60 \\ 21.1.76 \\ 21.1.76 \\ 16.1.60 \\ 16.1.60 \\ 21.1.76 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 19.3.70 \\ 19.3.70 \\ 16.1.60 \\ 25.4.94 \\ 25.4.94 \\ 19.3.70 \\$	4 4 4 8 8 8 4 4 4 8 8 4 4 4 8 8 16 16 16 16 16 16 16 16 12 24 12 12 12 12 12 12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16

224.115	$P_I n \bar{3} m$	d, B_2B_3	$\bar{4}'2m'$	14.4.51	4'/m'm'm	15.5.57	m'm'2	7.4.23	24
227.133	$F_S d\bar{3}m$	$d_1B_1B_2$	$\bar{4}'2'm$	14.3.50		31.1.115	mm2	7.1.20	24
228.139	$F_S d\bar{3}c$	c,E	$\bar{3}'m'1$	20.4.74	$\bar{4}'3m'$	31.3.117	3m'1	19.3.70	16
			$\bar{3}'m'1$	20.4.74	$\bar{3}m'1$	20.5.75	3m'1	19.3.70	1161

Supplementary Table 21: Exceptional composite band coreps induced from site-symmetry coreps in the Type-IV double MSGs (SN 6). In order, the columns in this table list the number of the MSG in the BNS setting and the symbol of the MSG, the letter of the maximal Wyckoff position containing ${\bf q}$ and the double-valued corep of the site-symmetry group $G_{\bf q}$, the symbol of the MSG isomorphic to the site-symmetry group $G_{\bf q}$ in the Hermann-Mauguin notation of the MPOINT tool on the BCS^{15–18} and the number of the MSG isomorphic to $G_{\bf q}$ in the convention established by Litvin in SRef. 10, the symbol and number of the MPG isomorphic to the reducing group $G_{{\bf q}'}$, the symbol and number of the MPG isomorphic to the intersection group $G_{{\bf q}_0} = G_{\bf q} \cap G_{{\bf q}'}$, and the dimension d of the exceptional composite band corep. See SN 24 for further information regarding exceptional composite band coreps.

N	MSG	Corep	G	a	G_{ϵ}	n'	$G_{\mathbf{q}_0}$		d
2.7	$P_S \bar{1}$	b, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1	4
2.7	$P_S \bar{1}$	f,\overline{AA}	$\bar{1}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1	4
2.7	$P_S \bar{1}$	g, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1	4
2.7	$P_S \bar{1}$	$h, \overline{A}\overline{A}$	$\bar{1}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1	4
10.47	$P_a 2/m$	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	4
10.47	$P_a 2/m$	$e^{1}_{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	4
10.47	$P_a 2/m$	$g, 1\overline{E}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	4
10.47	$P_a 2/m$	$h, {}^{1}\overline{E} {}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	4
10.48	$P_b 2/m$	$b, \overline{1}\overline{E} \overline{2}\overline{E}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	4
10.48	$P_b 2/m$	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	4
10.48	$P_b 2/m$	$f, \overline{E}^{2}\overline{E}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	4
10.48	$P_b 2/m$	$h, {}^{1}\overline{\underline{E}}{}^{2}\overline{\underline{E}}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	4
10.49	$P_C 2/m$	e, \overline{AA}	$\bar{\underline{1}}'$	2.3.5	2/m	5.1.12	1	1.1.1	8
10.49	$P_C 2/m$	f, \overline{AA}	$\bar{\underline{1}}'$	2.3.5	2/m	5.1.12	1	1.1.1	8
11.55	$P_a 2_1/m$	b, \overline{AA}	$\bar{\underline{1}}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1	8
11.55	$P_a 2_1/m$	d, \overline{AA}	$rac{ar{1}'}{1'}$	$2.3.5 \\ 2.3.5$	$rac{m}{1}$	$\frac{4.1.9}{2.1.3}$	$\frac{1}{1}$	$1.1.1 \\ 1.1.1$	8 8
11.00	1 a 21/11	4,2121	$\frac{1}{1}$ '	$\frac{2.3.5}{2.3.5}$	m	$\frac{2.1.5}{4.1.9}$	1	1.1.1	8
11.56	$P_b 2_1/m$	$a^{1}\overline{E}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	2'/m'	5.5.16	$\tilde{2}$,	3.3.8	$ \tilde{4} $
11.56	$P_b 2_1/m$	$c, {}^{1}\overline{E} {}^{2}\overline{E}$	2'/m	5.3.14	2'/m'	5.5.16	2'	3.3.8	4
11.56	$P_b 2_1/m$	$d^{1}, \overline{E}^{2}\overline{E}$	2'/m	5.3.14	2'/m'	5.5.16	2	3.3.8	4
11.56	$P_b 2_1/m$	$g, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'/m'	5.5.16	2	3.3.8	4
12.63	$C_c 2/m$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	4
12.63	$C_c 2/m$	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	4
12.63	$C_c 2/m$	$f, \overline{A}\overline{A}$	$\bar{1}'$	2.3.5	2/m	5.1.12	1	1.1.1	8
			$\bar{\underline{1}}'$	2.3.5	$2^{\prime}/m$	5.3.14	1	1.1.1	8
12.64	$C_a 2/m$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	$\frac{2.3.5}{5.4.15}$	$\frac{1}{2/m}$	$\frac{2.1.3}{5.1.12}$	$\frac{1}{2}$	$\frac{1.1.1}{3.1.6}$	$\frac{8}{4}$
12.04	$C_a Z/m$	b, E E	$\frac{2}{m'}$	5.4.15 $5.4.15$	$2^{\prime\prime}/m^{\prime}$	5.1.12 $5.5.16$	$\frac{2}{m}$	4.3.11	$\begin{vmatrix} 4 \\ 4 \end{vmatrix}$
12.64	$C_a 2/m$	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2}{2}$ /m	5.3.14	$\frac{2}{2/m}$	5.1.12	m	4.1.9	4
12.04	Ca2/III	u, L L	$\frac{2}{2}/m$	5.3.14	$2^{\prime\prime}/m^{\prime}$	5.5.16	2°	3.3.8	4
12.64	$C_a 2/m$	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{1}{2}/m'$	5.4.15	$\frac{2}{m}$	5.1.12	2	3.1.6	$\frac{1}{4}$
	· u=/ ···	'	$\frac{1}{2}/m'$	5.4.15	2'/m'	5.5.16	m'	4.3.11	$\overline{4}$
12.64	$C_a 2/m$	$g, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	4
	•		2'/m	5.3.14	2'/m'	5.5.16	2	3.3.8	4
13.70	$P_a 2/c$	b, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1	8
			$\bar{1}'_{1}$	$\frac{2.3.5}{2.3.5}$	2,	$\frac{3.1.6}{3.3.8}$	$\frac{1}{1}$	$1.1.1 \\ 1.1.1$	8 8
13.70	$P_a 2/c$	d, \overline{AA}	<u>1</u> ,	$\frac{2.3.5}{2.3.5}$	$\frac{2}{2'}$ $\overline{1}$	$\frac{3.3.8}{2.1.3}$	1	$1.1.1 \\ 1.1.1$	8
10.10	1 a 2 / C	4,2121	<u>†</u> ′		$\overset{1}{2}$				
10.71	D 0 /	1 - 4 - 1	1' 1' 1' 1' 1'	$2.3.5 \\ 2.3.5 \\$	$\frac{2}{2^{\prime}}$	$\frac{3.1.6}{3.3.8}$	1 1	$1.1.1 \\ 1.1.1$	8 8
13.71	$P_b 2/c$	b, \overline{AA}	$\frac{1}{1}'$	$\frac{2.3.5}{2.3.5}$	$\frac{1}{2}$	2.1.3	1	1.1.1	8
13.71	$P_b 2/c$	c,\overline{AA}	$\frac{1}{1}$	$2.3.5 \\ 2.3.5$	$\frac{2}{1}$	$\frac{3.1.6}{2.1.3}$	$\frac{1}{1}$	$1.1.1 \\ 1.1.1$	8 8
10.11	•		<u>-</u>	$\frac{2.3.5}{2.3.5}$	2	3.1.6	1	1.1.1	8
13.72	$P_c 2/c$	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	$ \stackrel{\circ}{4} $
13.72	$P_c 2/c$	a, ${}^{1}\overline{E}{}^{2}\overline{E}$			2'/m'				

13.72	$P_c 2/c$	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	$4.3.11 \mid 4 \mid$
1	D 2/	1,1525						1 1
13.72	$P_c 2/c$	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	$4.3.11 \mid 4 \mid$
13.72	$P_c 2/c$	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	$4.3.11 \mid 4 \mid$
13.74	$P_C 2/c$	c, \overline{AA}	$ar{1}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1 8
15.74	102/0	C,AA	$\frac{1}{4}$					
40 -4	D 0 /	, 44	$ar{1}'_1$	2.3.5	$\frac{2}{1}$	3.1.6	1	1.1.1 8
13.74	$P_C 2/c$	d, \overline{AA}	1'	2.3.5	1	2.1.3	1	1.1.1 8
	•		$rac{ar{1}'}{1'}$	2.3.5	$\frac{2}{1}$	3.1.6	1	1.1.1 8
14.80	$P_a 2_1/c$	$b, \overline{A}\overline{A}$	Ī′	2.3.5	l - Ī	2.1.3	$\bar{1}$	1.1.1 8
I			1/		1			
14.80	$P_a 2_1/c$	d, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1 8
14.81	$P_b 2_1/c$	a,AA	1'	2.3.5	$\bar{1}$	2.1.3	1	1.1.1 8
	/	ĺ ′	$\frac{\overline{1}'}{\underline{1}'}$	2.3.5	$\frac{2'}{1}$	3.3.8	1	1.1.1 8
14.81	$P_b 2_1/c$	d, \overline{AA}	<u>†</u> ′	$\frac{2.3.5}{2.3.5}$	l ī	2.1.3	ī	1.1.1 8
11.01	1 021/0	4,2121	1/	2.3.5	2/	3.3.8	1	
14.00	D 0 /-	- 44	$\frac{1}{1}$		$\frac{2'}{1}$			
14.82	$P_c 2_1/c$	a, \overline{AA}	$\frac{\overline{1}'}{\overline{1}'}$ $\frac{\overline{1}'}{\overline{1}'}$	2.3.5		2.1.3	1	1.1.1 8
			1'.	2.3.5	m'	4.3.11	1	1.1.1 8
14.82	$P_c 2_1/c$	b, \overline{AA}	1'	2.3.5	1	2.1.3	1	1.1.1 8
	/	'	$ar{1}'_1$	2.3.5	m' .	4.3.11	1	1.1.1 8
14.83	$P_A 2_1/c$	e, \overline{AA}	<u>†</u> ′	$\frac{2.3.5}{2.3.5}$	2'/m'	5.5.16	ī	1.1.1 8
			1 7,					
14.83	$P_A 2_1/c$	f, \overline{AA}	$\bar{1}'$	2.3.5	2'/m'	5.5.16	1	1.1.1 8
14.84	$P_C 2_1/c$	a, \overline{AA}	$\bar{1}'$	2.3.5	Ī	2.1.3	1	1.1.1 8
14.04	1 021/0	а,лл	$\frac{1}{4}$					
1	D 0 /	, , , , , , , , , , , , , , , , , , , 	$\frac{\bar{1}}{1}'$	2.3.5	$\frac{2'}{1}$	3.3.8	1	1.1.1 8
14.84	$P_C 2_1/c$	b, \overline{AA}		2.3.5	1.	2.1.3	1	1.1.1 8
			$\bar{1}'$	2.3.5	2'	3.3.8	1	1.1.1 8
15.90	$C_c 2/c$	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	$4.3.11 \mid 4 \mid$
I		$b, {}^{1}\overline{E}{}^{2}\overline{E}$						
15.90	$C_c 2/c$		2/m'	5.4.15	2'/m'	5.5.16	m'	$4.3.11 \mid 4 \mid$
15.90	$C_c 2/c$	e, \overline{AA}	$\bar{1}'$	2.3.5	2/m'	5.4.15	1	1.1.1 8
1	- 0-, 0		$\frac{1}{1}$ '	2.3.5	$2^{\prime\prime}/m^{\prime}$	5.5.16	1	1.1.1 8
			1,	2.3.5		5.5.10		
			Ι΄,	2.3.5	Ī	2.1.3	1	1.1.1 8
15.91	$C_a 2/c$	c, \overline{AA}	$ar{\underline{1}}'_1$	$2.3.5 \\ 2.3.5$	$\frac{1}{1}$	$\frac{2.1.3}{2.1.3}$	1	1.1.1 8
	ω /	/	ī′		9	3 1 6		
			$\frac{\overline{1}'}{\underline{1}'}$ $\overline{1}'$	$\frac{2.3.5}{2.3.5}$	$\frac{2}{2'}$ $\overline{1}$	$\frac{3.1.6}{3.3.8}$	$\frac{1}{1}$	$\begin{array}{c cccc} 1.1.1 & 8 \\ 1.1.1 & 8 \end{array}$
15 01	$C \cdot 2/s$	$d, \overline{A}\overline{A}$	<u></u>		4			1.1.1
15.91	$C_a 2/c$	u,AA	<u> </u>	2.3.5	1	2.1.3	1	1.1.1 8
			$ar{1}'_1$	$\frac{2.3.5}{2.3.5}$	$\frac{2}{2'}$	3.1.6	$\frac{1}{1}$	$\begin{bmatrix} 1.1.1 & 8 \\ 1.1.1 & 8 \end{bmatrix}$
			1'	2.3.5	2'	$\frac{3.1.6}{3.3.8}$	1	$\begin{array}{c cc} 1.1.1 & 8 \\ 1.1.1 & 8 \end{array}$
16.4	$P_{a}222$	a, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
1		c, \overline{E}			$\frac{1}{2'2'2}$		$\overline{2}$	
16.4	$P_{a}222$		222	6.1.17		6.3.19		3.1.6 4
16.4	$P_{a}222$	d, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
16.4	P_a^2222	g, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
		g, <u>E</u>						
21.42	C_c222	a, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
21.42	C_c222	b, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
					2'2'2			
21.43	$C_a 222$	$a, \overline{\underline{E}}$	222	6.1.17		6.3.19	2	3.1.6 4
21.43	$C_a 222$	d, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
22.48	$F_S 222$	a, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
22.48	$F_S 222$	h, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
23.52	I_c222	a, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 4
23.52		$b, \overline{\overline{E}}$	222		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		$\overline{2}$	
	I_c222			6.1.17		6.3.19		3.1.6 4
25.62	P_amm2	a,E	mm2	7.1.20	m'm2'	7.3.22	m	$4.1.9 \mid 4 \mid$
25.62	P_amm2	b, \overline{E}	mm2	7.1.20	m'm2'	7.3.22	m	4.1.9 4
					m'm2'	7.3.22		
35.170	C_amm2	$a, \overline{\underline{E}}$	mm2	7.1.20			m	4.1.9 4
38.192	A_amm2	a, \overline{E}	mm2	7.1.20	m'm2'	7.3.22	m	$4.1.9 \mid 4 \mid$
38.193	A_bmm2	a, \overline{E}	mm2	7.1.20	m'm2'	7.3.22	m	4.1.9 4
38.193	A_bmm2	$c, \overline{\underline{E}}$	mm2	7.1.20	m'm2'	7.3.22	m	$4.1.9 \mid 4 \mid$
42.223	F_Smm2	a, \overline{E}	mm2	7.1.20	m'm2'	7.3.22	m	4.1.9 4
44.234	I_amm2	a, \overline{E}	mm2	7.1.20	m'm2'	7.3.22	m	4.1.9 4
		1 7 2 7			l			
47.255	P_Cmmm	$e, 1\overline{E}^{2}\overline{E}$	2'/m	5.3.14	mmm	8.1.24	m	4.1.9 8
47.255	P_Cmmm	$f^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	mmm	8.1.24	m	4.1.9 8
					l			
47.256	$P_{\underline{I}}mmm$	k, <u>A</u> A	$\bar{1}'$	2.3.5	mmm	8.1.24	1	1.1.1 16
48.262	$P_c nnn$	c, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6 8
48.262	$P_c nnn$	d, \overline{E}	222	6.1.17	2'2'2	6.3.19	$\overline{2}$	3.1.6 8
			444					
48.262	$P_c nnn$	f, \overline{AA}	$ar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1 16
	-	1	Ī′	2.3.5	222	6.1.17		1.1.1 16
			1′	$\frac{2.3.5}{2.3.5}$	$\frac{222}{1}$	2.1.3	$\frac{1}{1}$	1.1.1 16
48.263	$P_C nnn$	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	$2\overline{2}2$	6.1.17	$\frac{1}{2}$	3.1.6
10.200	1 (101010	',		5.1.10				4911
			2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11 8
48.263	$P_C nnn$	$d^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	222	6.1.17	2	3.1.6 8
	J.2.0.0	,	$\frac{2}{m'}$	5.4.15	2'/m'	5.5.16	m'	4.3.11 8
40.000	70	-						
48.263	$P_C nnn$	a, \overline{E}	222	6.1.17	2/m'	5.4.15	2	3.1.6 8
48.263	$\stackrel{\circ}{P_C}nnn$	b, \overline{E}	222	6.1.17	2/m'	5.4.15	2	3.1.6 8
1								
49.272	P_accm	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9 8
		1 '	2'/m	5.3.14	$\frac{2/m}{2'2'2}$	6.3.19	2'	3.3.8 8
40.070	D.	1 17 27						
49.272	P_accm	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	$4.1.9 \mid 8 \mid$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	2'/m	5.3.14	2'2'2	6.3.19	2,	3.3.8	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.272	e,	\bar{z} 222	6.1.17	2/m	5.1.12	2	3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.272	g,	$E \mid 222$	6.1.17	$\frac{2}{2/m}$	5.1.12		3.1.6 3.1.6 3.1.6	8 8 8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40.273	cem c	= $m'm'm'$		m'm'm		m, m, 2	$\frac{3.1.0}{7.4.93}$	$\begin{vmatrix} 6 \\ 4 \end{vmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			= 111,111,111,						1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ccm a,	$\stackrel{d}{=}$ $\mid m, $				1	7.4.23	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$_{c}ccm$ g,	$\underline{g} = m'm'm'$						4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.273	ccm h,	$E \mid m'm'm'$	8.5.28	m'm'm	8.4.27	m'm'2	7.4.23	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.274 I	a,					2	$3.1.6 \\ 3.1.6$	8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.274 I	$_{\rm B}ccm$ b,	$\overline{\mathcal{E}}$ 222	6.1.17	2/m	5.1.12	2	3.1.6 3.1.6	8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.274 I	$gccm$ e, ${}^{1}\overline{I}$	$2\overline{E}$ $2/m'$	5.4.15	222	6.1.17	2	3.1.6	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.274 I	f, \overline{B}	${}^{2}\overline{E}$ $2/m'$	5.4.15	222	6.1.17	2	4.3.11 3.1.6 4.3.11	8 8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49 275	rccm a					1	3.1.6	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ccm \mid b$					2	3.1.6	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$^{2}E \mid 2'/m$	5.3.14	2/m	5.1.12	m	4.1.9	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.275 <i>H</i>	$rccm \mid f^{1}\overline{f}$	$2\overline{E}$ $2'/m$	5.3.14	2/m	5.1.12	m	4.1.9	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1		1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	3.1.6	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.276	$_{I}ccm$ e, $_{I}$					1	1.1.1	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2/m	5.1.12	1	1.1.1	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.284	$a ban \qquad a, {}^{1}\overline{A}$					1	4.3.11 $3.1.6$	8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.284	$c, {}^{1}\overline{I}$	${}^{2}\overline{E}$ $\left \begin{array}{c} 2/m \\ 2/m' \end{array} \right $				1	4.3.11	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.294	ham			222			$3.1.6 \\ 3.1.6$	8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			222	6.1.17	$\frac{2}{1}$	6.3.19		3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.284		222		2'2'2		$\begin{vmatrix} 2\\2 \end{vmatrix}$	$3.1.6 \\ 3.1.6$	8 8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.285	cban a,	\overline{z} 222	6.1.17	2'2'2		2	3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.285	b.	\bar{z} 222	6.1.17	2'2'2		2	3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			\overline{A} $\overline{1}'$		222		1	1.1.1	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00.200	20011 1,2	'		2/2/2	6.3.19			16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	$-$ $\bar{\underline{1}}'$	$\bar{2}.\bar{3}.\bar{5}$	- <u>1</u> -	2.1.3		$1.1.1 \\ 1.1.1$	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50.286 1	$_{A}ban$ c, $_{A}ban$	$A \mid \underline{1}'$		$2\underline{2}2$			1.1.1	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1',	2.3.5	1,	2.1.3	1	$1.1.1 \\ 1.1.1$	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#1 000 T		_ ,1'	2.3.5		$3.3.8_{-}$		1.1.1	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\underline{U} m'mm$					7.3.22	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.298 <i>F</i>	$mma \mid c,$	$\mathbb{Z} = m'mm $	8.3.26		8.4.27	m'm2'	7.3.22	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.298 F	mma e.	$ar{z} \mid m'mm$	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							m'm2'	7.3.22	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		′	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51.299 F	$mma \mid d, {}^{1}H$						3.1.6 $4.3.11$	8 8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51.299 F	mma e,	$\bar{z} = mm2$	7.1.20	2/m	5.1.12	m	4.1.9	8
$ \begin{bmatrix} 51.300 & P_cmma & \text{d}, {}^1\overline{E}{}^2\overline{E} & 2'/m & 5.3.14 & 2/m & 5.1.12 & \text{m} & 4\\ 2'/m & 5.3.14 & mm2 & 7.1.20 & \text{m} & 4\\ 51.300 & P_cmma & \text{e}, \overline{E} & mm2 & 7.1.20 & 2/m & 5.1.12 & \text{m} & 4\\ 51.300 & P_cmma & \text{f}, \overline{E} & mm2 & 7.1.20 & 2'/m & 5.3.14 & \text{m} & 4\\ 51.300 & P_cmma & \text{f}, \overline{E} & mm2 & 7.1.20 & 2/m & 5.1.12 & \text{m} & 4\\ mm2 & 7.1.20 & 2'/m & 5.3.14 & \text{m} & 4\\ mm2 & 7.1.20 & 2'/m & 5.3.14 & \text{m} & 4\\ mm2 & 7.1.20 & 2'/m & 5.3.14 & \text{m} & 4\\ mm2 & mm2 & mm2 & mm2 & mm2 & mm2\\ mm2 & mm2 & mm2 & mm2 & mm2\\ mm2 & mm2 & mm2 & mm2\\ mm2\\$	51.300 F	$mma \mid c, {}^{1}\overline{I}$	$^{2}E \mid 2'/m$	$7.1.20 \\ 5.3.14$		5.1.12		$\frac{4.1.9}{4.1.9}$	8 8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F1 200 I	177	$\frac{2}{2}$ $\frac{2'/m}{2'/m}$					4.1.9	8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51.300 F	′	2'/m				1	$4.1.9 \\ 4.1.9$	8 8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51.300 F	mma e,				5.1.12		$4.1.9 \\ 4.1.9$	8 8
	51.300 F	mma f,	$\overline{z} = mm2$	7.1.20	2/m	5.1.12	m	4.1.9	8
[51 201 D.mmm 0.E 71 20 0/ 51 10							m	4.1.9	8
$ 51.301 P_{A}mma c,\overline{E} mm2 7.1.20 2/m 5.1.12 m 4.50 $	51.301 P	$mma \mid c$.	$\bar{z} = mm2$	7.1.20	2/m	5.1.12	m	4.1.9	8
							1	1.1.1	16
$egin{array}{ c c c c c c c c c c c c c c c c c c c$			${}^{2}\overline{E}$ $\overline{1}'$ $2'/m$	$2.3.5 \\ 5.3.14$	$mm2 \\ 2'2'2$	$7.1.20 \\ 6.3.19$	1	$\frac{1.1.1}{3.3.8}$	16 8
1 2 2 1 2	51.303 F	$mma \mid d, {}^{1}\overline{A}$	${}^{2}\overline{E}$ $\left \begin{array}{c} 2'/m \\ 2'/m \end{array}\right $				1	4.1.9 $3.3.8$	8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2'/m	5.3.14	mm2	7.1.20	m	4.1.9 4.1.9	8 8
mm2 - 7.1.20 2/m - 5.1.12 m - 4			mm2	7.1.20	2/m	5.1.12	m	4.1.9	8
	51.304 F	mma e,					1	$4.1.9 \\ 4.1.9$	8 8

51.304	P_Imma	$ c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	mm2	7.1.20	m	4.1.9	8
51.304	P_Imma	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2'/m	5.3.14	mm2	7.1.20	m	4.1.9	8
52.314	P_anna	$c, {}^{1}\overline{E} {}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m',	4.3.11	8
52.314	P_anna	$d, {}^{1}\overline{E} {}^{2}\overline{E}$	2/m'	5.4.15	$\frac{2}{2'}/m'$	5.5.16	m,	4.3.11	8
52.315	$P_b nna$	e, \overline{AA}	$\bar{1}'$	2.3.5	$\frac{2}{2'2'2}$	6.3.19	1	1.1.1	16
02.010	1 611114	<u> </u>	$\bar{1}'$	$\frac{2.3.5}{2.3.5}$		2.1.3	1	1.1.1	16
52.316	P_cnna	b, \overline{AA}	$1 \frac{1}{2}$	2.3.5	$\frac{1}{1}$	$\frac{2.1.3}{2.1.3}$	l î	1.1.1	$ \tilde{16} $
			$\begin{vmatrix} 1' \\ 1' \end{vmatrix}$	$\frac{2.3.5}{2.3.5}$	$\frac{2}{2'}$	$\frac{3.1.6}{2.2}$	1	1.1.1	16
52.317	P_Anna	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	$\frac{2.3.5}{5.4.15}$	2'/m'	$3.3.8 \\ 5.5.16$	$\frac{1}{m}$	$\frac{1.1.1}{4.3.11}$	$\begin{vmatrix} 16 \\ 8 \end{vmatrix}$
52.317	P_Anna	$f^{0}, {}^{1}\overline{E} {}^{2}\overline{E}$	2/m'	5.4.15	$\frac{2}{2'}/m'$	5.5.16	m'	4.3.11	8
52.318	P_Bnna	$a^{1}_{0} = \frac{1}{E} \cdot \frac{1}{E}$	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
52.318	P_Bnna	$b, {}^{1}\overline{E} {}^{2}\overline{E}$	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
52.319	P_Cnna	$c, \frac{Z}{AA}$	$\bar{1}'$	2.3.5	2'2'2	6.3.19	1	1.1.1	16
02.010	1 (77770	0,1111	Ī′	$2.3.5 \\ 2.3.5$	$-\frac{1}{1}$	$\frac{2.1.3}{3.1.6}$	1	1.1.1	16
FO 200	D	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	$\begin{bmatrix} 1' \\ 1' \end{bmatrix}$	2.3.5	,2 ,,		1	1.1.1	16
52.320	P_Inna	$d, {}^{C}, {}^{E}, {}^{E}, {}^{E}$	2/m'	5.4.15	m'm'2	7.4.23	m',	4.3.11	8
52.320	P_Inna	$\begin{vmatrix} \mathbf{d}, \mathbf{E} \\ \mathbf{b}, \mathbf{E} \end{vmatrix} = E$	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
53.330	P_amna	D, E E	$2/m' \ 2/m'$	$5.4.15 \\ 5.4.15$	m'm'2	5.1.12 $7.4.23$	$\frac{2}{m}$	3.1.6 $4.3.11$	8 8
53.330	P_amna	$d^{1}_{E} \overline{E}^{2} \overline{E}$	$\frac{2/m}{2/m'}$	5.4.15 $5.4.15$	$\frac{m}{2/m}$	5.1.12	2	3.1.6	8
35.550	$I_a m u$	u, E E	2/m'	5.4.15 $5.4.15$	m'm'2	7.4.23	m,	4.3.11	8
53.331	P_bmna	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	$\frac{n^2 m^2}{2/m}$	5.1.12	m	4.1.9	8
53.331	P_bmna	$\int_{0}^{\infty} d^{2} \frac{E}{E} d^{2} \frac{E}{E}$	2'/m	5.3.14	$\frac{2}{m}$	5.1.12	m	4.1.9	8
53.332	P_cmna	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	$\frac{2}{m}$	5.1.12	m	4.1.9	8
00.002	1 6111100	,	$\frac{1}{2}$ /m	5.3.14	$\frac{1}{2}\frac{1}{2}\frac{1}{2}$	6.3.19	2,	3.3.8	8
53.332	P_cmna	$d^{1}\overline{E}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	2/m	5.1.12	m	4.1.9	8
			2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
53.333	P_Amna	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
		1-0-	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	8
53.333	P_Amna	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
¥0.004	-	1=2=	2'/m	5.3.14	2/m	5.1.12	m.	4.1.9	8
53.334	P_Bmna	$e, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'm'm	8.4.27	m'	4.3.11	8
53.334	P_Bmna	$f^{1} \overline{E}^{2} \overline{E}$	2/m'	5.4.15	m'm'm	8.4.27	m'	4.3.11	8
53.335	P_Cmna	c, \overline{AA}	$ar{1}'$	$2.3.5 \\ 2.3.5$	$\frac{2/m}{2}$	5.1.12 $3.1.6$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$1.1.1 \\ 1.1.1$	16 16
53.336	P_Imna	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	$\frac{2.3.5}{5.4.15}$	m'm2'	7.3.22	m,	4.3.11	8
53.336	$P_{I}mna$	$d^{1}_{,1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	8
54.346	P_acca	$a^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	8
	_	,	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
54.346	P_acca	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	8
			2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
54.347	P_bcca	$b, \overline{A}\overline{A}$	$ $ $\bar{\underline{1}}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1	16
			$\begin{vmatrix} \frac{1}{1} \end{vmatrix}$	$2.3.5 \\ 2.3.5$	$\frac{2}{2'}$	$\frac{3.1.6}{3.3.8}$	$\begin{array}{c c} & 1 \\ & 1 \end{array}$	$1.1.1 \\ 1.1.1$	16 16
54.348	P_ccca	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m',	4.3.11	8
			2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
54.348	P_ccca	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	8
		1-0-	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
54.350	P_Bcca	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
	-	1 1 7 2 7	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
54.350	P_Bcca	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2,	3.1.6	8
54.351	D	d, \overline{AA}	$2/m' \ \bar{1}'$	5.4.15	$m'm'2 \ 2'2'2$	7.4.23	m'	4.3.11	8
04.551	P_Ccca	u,AA	$\frac{1}{1}$	$\frac{2.3.5}{2.3.5}$		6.3.19	1	1.1.1	16
			1' 1' 1' 1' 1'	$\frac{2.3.5}{2.3.5}$	$\begin{array}{c} \frac{1}{2} \\ \overline{1} \\ 2' \\ 2 \end{array}$	$\frac{2.1.3}{3.1.6}$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$1.1.1 \\ 1.1.1$	16 16
54.352	P_Icca	$b, \overline{A}\overline{A}$	$\frac{1}{1}$	2.3.5	1	2.1.3	1	1.1.1	16
			<u>1</u> ′,	$\frac{2.3.5}{2.3.5}$	$\frac{2}{2}$	$\frac{3.3.8}{3.1.6}$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$1.1.1 \\ 1.1.1$	16 16
55.360	P_abam	$a^{1}\overline{E}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	2/m	5.1.12	m	4.1.9	8
		,	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	8
55.360	P_abam	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	8
	_	1-2-	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	8
55.361	P_cbam	$b, {}^{1}\overline{E} {}^{2}\overline{E}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	8
55.361	P_cbam	$d, {}^{1}\overline{\underline{E}}{}^{2}\overline{\underline{E}}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	8
55.362	P_Abam	c, \overline{AA}	$\bar{1}'$	2.3.5	2/m	5.1.12	1	1.1.1	16
55.363	P_Cbam	$e^{1}\overline{E}^{2}\overline{E}$	1' 2'/m	$2.3.5 \\ 5.3.14$	m'm'm	$\frac{3.3.8}{8.4.27}$	1 m	$\frac{1.1.1}{4.1.9}$	$\begin{vmatrix} 16 \\ 8 \end{vmatrix}$
55.363	$P_C bam$	$f^{0}, {}^{1}\overline{E} {}^{2}\overline{E}$	$\frac{2}{2'/m}$	5.3.14	m'm'm	8.4.27	m	4.1.9	8
55.364	P_Ibam	e, \overline{AA}	$\frac{2}{1}$	2.3.5	2'2'2	6.3.19	1	1.1.1	16
,	2	,	-		· ·				1

1			1/	0.05	1 0/	F 1 10	1 4	1 1 1 10
56.372	P_bccn	a, \overline{AA}	$rac{\overline{1}'}{\overline{1}'}$	$2.3.5 \\ 2.3.5$	$\frac{2/m}{\bar{1}}$	5.1.12 $2.1.3$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$ \begin{array}{c cccc} 1.1.1 & 16 \\ 1.1.1 & 16 \end{array} $
00.012	1 60010	a,2121	$\frac{1}{1}$ ',	$2.3.5 \\ 2.3.5$	$\frac{2'}{2}$	$\frac{3.3.8}{3.1.6}$	1	1.1.1 16
56.373	P_cccn	d, \overline{AA}	$\frac{1}{1}'$	$\frac{2.3.5}{2.3.5}$	m'm'2	$\frac{3.1.6}{7.4.23}$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$\begin{bmatrix} 1.1.1 & 16 \\ 1.1.1 & 16 \end{bmatrix}$
		j '	ī' ī' ī' ī'	2.3.5	$\bar{1}$	2.1.3	1	1.1.1 16
56.374	P_Accn	c,\overline{AA}	$\frac{1}{1}'$	2.3.5	2'/m'	5.5.16	1	1.1.1 16
56.375	P_Cccn	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	$2.3.5 \\ 5.4.15$	2'2'2	$3.1.6 \\ 6.3.19$	$\begin{array}{c c} 1 \\ 2 \end{array}$	$\begin{array}{c cc} 1.1.1 & 16 \\ 3.1.6 & 8 \end{array}$
	0		2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11 8
56.375	$P_{C}ccn$	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6 8
56.376	P_Iccn	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2}{m'}$ $\frac{2}{m'}$	5.4.15 $5.4.15$	$2'/m' \\ 2'2'2$	$5.5.16 \\ 6.3.19$	m' 2	$\begin{array}{c cccc} 4.3.11 & 8 & \\ 3.1.6 & 8 & \end{array}$
56.376	P_Iccn	$\left \begin{array}{c} \mathbf{d}, {}_{1}E {}_{2}E \\ \mathbf{d}, {}_{1}E {}_{2}E \end{array} \right $	$\frac{2}{m'}$	5.4.15 $5.4.15$	$\frac{2}{2'2'2}$	6.3.19	$\frac{2}{2}$	3.1.6 8
57.386	P_abcm	$\begin{vmatrix} a, \underline{B} & \underline{B} \\ b, \overline{A}\overline{A} \end{vmatrix}$	$\bar{1}'$	2.3.5	1	2.1.3	1	1.1.1 16
		, ,	$\bar{1}'_{1}$	$\begin{array}{c} 2.3.5 \\ 2.3.5 \end{array}$	2	$\frac{3.1.6}{4.1.9}$	$\begin{array}{c} 1 \\ 1 \end{array}$	$\begin{bmatrix} 1.1.1 & 16 \\ 1.1.1 & 16 \end{bmatrix}$
57.387	P_bbcm	a, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	$\frac{2.3.3}{5.4.15}$	2'/m'	$\frac{4.1.9}{5.5.16}$	m,	$\begin{array}{c cc} 1.1.1 & 16 \\ 4.3.11 & 8 \end{array}$
		,	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11 8
57.387	P_bbcm	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m',	4.3.11 8
57.388	P_cbcm	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2/m'}{2'/m}$	$5.4.15 \\ 5.3.14$	m'm2' $2'/m'$	7.3.22 $5.5.16$	m' 2'	4.3.11 8 3.3.8 8
37.300	1 cociii	a, E E	$\frac{2}{2'}/m$	5.3.14	m'm2'	7.3.22	m	4.1.9
57.388	P_cbcm	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'/m'	5.5.16	2'	3.3.8 8
		1=2=	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9 8
57.389	P_Abcm	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2'}{m}$ $\frac{2'}{m}$	5.3.14	$\begin{array}{c} 2'2'2\\ m'm2' \end{array}$	6.3.19 $7.3.22$	2'	$\begin{array}{c cccc} 3.3.8 & 8 & \\ 4.1.9 & 8 & \end{array}$
57.389	P_Abcm	$d^{1}_{\overline{E}} \overline{E}^{2} \overline{E}$	$\frac{2}{2'}/m$	5.3.14 $5.3.14$	2'2'2	6.3.19	m 2'	4.1.9 8 3.3.8 8
01.005	1 Aocht	<u> </u>	$\frac{2}{2}/m$	5.3.14	m'm2'	7.3.22	m	4.1.9 8
57.391	P_Cbcm	$a, {}^{1}\overline{E} {}^{2}\overline{E}$	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11 8
57.391	P_Cbcm	$b, \overline{1}\overline{E}, \overline{2}\overline{E}$	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11 8
57.392	P_Ibcm	$c, \overline{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8 8
57.392	P_Ibcm	$\int d^{1}_{1} \overline{E}^{2} \overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8 8
58.400	P_annm	$a, \overline{E}^{2} \overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9 8
58.400	P_annm	$b, 1\overline{E} 2\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9 8
58.401	P_cnnm	$b, {}^{1}\overline{\underline{E}} {}^{2}\overline{\underline{E}}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6 8
58.401	P_cnnm	$d, \overline{E}^{2}\overline{E}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6 8
58.402	P_Bnnm	d,AA	$rac{\overline{1}'}{\overline{1}'}$	2.3.5	2/m	5.1.12	1	1.1.1 16
58.403	$P_C nnm$	$e^{1}\overline{E}^{2}\overline{E}$	$2^{\prime}/m$	$2.3.5 \\ 5.3.14$	$m'm2' \ 2/m$	$7.3.22 \\ 5.1.12$	$\begin{array}{c c} 1 \\ m \end{array}$	$\begin{array}{c cc} 1.1.1 & 16 \\ 4.1.9 & 8 \end{array}$
58.403	$P_C nnm$	$f^{,1}\overline{E}^{2}\overline{E}$	$\frac{1}{2}/m$	5.3.14	$\frac{1}{2}/m$	5.1.12	m	4.1.9 8
58.404	P_Innm	$k.\overline{AA}$	- / ····	2.3.5	m'm'm	8.4.27	1	1.1.1 16
59.412	P_bmmn	$a^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	2'/m'	5.5.16	2,	3.3.8 8
		1=0=	2'/m	5.3.14	mm2	7.1.20	m	4.1.9 8
59.412	P_bmmn	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2'}{m}$	5.3.14	2'/m'	5.5.16	2'	3.3.8 8
59.412	P_bmmn	e, \overline{E}	$2^{\prime\prime}/m \ mm2$	5.3.14 $7.1.20$	$mm2 \ 2'/m$	7.1.20 $5.3.14$	m	$ \begin{array}{c cccc} 4.1.9 & 8 \\ 4.1.9 & 8 \end{array} $
			mm2	7.1.20	m'm2'	7.3.22	m m	4.1.9 8
59.413	P_cmmn	d, \overline{AA}	mm2	2.3.5	$m \underline{m} 2$	7.1.20	1	1.1.1 16
60.426	P_abcn	a, \overline{AA}	$\frac{\overline{1}}{1}'$	$2.3.5 \\ 2.3.5$	$ \begin{array}{c c} \frac{1}{1} \\ 2' \\ \frac{2}{1} \end{array} $	$\frac{2.1.3}{2.1.3}$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$\begin{bmatrix} 1.1.1 & 16 \\ 1.1.1 & 16 \end{bmatrix}$
	a · · · ·	.,	$\bar{1}'_{\prime}$	$2.3.5 \\ 2.3.5 \\ 2.3.5$	2'	3.3.8	$\frac{1}{1}$	$\begin{array}{c cc} 1.1.1 & 16 \\ 1.1.1 & 16 \\ 1.1.1 & 16 \end{array}$
60.427	P_bbcn	b, \overline{AA}	$rac{ar{1}'}{ar{1}'}$	$\frac{2.3.5}{2.3.5}$	$\frac{2}{1}$	$\frac{3.1.6}{2.1.3}$	$\begin{array}{c c} & 1 \\ & 1 \end{array}$	$\begin{bmatrix} 1.1.1 & 16 \\ 1.1.1 & 16 \end{bmatrix}$
00.121	1 00010	5,7171	$\frac{1}{1}'$	$2.3.5 \\ 2.3.5$, m'	3.1.6	1	$ \begin{array}{c cccc} 1.1.1 & 16 \\ 1.1.1 & 16 \\ 1.1.1 & 16 \end{array} $
60.428	P_cbcn	$a^{1}\overline{E}^{2}\overline{E}$	2/m'	$2.3.5 \\ 5.4.15$	2'/m'	$4.3.11 \\ 5.5.16$	$\frac{1}{m}$	$\begin{array}{c cc} 1.1.1 & 16 \\ 1.1.1 & 16 \\ 4.3.11 & 8 \end{array}$
60.428	P_cbcn	$\begin{vmatrix} a, \frac{E}{E} & \frac{E}{E} \end{vmatrix}$	$\frac{2}{m'}$	5.4.15	2'/m'	5.5.16	m'	4.3.11 8
60.430	P_Bbcn	$\left \begin{array}{c} \mathbf{d}, \overline{AA} \\ \mathbf{d}, \overline{AA} \end{array} \right $		2.3.5	$\frac{2}{2'2'2}$	6.3.19	1	1.1.1 16
00.100	1 Bock	4,7171	$\overline{\overline{1}}'$	$2.3.5 \\ 2.3.5$	$\frac{1}{2}$	$\frac{2.1.3}{3.3.8}$	1 1	1.1.1 16
60.431	P_Cbcn	d, \overline{AA}	$\frac{1}{1}'$	$\frac{2.3.5}{2.3.5}$	$2^{\prime}/m^{\prime}$	$\frac{3.3.8}{5.5.16}$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$\begin{bmatrix} 1.1.1 & 16 \\ 1.1.1 & 16 \end{bmatrix}$
			$\frac{1}{1}$ '	2.3.5	m'm'2	7.4.23	1	1.1.1 16
60.432	P_Ibcn	e, \overline{AA}		2.3.5 $2.3.5$	2'2'2	6.3.19	1	1.1.1 16
61.438	P_abca	a, \overline{AA}	1' 1'	$2.3.5 \\ 2.3.5$	$\frac{2'/m'}{\bar{1}}$	5.5.16 $2.1.3$	$\begin{array}{c c} 1 \\ 1 \end{array}$	$ \begin{array}{c cccc} 1.1.1 & 16 \\ 1.1.1 & 16 \end{array} $
01.400	1 a o c a	a,AA	$\frac{1}{1}$ '.	2.3.5 $2.3.5$ $2.3.5$	2^{\prime}	$\begin{array}{c} 2.1.3 \\ 3.3.8 \\ 4.3.11 \end{array}$		$\begin{bmatrix} 1.1.1 & 16 \\ 1.1.1 & 16 \end{bmatrix}$
61.439	P_Cbca	c, \overline{AA}	$\frac{1}{1}'$	$\frac{\bar{2}.\bar{3}.\bar{5}}{2.3.5}$	2' m' 2'/m'	$\frac{4.3.11}{5.5.16}$	$\begin{array}{c c} 1\\1\\1\\1\end{array}$	1.1.1 16
01.439			$\frac{1}{1}'$	2.3.5	2'	$5.5.16 \\ 3.3.8$	1	$ \begin{array}{c cccc} 1.1.1 & 16 \\ 1.1.1 & 16 \end{array} $
61.440	P_Ibca	a, \overline{AA}	$\bar{\bar{\underline{1}}}'$	2.3.5	1	2.1.3	1	1.1.1 16
1		1 1	1'	2.3.5	2'	3.3.8	1	1.1.1 16

62.450	P_anma	c, \overline{AA}	$ $ $\bar{1}'$	2.3.5	m'm2'	7.3.22	1	1.1.1	16
	-	1=2=	$\bar{1}'$	2.3.5	$\bar{1}$	2.1.3	1	1.1.1	16
62.451	P_bnma	$a, \overline{E}^{2} \overline{E}$	2'/m	5.3.14	2'/m'	5.5.16	2'	3.3.8	8
62.451	$P_b nma$	$c, {}^{1}\overline{\underline{E}}{}^{2}\overline{\underline{E}}$	2'/m	5.3.14	2'/m'	5.5.16	2'	3.3.8	8
62.452	P_cnma	a,AA	$\frac{\bar{1}'}{1'}$	2.3.5	1	2.1.3	1	1.1.1	16
			$\begin{vmatrix} 1' \\ 1' \end{vmatrix}$	$\frac{2.3.5}{2.3.5}$	m m	$\frac{3.3.8}{4.1.9}$	$\begin{vmatrix} 1\\1 \end{vmatrix}$	$1.1.1 \\ 1.1.1$	16 16
62.453	P_Anma	$a^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	m	$\frac{1.1.1}{4.1.9}$	8
62.453	P_Anma	$b^{1}\overline{E}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	m'm2'	7.3.22	m	4.1.9	8
62.454	$P_B nma$	d, \overline{AA}	1'	2.3.5	2'/m'	5.5.16	1	1.1.1	16
	- D	'	$ \bar{1}'$	2.3.5	m'm2'	7.3.22	$\overline{1}$	1.1.1	16
62.456	P_Inma	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	8
62.456	P_Inma	$d^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	8
63.466	C_cmcm	c, \overline{E}	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	4
63.466	C_cmcm	d, \overline{E}	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	4
63.466	C_cmcm	$f^{1}E^{2}\overline{E}$	2'/m	5.3.14	m'mm	8.3.26	m	4.1.9	8
		, , , , , , , , , , , , , , , , , , ,	$2^{\prime\prime}/m$	5.3.14	2'/m'	5.5.16	2'	3.3.8	8
63.467	C_amcm	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	8
		,	2/m'	5.4.15	2''/m'	5.5.16	m'	4.3.11	8
			2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	8
63.467	C_amcm	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	2/m	5.1.12	m	4.1.9	8
			$2^{\prime\prime}/m$	5.3.14	2'/m'	5.5.16	2'	3.3.8	8
			2'/m	5.3.14	mm2	7.1.20	m	4.1.9	8
63.467	C_amcm	e, \overline{E}	mm2	7.1.20	2/m	5.1.12	m	4.1.9	8
		,	mm2	7.1.20	2'/m	5.3.14	m	4.1.9	8
		1-0-	mm2	7.1.20	m'm2'	7.3.22	m	4.1.9	8
63.468	C_Amcm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	m'mm	8.3.26	m	4.1.9	8
		1-0-	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
64.478	C_cmca	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	2'2'2	6.3.19	2	3.1.6	8
			2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	8
		1-0-	2/m'	5.4.15	m'm2'	7.3.22	m'	4.3.11	8
64.478	C_cmca	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
			2'/m	5.3.14	2/m	5.1.12	m	4.1.9	8
		1-0-	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	8
64.479	C_amca	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2'/m'	5.5.16	2'	3.3.8	8
			2'/m	5.3.14	2/m	5.1.12	m	4.1.9	8
		1-0-	2'/m	5.3.14	m'm2'	7.3.22	m	4.1.9	8
64.479	C_amca	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	8
			2/m'	5.4.15	2/m	5.1.12	2	3.1.6	8
		1=0=	2/m'	5.4.15	m'm'2	7.4.23	m'	4.3.11	8
64.480	C_Amca	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2'}{m}$	5.3.14	m'm'm	8.4.27	m	4.1.9	8
	~	. 1=2=	2'/m	5.3.14	2'2'2	6.3.19	2'.	3.3.8	8
64.480	C_Amca	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	m'm'm	8.4.27	m'	4.3.11	8
	~	4 1 = 2 =	2/m'	5.4.15	2'2'2	6.3.19	$\frac{2}{}$	3.1.6	8
65.488	C_cmmm	$f^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	m'mm	8.3.26	m'	4.3.11	8
	~	, =	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	8
65.489	C_ammm	$b, \overline{\underline{E}}$	m'mm	8.3.26	$m'_{,m'_{,m}}$	8.4.27	m'm2'	7.3.22	4
65.489	$C_a mmm$	$d, \overline{\underline{E}}$	$m'_{,mm}$	8.3.26	$m'_{,m'_{,m}}$	8.4.27	m'm2'	7.3.22	4
65.489	C_ammm	$e, \overline{\underline{E}}$	m'mm	8.3.26	$m'_{,m'_{,m}}m$	8.4.27	m'm2'	7.3.22	4
65.489	C_ammm	$c, {}^{\underline{g}, \overline{E}}_{\overline{E}}_{\overline{E}}$	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	4
65.490	C_Ammm	$[c, E^*E]$	$\frac{2'}{m}$	5.3.14	mmm	8.1.24	m	4.1.9	8
	~	1 7 7 7	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
65.490	C_Ammm	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2'}{m}$	5.3.14	mmm	8.1.24	m	4.1.9	8
	~	_	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
66.498	$C_c ccm$	$c, \overline{\underline{E}}$	m'm'm'	8.5.28	$m'_{,m'_{,m}}$	8.4.27	m'm'2	7.4.23	4
66.498	$C_c ccm$	d, \overline{E}	m'm'm'	8.5.28	m'm'm	8.4.27	m'm'2	7.4.23	4
66.498	$C_c ccm$	$f^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	m'm'm'	8.5.28	m'	4.3.11	8
	~	1 = 2 =	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	8
66.499	C_accm	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	$\frac{2}{m}$	5.1.12	m	4.1.9	8
00.400	~	1 1 7 7 7	2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	8
66.499	C_accm	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{2'}{m}$	5.3.14	$\frac{2/m}{2'2'2}$	5.1.12	m	4.1.9	8
00.400	C C	_	2'/m	5.3.14		6.3.19	2'	3.3.8	8
66.499	C_accm	e, \overline{E}	222	6.1.17	$\frac{2}{m}$	5.1.12	2	3.1.6	8
66.500	C_Accm	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	$222 \over 2/m'$	6.1.17	m'm'm	6.3.19	$\frac{2}{m}$	3.1.6	8
00.500	\bigcirc_{ACCIII}	, E E	$2/m \over 2/m'$	$5.4.15 \\ 5.4.15$	m m m m 222	$8.4.27 \\ 6.1.17$	m' 2	4.3.11 $3.1.6$	8 8
66.500	C_Accm	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2/m}{2/m'}$	5.4.15 $5.4.15$	m'm'm	8.4.27	m,	4.3.11	8
00.500	O_ACCIII	u, <i>E E</i>	2/m'	5.4.15 $5.4.15$	$\frac{m}{222}$	6.4.27 $6.1.17$	2	3.1.6	8
66.500	C_Accm	f,\overline{E}	$\frac{2/m}{222}$	6.1.17	$\frac{222}{2/m'}$	5.4.15	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	3.1.6	8
50.500	C_ACCIII	1,12	1 444	0.1.11	4/111	0.4.10	1 4	0.1.0	10

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	222	6.1.17	2/m	5.1.12	2	3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67.508	C_cmma	a, \overline{E}	222 222		$\frac{2'2'2}{2/m}$	6.3.19 $5.1.12$	$\begin{vmatrix} 2\\2 \end{vmatrix}$		8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	67.508	C_cmma	d , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2'/m	5.3.14	2'2'2	6.3.19		3.3.8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67.508	C_cmma	$f^{1}\overline{E}^{2}\overline{E}$	$\frac{2}{2'/m}$				1		1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		~ C	-,	2'/m	5.3.14	2/m	5.1.12		4.1.9	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C7 500	<i>C</i>	T							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07.508	C_cmma	g,£					1		1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	67.509		$a, \overline{\underline{E}}$	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	c, \overline{E}							1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		$h \frac{I,E}{E}$							1 1
$ \begin{array}{c ccccc} 65.510 & C_{A}mma & f.\overline{E} & 222 & 61.17 & 2/m' & 54.15 & 2 & 31.6 & 8 \\ 68.518 & C_{c}cca & b.\overline{E} & 222 & 61.17 & 2/m' & 54.15 & 2 & 31.6 & 8 \\ 68.518 & C_{c}cca & d.^{1}\overline{E}^{2}\overline{E} & 222 & 61.17 & 2/m' & 54.15 & 2 & 31.6 & 8 \\ 222 & 61.17 & 2/m' & 54.15 & 22 & 61.17 & 2 & 31.6 & 8 \\ 2/m' & 54.15 & 222 & 61.17 & 2 & 31.6 & 8 \\ 2/m' & 54.15 & 222 & 61.17 & 2 & 31.6 & 8 \\ 2/m' & 54.15 & 22/m' & 55.16 & m' & 43.11 & 8 \\ 68.518 & C_{c}cca & f.^{1}\overline{E}^{2}\overline{E} & 2/m' & 54.15 & 22/2 & 61.17 & 2 & 31.6 & 8 \\ 2/m' & 54.15 & 2/m' & 55.16 & m' & 43.11 & 8 \\ 2/m' & 54.15 & 2/m' & 55.16 & m' & 43.11 & 8 \\ 2/m' & 54.15 & 2/m' & 55.16 & m' & 43.11 & 8 \\ 68.519 & C_{a}cca & a.^{1}\overline{E}^{2}\overline{E} & 2/m' & 54.15 & 2/m' & 55.16 & m' & 43.11 & 8 \\ 68.519 & C_{a}cca & b.^{1}\overline{E}^{2}\overline{E} & 2/m' & 54.15 & 2/m' & 55.16 & m' & 43.11 & 8 \\ 68.519 & C_{a}cca & b.^{1}\overline{E}^{2}\overline{E} & 2/m' & 54.15 & 2/m' & 55.16 & m' & 43.11 & 8 \\ 68.519 & C_{a}cca & b.^{1}\overline{E}^{2}\overline{E} & 2/m' & 54.15 & 2/m' & 55.16 & m' & 43.11 & 8 \\ 69.526 & F_{smmm} & b.\overline{E} & 222 & 61.17 & 2/m' & 54.15 & 2 & 31.6 & 8 \\ 69.526 & F_{smmm} & b.\overline{E} & m'mm & 83.26 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & c.\overline{E} & m'mm & 83.26 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'mm & 83.26 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'mm & 83.26 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'mm & 83.26 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'm'm' & 85.28 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'm'm' & 85.28 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'm'm' & 85.28 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'm'm' & 85.28 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'm'm' & 85.28 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'm'm' & 85.28 & m'm'm & 84.27 & m'm'2 & 73.22 & 4 \\ 69.526 & F_{smmm} & e.\overline{E} & m'm'm' & 85.28 & m'm'm & 84.27 & m'$										1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a= =10	~	c =					1		1 1
$ \begin{array}{c ccccc} 68.518 & C_ccca & b, \overline{E} & 222 & 61.17 & 2'2'2 & 63.19 & 2 & 31.6 & 8 \\ 68.518 & C_ccca & d, {}^{\dagger}E^{E} \overline{E} & 2/m' & 54.15 & 2'/m' & 55.16 & m' & 43.11 & 8 \\ 68.518 & C_ccca & f, {}^{\dagger}E^{E} \overline{E} & 2/m' & 54.15 & 222 & 61.17 & 2 & 31.6 & 8 \\ & & & & & & & & & & & & & & & & &$	67.510	C_Amma	1,E							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.518	C_ccca	b, \overline{E}			2'2'2				
$ \begin{array}{c cccc} & 2/m' & 5.4.15 & 2'/m' & 5.5.16 & m' & 4.3.11 & 8 \\ 8.518 & C_ccca & f, {}^{1}\overline{E}{}^{2}\overline{E} & 2/m' & 5.4.15 & 222 & 6.1.17 & 2 & 3.1.6 & 8 \\ & & & & & & & & & & & & & & & & &$	00 510	a	1 1 = 2 =			,				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.518	C_ccca	d, 'E'E					1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2/m'						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.518	C_ccca	$f^{1}\overline{E}^{2}\overline{E}$					I .		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								I .		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.519	C_acca	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'		2'/m'		1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 510	~	1 1 7 2 7					I		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.519	C_acca	b, 'E'E							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.519	$C_a cca$	h, \overline{E}			2/m'			3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68 520	C_{ACCG}	$\int_{0}^{1} \overline{E}^{2} \overline{E}$	$\frac{222}{2/m'}$						8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00.020	C_Acca	e, <i>E E</i>			2'2'2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			m'mm			8.4.27			1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		c, \underline{E}					1		1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		h, \overline{E}					1		1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70.532	$F_S ddd$	a, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6	1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70.532	$F_S ddd$	f,AA					1		1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71 590	T	1 77 2 77	1'	$\frac{2.3.5}{2.3.5}$	$\bar{1}$	2.1.3	1	1.1.1	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	71.538	I_cmmm	e, EEE	$\frac{2^r/m}{2^r/m}$						1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				m'm'm'		m'm'm				1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			d, \overline{E}	m'm'm'						1 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	72.546	$I_c bam$	e, EEE	$\frac{2^r/m}{2^r/m}$		m'm'm				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72.547	I_bbam	a, \overline{E}	222	6.1.17	2'2'2	6.3.19		3.1.6	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72.547	$I_b bam$	$d^{1}\overline{E}^{2}\overline{E}$							1 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-0		2'/m	5.3.14		5.1.12	1	4.1.9	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	79 5 47	I hama	$1\overline{E}2\overline{E}$	2'/m						1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.341	I_boam	e, <i>E E</i>	$\frac{2/m}{2/m'}$		$\frac{222}{2'/m'}$				1 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1-0-	2/m'		m'm2'	7.3.22	m'	4.3.11	8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	73.553	I_cbca	d , ${}^{1}E$ ${}^{2}E$					1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	73.553	I_cbca	$e^{1}\overline{E}^{2}\overline{E}$	2/m'		2'2'2			3.1.6	1 1
$ \begin{vmatrix} 74.561 & I_cmma & \text{c}, {}^1\overline{E}{}^2\overline{E} & 2'/m & 5.3.14 & 2'2'2 & 6.3.19 & 2' & 3.3.8 & 8 \\ & 2'/m & 5.3.14 & 2/m & 5.1.12 & \text{m} & 4.1.9 & 8 \\ & 2'/m & 5.3.14 & mm2 & 7.1.20 & \text{m} & 4.1.9 & 8 \\ \hline 74.561 & I_cmma & \text{f}, {}^1\overline{E}{}^2\overline{E} & 2'/m & 5.3.14 & 2'2'2 & 6.3.19 & 2' & 3.3.8 & 8 \\ \end{vmatrix} $										
$ \begin{vmatrix} 2'/m & 5.3.14 & 2/m & 5.1.12 & m & 4.1.9 & 8 \\ 2'/m & 5.3.14 & mm2 & 7.1.20 & m & 4.1.9 & 8 \\ 74.561 & I_cmma & f, {}^1\overline{E}{}^2\overline{E} & 2'/m & 5.3.14 & 2'2'2 & 6.3.19 & 2' & 3.3.8 & 8 \end{vmatrix} $	74.561	I_cmma	$\int_{\mathbb{C}^{1}} \overline{E}^{2} \overline{E}$	$\frac{2/m}{2'/m}$		$\frac{11111112}{2'2'2}$				1 1
$ 74.561 I_cmma f, {}^1\overline{E}{}^2\overline{E} 2'/m 5.3.14 2'2'2 6.3.19 2' 3.3.8 8 \mid $		9		2'/m	5.3.14	2/m	5.1.12	m	4.1.9	8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7/ 561	Imma	$\int \int \int \int d^{2} \overline{F}$	$\frac{2'/m}{2'/m}$						
	14.001	1 _C HtHtu	1, 12 12	$\frac{2}{2} / m$				1		

1		1	2'/m	5.3.14	mm2	7.1.20	l m	4.1.9	8
74.561	I_cmma	g, \overline{E}	mm2	7.1.20	$\frac{mm2}{2'/m}$	5.3.14	m m	4.1.9 $4.1.9$	8
14.001	$1_C III II II II$	g,E	mm2	7.1.20 $7.1.20$	$\frac{2}{2}/m$	5.1.12	m	4.1.9	8
74.562	I_bmma	a, \overline{E}	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	$\begin{vmatrix} 0 \\ 4 \end{vmatrix}$
74.562	$I_b mma$	b, \overline{E}	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
74.562	I_bmma	$f^{1}_{E} \overline{E}^{2}_{E}$	2/m'	5.4.15	m'm'm	8.4.27	m,	4.3.11	8
11.502	10111110	1, 2 2	$\frac{2}{m'}$	5.4.15	2/m	5.1.12	2	3.1.6	8
81.36	$P_c\bar{4}$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	$\bar{4}$	10.1.32	$\frac{1}{2}$	3.1.6	$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$
81.36	$P_c\bar{4}$	$d, {}^{1}\overline{E} {}^{2}\overline{E}$	$\frac{1}{4}$	10.3.34		10.1.32	2	3.1.6	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
82.42	$I_c \bar{4}$	$\begin{array}{c c} d, {}^{1}\overline{E} {}^{2}\overline{E} \\ b, {}^{1}\overline{E} {}^{2}\overline{E} \end{array}$	$\frac{1}{4}$	10.3.34	$rac{ar{4}}{4}$	10.1.32	2	3.1.6	$\frac{1}{4}$
82.42	$I_c \bar{4}$	$c, 1\overline{E}^{2}\overline{E}$	$\begin{array}{c} \bar{4}' \\ \bar{4}' \\ \bar{4}' \end{array}$	10.3.34	$\dot{\bar{4}}$	10.1.32	2	3.1.6	$\frac{1}{4}$
83.48	P_c4/m	$b^{1}\overline{E}_{2}^{2}\overline{E}_{2}$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	4
83.48	P_c4/m	$b^{1}_{1}\overline{E}_{1}^{2}\overline{E}_{1}^{2}$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	4
83.48	P_c4/m	$d, {}^{1}\overline{E}_{2} {}^{2}\overline{E}_{2}$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	4
83.48	P_c4/m	$d^{1}, \overline{E}_{1}^{2}, \overline{E}_{1}^{2}$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	4
83.48	P_c4/m	$f^{1}_{1}\overline{E}^{2}\overline{E}^{1}$	2/m'	5.4.15	4/m'	11.4.38	m'	4.3.11	8
""	- 6 -7	'	$\frac{1}{2}/m'$	5.4.15	2/m	5.1.12	2	3.1.6	8
83.49	P_C4/m	$e^{1}\overline{E}^{2}\overline{E}$	$2^{'}/m$	5.3.14	$4^{'}\!/m$	11.1.35	m	4.1.9	8
	0 /	'	2'/m	5.3.14	4'/m	11.3.37	m	4.1.9	8
83.49	P_C4/m	$f^{1}_{E}\overline{E}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	4/m	11.1.35	m	4.1.9	8
	- /	'	2'/m	5.3.14	4'/m	11.3.37	m	4.1.9	8
83.50	P_I4/m	$d^{1}\overline{E}^{2}\overline{E}$	$\dot{ar{4}}'$	10.3.34	2/m	5.1.12	2	3.1.6	8
83.50	P_I4/m	f, \overline{AA}	$ar{1}' \over 1'$	2.3.5	4/m	11.1.35	1	1.1.1	16
	- /	'	$\bar{1}'$	2.3.5	$2^{\prime}\!/m$	5.1.12	1	1.1.1	16
		1=0=	$ar{1}'$,	2.3.5	$\overline{4}'$	10.3.34	1	1.1.1	16
84.56	P_c4_2/m	f , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	4'/m'	11.5.39	m'	4.3.11	8
	D 4 /	1 = 2 =	2/m'	5.4.15	2/m	5.1.12	2	3.1.6	8
84.57	$P_C 4_2/m$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	8
84.57	P_C4_2/m	$d, 1\overline{E}^{2}\overline{E}$	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	8
84.57	$P_C 4_2/m$	$f, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2/m	5.1.12	2	3.1.6	8
84.58	$P_I 4_2/m$	$f, \overline{A}\overline{A}$	$\bar{\underline{1}}'$	2.3.5	4'/m	11.3.37	1	1.1.1	16
			$\bar{1}'_{1'}$	$\frac{2.3.5}{2.3.5}$	$2/m_{\overline{A}}$	5.1.12	1	1.1.1	16
85.64	P_c4/n	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	$ar{1}'_{4'}$	$2.3.5 \\ 10.3.34$	$rac{4}{4}$	10.1.32 $10.1.32$	$\frac{1}{2}$	$\frac{1.1.1}{3.1.6}$	$\begin{vmatrix} 16 \\ 8 \end{vmatrix}$
85.64	P_c4/n	e, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{4}$	10.1.32	1	1.1.1	16
00.01	1 6 1/10	0,2121	$\frac{1}{1}'$	2.3.5	$egin{array}{c} 1 \ 4 \ 1 \end{array}$	10.3.34	1	1.1.1	16
			$\bar{1}'_{\prime}$	2.3.5 $2.3.5$ $2.3.5$	$\frac{4}{1}$	10.3.34 $9.1.29$ $2.1.3$	1	1.1.1 1.1.1 1.1.1	16
85.66	P_I4/n	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	$\frac{2.3.5}{5.4.15}$	4/m'	$\frac{2.1.3}{11.4.38}$	$\frac{1}{m}$	$\frac{1.1.1}{4.3.11}$	$\begin{vmatrix} 16 \\ 8 \end{vmatrix}$
00.00	1 14/16	C, L L	$\frac{2}{2}/m'$	5.4.15	$\frac{4}{4}$	10.1.32	2	3.1.6	8
86.72	P_c4_2/n	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	$\overline{4}$	10.1.32	2	3.1.6	8
86.72	$P_c 4_2/n$	e, \overline{AA}	$\overline{1}'$	2.3.5	$\bar{\overline{A}}'$	10.3.34	1	1.1.1	16
00.12	1 6 12/10	0,2121	$\overline{\overline{1}}'$		$ar{4}' \ ar{4}' \ 4'$		1		16
			$\bar{1}'$	$2.3.5 \\ 2.3.5 \\ 2.3.5$	$4\overline{'}$	$\begin{array}{c} 10.1.32 \\ 9.3.31 \\ 2.1.3 \end{array}$	1	1.1.1 $1.1.1$ $1.1.1$	16
86.73	$P_C 4_2/n$	$a^{1}\overline{E}^{2}\overline{E}$	2/m'	$\frac{2.3.5}{5.4.15}$	2'/m'	$\frac{2.1.3}{5.5.16}$	$\frac{1}{m}$	4.3.11	$\begin{vmatrix} 16 \\ 8 \end{vmatrix}$
00.75	1 C42/11	a, E E	$\frac{2}{2}/m'$	5.4.15	4'	10.3.34	2	3.1.6	8
86.73	$P_C 4_2/n$	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2}{m'}$	5.4.15	2'/m'	5.5.16	m,	4.3.11	8
00.10	1 (12/10	0, L L	$\frac{2}{m'}$	5.4.15	$\frac{2}{4}$	10.1.32	2	3.1.6	8
86.73	$P_C 4_2/n$	$e^{1}\overline{E}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
86.74	$P_I 4_2/n$	$c, {}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	4'/m'	11.5.39	m'	4.3.11	8
	1 -2/	,	$\frac{1}{2}/m'$	5.4.15	$\frac{1}{4}$	10.3.34	2	3.1.6	8
86.74	$P_I 4_2/n$	$d^{1}\overline{E}^{2}\overline{E}$	$\bar{4}'$	10.3.34	2/m'	5.4.15	2	3.1.6	8
87.80	$I_c 4/m$	$\begin{array}{c} b, {}^{1}\overline{E}_{2} {}^{2}\overline{E}_{2} \\ b, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1} \end{array}$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	4
87.80	I_c4/m	$b, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1}$	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	4
87.80	I_c4/m	$e^{1}\overline{E}^{2}\overline{E}$	$2^{\prime}/m$	5.3.14	4/m	11.1.35	m	4.1.9	8
	- /	'	2'/m	5.3.14	4'/m	11.3.37	m	4.1.9	8
			2'/m	5.3.14	2'/m'	5.5.16	2'	3.3.8	8
88.86	I_c4_1/a	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$ar{4}'$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
88.86	I_c4_1/a	d, \overline{AA}	$\bar{1}'$	2.3.5	$\bar{4}$	10.1.32	1	1.1.1	16
	-		1' 1' 1' 1'	2.3.5 2.3.5 2.3.5	$egin{array}{c} ar{4} \ ar{4}' \ 1 \ 2' \end{array}$	$\begin{array}{c} 10.3.34 \\ 2.1.3 \\ 3.3.8 \end{array}$	1	$\frac{1}{1}.\frac{1}{1}.\frac{1}{1}$	$\frac{16}{16}$
			1',	$\frac{2.3.5}{2.3.5}$	$\frac{1}{2'}$	$\frac{2.1.3}{3.3.8}$	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$	1.1.1 1.1.1 1.1.1	16 16
89.92	P_c422	a, \overline{E}_2	$4\overset{1}{2}2$	12.1.40	$42^{2'}2'$	12.4.43	$\frac{1}{4}$	9.1.29	4
89.92	P_c422	a, \overline{E}_1^2	422	12.1.40	42'2'	12.4.43	4	9.1.29	4
89.92	P_c422	c, \overline{E}_2	422	12.1.40	42'2'	12.4.43	4	9.1.29	4
89.92	P_c422	c, \overline{E}_1	422	12.1.40	42'2'	12.4.43	4	9.1.29	4
89.92	P_c422	e, \overline{E}	222	6.1.17	422	12.1.40	2	3.1.6	8
00.04			222	6.1.17	2′2′2	6.3.19	$\frac{2}{2}$	3.1.6	8
89.94	P_I422	c, \overline{E}	222	6.1.17	422	12.1.40	2	3.1.6	8

00.400	D 10 0	_	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
90.100	$P_{c}42_{1}2$	$a, \overline{\underline{E}}$	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
90.102	$P_{I}42_{1}2$	$d, \overline{\underline{E}}$	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
93.124	$P_{c}4_{2}22$	${ m e,}\overline{E}$	222	6.1.17	4'22'	12.3.42	2	3.1.6	8
		_	222	6.1.17	2',2',2	6.3.19	$\frac{2}{2}$	3.1.6	8
93.125	$P_{C}4_{2}22$	$a, \overline{\underline{E}}$	222	6.1.17	$\bar{2}'\bar{2}'\bar{2}$	6.3.19		3.1.6	8
93.125	$P_{C}4_{2}22$	f, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
93.126	$P_{I}4_{2}22$	${ m c}, \overline{E}$	222	6.1.17	4'22'	12.3.42	2	3.1.6	8
94.132	$P_{c}4_{2}2_{1}2$	a, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
94.133	$P_C 4_2 2_1 2$	a, \overline{E}	222	6.1.17	2'2'2	6.3.19	$\frac{1}{2}$	3.1.6	8
97.156	$I_c 422$	a, \overline{E}_2	422	12.1.40	42'2'	12.4.43	4	9.1.29	$\begin{vmatrix} 0 \\ 4 \end{vmatrix}$
97.156	$I_{c}422$ $I_{c}422$	a, \underline{E}_1^2	422	12.1.40 $12.1.40$	42'2'	12.4.43	4	9.1.29	4
1	-				2'2'2		1		1 1
98.162	$I_c 4_1 22$	d, \underline{E}	222	6.1.17		6.3.19	2	3.1.6	8
99.168	P_c4mm	$c, \overline{\underline{E}}$	mm2	7.1.20	4mm	13.1.44	m	4.1.9	8
99.170	P_I4mm	$\mathrm{b},\!\overline{\underline{E}}$	mm2	7.1.20	4mm	13.1.44	m	4.1.9	8
105.216	P_c4_2mc	$c, \overline{\underline{E}}$	mm2	7.1.20	4'm'm	13.3.46	m	4.1.9	8
105.218	P_I4_2mc	$_{\mathrm{b},E}$	mm2	7.1.20	4'm'm	13.3.46	m	4.1.9	8
111.256	$P_c\bar{4}2m$	e, \overline{E}	222	6.1.17	$\bar{4}2m$	14.1.48	2	3.1.6	8
		,	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
111.258	$P_I \bar{4}2m$	${ m c}, \overline{E}$	222	6.1.17	$\bar{4}2m$	14.1.48	$\frac{2}{2}$	3.1.6	8
1			$\frac{222}{4'}$	6.1.17	$\bar{4}'$	10.3.34	$\frac{2}{2}$	3.1.6	8
111.258	$P_I \bar{4}2m$	d , ${}^{1}\overline{E}{}^{2}\overline{E}$		10.3.34	_222	6.1.17		3.1.6	8
112.264	$P_c \bar{4}2c$	$\mathrm{b},\!\overline{E}$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
112.264	$P_c\bar{4}2c$	c, \overline{E}	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
112.264	$P_c\bar{4}2c$	f,\overline{E}	222	6.1.17	$\bar{4}'2m'$	14.4.51	2	3.1.6	8
		·	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
112.265	$P_C\bar{4}2c$	a, \overline{E}	222	6.1.17	$\bar{4}$	10.1.32	2	3.1.6	$ \tilde{8} $
112.265	$P_C \bar{4}2c$	${ m b}, \overline{E}$	222	6.1.17	$\bar{4}'$	10.3.34	2	3.1.6	8
112.265	$P_C\bar{4}2c$	$\mathrm{d}, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	222	6.1.17	2	3.1.6	8
112.266	$P_I \bar{4} 2c$	c, \overline{E}	222	6.1.17	$\bar{4}'2m'$	14.4.51	$\frac{1}{2}$	3.1.6	8
112.200	1 1 120		222	6.1.17	$\frac{1}{4}$	10.1.32	$\frac{1}{2}$	3.1.6	8
113.272	$P_c\bar{4}2_1m$	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{222}{4'}$	10.3.34	$\bar{4}$	10.1.32	$\frac{2}{2}$	3.1.6	$ \tilde{8} $
114.280	$P_c\bar{4}2_1c$	$a^{7}, \overline{E}^{2} \overline{E}$	$=$ $\bar{4}'$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
114.281	$P_{C}\bar{4}2_{1}c$	$c, {}^{1}\overline{E} {}^{2}\overline{E}$	$\frac{1}{4}$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
114.282	$P_{I}\bar{4}2_{1}c$	$d, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{1}{4}$	10.3.34	2'2'2	6.3.19	2	3.1.6	8
1		g, \overline{E}	1	7.1.20	$\frac{2}{4}2m$	14.1.48	i e	4.1.9	8
115.288	$P_c \bar{4} m2$	g,E	mm2	7.1.20 $7.1.20$	$\frac{42m}{4'2'm}$	14.1.48 $14.3.50$	m	4.1.9 $4.1.9$	8
116.296	$P_c\bar{4}c2$	a, \overline{E}	$\frac{mm2}{4'2m'}$	14.4.51	$\frac{4}{4}2'm'$	14.5.52	m'm'2	7.4.23	$\begin{vmatrix} 0 \\ 4 \end{vmatrix}$
1	$P_c \bar{4} c2$	$\overset{\mathbf{a},\underline{E}}{\mathrm{b},\overline{E}}$	$\frac{4}{4}i2m'$		$\frac{42}{42}m'$				4
116.296			1	14.4.51		14.5.52	m'm'2		
116.297	$P_C \overline{4} c2$	a, \overline{E}	222	6.1.17	$2'\frac{2}{4}'2$	6.3.19	2	3.1.6	8
116.297	$P_C \bar{4}c2$	f , ${}^1\overline{E}$ ${}^2\overline{E}$	$\frac{222}{4'}$	6.1.17	2'2'2	10.1.32	$\frac{2}{2}$	$3.1.6 \\ 3.1.6$	8 8
1				10.3.34	_	6.3.19			
116.298	$P_I \bar{4}c2$	a, \overline{E}_{2}	222	6.1.17	4	10.1.32	2	3.1.6	8
116.298	$P_I \bar{4}c2$	$c, {}^{1}\overline{E} {}^{2}\overline{E}$	$\frac{\bar{4}'}{\bar{4}'}$	10.3.34	$2'_{\frac{1}{2}}'^{2}$	6.3.19	2	3.1.6	8
117.304	$P_c \bar{4}b2$	$b^{'}, {}^{1}\overline{E}^{2}\overline{E}$	$\bar{4}'$	10.3.34	4	10.1.32	2	3.1.6	8
117.304	$P_c \overline{4}b2$	c, \overline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
118.312	$P_c \bar{4} n2$	a , ${}^1\overline{E}{}^2\overline{E}$	$\bar{4}'$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
118.312	P_c4n2	c,\underline{E}	222	6.1.17	2'2'2	6.3.19	2	3.1.6	8
118.313	$P_C \bar{4}n2$	a, \overline{E}	222	6.1.17	$\frac{2'2'2}{\bar{4}'}$	6.3.19	2	3.1.6	8
			$\frac{222}{\bar{4}'}$	6.1.17	4'	10.3.34	2	3.1.6	8
118.313	$P_C \bar{4}n2$	e , ${}^{1}\overline{E}_{\underline{\underline{}}}{}^{2}\overline{E}$		10.3.34	_222	6.1.17	2	3.1.6	8
120.326	$I_c \overline{4} c2$	a,\underline{E}	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
120.326	$I_c\bar{4}c2$	$\mathrm{b},\!\overline{E}$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
121.332	$I_c\bar{4}2m$	${ m b}, \overline{E}$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	4
122.338	$I_c \bar{4}2d$	$b, {}^1\overline{E}{}^{2}\overline{E}$	$\bar{4}'$	10.3.34	$\bar{4}$	10.1.32	2	3.1.6	8
123.348	P_c4/mmm	e, \overline{E}	m'mm	8.3.26	4/m'mm	15.3.55	m'm2'	7.3.22	8
	P_C4/mmm	e, \overline{E}	m'mm	8.3.26	4'/mm'm	15.4.56	m'm2'	7.3.22	8
	P_C4/mmm	f, \overline{E}	m'mm	8.3.26	4'/mm'm	15.4.56	m'm2'	7.3.22	8
									1 1
123.350	P_I4/mmm	f , ${}^1\overline{E}{}^{2}\overline{E}$	$\frac{2'}{m}$	5.3.14	4/mmm	15.1.53	m	4.1.9	16
	5	, =	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	2'	3.3.8	16
124.360	P_c4/mcc	$\mathrm{b}, \overline{E}_2$	4/m'm'm'	15.7.59	4/mm'm'	15.6.58		13.4.47	4
124.360	P_c4/mcc	$\mathrm{b}, \overline{E}_1$	4/m'm'm'	15.7.59	4/mm'm'	15.6.58	4m'm'	13.4.47	4
124.360	P_c4/mcc	d, \overline{E}_2	4/m'm'm'	15.7.59	4/mm'm'	15.6.58		13.4.47	4
124.360	P_c4/mcc	d, \overline{E}_1	4/m'm'm'	15.7.59	4/mm'm'	15.6.58		13.4.47	4
124.360	P_c4/mcc	e, \overline{E}	m'm'm'	8.5.28	4/m'm'm'	15.7.59		7.4.23	8
124.500	1 c 1/ 11100	e, <i>L</i>	m'm'm'	8.5.28	m'm'm	8.4.27	m'm'2		8
124.361	P_C4/mcc	a, \overline{E}_2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.1.40	4/m	0.4.27 $11.1.35$	4	9.1.29	8
124.361	P_C4/mcc	a, \underline{E}_1	422	12.1.40	4/m	11.1.35	4	9.1.29	8
1		$e^{a,E_1}_{\overline{E}^2\overline{E}}$							1 1
124.361	P_C4/mcc	e, <i>E</i> - <i>E</i>	$\frac{2'}{m}$	5.3.14	4/m	11.1.35	m	4.1.9	16
			2'/m	5.3.14	4'/m	11.3.37	m	4.1.9	16

1		1 1	21/200	E 9 14	2'2'2	6 2 10	1 22	3.3.8	1161
104.000	D 4 /		2'/m	5.3.14		6.3.19	2'		16
124.362	P_I4/mcc	$a, \underline{\underline{E}}_2$	422	12.1.40	4/m	11.1.35	4	9.1.29	8
124.362	P_I4/mcc	$a, \underline{E_1}$	422	12.1.40	4/m	11.1.35	4	9.1.29	8
124.362	P_I4/mcc	$_{\mathrm{b},\overline{E}}$	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	8
124.362	P_I4/mcc	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	422	12.1.40	2	3.1.6	16
	,	,	2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	m'	4.3.11	16
			2/m'	5.4.15	m'm'm	8.4.27	m'	4.3.11	16
125.372	P_c4/nbm	a, \overline{E}_2	422	12.1.40	42'2'	12.4.43	4	9.1.29	8
125.372	P_c4/nbm	a, \overline{E}_1	422	12.1.40	42'2'	12.4.43	4	9.1.29	8
125.372	P_c4/nbm	$\int_{0}^{\infty} f^{1}_{1} \overline{E}^{1}_{2} \overline{E}$	2'/m	5.3.14	42'2'	12.4.43	2,	3.3.8	16
120.372	1 64/110111	1, <i>E E</i>	$\frac{2}{2'}/m$	5.3.14	$\frac{42}{42m}$	14.1.48		4.1.9	
			2/111				m		16
			$\frac{2'}{m}$	5.3.14	$\frac{\bar{4}'2'm}{2\sqrt{m}}$	14.3.50	m	4.1.9	16
100.004	D 4/	, =	2'/m	5.3.14	2/m	5.1.12	m	4.1.9	16
126.384	P_c4/nnc	$b, \overline{\underline{E}}_2$	422	12.1.40	42'2'	12.4.43	4	9.1.29	8
126.384	P_c4/nnc	b, \overline{E}_1	$_{-}422$	12.1.40	42'2'	12.4.43	4	9.1.29	8
126.384	P_c4/nnc	$_{\mathrm{d},E}$	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
126.384	P_c4/nnc	$f^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	422	12.1.40	2	3.1.6	16
	,	, , , , , , , , , , , , , , , , , , ,	2/m'	5.4.15	$\bar{4}2'm'$	14.5.52	m'	4.3.11	16
			2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	m'	4.3.11	16
			2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	16
126.386	P_I4/nnc	c, \overline{E}	$m^{\prime}m^{\prime}m^{\prime}$	8.5.28	4/m'm'm'	15.7.59	m'm'2	7.4.23	8
120.000	1 1 1/1000		m'm'm'	8.5.28	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
127.396	P_c4/mbm	$ \mathbf{b}, {}^{1}\overline{E}_{2} {}^{2}\overline{E}_{2} $	4/m'	11.4.38	$\frac{12}{4/m}$	11.1.35	4	9.1.29	$ \tilde{8} $
127.396	P_c4/mbm	$\left \mathbf{b}, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1} \right $	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	8
127.397	P_C4/mbm	$[, \overline{E}]$	m'mm	8.3.26	4/mm'm'	15.6.58	m'm2'	7.3.22	8
127.397	P_C4/mbm	f, \overline{E}	m'mm	8.3.26	4/mm'm'	15.6.58	m'm2'	7.3.22	8
		$\left e^{\frac{1}{1}E^2}\overline{E} \right $			42'2'		2,		
127.398	P_I4/mbm	e, E E	$\frac{2'}{m}$	5.3.14		12.4.43		3.3.8	16
			$\frac{2'/m}{2'/m}$	5.3.14	$\bar{4}'2'm$	14.3.50	m	4.1.9	16
100 100	D 4/	, 15 25	$\frac{2}{m}$	5.3.14	mmm	8.1.24	m	4.1.9	16
128.408	P_c4/mnc	$\left \mathbf{b}, 1 \overline{E}_{2} \mathbf{\overline{E}}_{2} \right $	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	8
128.408	P_c4/mnc	$\left \mathbf{b}, {}^{1}\overline{E}_{\underline{1}} {}^{2}\overline{E}_{1} \right $	4/m'	11.4.38	4/m	11.1.35	4	9.1.29	8
128.408	P_c4/mnc	c,E	m'm'm'	8.5.28	m'm'm	8.4.27	m'm'2	7.4.23	8
128.409	P_C4/mnc	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	4'/m	11.3.37	m	4.1.9	16
			2'/m	5.3.14	$\frac{4/m}{2'2'2}$	11.1.35	m	4.1.9	16
			2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	16
128.410	P_I4/mnc	d, \overline{E}	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	8
128.410	P_I4/mnc	f, ${}^{1}\overline{E}{}^{2}\overline{E}$	2/m'	5.4.15	4/mm'm'	15.6.58	m'	4.3.11	16
	- /	,	2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	2	3.1.6	16
129.420	P_c4/nmm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	2,	3.3.8	16
1201120	1 6 1/ 10110110	0, 2 2	$\frac{1}{2}$ /m	5.3.14	4mm	13.1.44	m	4.1.9	16
			$\frac{1}{2}$ /m	5.3.14	2/m	5.1.12	m	4.1.9	16
129.422	P_I4/nmm	c, \overline{E}	m'mm	8.3.26	4/m'mm	15.3.55	m'm2'	7.3.22	8
130.432	P_c4/ncc	b, \overline{E}	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
1		$\left e^{i \frac{D}{E} 2} \overline{E} \right $			$\bar{4}'2m'$		2		1 1
130.432	P_c4/ncc	e, <i>E E</i>	$\frac{2}{m'}$	5.4.15		14.4.51	1	3.1.6	16
			$\frac{2}{m'}$	5.4.15	4m'm'	13.4.47	m',	4.3.11	16
100 400	D 4/	1 1 = 2 =	2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	16
130.433	P_C4/ncc	$\left b, {}^{1}\overline{E}_{2} {}^{2}\overline{E}_{2} \right $	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	8
130.433	P_C4/ncc	$\left \mathbf{b}, 1 \overline{E}_{1} 2 \overline{E}_{1} \right $	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	8
130.434	P_I4/ncc	$ c, {}^{1}E_{2} {}^{2}E_{2} $	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	8
130.434	P_I4/ncc	$\left \mathbf{c}, {}^{1}\overline{E}_{1} {}^{2}\overline{E}_{1} \right $	4/m'	11.4.38	42'2'	12.4.43	4	9.1.29	8
130.434	P_I4/ncc	d, \overline{E}	m'm'm'	8.5.28	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
131.444	P_c4_2/mmc	e, \overline{E}	m'mm	8.3.26	4'/m'm'm	15.5.57	m'm2'	7.3.22	8
	$P_C 4_2 / mmc$	$f^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	mmm	8.1.24	m	4.1.9	16
	2,	,	2'/m	5.3.14	2'2'2	6.3.19	2,	3.3.8	16
131.446	P_I4_2/mmc	$f^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	4'/mm'm	15.4.56	m'	4.3.11	16
1011110	1 1 12/	1, 2 2	$\frac{1}{2}/m'$	5.4.15	$\bar{4}2m$	14.1.48	2	3.1.6	16
132 456	P_c4_2/mcm	e, \overline{E}	m'm'm'	8.5.28	4'/m'm'm	15.5.57	m'm'2	7.4.23	8
152.100	- 0 - 2/ 1100110	5,5	m'm'm'	8.5.28	m'm'm	8.4.27	m'm'2	7.4.23	8
132.457	P_C4_2/mcm	c, \overline{E}	m'mm	8.3.26	m'm'm	8.4.27	m'm2;	7.3.22	8
	$P_C 4_2/mcm$	d, \overline{E}	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	8
	P_C4_2/mcm	f, \overline{E}	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	8
		$e^{1}E^{2}\overline{E}$			4'22'		2,		1 1
152.458	$P_I 4_2/mcm$	e, E E	$\frac{2'}{m}$	5.3.14		12.3.42		3.3.8	16 16
			$\frac{2'/m}{2'/m}$	5.3.14 $5.3.14$	42m	14.1.48 8.1.24	m	$4.1.9 \\ 4.1.9$	16
129 460	D 1 /22 L 2	c, \overline{E}			$\overline{42'm'}$		m m'm'?2		1 1
133.468	P_c4_2/nbc		$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
133.468	P_c4_2/nbc	$f^{1}\overline{E}^{2}\overline{E}$	$\frac{2}{m'}$	5.4.15	$\frac{4'22'}{4'2\cdots'}$	12.3.42	$\frac{2}{2}$	3.1.6	16
I			2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	m'	4.3.11	10

			2/m'	5.4.15	$\bar{4}2'm'$	14.5.52	m'	4.3.11	16
		_	2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	16
133.469	P_C4_2/nbc	a, \overline{E}	$\mid m'm'm'$	8.5.28	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
133.469	$P_C 4_2/nbc$	${ m c}, \overline{E}$	m'm'm'	8.5.28	$\bar{4}'2m'$	14.4.51	m'm'2	7.4.23	8
133.469	P_C4_2/nbc	d,\overline{E}	$\bar{4}'2m'$	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	8
134.480	P_c4_2/nnm	f , ${}^1\overline{E}{}^2\overline{E}$	2'/m	5.3.14	4'22'	12.3.42	2'	3.3.8	16
	0 2,	,	2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	m	4.1.9	16
			$2^{\prime\prime}/m$	5.3.14	$\bar{4}2m$	14.1.48	m	4.1.9	16
			2'/m	5.3.14	2/m	5.1.12	m	4.1.9	16
134.481	$P_C 4_2/nnm$	a, \overline{E}	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	8
1	$P_C 4_2/nnm$	${ m b}, \overline{E}$	m'm'm'	8.5.28	m'm'm	8.4.27	m'm'2	7.4.23	8
	,		m'm'm'	8.5.28	$\bar{4}'2m'$	14.4.51	m'm'2	7.4.23	8
	P_C4_2/nnm	$\mathrm{f},\overline{\overline{E}}$	4'2m'	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	8
134.482	P_I4_2/nnm	${ m c}, \overline{E}$	m'm'm'	8.5.28	4'/m'm'm	15.5.57	m'm'2	7.4.23	8
194 400	D 4 /	1 =	m'm'm'm'	8.5.28	$4'_{1}2m'_{1}$	14.4.51	m'm'2	7.4.23	8
134.482	P_I4_2/nnm	d, \overline{E}	4'2m'	14.4.51	m'm'm'	8.5.28	m'm'2	7.4.23	8
135.492	P_c4_2/mbc	$c, \overline{\underline{E}}$	m'm'm'	8.5.28	m'm'm	8.4.27	m'm'2	7.4.23	8
135.493	$P_C 4_2/mbc$	b,E	$\bar{4}'2m'$	14.4.51	m'm'm	8.4.27	m'm'2	7.4.23	8
135.493	P_C4_2/mbc	f , ${}^1\overline{E}{}^2\overline{E}$	$\frac{2'}{m}$	5.3.14	m'm'm	8.4.27	m	4.1.9	16
	D	1 = 2 =	$\frac{2'}{m}$	5.3.14	2'2'2	6.3.19	2'	3.3.8	16
135.494	$P_I 4_2/mbc$	e , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/m'	5.4.15	4'22'	12.3.42	$\frac{2}{2}$	3.1.6	16
			2/m'	5.4.15	$\bar{4}2'm'$	14.5.52	m'	4.3.11	16
100 505	D 4 /	=	2/m'	5.4.15	m'm'm	8.4.27	m'	4.3.11	16
	P_C4_2/mnm	$c, \overline{\underline{E}}$	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	8
1	P_C4_2/mnm	d,E	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	8
136.506	P_I4_2/mnm	f , ${}^1\overline{E}{}^{2}\overline{E}$	$\frac{2'}{m}$	5.3.14	4'/mm'm	15.4.56	m	4.1.9	16
	D	1=2=	2'/m	5.3.14	$\bar{4}2'm'$	14.5.52	2'	3.3.8	16
137.516	P_c4_2/nmc	$e^{1}\overline{E}^{2}\overline{E}$	2/m'	5.4.15	42m	14.1.48	$\frac{2}{2}$	3.1.6	16
			2/m'	5.4.15	4'm'm	13.3.46	m',	4.3.11	16
197 510	D 4 /		2/m'	5.4.15	$\frac{2'}{m'}$	5.5.16	m'	4.3.11	16
137.518	$P_I 4_2/nmc$	$c, \overline{\underline{E}}$	m'mm	8.3.26	4'/m'm'm	15.5.57	m'm2'	7.3.22	8
138.528	P_c4_2/ncm	a, \overline{E}	$\bar{4}'2m'$	14.4.51	$\frac{\bar{4}2'm'}{\bar{4}2'm'}$	14.5.52	m'm'2	7.4.23	8
138.528	P_c4_2/ncm	$e^{1}\overline{E}^{2}\overline{E}$	2'/m	5.3.14	$\frac{1}{4}2'm'$	14.5.52	2'	3.3.8	16
			$\frac{2'}{m}$	5.3.14	4'm'm	13.3.46	m	4.1.9	16
100 500	D 4 /		2'/m	5.3.14	$\frac{2}{m}$	5.1.12	m	4.1.9	$\frac{16}{2}$
138.529	$P_C 4_2/ncm$	$a, \overline{\underline{E}}$	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	8
138.529	P_C4_2/ncm	b, \overline{E}	m'm'm'	8.5.28	m'm'm	8.4.27	m'm'2	7.4.23	8
139.540	I_c4/mmm	f,\overline{E}	m'm'm' $m'mm$	$8.5.28 \\ 8.3.26$	42'm' $4'/mm'm$	14.5.52 $15.4.56$	m'm'2 m'm2'	7.4.23 $7.3.22$	8 8
109.040	164/11111111	1,12	m'mm	8.3.26	m'm'm	8.4.27	m'm2'		8
140.550	I_c4/mcm	$\mathrm{b}, \overline{E}_2$	4/m'm'm'	15.7.59	4/mm'm'	15.6.58		13.4.47	$\frac{3}{4}$
140.550	I_c4/mcm	$\mathbf{b}, \overline{\overline{E}}_1$	4/m'm'm'	15.7.59	4/mm'm'	15.6.58	1	13.4.47	4
140.550	I_c4/mcm	f,\overline{E}	m'mm	8.3.26	4/mm'm'	15.6.58	m'm2'	7.3.22	8
	,		m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	8
141.560	I_c4_1/amd	f , ${}^1\overline{E}$ ${}^2\overline{E}$	2'/m	5.3.14	$\bar{4}2m$	14.1.48	m	4.1.9	16
			2'/m	5.3.14	$\bar{4}'2'm$	14.3.50	m	4.1.9	16
			2'/m	5.3.14	2'2'2	6.3.19	2'	3.3.8	16
		. =	$\frac{2'}{m}$	5.3.14	$\frac{2}{m}$	5.1.12	m	4.1.9	16
142.570	I_c4_1/acd	b, \overline{E}	$\bar{4}'2m'$	14.4.51	$\bar{4}2'm'$	14.5.52	m'm'2	7.4.23	8
142.570	I_c4_1/acd	f , ${}^1\overline{E}{}^2\overline{E}$	2/m'	5.4.15	$\frac{\bar{4}2'm'}{\bar{7}'2}$	14.5.52	m'	4.3.11	16
			2/m'	5.4.15	$\bar{4}'2m'$	14.4.51	m'	4.3.11	16
			2/m'	5.4.15	2'2'2	6.3.19	2,	3.1.6	16
1.5	D 5	1 ==	2/m'	5.4.15	2'/m'	5.5.16	m'	4.3.11	16
147.16	$P_c\bar{3}$	b, \overline{EE}	3' 5'	17.3.64	3 5	17.1.62	3	16.1.60	
147.16	$P_c\bar{3}$	$b, {}^{1}_{C} \overline{\underline{E}} {}^{2} \overline{E}$	$\frac{\bar{3}'}{\bar{1}'}$	17.3.64	3 5	17.1.62	3	16.1.60	1 1
147.16	$P_c\bar{3}$	f, AA	$\frac{1}{1}$	$\frac{2.3.5}{2.25}$	3 5/	17.1.62	1	1.1.1	12
			†′	2.3.5 $2.3.5$ $2.3.5$	3	17.3.64 16.1.60 2.1.3	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$	1.1.1 $1.1.1$ $1.1.1$	$\begin{array}{c} 12 \\ 12 \\ 12 \end{array}$
	_ =	. ==	<u>1</u> ',	$\bar{2}.\bar{3}.\bar{5}$	<u> </u>	2.1.3		1.1.1	$ \bar{1}\bar{2} $
148.20	$R_I \bar{\bar{3}}$	b, \overline{EE}	$\frac{3'}{2}$	17.3.64	3	17.1.62	3	16.1.60	
148.20	$R_I \bar{\bar{3}}$	$b, \underline{\overline{E}}^{2} \overline{E}$	$\frac{3'}{2}$	17.3.64	$\frac{3}{2}$	17.1.62	3	16.1.60	
148.20	$R_I\bar{3}$	d,AA	$\frac{1}{3}$	2.3.5	3	17.1.62	1	1.1.1	12
			1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1	$\frac{2.3.5}{2.3.5}$	ତ ।ତ ।ତ ∣ର ଉକ୍ଲାର ।ତ ।ତ ∣ତ୍ୟୁ	$17.3.64 \\ 2.1.3$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$1.1.1 \\ 1.1.1$	$\begin{vmatrix} 12 \\ 12 \end{vmatrix}$
149.24	$P_{c}312$	a, \overline{E}_1	32	18.1.65	32'	18.3.67	3	16.1.60	
149.24	$P_{c}312$	c, \overline{E}_1	32	18.1.65	32'	18.3.67	3	16.1.60	
149.24	$P_{c}312$	e, \overline{E}_1	32	18.1.65	32'	18.3.67	3	16.1.60	1 . 1
150.28	P_c321	a, \overline{E}_1	32	18.1.65	32'	18.3.67	3	16.1.60	1 1
155.48	$R_I 32$	a, \overline{E}_1	32	18.1.65	32'	18.3.67	3	16.1.60	
162.78	$P_c\bar{3}1m$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{3}'1m$	20.3.73	$\bar{3}1m$	20.1.71	31m	19.1.68	4

162.78 162.78	$P_c\bar{3}1m \\ P_c\bar{3}1m$	$\left \begin{array}{c} c, \overline{E}_1 \\ g, {}^1\overline{E} {}^2\overline{E} \end{array}\right $	$32 \ 2'/m \ 2'/m$	18.1.65 5.3.14 5.3.14	$\begin{array}{c} 32'\\ \bar{3}1m\\ \bar{3}'1m \end{array}$	18.3.67 20.1.71 20.3.73	3 m 2'	16.1.60 4.1.9 3.3.8	8 12 12
100.04	D 54	, 1525	$\frac{2'}{m}$ $\frac{2'}{m}$	5.3.14 5.3.14	$\frac{32'}{2/m}$	18.3.67 $5.1.12$	2' m	$3.3.8 \\ 4.1.9$	12 12
163.84 163.84 163.84	$P_c\bar{3}1c P_c\bar{3}1c P_c\bar{3}1c$	$\begin{bmatrix} b, {}^{1}\overline{E}{}^{2}\overline{E} \\ b, \overline{E}_{1} \\ d, \overline{E}_{1} \end{bmatrix}$	$\begin{array}{c} \bar{3}'1m' \\ \bar{3}'1m' \\ 32 \end{array}$	$20.4.74 \\ 20.4.74 \\ 18.1.65$	$ \frac{\bar{3}1m'}{\bar{3}1m'} $ $ 32'$	$20.5.75 \\ 20.5.75 \\ 18.3.67$	31m' 31m' 3	19.3.70 19.3.70 16.1.60	$\begin{bmatrix} 4 \\ 4 \\ 8 \end{bmatrix}$
163.84	$P_c\bar{3}1c$	$g, \overline{{}^{1}\overline{E}}{}^{2}\overline{E}$	$\frac{2/m'}{2/m'}$	$5.4.15 \\ 5.4.15$	$\frac{\bar{3}}{\bar{3}'}1m'$	$20.5.75 \\ 20.4.74$	m' 2	$4.3.11 \\ 3.1.6$	12 12
164.90	$P_c\bar{3}m1$	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	$2/m'$ $2/m'$ $\bar{3}'1m$	5.4.15 5.4.15 20.3.73	$\begin{array}{c} 32\\ 2'/m'\\ \bar{3}1m \end{array}$	18.1.65 $5.5.16$ $20.1.71$	$\begin{array}{c c} 2\\ m'\\ 31m \end{array}$	3.1.6 4.3.11 19.1.68	12 12 4
164.90	$P_c\bar{3}m1$	$f^{,1}\overline{E}^{2}\overline{E}$	$\frac{2'}{m}$ $\frac{2'}{m}$	5.3.14 5.3.14	$\frac{\bar{3}1m}{\bar{3}'1m}$	$20.1.71 \\ 20.3.73$	m 2'	$4.1.9 \\ 3.3.8$	12 12
165.96	$P_c\bar{3}c1$	b, ${}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{2'}{m}$ $\frac{2'}{m}$ $\frac{3'}{1}m'$	5.3.14 5.3.14 20.4.74	$3m$ $2/m$ $\bar{3}1m'$	$ \begin{array}{c} 19.1.68 \\ 5.1.12 \\ 20.5.75 \end{array} $	m m 31m'	4.1.9 4.1.9 19.3.70	12 12 4
165.96 165.96	$P_c\bar{3}c1 P_c\bar{3}c1$	$f, \overline{E}_{1} \overline{E}_{2} \overline{E}$	$ar{3}'1m' \ 2/m' \ 2/m'$	20.4.74 $5.4.15$ $5.4.15$	$egin{array}{c} ar{3}1m' \ ar{3}1m' \ ar{3}'1m' \end{array}$	$20.5.75 \\ 20.5.75 \\ 20.4.74$	31m' m' 2	19.3.70 4.3.11 3.1.6	4 12 12
	_	1-0-	$\frac{2/m'}{2/m'}$	$5.4.15 \\ 5.4.15$	$3m' \ 2'/m'$	$19.3.70 \\ 5.5.16$	m', m'	4.3.11 $4.3.11$	12 12 12
166.102 166.102	$R_I \bar{3} m \\ R_I \bar{3} m$	$\begin{bmatrix} b, {}^{1}\overline{E}{}^{2}\overline{E} \\ d, {}^{1}\overline{E}{}^{2}\overline{E} \end{bmatrix}$	$egin{array}{l} ar{3}'1m \ 2'/m \ 2'/m \end{array}$	20.3.73 5.3.14 5.3.14	$\begin{array}{c} 31m \\ \bar{3}1m \\ \bar{3}'1m \end{array}$	$20.1.71 \\ 20.1.71 \\ 20.3.73$	31m m 2'	19.1.68 4.1.9 3.3.8	12 12
167.108	$R_I \bar{\bar{3}} c$	$b, \frac{1}{\overline{E}} \overline{E} \overline{E}$	$\frac{2'}{m}$ $\frac{3'}{1}m'$	$5.3.14 \\ 20.4.74$	$\frac{2/m}{\bar{3}1m'}$	$5.1.12 \\ 20.5.75$	m 31m'	4.1.9 $19.3.70$	12 4
167.108 167.108	$R_I \bar{3}c \\ R_I \bar{3}c$	$\left \begin{array}{c} \mathbf{b}, E_1 \\ \mathbf{d}, {}^1 \overline{E} {}^2 \overline{E} \end{array} \right $	$3'1m' \ 2/m' \ 2/m'$	20.4.74 $5.4.15$ $5.4.15$	$ \frac{\bar{3}1m'}{\bar{3}1m'} $ $ \frac{\bar{3}1m'}{\bar{3}'1m'} $	$20.5.75 \\ 20.5.75 \\ 20.4.74$	31m' m' 2	19.3.70 4.3.11 3.1.6	$\begin{vmatrix} 4 \\ 12 \\ 12 \end{vmatrix}$
174.136	$P_c\bar{6}$	$b, {}^{1}\overline{E}{}^{2}\overline{E}$	$2^{\prime}\!/m^{\prime} \ ar{6}^{\prime} \ ar{6}^{\prime}$	5.4.15 22.3.81	$\frac{2'/m'}{\bar{6}}$	5.5.16 $22.1.79$	m' 3	4.3.11 16.1.60	12 4
174.136 174.136 175.142	$P_car{6} \ P_car{6} \ P_c6/m$	$\begin{bmatrix} d, {}^{1}\overline{E}{}^{2}\overline{E} \\ f, {}^{1}\overline{E}{}^{2}\overline{E} \\ b, {}^{1}\overline{E}{}_{1}{}^{2}\overline{E}_{1} \end{bmatrix}$	$rac{\ddot{6}'}{6'}$	22.3.81 22.3.81 23.4.85	$egin{array}{c} ar{6} \ ar{6} \ 6/m \end{array}$	$22.1.79 \\ 22.1.79 \\ 23.1.82$	3 3 6	16.1.60 16.1.60 21.1.76	$egin{array}{c c} 4 \\ 4 \\ 4 \\ \end{array}$
175.142 175.142	P_c6/m P_c6/m	$\begin{vmatrix} \mathbf{b}, {}^{1}E3 {}^{2}E3 \\ \mathbf{b}, {}^{1}\overline{E}_{2} {}^{2}\overline{E}_{2} \end{vmatrix}$	6/m' $6/m'$	23.4.85 23.4.85	$\frac{6}{m}$ $\frac{6}{m}$	$23.1.82 \\ 23.1.82$	6	$21.1.76 \\ 21.1.76$	4 4
175.142 175.142	$P_c 6/m P_c 6/m$	$\begin{bmatrix} d, {}^{1}\overline{E}{}^{2}\overline{E} \\ g, {}^{1}\overline{E}{}^{2}\overline{E} \end{bmatrix}$	$ar{6}' \ 2/m' \ 2/m'$	22.3.81 5.4.15 5.4.15	$rac{ar{6}}{6/m'}$	$22.1.79 \\ 23.4.85 \\ 22.3.81$	3 m' m'	16.1.60 4.3.11 4.3.11	8 12 12
176.148	P_c6_3/m	$\begin{vmatrix} \mathbf{a}, 1\overline{E}_1 2\overline{E}_1 \\ \mathbf{d}, 1\overline{E}^2\overline{E} \end{vmatrix}$	$2/m'$ $6'/m$ $\overline{6}'$	5.4.15 23.3.84	$\frac{2/m}{6'/m'}$	5.1.12 23.5.86	6, 6,	3.1.6 21.3.78	12 4
176.148 176.148	$P_c 6_3/m$ $P_c 6_3/m$	$\left \begin{array}{c} \mathbf{d}, \frac{E}{F} \frac{E}{2E} \\ \mathbf{f}, \frac{E}{E} \frac{E}{E} \end{array} \right $	$\frac{2'}{m}$ $\frac{2'}{m}$	22.3.81 5.3.14 5.3.14	6'/m	$22.1.79 \\ 23.3.84 \\ 22.1.79$	3 m m	16.1.60 4.1.9 4.1.9	8 12 12
177.154 177.154	P_c622 P_c622	$a, \overline{E}_3 \\ a, \overline{E}_2$	2'/m 622 622	5.3.14 24.1.87 24.1.87	$2'/m' \\ 62'2' \\ 62'2'$	5.5.16 24.4.90 24.4.90	2' 6 6	3.3.8 21.1.76 21.1.76	12 4 4
177.154 177.154 177.154	$P_c622 \\ P_c622$	$\begin{bmatrix} a, \overline{E}_1 \\ c, \overline{E}_1 \end{bmatrix}$	$\frac{622}{32}$	24.1.87 $18.1.65$	$\frac{62'2'}{32'}$	24.4.90 $18.3.67$	6 3	21.1.76 $16.1.60$	4 8
177.154	P_c622	f,\overline{E}	222 222 222	$\begin{array}{c} 6.1.17 \\ 6.1.17 \\ 6.1.17 \end{array}$	622 32 $2'2'2$	24.1.87 $18.1.65$ $6.3.19$	2 2 2 2	3.1.6 $3.1.6$ $3.1.6$	12 12 12
180.172 180.172 181.178	$P_c 6_2 22 P_c 6_2 22 P_c 6_4 22$	$egin{array}{l} { m a}, \overline{E} \\ { m c}, \overline{E} \\ { m a}, \overline{E} \end{array}$	$ \begin{array}{r} 222 \\ 222 \\ 222 \end{array} $	6.1.17 $6.1.17$ $6.1.17$	$ \begin{array}{r} $	6.3.19 6.3.19 6.3.19	$\begin{bmatrix} 2\\2\\2 \end{bmatrix}$	3.1.6 3.1.6 3.1.6	12 12 12
181.178 182.184	$P_c 6_4 22 P_c 6_3 22$	d, \overline{E}_1	222 32	6.1.17 $18.1.65$	2'2'2 32'	$6.3.19 \\ 18.3.67$	2 3	3.1.6 $16.1.60$	12 8
183.190 187.214 187.214	P_c6mm $P_c\bar{6}m2$ $P_c\bar{6}m2$	$ \begin{array}{c c} c,\overline{E} \\ a,\overline{E}_3 \\ c,\overline{E}_3 \end{array} $	$mm2 \ mm2 \ ar{6}m2 \ ar{6}m2$	$7.1.20 \\ 7.1.20 \\ 26.1.95 \\ 26.1.95$	$6mm \\ 3m \\ \bar{6}'m2' \\ \bar{6}'m2'$	25.1.91 19.1.68 26.4.98 26.4.98	$egin{array}{c} \mathrm{m} \\ \mathrm{m} \\ \mathrm{31m} \\ \mathrm{31m} \end{array}$	4.1.9 4.1.9 19.1.68 19.1.68	12 12 4 4
187.214 188.220	$\begin{array}{c} P_c\bar{6}m2 \\ P_c\bar{6}c2 \end{array}$	$[\begin{array}{c} e, \overline{E}_3 \\ a, \overline{E}_1 \end{array}]$	$\frac{\bar{6}m2}{\bar{6}'m'2}$	$26.1.95 \\ 26.3.97$	$\frac{\bar{6}'m2'}{\bar{6}m'2'}$	$26.4.98 \\ 26.5.99$	31m 31m'	$19.1.68 \\ 19.3.70$	$\begin{vmatrix} 4 \\ 4 \\ 4 \end{vmatrix}$
188.220 188.220 189.226	$P_c\bar{6}c2 P_c\bar{6}c2 P_c\bar{6}2m$	$\begin{bmatrix} c, \overline{E}_1 \\ e, \overline{E}_1 \\ a, \overline{E}_3 \end{bmatrix}$	$ar{6}'m'2 \ ar{6}'m'2 \ ar{6}m2$	26.3.97 26.3.97 26.1.95	$ar{6}m'2' \ ar{6}m'2' \ ar{6}'m2'$	26.5.99 26.5.99 26.4.98	31m' 31m' 31m	19.3.70 19.3.70 19.1.68	$\begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$
189.226	$P_c\bar{6}2m$	$\operatorname{d}^{a,E_3}_{1\overline{E}^2\overline{E}}$	$\bar{6}'$	22.3.81	$\frac{6}{6}$	20.4.98	3	16.1.60	

	_								
190.232	$P_c \overline{6}2c$	a,E_1	$\bar{6}'m'2$	26.3.97	$\bar{6}m'2'$	26.5.99	31m'	19.3.70	
190.232	$P_c\bar{6}2c$	$c, {}^{1}\overline{E}{}^{\overline{2}}\overline{E}$	$\bar{6}'$	22.3.81	$\bar{6}$	22.1.79	3	16.1.60	8
191.242	P_c6/mmm	c, \overline{E}_3	$\bar{6}m2$	26.1.95	$\bar{6}'m2'$	26.4.98	31m	19.1.68	8
191.242	P_c6/mmm	g, \overline{E}	m'mm	8.3.26	6/m'mm	27.3.102	m'm2'	7.3.22	12
	,		m'mm	8.3.26	$\bar{6}'m2'$	26.4.98	m'm2'	7.3.22	12
192.252	P_c6/mcc	b, \overline{E}_3	6/m'm'm'	27.7.106	6/mm'm'	27.6.105		25.4.94	4
192.252	P_c6/mcc	b, \overline{E}_2	6/m'm'm'	27.7.106	6/mm'm'	27.6.105	6m'm'	25.4.94	4
192.252	P_c6/mcc	b, \overline{E}_1	6/m'm'm'	27.7.106	6/mm'm'	27.6.105	6m'm'	25.4.94	4
192.252	P_c6/mcc	$\mathrm{d}, \overline{E}_1$	$\bar{6}'m'2$	26.3.97	$\bar{6}m'2'$	26.5.99	31m'	19.3.70	8
192.252	P_c6/mcc	g, \overline{E}	m'm'm'	8.5.28	6/m'm'm'	27.7.106	m'm'2	7.4.23	12
	- /	0,	$m'_{\cdot}m'_{\cdot}m'_{\cdot}$	$8.5.28 \\ 8.5.28$	m'm'm	$26.3.97 \\ 8.4.27$	m'm'2 m'm'2	$7.4.23 \\ 7.4.23$	$\frac{12}{12}$
100 000	D 0 /	_	m'm'm'	8.5.28	m'm'm'	8.4.27	m'm'2	7.4.23	
	P_c6_3/mcm	$a, \overline{\underline{E}}_3$	6'/mmm'		6'/m'mm'	27.5.104			4
	P_c6_3/mcm	$\mathrm{d}, \overline{\underline{E}}_1$	$\bar{6}'m'2$	26.3.97	$\bar{6}m'2'$	26.5.99	31m'	19.3.70	8
193.262	P_c6_3/mcm	f,\overline{E}	m'mm	8.3.26	$\bar{6}m'2'$	26.5.99	m'm2'	7.3.22	12
104050	D 0 /	_	m'mm	8.3.26	m'm'm'	8.4.27	m'm2'	7.3.22	12
	P_c6_3/mmc	$a, \overline{\underline{E}}_3$	$6'/\underline{mmm'}$	27.4.103				25.3.93	4
	P_c6_3/mmc	c, \underline{E}_3	6m2	26.1.95	$\bar{6}'m2'$	26.4.98	31m	19.1.68	8
194.272	P_c6_3/mmc	$_{\mathrm{f},E}$	m'mm	8.3.26	6'/mmm'		m'm2'	7.3.22	12
105.9	D 99	1. T	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	12
195.3	$P_I 23$	b, \overline{E}	222	6.1.17	23	28.1.107	$\frac{2}{2}$	3.1.6	12
200.17	$P_I m_{\overline{2}}^3$	$\begin{array}{c} c, EE \\ c, {}^{1}\overline{E} {}^{2}\overline{E} \end{array}$	$\frac{\bar{3}'}{\bar{3}'}$	17.3.64	$m_{ar{2}}^{ar{3}}$	29.1.109	3	16.1.60	16
200.17	$P_I m_{\bar{2}}^{\bar{3}}$			17.3.64	$m\bar{3}$	29.1.109	3,	16.1.60	16
201.21	$P_I n \bar{3}$	b, \underline{E}	m'm'm'	8.5.28	$m'\bar{3}'$	29.3.111	m'm'2	7.4.23	12
202.25	$F_S m \bar{3}$	dE	m'mm	8.3.26	m'm'm	8.4.27	m'm2'	7.3.22	12
203.29	$F_S d3$	c, \overline{EE}	3	17.3.64	$\frac{23}{5}$	28.1.107	3	16.1.60	16
203.29	$F_S d\bar{3}$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	2/	17.3.64 $17.3.64$	$\frac{\bar{3}}{23}$	$\begin{array}{c} 17.1.62 \\ 28.1.107 \end{array}$	$\frac{3}{3}$	16.1.60 16.1.60	16 16
200.23	1845	c, E	13' 13' 3' 3' 3'	17.3.64 $17.3.64$	$\frac{25}{3}$	17.1.62	3	16.1.60	16
205.36	$P_I a \bar{3}$	a, \overline{EE}	3'	17.3.64	$\frac{\overline{3}}{3}$	17.1.62	$\frac{3}{3}$	16.1.60	16
205.36	$P_I a \bar{3}$	$a, {}^{1}\overline{E}{}^{2}\overline{E}$	$\bar{3}'$	17.3.64	$\bar{3}$	17.1.62	3	16.1.60	16
207.43	$P_{I}432$	b, \overline{E}_2	422	12.1.40	432	30.1.112	4	9.1.29	12
207.43	$P_{I}432$	b, \overline{E}_1	422	12.1.40	432	30.1.112	4	9.1.29	12
208.47	$P_{I}4_{2}32$	c, \overline{E}_1	32	18.1.65	4'32'	30.3.114	3	16.1.60	16
208.47	$P_{I}4_{2}32$	$d, \overline{\overline{E}}$	222	6.1.17	4'22'	12.3.42		3.1.6	24
		· '	222	6.1.17	32	18.1.65	$\frac{2}{2}$	3.1.6	24
210.55	$F_S 4_1 32$	b, \overline{E}_1	32	18.1.65	23	28.1.107	$\bar{3}$	16.1.60	1 1
212.62	$P_{I}4_{3}32$	a, \overline{E}_1	32 32	18.1.65 $18.1.65$	$\frac{32'}{32'}$	$18.3.67 \\ 18.3.67$	$\frac{3}{3}$	16.1.60 16.1.60	16
213.66		$b, \underline{\overline{E}}_1$	32	18.1.65	32'	18.3.67	3	16.1.60	16 16
215.73	$P_I 4_1 32 P_I \bar{4} 3m$	$d, {}^{0,\underline{E}}_{1}{}^{1}\overline{E}$	$\frac{32}{4}$	10.3.34	$\bar{4}2m$	14.1.48	2	3.1.6	24
218.84	$P_I \bar{4} 3 n$	$\left \begin{array}{c} \mathbf{u}, \underline{E} E \\ \mathbf{b}, \overline{E} \end{array} \right $	$\bar{4}'2m'$	10.3.34 $14.4.51$	$\bar{4}'3m'$	31.3.117	m'm'2	7.4.23	12
		$c, {}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{4}{3}$ ² m	_				19.1.68	1 1
221.97 222.103	$P_I m \overline{3} m \\ P_I n \overline{3} n$	$\begin{array}{c c} c, \underline{E} & E \\ b, \overline{E}_2 \end{array}$	4/m'm'm'	20.3.73 $15.7.59$	$m\bar{3}m \ m'\bar{3}'m'$	32.1.118 $32.5.122$	31m 4m'm'	19.1.08	16 12
	_	/ 							1 1
222.103	$P_I n \bar{3} n$	b,E_1	4/m'm'm'	15.7.59	$m'\bar{3}'m'$	32.5.122		13.4.47	12
223.109	$P_I m \bar{3} n$	$c, {}^{1}\overline{\underline{E}}{}^{2}\overline{E}$	$\frac{\bar{3}'1m'}{\bar{5}'1}$	20.4.74	$m\bar{3}m'$	32.4.121	31m'	19.3.70	16
223.109	$P_I m_{\bar{2}} \bar{3} n$	c, \overline{E}_1	$\frac{\bar{3}'1m'}{\bar{3}'2}$	20.4.74	$m\bar{3}m'$	32.4.121	31m'	19.3.70	1 1
224.115	$P_I n \bar{3} m$	$d, \overline{\overline{E}}$	$\frac{4'2m'}{7}$	14.4.51	4'/m'm'm	15.5.57			24
227.133	$F_S d\bar{3}m$	a, \overline{F}	$\frac{43m}{43}$	31.1.115	$\frac{31}{5/1}m$	20.1.71	31m	19.1.68	
227 122	F J 2	c, ${}^{1}\overline{E}{}^{2}\overline{E}$	$\frac{43m}{5'1m}$	31.1.115	$\frac{\bar{3}'1m}{\bar{4}^{2m}}$	20.3.73	31m	19.1.68	
227.133	$F_S d\bar{3}m$	C, E E	$\frac{\bar{3}'1m}{\bar{3}'1m}$	20.3.73 $20.3.73$	$\frac{\bar{4}3m}{\bar{3}1m}$	31.1.115 20.1.71	31m 31m	19.1.68 19.1.68	
228.139	$F_S d\bar{3}c$	c , ${}^{1}\overline{E}$ ${}^{2}\overline{E}$	$\frac{3}{3}'1m'$	20.3.73 $20.4.74$	$\frac{31m}{4'3m'}$	31.3.117	31m,	19.1.08 $19.3.70$	16
			$ \tilde{3}'\tilde{1}m'$	20.4.74 $20.4.74$	$\frac{1}{3}1m'$	20.5.75	31m,	19.3.70	16
228.139	$F_S d\bar{3}c$	c, \overline{E}_1	$\begin{array}{c c} \bar{\underline{3}}'1m' \\ \bar{\underline{3}}'1m' \end{array}$	20.4.74	4'3m'	31.3.117	31m'	19.3.70	16
			$\bar{3}'1m'$	20.4.74	$\bar{3}1m'$	20.5.75		19.3.70	

38. Maximum and Minimum Dimensions of the Single- and Double-Valued MEBRs

In this section we provide a complete tabulation of the maximum (M) and minimum (m) EBR dimension in each single and double SSG. As discussed in SN 23, the EBRs are composed of the MEBRs of the Type-I MSGs and the PEBRs of the Type-II SGs previously computed for TQC^{1-6} , as well as the MEBRs of the Type-III and Type-IV MSGs that were calculated for the present work. For each EBR $\tilde{\rho}_{\bf q}^G$, the dimension of $\tilde{\rho}_{\bf q}^G$ is defined as $\chi_{\tilde{\rho}_{\bf q}}(E) \times n$, where $\tilde{\rho}_{\bf q}$ is the (co)rep of the site-symmetry group $G_{\bf q}$ from which $\tilde{\rho}_{\bf q}^G$ is induced [see SEq. (162) and the surrounding text], and where n is the multiplicity of the Wyckoff position indexed by $\bf q$ [see the text surrounding SEq. (163)]. For each single and double SSG, we have confirmed that the minimum EBR dimension m is consistent with the minimum atomic insulator dimension previously calculated in SRef. 65. We emphasize that the maximum EBR dimension M does not always coincide with the maximum band connectivity in an SSG, due to the possibility of decomposable [i.e. disconnected or split] EBRs (see SRefs. 1,3,5,6,87,109,136 and the text surrounding Supplementary Tables 8 and 9). To calculate the maximum band connectivity in the 1,651 SSGs, one must perform the intermediate tabulation of the basic bands⁸⁷, which for each SSG are composed of the disconnected branches of the decomposable EBRs, the connected [indecomposable] EBRs, and the connected topological bands in the SSG (SN 26). The basic bands of the Type-II double SGs were previously tabulated in SRef. 87; we leave the complete enumeration of the basic bands of the single SSGs and the double MSGs for future works.

Supplementary Table 22: Maximum and minimum dimensions of the single-valued EBRs of the 1,651 single SSGs. In order, the columns in this table list the symbol of the SSG, the number of the SSG in the BNS setting⁶⁷, the maximum EBR dimension in the SSG (M), and the minimum EBR dimension in the SSG (m).

Symbol	BNS N	[umber M m Symbol	BNS	Number M m	Symbol	BNS Number	M m	Svi	nbol	BNS Number	M m
P1	1.1	1 1 P11'	1.2		$P_S 1$	1.3		P1		2.4	1 1
P11'	2.5	1 1 1 1 1 1	2.6		$P_S 1$	2.7		P2		3.1	1 1
P21'	3.2	1 1 P2'	3.3		$\frac{P_a}{P_a}$	3.4	$\frac{2}{2}$ 2	P_b 2) :	3.5	$\frac{1}{2}$ $\frac{1}{2}$
$P_C 2$	3.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.7	2 2	$P2_{1}1'$	4.8		P2		1.9	$\frac{2}{2} \frac{2}{2}$
$P_a 2_1$	4.10	$\frac{2}{4} \frac{2}{4} \frac{1}{ P_b ^2} \frac{21}{ P_b ^2}$	4.11	$\frac{2}{2} \frac{2}{2}$	$\frac{P_C 2_1}{P_C 2_1}$	4.12	$\frac{2}{2}$ $\frac{2}{2}$			5.13	$\frac{1}{1}\frac{1}{1}$
C21'	5.14	$\frac{1}{1} \frac{1}{1} \frac{1}{C} \frac{0.21}{C^2}$	5.15		$C_c 2$	5.16		C_a		5.17	
Pm	6.18	$\frac{1}{1} \frac{1}{1} \frac{ \mathcal{O} ^2}{Pm1'}$	6.19		$\frac{Cc2}{Pm'}$	6.20	1 1	P_a		5.21	$\begin{array}{ccc} 2 & 2 \\ 2 & 2 \end{array}$
$P_b m$	6.22	$\begin{array}{c c} \hline 2 & 2 & P_C m \end{array}$	6.23		$\frac{1}{Pc}$	7.24	2 2	Pc	1'	7.25	$\frac{2}{2} \frac{2}{2}$
Pc'	7.26	$\frac{2}{2} \frac{2}{P_a c}$	$\frac{5.25}{7.27}$		$\frac{1}{P_c c}$	7.28		$P_b \epsilon$		7.29	$\frac{2}{4}$ $\frac{2}{4}$
P_{CC}	7.30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{7.21}{7.31}$		$\frac{1}{Cm}$	8.32	1 1	Cn		3.33	1 1
Cm'	8.34	$\frac{1}{1} \frac{1}{1} \frac{1}{C_c} m$	8.35		$\frac{C_{a}m}{C_{a}m}$	8.36	$\frac{1}{2}$			9.37	$\frac{1}{2}$ $\frac{1}{2}$
Cc1'	9.38	$\frac{1}{2} \frac{1}{2} \frac{Cem}{Cc'}$	9.39		$\frac{C_a m}{C_c c}$	9.40	$\frac{2}{2}$ 2	C_a		9.41	$\frac{2}{4} \frac{2}{4}$
$\frac{CCI}{P2/m}$	10.42	$\frac{1}{1} \frac{1}{1} \frac{P2}{m1'}$	10.43		P2'/m	10.44	$\frac{1}{1}$ $\frac{1}{1}$	P2		10.45	1 1
P2'/m'	10.46	$\frac{1}{1} \frac{1}{1} \frac{P_a 2}{m}$	10.47		$\frac{P_b 2/m}{P_b 2/m}$	10.48	$\frac{1}{2}$ 2			10.49	4 2
						11.52					
$P2_1/m$	11.50		11.51		$P2_1'/m$					11.53	2 2
$P2_1'/m'$	11.54	$2 \ 2 \ P_a 2_1/m$	11.55		$P_b 2_1/m$	11.56			1/	11.57	4 2
C2/m	12.58	2 1 C2/m1'	12.59		C2'/m	12.60	2 1	_		12.61	2 1
C2'/m'	12.62	$2 \ 1 \ C_c 2/m$	12.63	4 2	$C_a 2/m$	12.64	2 2	P2	/c 1	13.65	2 2
P2/c1'	13.66	$2 \ 2 \ P2'/c$	13.67	2 2	P2/c'	13.68	2 2	P2	c'/c'	13.69	2 2
$P_a 2/c$	13.70	$4 \ 4 \ P_b 2/c$	13.71		$P_c 2/c$	13.72	2 2	P_A		13.73	4 2
$P_C 2/c$	13.74	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.75		$P2_1/c1'$	14.76	2 2			14.77	2 2
$P2_1/c'$	14.78	$\frac{1}{2} \frac{1}{2} \frac{1}{P2'_1/c'}$	14.79		$\frac{P_a 2_1/c_1}{P_a 2_1/c}$	14.80				14.81	$\frac{2}{4} \frac{2}{4}$
$P_c 2_1/c$	14.82	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.83		$\frac{P_C 2_1/c}{P_C 2_1/c}$	14.84	4 4			15.85	2 2
C2/c1'	15.86	$\frac{1}{2} \frac{1}{2} \frac{1}{C2'/c}$	15.87		$\frac{C2/c'}{C2/c'}$	15.88	2 2			15.89	2 2
$C_c 2/c$	$\frac{15.90}{15.90}$	$\frac{2}{4} \frac{2 C ^{2}/c}{2 C_{a}^{2}/c}$	15.91		$\frac{C2/C}{P222}$	16.1	1 1	P2		16.2	1 1
P2'2'2	16.3	$\frac{4 2 C_a 2/c}{1 1 P_a 222}$	16.4		$\frac{1}{P_C}$	16.5	4 2			16.6	
$P222_1$	$\frac{10.3}{17.7}$	$\frac{1}{2} \frac{1}{2} \frac{1}{P222_1 1'}$	$\frac{16.4}{17.8}$		$\frac{PC222}{P2'2'2_1}$	17.9	$\frac{4}{2} \frac{2}{2}$			10.0 17.10	$\begin{array}{c c} 2 & 2 \\ 2 & 2 \end{array}$
$P_a 222_1 P_a 222_1$	17.11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{17.8}{17.12}$	$\begin{array}{c c} 2 & 2 \\ \hline 2 & 2 \end{array}$	$\frac{P2\ 2\ 2_1}{P_R222_1}$	17.13		P_C	$\frac{2}{999}$	17.10 17.14	$\frac{2}{4} \frac{2}{4}$
$P_{I}222_{1}$	$\frac{17.11}{17.15}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.16		$\frac{FB2221}{P2_12_121'}$	18.17	$\frac{4}{2}$ 2			18.18	$\frac{4}{2} \frac{4}{2}$
	18.19		$\frac{18.10}{18.20}$		$\frac{F2_12_12_1}{P_c2_12_12}$					18.22	$\frac{2}{4} \frac{2}{4}$
$P2_12_1'2'$	18.19					18.21					
$P_C 2_1 2_1 2_1$	$\frac{18.23}{19.27}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.24		$\frac{P2_{1}2_{1}2_{1}}{P}$	19.25				19.26	4 4
$P2_{1}^{\prime}2_{1}^{\prime}2_{1}$		$\frac{4}{2} \frac{4}{2} \frac{P_c 2_1 2_1 2_1}{P_c 2_1 2_2 2_1}$	19.28		$\frac{P_C 2_1 2_1 2_1}{C_0 / 2_1 2_1}$	19.29		P_{I}		19.30	4 4
$C222_1$	20.31	$\frac{2}{4} \frac{2}{2} \frac{C222_11'}{C222}$	20.32		$\frac{C2'2'2_1}{C}$	20.33		C2		20.34	2 2
$C_c 222_1$	20.35	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.36		$\frac{C_A 222_1}{C22'2'}$	20.37		C2		21.38	$\frac{2}{4} \frac{1}{2}$
C2221'	21.39		21.40		$\frac{C22.2}{F222}$	$\frac{21.41}{22.45}$	$\frac{2}{1}$ $\frac{1}{1}$	$\frac{C_c}{F2}$		21.42 22.46	4 2
$C_a 222 F2'2'2$	21.43		21.44				1 1	I22			1 1 1 1
12'2'2	22.47	$\frac{1}{1} \frac{1}{1} \frac{F_S 222}{F_S 222}$	22.48		I222	23.49	1 1			23.50	
	23.51	$\frac{1}{2} \frac{1}{2} \frac{I_c 222}{I_c 222}$	23.52		$\frac{I2_{1}2_{1}2_{1}}{P_{2}}$	24.53				24.54	2 2
$I2_{1}^{\prime}2_{1}^{\prime}2_{1}$	24.55	$\frac{2}{1} \frac{2}{1} \frac{I_c 2_1 2_1 2_1}{I_c 2_1 2_1 2_1}$	24.56		$\frac{Pmm2}{P}$	25.57	1 1			25.58	1 1
Pm'm2'	25.59	$\frac{1}{4} \frac{1}{3} \frac{ Pm'm'2 }{ Pmmm3 }$	25.60		$\frac{P_cmm2}{P_cmm2}$	25.61				25.62	$\begin{array}{ccc} 2 & 2 \\ 2 & 2 \end{array}$
$\frac{P_C mm2}{P_{cm} \circ 2 \cdot 1'}$	25.63	$\frac{4}{2} \frac{2 P_Amm2}{P_{mn'} \circ 2'}$	25.64		$\frac{P_I mm2}{Pmc'2'_1}$	25.65		Pn		26.66 06.70	$\frac{2}{2} \frac{2}{2}$
$\frac{Pmc2_11'}{P_amc2_1}$	$\frac{26.67}{26.71}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{26.68}{26.72}$		$\frac{Pmc \ 2_1}{P_cmc 2_1}$	26.69 26.73				$\frac{26.70}{26.74}$	$\frac{2}{2} \frac{2}{2}$
$P_a mc2_1$ $P_B mc2_1$	$\frac{20.71}{26.75}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{20.72}{26.76}$		$\frac{P_cmc2_1}{P_Imc2_1}$	26.73 26.77	4 4	P_{C}	$\frac{mcz_1}{c^2}$	20.74 27.78	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 BIIIC21	40.10	4 4 [1 ()11604]	40.10	4 4	1 1110C41	40.11	+ 4	11 (U <u>—</u>	21.10	~ ~

Pcc21'	27.79	$\frac{2}{4} \frac{2}{4} \frac{Pc'c2'}{Pc'}$		$\frac{2 Pc'c'2}{2}$		$2 P_c cc2$	27.82 2 2
P_acc2	27.83	$\frac{4}{2}$ $\frac{4}{2}$ $\frac{P_C cc2}{P_C cc2}$	27.84 4	$\frac{4 P_Acc2}{P_Acc2}$		$\frac{4 P_Icc2}{P_Icc2}$	27.86 4 4 28 90 2 2
$\frac{Pma2}{Pm'a'2}$	28.87 28.91	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.88 2 28.92 2	$ \frac{2 Pm'a2'}{2 P_bma2} $		$ \begin{array}{c c} 2 & Pma'2' \\ 4 & P_cma2 \end{array} $	28.90 2 2 28.94 4 4
$P_A ma2$	28.95	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{2}{4} \frac{P_C ma2}{P_C ma2}$		$\frac{4}{2} \frac{r_c maz}{P_I ma2}$	28.98 4 4
$Pca2_1$	29.99	4 4 $Pca2_11'$		$4 Pc'a2'_1$		$4 Pca'2'_1$	29.102 4 4
$Pc'a'2_1$	29.103	$4 4 P_a ca 2_1$	29.104 4	$4 P_b ca 2_1$	29.105 8	$8 P_c ca 2_1$	29.106 4 4
$P_A ca 2_1$	29.107	$4 4 P_B ca 2_1$	29.108 4	$4 P_C ca 2_1$	29.109 4	$4 P_Ica2_1$	29.110 4 4
$\frac{Pnc2}{r}$	30.111	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.112 2	$\frac{2 Pn'c2'}{2}$	30.113 2	2 Pnc'2'	30.114 2 2 30.118 4 4
$\frac{Pn'c'2}{P_Anc2}$	30.115 30.119	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 4 & P_b nc2 \\ 4 & P_C nc2 \end{array} $	$ \begin{array}{ccc} 30.117 & 4 \\ 30.121 & 4 \end{array} $	$\begin{array}{c c} 4 & P_c n c 2 \\ 4 & P_I n c 2 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$Pmn2_1$	31.123	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{4 TCnc2}{2 Pm'n2'_1}$	$\frac{30.121}{31.125}$ 2	$\frac{4 Tmc_2}{2 Pmn'2'_1}$	31.126 2 2
$Pm'n'2_1$	31.127	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 128 4	$4 P_1 mn 2_1$	31.129 4	$\frac{2 P_cmn2_1}{4 P_cmn2_1}$	
P_Amn2_1	31.131	$4 4 P_B mn 2_1$	31.128 4 31.132 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.133 4	$4 P_{t}mn2_{1}$	31.134 2 2
$Pba2$ P_cba2	32.135 32.139	2 2 Pba21'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 Pb'a2'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	32.139	$\frac{4}{4}$ $\frac{4}{4}$ $\frac{P_bba2}{P_ma2}$	32.140 4 33.144 4	$\frac{4 P_C ba2 }{4 P na2_1 1'}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2 P_A ba2 }{4 P n'a2'_1 }$	
P_Iba2 $Pna'2'_1$	32.143 33.147	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{4 Pnaz_11 }{4 P_anaz_1 }$		$4 P_b na2_1$	33.146 4 4 33.150 8 8
$P_c na 2_1$	33.151	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{4 P_ana2_1}{4 P_Bna2_1}$	33.153 4	$\frac{4 P_{b}na2_{1}}{4 P_{C}na2_{1}}$	33.154 4 4
$P_I na2_1$	33.155	4 4 Pnn2		$\frac{1}{2} \frac{Pnn21}{Pnn21}$	34.157 2	$\frac{1}{2} \frac{Pn'n2'}{Pn'n2'}$	34.158 2 2
Pn'n'2	34.159	$2 2 P_a nn2$		$\frac{1}{4} P_c nn2$	34.161 4	$4 P_A nn2$	34.162 4 4
$P_C nn2$	34.163	$4 4 P_I nn2$	34.164 2	2 Cmm2	35.165 2	1 Cmm21'	35.166 2 1
Cm'm2'	35.167	$2 \ 1 Cm'm'2$		$1 C_c mm2$	35.169 4	$2 C_a mm2$	35.170 2 2
$C_A mm2$	35.171	$\frac{4}{2} \frac{2}{Cmc2_1}$	36.172 2	$2 Cmc2_11' $	36.173 2	$\frac{2 Cm'c2'_1}{Cm'c2'_1}$	36.174 2 2
$Cmc'2'_1$	36.175	$\frac{2}{1} \frac{2}{3} \frac{Cm'c'2_1}{Cm'}$	36.176 2	$\frac{2 C_c mc2_1}{C_c mc2_1}$		$\frac{2 C_a mc2_1}{C_a mc2_1}$	36.178 4 4
$\frac{C_Amc2_1}{C_1^2/2}$	36.179	4 2 Ccc2	37.180 2	$\begin{array}{c c} 2 & Ccc21' \\ 2 & C_acc2 \end{array}$	37.181 2	$\frac{2 Cc'c2' }{4 C }$	37.182 2 2 37.186 4 2
$\frac{Cc'c'2}{4mm^2}$	37.183 38.187	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.184 4 38.188 1	$\frac{2 C_a cc2 }{1 Am'm2' }$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 4 & C_A cc2 \\ 1 & Amm'2' \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$Amm2 \ Am'm'2$	38.187 38.191	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38.188 1 38.192 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38.190 1 1 38.194 4 2
$\frac{Amm nt 2}{Abm2}$	39.195	2 2 Abm21'	39.196 2	2 Ab'm2'	$\frac{39.193}{39.197}$ 2	$\frac{1}{2} \frac{1}{Abm'2'}$	$\frac{39.194}{39.198}$ $\frac{4}{2}$ $\frac{2}{2}$
Ab'm'2	39.199	$2 2 \mid A_a b m 2$	39.200 4	$4 A_bbm2$	39.201 2	$ \begin{array}{c c} 2 & Abm'2' \\ 2 & A_Bbm2 \end{array} $	39.202 4 2
Ama2	40.203	$2 2 \mid Ama21'$	40.204 2	2 Am'a2'	40.205	2 Ama'2'	40.206 2 2
Am'a'2	40.207	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40.208 2 41.212 2	$\frac{2}{2} \frac{A_b ma2}{A_b ma2}$	40.209 4 41.213 2	$\frac{4}{3} \frac{A_B ma2}{A_B ma2}$	$\begin{array}{c ccccc} 40.210 & 4 & 2 \\ \hline 41.214 & 2 & 2 \\ \end{array}$
Aba2 $Ab'a'2$	41.211 41.215	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.212 2 41.216 4	$ \begin{array}{c c} \hline 2 & Ab'a2' \\ 4 & A_bba2 \end{array} $	$\begin{array}{ccc} 41.213 & 2 \\ 41.217 & 4 \end{array}$	$ \begin{array}{c c} 2 & Aba'2' \\ 4 & A_Bba2 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fmm2	42.219	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.220 2	$\frac{4}{1}\frac{A_{b}\partial a_{z}}{Fm'm2'}$	42.221 2	$\frac{4}{1} \frac{AB002}{Fm'm'2}$	$\frac{41.210}{42.222}$ $\frac{4}{2}$ $\frac{2}{1}$
F_Smm2	42.223	2 2 Fdd2		$\frac{1}{2} Fdd21'$	$\frac{12.221}{43.225}$ 2	2 F d' d2'	43.226 2 2
Fd'd'2	43.227	$2 2 F_S dd2$	43.228 4	$4 \mid Imm2$	44.229 1	1 Imm21'	44.230 1 1
Im'm2'	44.231	$1 \ 1 \ Im'm'2$		$1 I_c mm2$		$2 I_a mm2$	44.234 2 2 45.238 2 2 46.242 2 2
Iba2	45.235	$\frac{2}{4}$ $\frac{2}{3}$ $\frac{Iba21'}{Iba2}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 45.237 & 2 \\ 46.241 & 2 \end{array}$	$\frac{2}{2}\frac{Ib'a'2}{Image 21'}$	45.238 2 2
I_cba2 $Im'a2'$	45.239 46.243	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 45.240 & 4 \\ \hline 46.244 & 2 \end{array} $	$\frac{4}{2} \frac{Imaz}{Im'a'2}$	46.245 2	$\begin{array}{c c} 2 & Ima21' \\ \hline 2 & I_cma2 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$I_a ma2$	46.247	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46.248 4	$\frac{2 Im a 2}{4 Pmmm}$		$\frac{2}{1} \frac{I_c maz}{Pmmm1'}$	$\frac{40.240}{47.250}$ $\frac{4}{1}$ $\frac{2}{1}$
Pm'mm	47.251	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{40.240}{47.252}$ 1	$\frac{1}{1} Pm'm'm'$		$1 P_a mmm$	$\frac{47.250}{47.254}$ 2 2
P_Cmmm	47.255	$4 2 \mid P_{I}mmm$	47.256 8	2 Pnnn	48.257 4	$\frac{1}{2} Pnnn1'$	47.254 2 2 48.258 4 2
Pn'nn	48.259	4 2 Pn'n'n	48.260 4	2 Pn'n'n'	48.261 4	$2 P_cnnn$	48.262 8 4
$P_C nnn$	48.263	$4 4 P_I nnn$		2 Pccm		2 Pccm1'	49.266 2 2 49.270 2 2 49.274 4 4
Pc'cm	49.267	$\begin{array}{c cccc} 2 & 2 & Pccm' \\ \hline 2 & 2 & P_accm \end{array}$	49.268 2	$\frac{2 Pc'c'm}{P}$	49.269 2	$\begin{array}{c c} 2 & Pc'cm' \\ 2 & P_Bccm \end{array}$	$\frac{49.270}{49.274}$ $\frac{2}{4}$ $\frac{2}{4}$
$P_{C}ccm$	49.271 49.275	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c c} 4 & P_c ccm \\ 4 & Pban \end{array} $	$ \begin{array}{ccc} 49.273 & 2 \\ 50.277 & 4 \end{array} $	$\frac{2 P_Bccm}{2 Pban1'}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Pb'an	50.279	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{4 I ban}{2 Pb'a'n}$		$\frac{2 Pb'an'}{2 Pb'an'}$	50.282 4 2
Pb'a'n'	50.283	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{2}{4} P_c ban$	50.285 8	$4 P_A ban$	50.286 8 4
$ P_Cban $	50.287	$4 2 P_I ban$	50.288 8	4 Pmma	51.289 2	2 Pmma1'	51.290 2 2
Pm'ma	51.291	$2 \ 2 \ Pmm'a$	51.292 2	$\frac{1}{2} Pmma'$	51.293 2	2 Pm'm'a	51.294 2 2
P.mma	$\frac{51.295}{51.299}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} 51.296 & 2 \\ 51.300 & 4 \end{array} $	$\begin{array}{c c} 2 & Pm'm'a' \\ \hline 2 & Pm'm'a' \\ 4 & P_Amma \end{array}$		$\frac{2}{4} \frac{P_a mma}{P_{r,mm,a}}$	51.294 2 2 51.298 2 2 51.302 4 2
$\frac{P_b mma}{P_C mma}$	51.303	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.300 4 51.304 4	$\frac{4 P_Amma}{4 Pnna}$		$\frac{4 P_Bmma}{4 Pnna1'}$	51.302 4 2 52.306 4 4
Pn'na	52.307	4 4 $Pnn'a$	52.308 4	4 Pnna'	52.309 4	4 Pn'n'a	52.310 4 4
Pnn'a'	52.311	4 4 Pn'na'	52.312 4	4 Pn'n'a'	52.313 4	$4 P_anna$	52.314 8 4
P_bnna	52.315	$8 4 P_cnna$	52.316 8	$8 P_Anna $	52.317 4	$4 P_Bnna$	52.318 8 4
P_Cnna	52.319	8 4 P _I nna	52.320 4	$\frac{4 Pmna}{Pmna'}$		$\frac{2 Pmna1'}{2 Pm'a'}$	53.322 4 2
$\frac{Pm'na}{Pmn'a'}$	53.323 53.327	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53.324 4 53.328 4	$\begin{array}{c c} 2 & Pmna' \\ 2 & Pm'n'a' \end{array}$	53.325 4 53.329 4	$ \begin{array}{c c} 2 & Pm'n'a \\ 2 & P_amna \end{array} $	53.326 4 2 53.330 4 4
P_bmna	53.331	$\frac{4}{8}$ $\frac{2}{4}$ $\frac{1}{P_cmna}$	53.332 4	$\frac{2}{4} \frac{1}{P_A m n a} \frac{n}{a}$	53.333 4	$\frac{2}{4} \frac{r_a mna}{P_B mna}$	53.334 4 2
P_Cmna	53.335	$8 4 P_I mna$	53.336 4	4 Pcca	54.337 4	4 Pcca1'	54.338 4 4
Pc'ca	54.339	4 4 Pcc'a,	54.340 4	4 Pcca'	54.341 4	4 Pc'c'a	54.342 4 4
P. coa	54.343	4 4 Pc'ca'	54.344 4	$\frac{4 Pc'c'a' }{4 P_Acca }$	54.345 4	$\frac{4}{A} \frac{P_a cca}{P_{-aca}}$	54.346 4 4
P_bcca P_Ccca	54.347 54.351	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54.348 4 54.352 8	$\frac{4}{8} \frac{P_A cca}{Pbam}$	54.349 8 55.353 2	$\frac{4 P_Bcca}{2 Pbam1'}$	54.350 4 4 55.354 2 2
Pb'am	55.355	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55.356 2	$\frac{8 Pbam}{2 Pb'a'm}$		$\frac{2 Pbam1}{2 Pb'am'}$	55.358 2 2 55.358 2 2
Pb'a'm'	55.359	$2 2 P_a bam$	55.360 4	$4 P_c bam$	55.361 4	$4 P_A bam$	55.362 8 4
P_Cbam	55.363	$4 2 P_I bam$	55.364 8	4 Pccn	56.365 4	4 Pccn1'	56.366 4 4
Pc'cn	56.367	4 4 Pccn'	56.368 4	4 Pc'c'n	56.369 4	$\frac{1}{4} \frac{Pc'cn'}{Pc'cn'}$	56.370 4 4
$\frac{Pc'c'n'}{P}$	56.371	4 4 P _b ccn	56.372 8	$\frac{8}{4} \frac{P_c ccn}{P_b}$	56.373 8	$\frac{4 P_Accn }{P_B \cos 1'}$	56.374 8 4
$P_{C}ccn$ $Pb'cm$	56.375 57.379	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56.376 8 57.380 4	$ \begin{array}{c c} 4 & Pbcm \\ 4 & Pbcm' \end{array} $		$\frac{4 Pbcm1' }{4 Pb'c'm }$	57.378 4 4 57.382 4 4
Pbc'm'	57.383	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	57.384 4	$\frac{4}{4} \frac{Pb'c'm'}{Pb'c'm'}$	57.385 4	$4 P_a bcm$	57.386 8 8
P_bbcm	57.387	$4 4 P_cbcm$	57.388 4	$4 P_Abcm$	57.389 4	$4 P_Bbcm$	57.390 8 4
$P_C bcm$	57.391	$8 4 P_Ibcm$	57.392 8	4 Pnnm	58.393 2	$\frac{2 Pnnm1' }{2 Pnnm1' }$	58.394 2 2
Pn'nm	58.395	2 2 Pnnm'	58.396 2	2 Pn'n'm	58.397 2	2 Pnn'm'	58.398 2 2

\Box	X 0.000	2 2 2	E 0.400	0.415	FO 101	4 4	D	F 0.400	0.4
Pn'n'm'	58.399	$\frac{2}{4}$ $\frac{2}{4}$ $\frac{P_annm}{P_a}$	58.400	$84P_cnnm$	58.401		$P_B nnm$	58.402	8 4
$P_C nnm$	58.403	4 4 P _I nnm	58.404	8 2 <i>Pmmn</i>	59.405		$\frac{Pmmn1'}{P}$	59.406	4 2
$Pm'mn \ Pm'm'n'$	59.407 59.411	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59.408 59.412	$egin{array}{c c} 4 & 2 & Pm'm'n \ \hline 4 & 4 & P_cmmn \end{array}$	59.409 59.413		$\frac{Pmm'n'}{P_Bmmn}$	59.410 59.414	$\begin{array}{c c} 4 & 2 \\ \hline 8 & 4 \end{array}$
$P_C mmn$	59.415	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59.416	8 2 Pbcn	60.417		$\frac{1 \text{ Bittitt}}{Pbcn1'}$	60.418	4 4
Pb'cn	60.419	$\frac{4}{4}$ $\frac{2}{4}$ $\frac{1}{Pbc'n}$	60.420	4 4 Pbcn'	60.421		$\frac{Pb'c'n}{Pb'c'n}$	60.422	4 4
Pbc'n'	60.423	4 4 Pb'cn'	60.424	4 4 Pb'c'n'	60.425	4 4	P_abcn	60.426	8 8
P_bbcn	60.427	$8 8 P_c bcn$	60.428	$8 4 P_A bcn$	60.429	8 4	P_Bbcn	60.430	8 4
P_Cbcn	60.431	$8 4 P_I bcn$	60.432	8 4 <i>Pbca</i>	61.433		Pbca1'	61.434	4 4
Pb'ca	61.435	4 4 Pb'c'a	61.436	$\frac{4}{3}$ $\frac{4}{3}$ $\frac{Pb'c'a'}{Pb'c'a'}$	61.437		P_abca	61.438	8 8
P_Cbca	61.439	$8 4 P_Ibca$	61.440	8 8 Pnma	62.441		$\frac{Pnma1'}{P}$	62.442	4 4
Pn'ma $Pnm'a'$	62.443 62.447	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62.444 62.448	$egin{array}{c cccc} 4 & 4 & Pnma' \ 4 & 4 & Pn'm'a' \end{array}$	$\frac{62.445}{62.449}$	$\begin{array}{c c} 4 & 4 \\ 4 & 4 \end{array}$	$\frac{Pn'm'a}{P_anma}$	62.446 62.450	$\begin{array}{c c} 4 & 4 \\ \hline 8 & 4 \end{array}$
$P_b nma$	62.451	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{62.448}{62.452}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62.453	8 4	$\frac{P_Bnma}{P_Bnma}$	62.454	8 4
$P_C nma$	62.455	8 $4 P_Inma$	62.456	4 4 Cmcm	63.457	4 2	Cmcm1'	63.458	4 2
Cm'cm	63.459	4 2 Cmc'm	63.460	4 2 Cmcm'	63.461	4 2	Cm'c'm	63.462	4 2
Cmc'm'	63.463	4 2 Cm'cm'	63.464	4 2 Cm'c'm'	63.465	4 2	C_cmcm	63.466	$\begin{array}{c cccc} & 4 & 2 \\ & 4 & 2 \\ & 4 & 2 \\ & 4 & 2 \end{array}$
$C_a mcm$	63.467	4 4 C_Amcm	63.468	4 2 Cmca	64.469	4 2	Cmca1'	64.470	4 2
Cm'ca	64.471	$\frac{4}{1}$ $\frac{2}{3}$ $\frac{Cmc'a}{c'}$	64.472	$\frac{4}{4}$ $\frac{2}{3}$ $\frac{Cmca'}{Cm'}$	64.473	4 2	Cm'c'a	64.474	$\frac{4}{4}$
Cmc'a'	64.475	4 2 Cm'ca'	64.476	$egin{array}{c c} 4 & 2 & Cm'c'a' \ \hline 4 & 2 & Cmmm \end{array}$	64.477	4 2	$\frac{C_c mca}{C_c}$	64.478	4 4
$C_a mca \ Cm'mm$	64.479 65.483	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{64.480}{65.484}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{65.481}{65.485}$		$\frac{Cmmm1'}{Cmm'm'}$	65.482 65.486	$\begin{array}{c c} 2 & 1 \\ \hline 2 & 1 \end{array}$
Cm'm'm'	65.487	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65.488	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65.489	$\frac{2}{2}$	$\frac{Cmm\ m}{C_Ammm}$	65.490	$\begin{array}{c c} 2 & 1 \\ \hline 4 & 2 \end{array}$
Cccm	66.491	2 2 Cccm1'	66.492	2 2 Cc'cm	66.493	2 2	Cccm'	66.494	2 2
Cc'c'm	66.495	2 2 Ccc'm'	66.496	2 2 Cc'c'm'	66.497	2 2	$C_c ccm$	66.498	4 2
C_accm	66.499	$4 4 C_{A}ccm$	66.500	4 2 Cmma	67.501	2 2	Cmma1'	67.502	2 2
Cm'mq	67.503	2 2 Cmma'	67.504	2 2 Cm'm'a	67.505	2 2	Cmm'a'	67.506	2 2
Cm'm'a'	67.507	$\frac{2}{2} \frac{2}{C_c} \frac{C_c mma}{1}$	67.508	$\frac{4}{4} \frac{4}{C_a} \frac{C_a mma}{C_a}$	67.509	2 2	C_Amma	67.510	4 2
$\frac{Ccca}{Ca^{\prime}a^{\prime}a^{\prime}a^{\prime}}$	68.511	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.512 68.516	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.513 68.517	4 2	$Ccca'$ C_ccca	68.514 68.518	$\begin{array}{c c} 4 & 2 \\ \hline 4 & 4 \end{array}$
$Cc'c'a$ C_acca	68.515 68.519	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{68.516}{68.520}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{68.517}{69.521}$		$\frac{C_c cca}{Fmmm1'}$	69.522	$\frac{4}{2}$ $\frac{4}{1}$
Fm'mm	69.523	$\frac{4}{2}$ $\frac{4}{1}$ $\frac{GACCU}{Fm'm'm}$	69.524	$\frac{4}{2}$ $\frac{2}{1}$ $\frac{Fm'm'm'}{Fm'm'm'}$	69.525	$\frac{2}{2}$ $\frac{1}{1}$	$F_{S}mmm$	69.526	$\frac{2}{2}$ $\frac{1}{2}$
Fddd	70.527	4 2 Fddd1'	70.528	$\frac{2}{4}$ $\frac{1}{2}$ $\frac{1}{F}d'dd$	70.529	$\frac{2}{4} \frac{1}{2}$	Fd'd'd	70.530	$\frac{2}{4} \frac{2}{2}$
Fd'd'd'	70.531	$4 2 \mid F_S ddd$	70.532	$egin{array}{cccccccccccccccccccccccccccccccccccc$	71.533		$\overline{Immm1'}$	71.534	4 1
Im'mm	71.535	$4 1 \mid Im'm'm$	71.536	4 1 Im'm'm'	71.537	4 1	I_cmmm	71.538	4 2
Ibam	72.539	4 2 Ibam1'	72.540	$\frac{4}{2}$ $\frac{2}{1}$ $\frac{Ib'am}{2}$	72.541	4 2	Ibam'	72.542	$\begin{array}{c c} 4 & 2 \\ \hline 4 & 2 \end{array}$
Ib'a'm	72.543	4 2 <i>Iba'm'</i>	72.544	4 2 <i>Ib'a'm'</i>	72.545	4 2	$I_c bam$	72.546	4 2
I_bbam	72.547	4 4 <i>Ibca</i>	73.548	4 4 <i>Ibca</i> 1'	73.549		<u>Ib'ca</u>	73.550	4 4
$\frac{Ib'c'a}{Imma1'}$	$73.551 \\ 74.555$	$egin{array}{c c} 4 & 4 & Ib'c'a' \\ \hline 2 & 2 & Im'ma \end{array}$	$\frac{73.552}{74.556}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	73.553 74.557	$\begin{array}{c c} 4 & 4 \\ \hline 2 & 2 \end{array}$	$\frac{Imma}{Im'm'a}$	74.554 74.558	$\frac{2}{2}$
Imm'a'	74.559	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74.560	$egin{array}{cccccccccccccccccccccccccccccccccccc$	74.561	$\frac{2}{4}$	$I_b mma$	74.562	$\begin{array}{c c} \hline 2 & 2 \\ \hline 4 & 2 \end{array}$
P4	75.1	2 1 P41'	75.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75.3	2 1	P_c4	75.4	4 2
P_C4	75.5	$4 \ 2 P_I 4$	75.6	$4 \ 2 \ P4_1$	76.7	4 4	$P4_{1}1'$	76.8	4 4
$P_C 4$ $P 4'_1$	75.5 76.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75.6 76.10	$4 \ 4 P_C 4_1$	76.7 76.11	4 4 8 8	$P_I 4_1$	76.8 76.12	4 4
$P4_1'$ $P4_2$	76.9 77.13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15	$ \begin{array}{c cccc} & 4 & 4 \\ \hline & 8 & 8 \\ \hline & 2 & 2 \end{array} $	$P_I 4_1 P_c 4_2$	76.12 77.16	$\begin{array}{c c} 4 & 4 \\ \hline 4 & 2 \end{array}$
$\begin{array}{c} P4_1' \\ P4_2 \\ P_C4_2 \end{array}$	76.9 77.13 77.17	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19	$ \begin{array}{c cccc} 4 & 4 \\ 8 & 8 \\ 2 & 2 \\ 4 & 4 \end{array} $	$P_{I}4_{1}$ $P_{c}4_{2}$ $P4_{3}1'$	76.12 77.16 78.20	$\begin{array}{c c} 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \end{array}$
$P4'_1 \\ P4_2 \\ P_C4_2 \\ P4'_3$	76.9 77.13 77.17 78.21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23	4 4 8 8 2 2 4 4 8 8	$P_{I}4_{1}$ $P_{c}4_{2}$ $P4_{3}1'$ $P_{I}4_{3}$	76.12 77.16 78.20 78.24	$ \begin{array}{c cccc} & 4 & 4 \\ \hline & 4 & 2 \\ \hline & 4 & 4 \\ \hline & 4 & 4 \end{array} $
$P4'_1 \ P4_2 \ P_C4_2 \ P4'_3 \ I4$	76.9 77.13 77.17 78.21 79.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27	4 4 8 8 2 2 4 4 8 8 2 1	$P_{I}4_{1}$ $P_{c}4_{2}$ $P_{4_{3}}1'$ $P_{I}4_{3}$ $I_{c}4$	76.12 77.16 78.20 78.24 79.28	$\begin{array}{r} 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \\ \hline 4 & 4 \\ \hline 4 & 2 \\ \end{array}$
$ \begin{array}{c c} P4'_1 \\ P4_2 \\ P_C4_2 \\ P4'_3 \\ \hline I4 \\ I4_1 \end{array} $	76.9 77.13 77.17 78.21 79.25 80.29	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31	4 4 8 8 2 2 4 4 8 8 2 1 2 2	$P_{I}4_{1}$ $P_{c}4_{2}$ $P_{4_{3}}1'$ $P_{I}4_{3}$ $I_{c}4$ $I_{c}4_{1}$	76.12 77.16 78.20 78.24 79.28 80.32	$\begin{array}{r} 4 & 4 \\ 4 & 2 \\ \hline 4 & 4 \\ \hline 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \end{array}$
$\begin{array}{c} P4'_1 \\ P4_2 \\ \hline P_C4_2 \\ P4'_3 \\ \hline I4 \\ \hline I4_1 \\ \hline P4 \\ \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1	$\begin{array}{c} P_{I}\dot{4}_{1} \\ P_{c}4_{2} \\ P_{4}_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36	$\begin{array}{c cccc} & 4 & 4 \\ \hline & 4 & 2 \\ \hline & 4 & 4 \\ \hline & 4 & 4 \\ \hline & 4 & 2 \\ \hline & 4 & 4 \\ \hline & 4 & 2 \end{array}$
$P4'_1 \ P4_2 \ P_C4_2 \ P4'_3 \ I4 \ I4_1 \ P4 \ P_C4$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39	$\begin{array}{c ccccc} & 4 & 4 \\ & 8 & 8 \\ \hline & 2 & 2 \\ & 4 & 4 \\ \hline & 8 & 8 \\ \hline & 2 & 1 \\ \hline & 2 & 2 \\ \hline & 2 & 1 \\ \hline & 1 & 1 \\ \end{array}$	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P_{4}_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I41' \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40	$\begin{array}{c cccc} & 4 & 4 \\ & 4 & 2 \\ & 4 & 4 \\ & 4 & 4 \\ \hline & 4 & 2 \\ & 4 & 4 \\ & 4 & 2 \\ \hline & 2 & 1 \\ \end{array}$
$\begin{array}{c} P4_1' \\ P4_2 \\ P_C 4_2 \\ P4_3 \\ I4 \\ I4_1 \\ P4 \\ PC 4 \\ I4' \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 1 2 1	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I41' \\ P4/m1' \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44	$\begin{array}{c ccccc} 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \\ \hline 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \\ \hline 2 & 1 \\ \hline 2 & 1 \\ \end{array}$
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4_2 \\ P4_3' \\ \hline I4 \\ \hline I4_1 \\ P4 \\ PC_4 \\ \hline I4' \\ \hline P4'/m \\ \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 2 1 2 1	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I41' \\ P4/m1' \\ P_{c}4/m \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48	$\begin{array}{c ccccc} 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \\ \hline 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \\ \hline 4 & 2 \\ \hline 2 & 1 \\ \hline 2 & 1 \\ \hline 4 & 2 \\ \end{array}$
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4_2 \\ P4_3' \\ \hline I4 \\ \hline I4_1 \\ P4 \\ PC_4 \\ \hline I4' \\ \hline P4'/m \\ \hline PC_4/m \\ \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 2 1 2 1 2 2	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ I_{c}4_{1} \\ I_{d}1' \\ P4/m1' \\ P4/m1' \\ P4/m1' \\ P4/m1' \\ P4/m1' \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52	$\begin{array}{c cccc} 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \\ \hline 4 & 4 \\ \hline 4 & 2 \\ \hline 4 & 4 \\ \hline 2 & 1 \\ \hline 2 & 1 \\ \hline 4 & 2 \\ \hline 2 & 2 \\ \hline \end{array}$
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4_2 \\ P4_3' \\ I4 \\ I4_1 \\ P4 \\ PC_4 \\ I4' \\ P4'/m \\ PC_4/m \\ P4_2/m \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 2 1 2 1 2 2 2 2 2 1	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I41' \\ P4/m1' \\ P_{c}4/m \\ P4_{2}/m1' \\ P_{c}4_{2}/m \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4_2 \\ P4_3' \\ \hline I4 \\ \hline I4_1 \\ P4 \\ PC_4 \\ \hline I4' \\ \hline P4'/m \\ \hline PC_4/m \\ \hline P4_2/m \\ \hline PC_4_2/m \\ \hline PC_4_2/m \\ \hline \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59	4 4 8 8 8 2 2 2 4 4 4 8 8 8 2 1 1 1 1 2 1 2 1 2 2 2 2 4 2 2 4 2	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I_{4}1' \\ P_{4}/m1' \\ P_{c}4/m \\ P_{4}/m1' \\ P_{c}4_{2}/m \\ P_{4}/m1' \\ P_{c}4_{2}/m \\ P_{4}/m1' \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4_2 \\ PC_4_3 \\ \hline I4 \\ \hline I4_1 \\ P2_4 \\ \hline I4' \\ \hline P4'/m \\ \hline PC_4/m \\ PC_4/m \\ \hline PC_4/m $	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63	4 4 8 8 8 2 2 2 4 4 4 8 8 8 2 1 1 1 1 2 1 2 1 2 2 2 2 2 4 2 2 4 2 4	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I_{4}1' \\ P_{4}/m1' \\ P_{c}4/m \\ P4_{2}/m1' \\ P_{c}4_{2}/m \\ P4/n1' \\ P_{c}4/n \\ \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 2 1 4 2 2 2 4 2 8 4
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4_2 \\ PC_4_3 \\ I4 \\ I4_1 \\ P4 \\ PC_4 \\ I4' \\ P4'/m \\ PC_4/m \\ PC_4/m \\ PC_4/m \\ PC_4/n \\ PC_4/n$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 1 2 1 2 1 2 2 2 2 4 2 4 2 4 2	$\begin{array}{c} P_{I}\hat{4}_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I_{d}1' \\ P_{d}/m1' \\ P_{c}4/m \\ P4_{2}/m1' \\ P_{c}4_{2}/m \\ P4/n1' \\ P_{c}4/n \\ P4_{2}/n1' \\ \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4_2 \\ PC_4_3 \\ \hline I4 \\ \hline I4_1 \\ \hline P4 \\ PC_4 \\ \hline I4' \\ \hline P4'/m \\ \hline PC_4/m \\ \hline PC_4/m \\ \hline PC_4/m \\ \hline PC_4/m \\ \hline PC_4/n \\ $	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71	4 4 8 8 2 2 4 4 8 8 8 8 2 1 2 2 2 1 1 1 2 1 2 1 2 2 2 2 4 2 4 2 4 2	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I_{4}1' \\ P_{4}/m1' \\ P_{2}4/m \\ P_{4}2/m1' \\ P_{c}4_{2}/m \\ P_{4}/n1' \\ P_{c}4/n \\ P_{4}/n1' \\ P_{c}4/n \\ P_{4}/n1' \\ P_{c}4/n \\ P_{4}/n1' \\ P_{c}4_{2}/n \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4_2 \\ PC_4_3 \\ I4 \\ I4_1 \\ P2_4 \\ PC_4 \\ I4' \\ P4'/m \\ PC_4/m \\ PC_4/m \\ PC_4/n \\ PC_4$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 1 2 1 2 2 2 2 4 2 4 2 4 2 4 2	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I_{d}1' \\ P_{1}41' \\ P_{2}4/m1' \\ P_{2}4/m \\ P_{2}4/m1' \\ P_{2}4_{2}/m \\ P_{2}4/n1' \\ P_{2}4/n \\ P_{2}4/n \\ P_{2}4/n \\ P_{2}4/n \\ P_{3}4/n1' \\ P_{4}2/n1' \\ P_{4}2/n \\ P_{4}1' \\ P_{5}4_{2}/n \\ P_{5}4_{2}/$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2 8 4 4 1
$\begin{array}{c} P4_1' \\ P4_2 \\ PC4_2 \\ PC4_2 \\ P4_3' \\ I4 \\ I4_1 \\ P4 \\ PC4 \\ I4' \\ P4'/m \\ PC4/m \\ P4_2/m \\ PC4_2/m \\ PC_4/n \\ P$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 1 2 1 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 1	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I_{d}1' \\ P_{1}41' \\ P_{2}4/m \\ P_{2}4/m \\ P_{2}4/m \\ P_{3}4/m \\ P_{4}/m1' \\ P_{c}4_{2}/m \\ P_{4}/n1' \\ P_{c}4/n \\ P_{2}/n1' \\ P_{c}4_{2}/n \\ I_{4}/m1' \\ I_{c}4/m \end{array}$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2 8 4 4 1 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC4_2 \\ PC4_3 \\ \hline I4 \\ \hline I4_1 \\ P4 \\ \hline P2_4 \\ \hline I4_1' \\ \hline P4_2' / m \\ \hline P2_4 / m \\ \hline P4_2 / m \\ \hline P4_2 / m \\ \hline P4_2 / n \\ \hline I4_1 / a \\ \hline \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 1 2 1 2 1 2 2 2 2 4 2 4 2 4 2 4 2 4 1 4 1	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P_{d}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ I_{c}4_{1} \\ I_{c}4_{1} \\ P_{d}/m1' \\ P_{c}4/m1' \\ P_{c}4/m1' \\ P_{c}4/m \\ P_{d}/m1' \\ P_{c}4/n \\ P_{d}/n1' \\ P_{c}4/n \\ P_{d}/n1' \\ P_{c}4/n \\ I_{d}/m1' \\ I_{c}4/m \\ I_{d}/m1' \\ I_{c}4/m \\ I_{d}/m1' \\ I_{d}/m \\ I_{d}/m1' \\ I_{d}/m \\ I_{d$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC4_2 \\ PC4_3 \\ \hline I4 \\ \hline I4_1 \\ P4 \\ \hline P2_4 \\ \hline I4_1' \\ \hline P4_1'/m \\ \hline P2_4/m \\ \hline P4_2/m \\ \hline P2_4/n \\ \hline P2_4/n \\ \hline P2_4/n \\ \hline P2_4/n \\ \hline P4_2/n \\ \hline P4_1'/n \\ \hline P1_1/n \\ \hline I4_1/n \\ \hline I4_1/n$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87	4 4 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 1 2 1 2 1 2 2 4 2 4 2 4 2 4 2 4 1 4 1 4 1	$\begin{array}{c} P_I \hat{4}_1 \\ P_c \hat{4}_2 \\ P_d \hat{4}_1 \\ P_c \hat{4}_2 \\ P_d \hat{4}_3 \\ I_c \hat{4} \\ I_c \hat{4}_1 \\ I_c \hat{4}_1 \\ P_c \hat{4}_1 \\ P_d / m \hat{1}' \\ P_c \hat{4} / m \\ P_d \hat{2} / m \\ I_c \hat{4} / m \\ I_d / m \\ I_d$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.88	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC4_2 \\ PC4_3 \\ \hline I4 \\ \hline I4_1 \\ \hline P4 \\ PC4 \\ \hline I4' \\ \hline P4' / m \\ \hline PC4_2 / n \\ \hline PC4_2 / n \\ \hline PC4_2 / n \\ \hline I4_1 / a \\ \hline I4_1 / a \\ \hline I4_1 / a \\ \hline P4'22' \\ \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87	4 4 8 8 2 2 4 4 8 8 2 1 2 1 2 2 2 1 2 1 2 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	$\begin{array}{c} P_{I}4_{1} \\ P_{c}4_{2} \\ P_{d}4_{3}1' \\ P_{I}4_{3} \\ I_{c}4 \\ I_{c}4_{1} \\ P_{c}4 \\ I41' \\ P_{c}4/m1' \\ P_{c}4/m \\ P_{d}2/m1' \\ P_{c}4_{2}/m \\ P_{d}/n1' \\ P_{c}4_{2}/n \\ I4/n1' \\ I_{c}4/n \\ I4/n1' \\ I_{c}4/n1' \\ I_{c}4/n \\ I_{c}4/$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.88 89.92	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2 8 4 4 1 4 2 2 1 4 2 2 1 4 2 2 1 4 2 2 1 4 2 2 1 4 2 4 2 4 2 4 4 2 4 4 2 4 4 2 8 4 4 8 4 2 8 4 4 2 8 4 4 2 8 4 4 4 4 4 4 2 8 4 2 8 4 2 8 4 2 8 4 4 4 4 4 4 4 4 2 8 4 4 4 4 4 4 2 8 4 4 4 4 4 4 4 4 4 2 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4 \\ PC_4 \\ \hline P4_3' \\ \hline I4_1 \\ \hline P4 \\ \hline P2_4 \\ \hline I4_1' \\ \hline P4_1'/m \\ \hline P2_4/m \\ \hline P2_4/m \\ \hline P4_2/m \\ \hline P4_2/m \\ \hline P4_2/m \\ \hline P4_2/n \\ \hline P4_2/n \\ \hline P4_2/n \\ \hline P4_1/a \\ \hline P4_2/n \\ \hline I4_1/a \\ \hline I4_1/a \\ \hline I4_1/a' \\ \hline P4_2'2' \\ \hline PG_422 \\ \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91	4 4 8 8 8 2 2 2 4 4 8 8 8 2 1 2 1 2 1 2 1 2 1 2 2 4 2 4 2 4 2 4 2 4 2 4 1 4 1 4 1 2 1 2 1 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 3 2 2 1 4 2 2 2 4 2 2 2 2	$\begin{array}{c} P_I 4_1 \\ P_C 4_2 \\ P 4_3 1' \\ P_I 4_3 \\ I_C 4 \\ I_C 4_1 \\ P_C 4_2 \\ I_A 1' \\ P_C 4_1 \\ I_C 4_1 \\ P_C 4_1 \\ I_C 4_1 \\ P_C 4_1 \\ P_C 4_2 \\ I_C 4_1 \\ P_C 4_2 \\ I_C 4_1 \\ P_C 4_2 \\ I_C 1' \\ I_C 4_1 \\ I_C 4_2 \\ I_C 1' \\ I_C 4_2 \\ I_C 1' \\ I_C 2_1' \\ I_C $	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.82 90.96	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2 8 4 4 2 2 1 4 2 2 1 4 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4 \\ PC_4 \\ \hline P4_3' \\ \hline I4_1 \\ \hline P4 \\ \hline P4' \\ \hline P6_4 \\ $	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.98	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99	4 4 8 8 8 2 2 4 4 8 8 2 1 2 2 2 1 1 1 2 1 2 1 2 2 4 2 4 2 4 2 4 2 4 1 4 1 4 2 2 1 2 2 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	$\begin{array}{c} P_I \dot{4}_1 \\ P_C \dot{4}_2 \\ P\dot{4}_3 \dot{1}' \\ P_I \dot{4}_3 \\ I_C \dot{4} \\ I_C \dot{4}_1 \\ P_C \dot{4} \\ I_A \dot{1}' \\ I_C \dot{4} \\ I_A \dot{1} \\ I_C \dot{4} \\ I_A \dot{1} \\ I_C \dot{4} \\ I_A \dot{1} \\ I_C \dot{4} \\ I_C$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.92 90.96 90.100	4 4 4 2 4 4 4 4 4 2 4 4 4 2 2 1 2 1 4 2 4 2 8 4 4 2 8 4 4 1 4 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4 \\ PC_4 \\ \hline P4_3' \\ \hline I4 \\ \hline I4_1 \\ \hline P4 \\ \hline P4_2 \\ \hline P4_3' \\ \hline I4_1 \\ \hline P4_1' \\ \hline P4_2' \\ \hline P4_2' \\ \hline P4_2' \\ \hline P6_4 \\ \hline P6_4 \\ \hline P6_2 \\ \hline P6_3 \\ \hline P6_4 \\ \hline P6_4 \\ \hline P6_2 \\ \hline P6_2 \\ \hline P6_3 \\ \hline P6_4 \\ \hline P6_2 \\ \hline P6_2 \\ \hline P6_3 \\ \hline P6_4 \\ \hline P6_2 \\ \hline P6_3 \\ \hline P6_4 \\ \hline P6_2 \\ \hline P6_3 \\ \hline P6_4 \\ \hline P6_4 \\ \hline P6_4 \\ \hline P6_2 \\ \hline P6_3 \\ \hline P6_4 \\ \hline P6_2 \\ \hline P6_4 \\ \hline$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.98	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103	4 4 8 8 8 2 2 2 2 1 1 1 1 2 1 2 2 2 2 2 2 4 2 2 4 2 4	$\begin{array}{c} P_I \hat{4}_1 \\ P_c \hat{4}_2 \\ P\hat{4}_3 \\ I_c \hat{4}_2 \\ I_c \hat{4}_1 \\ I_d \hat{4}_2 \\ I_d \hat{4}_1 \\ I_d \hat{4}_1 \\ I_d \hat{4}_1 \\ I_d \hat{4}_1 \\ I_d \hat{4}_2 \\ I_d \hat{4}_1 \\ I_d \hat{4}_2 \\ I$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.88 89.92 90.96 90.100 91.104	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2 8 4 4 1 4 2 2 1 4 2 4 2 4 2 4 2 4 2 4 2 4 4 4 2 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC_4 \\ PC_4 \\ \hline P4_3' \\ \hline I4 \\ \hline I4_1 \\ \hline P4 \\ \hline P4 \\ \hline P4' \\ \hline P4' \\ \hline P4' \\ \hline P4' \\ \hline P6_4 \\ \hline P$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101 91.105	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.102 91.106	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103 91.107	4 4 8 8 8 2 2 4 4 1 2 2 2 1 1 1 1 2 1 2 1 2 2 2 2 4 2 4 2 4 2 4 2 4 1 4 1 4 1 2 1 2 1 2 2 2 2 2 2 2 2 2 1 4 2 4 2 4 2 4 2 4 2 4 2 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	$\begin{array}{c} P_I \hat{4}_1 \\ P_c \hat{4}_2 \\ P\hat{4}_3 \\ I_c \hat{4} \\ I_c \hat{4} \\ I_c \hat{4} \\ I_c \hat{4} \\ I_d \hat{4} \\ I$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.88 89.92 90.96 90.100 91.104 91.108	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2 8 4 4 1 4 2 2 1 4 2 4 2 4 2 4 2 4 2 4 2 4 4 4 2 4 2
$\begin{array}{c} P4_1' \\ P4_2 \\ PC4_2 \\ PC4_2 \\ P4_3' \\ \hline I4 \\ \hline I4_1 \\ P4 \\ PC4 \\ \hline I4_1' \\ \hline P4'/m \\ PC4_2/m \\ PC4_2/m \\ \hline P4_2/m \\ PC_4/n \\ \hline P4_2/n \\ \hline PC_4/n \\ \hline I4_1/a \\ \hline P4'22' \\ \hline PC_4212 \\ \hline PC_4212 \\ \hline PC_4122' \\ \hline PC_41$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101 91.105 91.109	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.98 90.102 91.106 91.110	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103 91.107 92.111	4 4 8 8 8 2 2 2 4 4 1 2 1 2 2 1 4 2 4 2 1 2 2 1 2 1	$\begin{array}{c} P_I \hat{4}_1 \\ P_c \hat{4}_2 \\ P_d \hat{4}_1 \\ P_c \hat{4}_2 \\ P_d \hat{4}_3 \\ I_c \hat{4} \\ I_c \hat{4}_1 \\ I_c \hat{4}_1 \\ P_c \hat{4}_2 \\ I_d \hat{4}_1 \\ P_d / m \hat{1}' \\ P_c \hat{4} / m \\ P_d / m \hat{1}' \\ P_c \hat{4} / m \\ P_d / m \hat{1}' \\ P_c \hat{4} / m \\ P_d / m \hat{1}' \\ P_c \hat{4} / m \\ P_d / m \hat{1}' \\ P_c \hat{4} / m \\ I_d / $	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.88 89.92 90.96 90.100 91.104 91.108 92.112	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2
$\begin{array}{c} P4_1'\\ P4_2\\ PC4_2\\ PC4_2\\ P4_3'\\ \hline I4\\ \hline I4_1\\ P4\\ \hline P2_4'\\ \hline I4_1'\\ \hline P4'/m\\ \hline P2_4/m\\ \hline P4_2/m\\ \hline P4_2/m\\ \hline P4_2/m\\ \hline P4_2/m\\ \hline P4_2/n\\ \hline P4_2/n\\ \hline I4_1/a\\ \hline I4_1/a\\ \hline I4_1/a\\ \hline I4_1/a\\ \hline I4_1/a\\ \hline P4_2'2'\\ \hline PC_42_2\\ \hline P4_1'2_1'\\ \hline PC_42_12\\ \hline P4_1'2_2'\\ \hline PC_41_22\\ \hline P4_1'2_1'\\ \hline PC_12_2\\ \hline P4_1'2_1'\\ \hline PC_12_2\\ \hline P4_1'2_1'\\ \hline \end{array}$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101 91.105 91.109	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.98 90.102 91.106 91.110	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103 91.107 92.111 92.115	4 4 8 8 8 2 2 2 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{c} P_I \hat{4}_1 \\ P_c \hat{4}_2 \\ P_d \hat{4}_1 \\ P_c \hat{4}_2 \\ P_d \hat{4}_1 \\ P_I \hat{4}_3 \\ I_c \hat{4} \\ I_c \hat{4}_1 \\ I_c \hat{4}_1 \\ P_c \hat{4}_1 \\ P_d / m 1' \\ P_c \hat{4} / m \\ P_d \hat{4} / m 1' \\ P_c \hat{4} / m \\ P_d \hat{4} / m 1' \\ P_c \hat{4} / m \\ P_d \hat{4} / m 1' \\ P_c \hat{4} / m \\ I_d / m 1' \\ I_c \hat{4} / m \\ I_d / $	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.88 89.92 90.96 90.100 91.104 91.108 92.112	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2
$\begin{array}{c} P4_1'\\ P4_2\\ PC_4\\ PC_4\\ P4_3'\\ I4_1\\ P4\\ PC_4\\ I4'\\ P4'/m\\ PC_4/m\\ PC_4/m\\ PC_4/m\\ PC_4/m\\ PC_4/n\\ PC_$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101 91.105 91.109 92.113 92.117	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.98 90.102 91.106 91.110 92.114 92.118	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103 91.107 92.111 92.115 93.119	4 4 8 8 8 2 2 2 4 4 8 8 8 2 1 1 2 2 1 2 1 2 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	$\begin{array}{c} P_I 4_1 \\ P_C 4_2 \\ P_A 3_1' \\ P_I 4_3 \\ I_C 4_1 $	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.92 90.96 90.100 91.104 91.108 92.112 92.116 93.120	4 4 4 2 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2 8 4 4 1 4 2 2 1 4 2 2 2 4 2 4 2 4 4 4 4 4 4 4 2 2 1 4 2 2 2 4 2 4 2 4 4 4 2 4 2 4 4 4 2 4 2
$\begin{array}{c} P4_1'\\ P4_2\\ PC_4\\ PC_4\\ P4_3'\\ I4_1\\ P4\\ PC_4\\ I4_1'\\ P4_1'/m\\ PC_4/m\\ PC_4/m\\ PC_4/m\\ PC_4/m\\ PC_4/n\\ PC_4/n\\$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101 91.105 91.109 92.113 92.117 93.121	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.98 90.102 91.106 91.110 92.114 92.118	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103 91.107 92.111 92.115 93.119	4 4 8 8 8 2 2 2 4 4 8 8 8 2 1 2 1 2 1 2 1 2 1 2 2 4 2 4 2 4 2 4 2 4 1 4 1 4 1 2 1 2 2 2 2 2 4 2 4 2 4 4 2 4 2 2 2 2 2 2	$\begin{array}{c} P_I \dot{4}_1 \\ P_c \dot{4}_2 \\ P\dot{4}_3 \dot{1}' \\ P_I \dot{4}_3 \\ I_c \dot{4} \\ I_c \dot{4}_1 \\ P_c \dot{4} \\ I_d \dot{1}_c \dot{4}_1 \\ P_c \dot{4} \\ I_d \dot{1}_d \dot{1}_d \\ P_c \dot{4} \\ I_d \dot{1}_d \dot{1}_d \\ P_c \dot{4}_d \dot{1}_d \\ I_c \dot{4}_d \dot{1}_d \\ I_c \dot{4}_d \dot{1}_d \\ P_c \dot{4}_2 \dot{2}_1' \\ P_c \dot{4}_2 \dot{2}_1 \\ P_c \dot{4}_1 \dot{2}_1 \\ P_c \dot{4}_1 \dot{2}_1 \\ P_c \dot{4}_1 \dot{2}_1 \\ P_c \dot{4}_2 \dot{2}_1' \\ P_c \dot{4}_2 \dot{2}_2' \\ P_c \dot{4}_2 \dot{2}_1' \\ P_c \dot{4}_2 \dot{2}_2' \\ P_c \dot{4}_2 \dot{2}_2' \\ P_c \dot{4}_2 \dot{2}_1' \\ P_c \dot{4}_2 \dot{2}_2' \\ P_c \dot{4}_2' \\ P_c $	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.92 90.96 90.100 91.104 91.108 92.112 92.116 93.120 93.124	4 4 4 2 4 4 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 2 8 4 4 1 4 2 2 2 1 4 2 8 4 4 1 4 2 4 4 4 4 4 4 4 4 2 8 4 4 4 1 4 2 8 4 4 4 1 4 2 8 4 4 4 1 4 2 8 4 4 4 2 8 4 4 4 1 4 2 8 4 4 4 1 8 4 2 8 4 4 4 1 8 4 2 8 4 4 4 1 4 2 8 4 4 4 2 8 4 4 4 1 4 2 8 4 4 4 1 4 2 2 1 4 2 8 4 4 4 1 4 2 2 1 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
$\begin{array}{c} P4_1'\\ P4_2\\ PC_4\\ PC_4\\ P4_3'\\ I4\\ I4_1\\ P4\\ PC_4\\ I4'\\ P4'/m\\ PC_4/m\\ PC_4/m\\$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101 91.105 91.109 92.113 92.117 93.121	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.98 90.102 91.106 91.110 92.114 92.118 93.122	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103 91.107 92.111 92.115 93.119 93.123 94.127	4 4 8 8 8 2 2 2 2 1 1 1 1 2 1 2 2 2 2 2 4 2 1 4 4 1 4 4 4 4	$\begin{array}{c} P_I 4_1 \\ P_C 4_2 \\ P 4_3 1' \\ P_C 4_2 \\ P 4_3 1' \\ P_I 4_3 \\ I_C 4 \\ I_C 4_1 \\ I_C 4_1 \\ P_C 4_1 \\ I_C 4_1 \\ P_C 4_1 \\ I_C 4_1 \\ P_C 4_1 \\ P_C 4_1 \\ P_C 4_2 \\ I_C 4_1 \\ P_C 4_2 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_2 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_2 \\ I_C 4_1 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_1 \\ I_C 4_1 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_1 \\$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.92 90.96 90.100 91.104 91.108 92.112 92.116 93.120 93.124 94.128	4 4 4 2 4 4 4 4 4 2 4 4 4 2 2 1 2 1 4 2 4 2 4 2 8 4 4 2 8 4 4 1 4 2 2 2 4 2 4 2 4 4 4 4 4 4 4 4
$\begin{array}{c} P4_1'\\ P4_2\\ P4_2\\ PC_4\\ P4_3'\\ I4\\ I4_1\\ P4\\ P2_4\\ I4'\\ P4'/m\\ PC_4/m\\ PC_4/m\\$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101 91.105 91.109 92.113 92.117 93.121 93.125 94.129	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.102 91.106 91.110 92.114 92.118 93.122 93.126 94.130	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103 91.107 92.111 92.115 93.119 93.123 94.127 94.131	4 4 8 8 8 2 2 2 2 1 1 1 1 2 1 2 1 2 2 2 2 2	$\begin{array}{c} P_I 4_1 \\ P_C 4_2 \\ P_C 4_3 \\ P_C 4_4 \\ P_C 4_4 \\ P_C 4_4 \\ P_C 4_4 \\ P_C 4_2 \\$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.92 90.96 90.100 91.104 91.108 92.112 92.116 93.120 93.124 94.128	4 4 4 2 4 4 4 4 4 2 4 4 4 2 2 1 2 1 4 2 2 2 4 2 4 2 8 4 4 1 4 2 8 4 4 2 8 4 2 8 4 4 2 8 4 2 8 4 4 4 2 8 8 4 8 8 4 8
$\begin{array}{c} P4_1'\\ P4_2\\ PC_4\\ PC_4\\ P4_3'\\ I4\\ I4_1\\ P4\\ PC_4\\ I4'\\ P4'/m\\ PC_4/m\\ PC_4/m\\$	76.9 77.13 77.17 78.21 79.25 80.29 81.33 81.37 82.41 83.45 83.49 84.53 84.57 85.61 85.65 86.69 86.73 87.77 88.81 88.85 89.89 89.93 90.97 90.101 91.105 91.109 92.113 92.117 93.121	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.10 77.14 77.18 78.22 79.26 80.30 81.34 81.38 82.42 83.46 83.50 84.54 84.58 85.62 85.66 86.70 86.74 87.78 88.82 88.86 89.90 89.94 90.98 90.102 91.106 91.110 92.114 92.118 93.122	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	76.11 77.15 78.19 78.23 79.27 80.31 81.35 82.39 83.43 83.47 84.51 84.55 85.59 85.63 86.67 86.71 87.75 87.79 88.83 89.87 89.91 90.95 90.99 91.103 91.107 92.111 92.115 93.119 93.123 94.127	4 4 8 8 8 8 2 2 2 4 4 1 1 1 1 2 1 2 2 4 2 4 2 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 4 4 2 4 4 4 4	$\begin{array}{c} P_I 4_1 \\ P_C 4_2 \\ P 4_3 1' \\ P_C 4_2 \\ P 4_3 1' \\ P_I 4_3 \\ I_C 4 \\ I_C 4_1 \\ I_C 4_1 \\ P_C 4_1 \\ I_C 4_1 \\ P_C 4_1 \\ I_C 4_1 \\ P_C 4_1 \\ P_C 4_1 \\ P_C 4_2 \\ I_C 4_1 \\ P_C 4_2 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_2 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_2 \\ I_C 4_1 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_1 \\ I_C 4_1 \\ I_C 4_1 \\ I_C 4_2 \\ I_C 4_1 \\$	76.12 77.16 78.20 78.24 79.28 80.32 81.36 82.40 83.44 83.48 84.52 84.56 85.60 85.64 86.68 86.72 87.76 87.80 88.84 89.92 90.96 90.100 91.104 91.108 92.112 92.116 93.120 93.124 94.128	4 4 4 2 4 4 4 4 4 2 4 4 4 2 2 1 2 1 4 2 4 2 4 2 8 4 4 2 8 4 4 1 4 2 2 2 4 2 4 2 4 4 4 4 4 4 4 4

$P_{C}4_{3}22$	95.141	0	0	$P_{I}4_{3}22$	95.142	8	1	$P4_{3}2_{1}2$	96.143	4 4	I	$24_{3}2_{1}21'$	96.144	4 4
PC^{4322} $P4'_32_12'$	96.145	4		$P_{4_3}^{2_1}$ $P_{4_3}^{2_1}$ $P_{4_3}^{2_1}$ $P_{4_3}^{2_1}$	96.146	$\frac{\circ}{4}$	4 .	$P_{4_3}^{4_3} 2_1^{1_2}$	96.145	$\frac{4}{4} \frac{4}{4}$			96.144 96.148	4 4 8 4
$P_C 4_3 2_1 2$	96.149	8		$\frac{13212}{P_I 4_3 2_1 2}$	96.150			I422	97.151	2 1			97.152	2 1
I4'22'	97.153	2	1	I42'2'	97.154	2	1 .	I4'2'2	97.155	2 1	I	.422	7.156	4 2
$I4_{1}22$	98.157	4	2	$I4_{1}221'$	98.158			$I4_{1}'22'$	98.159	4 2	I		98.160	4 2
$I4_{1}'2'2$	98.161	4	2	$I_c 4_1 22$	98.162			$\frac{P4mm}{P4mm}$	99.163				99.164	2 1
P4'm'm	99.165 99.169			$P4'mm'$ P_I4mm	99.166			$\frac{P4m'm'}{P4bm}$	99.167	$\begin{array}{c c} 2 & 1 \\ 2 & 2 \end{array}$	I		$\frac{09.168}{100.172}$	$\begin{array}{c c} 4 & 2 \\ \hline 4 & 2 \end{array}$
P_C4mm $P4'b'm$	$\frac{99.109}{100.173}$	4		P_14mm P_4bm'	99.170 100.174			P4b'm'	$\frac{100.171}{100.175}$	$\frac{2}{2}$ $\frac{2}{2}$	I		100.172	$\begin{array}{c c} 4 & 2 \\ \hline 4 & 4 \end{array}$
P_C4bm	$\frac{100.173}{100.177}$	4		$\frac{140m}{P_14bm}$	100.174			$P4_2cm$	101.179	4 2	I		101.180	4 2
$P4_2c'm$	101.181	4	2	$P4_2'cm'$	101.182	4	2 .	$P4_2c'm'$	101.183	4 2	F	$P_c 4_2 cm$ 1	101.184	4 2
$P_C 4_2 cm$	101.185	4		P_I4_2cm	101.186	8	4 .	$P4_2nm$	102.187	4 2	I	$24_2nm1'$ 1	102.188	4 2
$P4_2'n'm$	102.189	4		$P4'_2nm'$	102.190			$P4_2n'm'$	102.191	4 2	ŀ		102.192	8 4
$P_C 4_2 nm$ $P 4' c' c$	102.193 103.197	4		P_14_2nm $P4'cc'$	102.194 103.198			$\frac{P4cc}{P4c'c'}$	103.195 103.199	$\frac{4}{4} \frac{2}{2}$			103.196 103.200	$\begin{array}{c c} 4 & 2 \\ \hline 4 & 2 \end{array}$
P_C4cc	$\frac{103.197}{103.201}$			$\frac{14cc}{P_I 4cc}$	103.198	4	$\frac{2}{4}$	P4nc	104.203				103.200	$\frac{4}{4} \frac{2}{2}$
P4'n'c	104.205	4		P4'nc'	104.206	4	2 .	P4n'c'	104.207	4 2			04.208	4 4
P_C4nc	104.209	8	4	P_I4nc	104.210	4	2 .	$P4_2mc$	105.211	2 2	I	$^{2}4_{2}mc1'$ 1	105.212	$\begin{array}{c c} 2 & 2 \\ 4 & 2 \end{array}$
$P4_2'm'c$	105.213	2		$P4'_2mc'$	105.214			$P4_2m'c'$	105.215		ŀ		105.216	
$P_C 4_2 mc$ $P 4'_2 b' c$	105.217	<u>8</u>		$\frac{P_1 4_2 mc}{P 4_2 bc'}$	105.218	4	<u>2 .</u>	$P4_2bc$	106.219	4 4			106.220	$\begin{array}{rrr} 4 & 4 \\ \hline 8 & 4 \end{array}$
$P_{C}4_{2}bc$	$\frac{106.221}{106.225}$	8		$P4_2bc$ P_I4_2bc	106.222 106.226	4 8	4 .	$\frac{P4_2b'c'}{I4mm}$	106.223 107.227	$\frac{4}{2} \frac{4}{1}$			$\frac{106.224}{107.228}$	$\begin{array}{c c} 8 & 4 \\ \hline 2 & 1 \end{array}$
I4'm'm	107.229	2	1	$\frac{11420c}{I4'mm'}$	107.230	$\frac{6}{2}$	1	$\frac{14mm}{I4m'm'}$	107.231	$\frac{2}{2} \frac{1}{1}$			107.232	4 2
I4cm	108.233	2	2	I4cm1'	108.234	4	2	I4'c'm	108.235	4 2	I	4'cm' 1	108.236	4 2
14c'm'	108.237	2	2	I_c4cm	108.238	4	2 .	$I4_1md$	109.239	2 2	I	$4_1md1'$ 1	<u>109.240</u>	2 2
$I4_1m'd$ $I4_1cd$	$\frac{109.241}{110.245}$	2 4	7	$I4'_1md'$ $I4_1cd1'$	109.242 110.246			$\overline{I4_1m'd'}$ $\overline{I4_1'c'd}$	109.243 110.247				109.244	8 4 4 4
$I4_1ca$ $I4_1c'd'$	110.249	4		$\frac{I4_1ca_1}{I_c4_1cd}$	110.240			P42m	111.251	2 1	I		111.252	$\frac{4}{2} \frac{4}{1}$
P4'2'm	111.253	2	1	$P\overline{4}'2m'$	111.254	2	1 .	$P\overline{4}2'm'$	111.255	2 1	F	$P_c \overline{42m}$ 1	111.256	$\frac{2}{4}$ $\frac{1}{2}$
$P_C \overline{4}2m$	111.257	4	2	$P_I \overline{4}2m$	111.258	4	2 .	$P\overline{4}2c$	112.259	2 2	F	242c1' 1	112.260	2 2
$P\overline{4}'2'c$	112.261	2		$P\overline{4}'2c'$	112.262	2	2	$P\overline{42}'c'$	112.263		I		12.264	4 2
$P_C 42c$	112.265 113.269	<u>8</u>		$P_I \overline{42c}$	112.266 113.270	$\frac{4}{4}$	2 .	$\frac{P42_1m}{P42_1'm'}$	113.267	$\begin{array}{ccc} 2 & 2 \\ 2 & 2 \end{array}$	I		13.268	$\begin{array}{c c} 4 & 2 \\ \hline 4 & 4 \end{array}$
$\frac{P4'2'_1m}{P_C42_1m}$	113.273	$\frac{4}{4}$	2	$\frac{P\overline{4'2_1}m'}{P_I\overline{42_1}m}$	113.274			$P42_{1}m = P42_{1}c$	113.271 114.275	$\frac{2}{4}$ $\frac{2}{2}$	I		13.272	$\begin{array}{c c} 4 & 4 \\ \hline 4 & 2 \end{array}$
$P4'2'_1c$	$\frac{113.273}{114.277}$	4		$\frac{11421m}{P4'2_1c'}$	114.278			$P42_{1}c'$	114.279	$\frac{1}{4} \frac{2}{2}$			14.280	4 4
P_C42_1c	114.281	8	4	$P_I 42_1 c$	114.282	4	2 .	$\overline{P4m2}$	115.283	2 1			15.284	2 1
$P\overline{4'm'2}$	115.285	2	1	P4'm2'	115.286	2	1 .	$P\overline{4}m'2'$	115.287	2 1		$\frac{2}{c^4m^2}$ 1	115.288	$\begin{array}{c c} 4 & 2 \\ \hline 4 & 2 \end{array}$
$P_C \overline{4} m2$	115.289	4	2	$P_L \overline{4} m2$	115.290	4	2 .	$P\overline{4}c2$	116.291	4 2	ŀ		16.292	4 2
$P_{C}4c2$	116.293 116.297	4	1	$\frac{P\bar{4}'c2'}{P_I4c2}$	116.294 116.298	<u>4</u> 4	<u>2</u> .	$\frac{P\bar{4}c'2'}{P4b2}$	116.295 117.299	$\begin{array}{c c} 4 & 2 \\ 2 & 2 \end{array}$	I		116.296 117.300	$\begin{array}{c c} 4 & 2 \\ \hline 4 & 2 \end{array}$
P4'b'2	117.301	4	2	P4'b2'	117.302			$\frac{1402}{P4b'2'}$	117.303	$\frac{2}{2} \frac{2}{2}$			17.304	4 4
$P_C \bar{4}b2$	117.305	4	2	$P_I \bar{4}b2$	117.306	4	4 .	$P\overline{4}n2$	118.307	2 2	F	24n21' 1	118.308	4 2
P4'n'2	118.309	4	2	P4'n2'	118.310	4	2	P4n'2'	118.311	2 2			18.312	4 4
$\frac{P_C 4n2}{I4'm'2}$	$\frac{118.313}{119.317}$	4		$\frac{P_I 4n2}{I4'm2'}$	118.314 119.318			$\frac{I4m2}{I4m'2'}$	119.315 119.319	2 1			19.316 19.320	$\begin{array}{c c} 2 & 1 \\ \hline 4 & 2 \end{array}$
$\frac{14 m 2}{I4c2}$	$\frac{119.317}{120.321}$	2	2	$\frac{14 m_2}{I4c21'}$	120.322			$\frac{14m\ 2}{14'c'2}$	120.323	$\frac{1}{2} \frac{1}{2}$			120.324	$\begin{array}{c c} 4 & 2 \\ \hline 2 & 2 \\ \end{array}$
$\overline{I4c'2'}$	120.325	$\frac{2}{2}$	$\tilde{2}$	$\frac{I4c21'}{I_c4c2}$	120.326	4	2 .	I42m	121.327	$\frac{2}{2}$ $\frac{2}{1}$	I	42m1' 1	21.328	2 1
I4'2'm	121.329	2	1	I4'2m'	121.330			I42'm'	121.331	2 1	$I_{\tilde{I}}$	$\frac{42m}{12m}$	121.332	4 2
I42d $I42'd'$	$\frac{122.333}{122.337}$	$\frac{4}{4}$	$\frac{2}{2}$	$\frac{I42d1'}{I_c42d}$	122.334 122.338			$\frac{I4'2'd}{P4/mmm}$	122.335 123.339	$\frac{4}{2} \frac{2}{1}$	I	$\frac{4'2d'}{24/mmm1'}$ 1	22.336 23.340	$\begin{array}{c c} 4 & 2 \\ \hline 2 & 1 \end{array}$
P4/m'mm	123.341	2		$\frac{I_c 42a}{P4'/mm'm}$				P4'/mmm'	123.343			$\frac{4}{100}mm = 1$		$\frac{2}{2}$ $\frac{1}{1}$
P4/mm'm'				$\frac{14/mmm}{P4'/m'mm'}$				$\frac{P4/m'm'm'}{P4/m'm'm'}$					123.348	$\frac{2}{4}$ $\frac{1}{2}$
	123.349			$\frac{14/mmm}{P_I4/mmm}$	123.350			P4/mcc	124.351				24.352	$\frac{4}{4}$ $\frac{2}{2}$
P4/m'cc	124.353			P4'/mc'c	124.354			P4'/mcc'	124.355				124.356	4 2
P4/mc'c'	124.357	4		P4'/m'cc'	124.358			P4/m'c'c'	124.359				124.360	4 2
P_C4/mcc	124.361			P_I4/mcc	124.362	8	4 .	$\overline{P4/nbm}$	125.363				125.364	4 2
P4/n'bm	125.365		2	P4'/nb'm	125.366	4	2 .	P4'/nbm'	125.367	4 2	F	P4'/n'b'm 1	125.368	4 2
P4/nb'm'	125.369	4	2	P4'/n'bm'	125.370			P4/n'b'm'	125.371	4 2	F	P_c4/nbm 1	125.372	8 4
P_C4/nbm	125.373			P_I4/nbm	125.374			P4/nnc	126.375				126.376	8 2
P4/n'nc	126.377			P4'/nn'c	126.378			P4'/nnc'	126.379				126.380	8 2
P4/nn'c'	126.381			P4'/n'nc'	126.382			P4/n'n'c'	126.383				126.384	8 4
P_C4/nnc	126.385			P_I4/nnc	126.386			P4/mbm	127.387				127.388	4 2
P4/m'bm	127.389	4	2	$\frac{P4'/mb'm}{P4'/m'lm'}$	127.390			P4'/mbm'	127.391				127.392	4 2
	127.393			P4'/m'bm'	127.394			$\frac{P4/m'b'm'}{P4/mmn}$	127.395				127.396	4 4
P_C4/mbm	127.397			P_I4/mbm	127.398			$\frac{P4/mnc}{P4'/mnc'}$	128.399				128.400	4 2
P4/m'nc $P4/mn'c'$	128.401 128.405			$\frac{P4'/mn'c}{P4'/m'nc'}$	128.402 128.406			$\frac{P4'/mnc'}{P4/m'n'c'}$	128.403 128.407				128.404	4 2 4 4
P_C4/mnc	128.409			$\frac{P4/m nc}{P_I 4/m nc}$	128.406			$P4/m \ n \ c$ P4/nmm	128.407				128.408	4 4 4
PC4/mnc P4/n'mm	129.413			$\frac{P_I 4/mnc}{P4'/nm'm}$	129.414			P4/nmm'	129.411				129.412	4 2
P4/nm'm'	$\frac{129.413}{129.417}$			$\frac{P4/mmm}{P4'/n'mm'}$	129.414			P4/n'm'm'	129.419				129.410	8 4
	129.417	4		$\frac{14/nmm}{P_I4/nmm}$	129.410			$\frac{P4/nmmm}{P4/ncc}$	130.423				130.424	8 4
P4/n'cc	130.425			$\frac{P4'/nc'c}{P4'/nc'c}$	130.426			P4'/ncc'	130.427				130.424	8 4
P4/nc'c'	130.429	8		P4'/n'cc'	130.430			P4/n'c'c'	130.431				130.432	8 4
/			-	1	_00.100	_	-1-	,		<u> </u>	1.2	2-/.000		0 1

D 4/	100 400	0. 4 D. 4 /	100 404	0	4 D4 /	101 405	0.0	D4 / 1/	101 400	0.0
P_C4/ncc	130.433	$8 4 P_I 4/ncc$	130.434		$\frac{4 P4_2/mmc}{ P4_2 }$	131.435		$P4_2/mmc1'$		2 2
	131.437	$2 2 \mid P4'_2/mm'c$	131.438		$2 P4_2'/mmc' $	131.439		$P4_2'/m'm'c$		2 2
	131.441	$2 2 P4_2^{\prime\prime}/m'mc'$	131.442			131.443		/	131.444	4 2
P_C4_2/mmc		8 4 P_I4_2/mmc	131.446		$2 P4_2/mcm$	132.447			132.448	4 2
	132.449	$4 \ 2 P4'_2/mc'm$	132.450	4	$2 P4_2/mcm'$	132.451			132.452	4 2
	132.453	$4 \ 2 P4'_2/m'cm'$	132.454		$2 P4_2/m'c'm'$	132.455			132.456	4 2
P_C4_2/mcm		$4 4 P_I 4_2/mcm$	132.458		$4 P4_2/nbc$	133.459		$P4_2/nbc1'$	133.460	8 4
$P4_2/n'bc$	133.461	8 $4 P4'_2/nb'c$	133.462		$4 P4_2'/nbc'$	133.463			133.464	8 4
$P4_2/nb'c'$	133.465	$8 \ 4 \ P4'_2/n'bc'$	133.466	8	$4 P4_2/n'b'c'$	133.467	8 4	P_c4_2/nbc	133.468	8 4
$P_C 4_2/nbc$	133.469	$8 4 P_I 4_2/nbc$	133.470	8	$4 P4_2/nnm$	134.471			134.472	4 2
$P4_2/n'nm$	134.473	$4 2 \mid P4_2/nn'm$	134.474	4	$2 P4_2'/nnm'$	134.475			134.476	4 2
$P4_2/nn'm'$	134.477	$4 \ 2 \ P4_2^{7}/n'nm'$	134.478		$2 P4_2/n'n'm'$	134.479			134.480	8 4
$P_C 4_2/nnm$	134.481	$4 4 P_I \overline{4_2}/nnm$	134.482		$2 P4_2/mbc$	135.483			135.484	4 4
$P4_2/m'bc$	135.485	$4 4 P4'_2/mb'c$	135.486		$4 P4_2^{7}/mbc'$	135.487			135.488	4 4
$P4_2/mb'c'$	135.489	$4 \ 4 \ P4'_2/m'bc'$	135.490		$4 P4_2/m'b'c'$	135.491		P_c4_2/mbc	135.492	8 4
$P_C 4_2/mbc$	135.493	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	135.494		$\frac{4 P4_2/mnm}{}$	136.495	4 2		136.496	4 2
	136.497	$\frac{3}{4} \frac{1112}{P4'_2/mn'm}$	136.498		$\frac{1}{2} \frac{P4_2'/mnm'}{P4_2'/mnm'}$	136.499	4 2	$P4'_2/m'n'm$		4 2
$P4_2/mn'm'$		$\frac{1}{4} \frac{2}{2} \frac{1}{P4'_2/m'nm'}$	136.502		$\frac{2 14_2/minm}{2 P4_2/m'n'm'}$				136.504	8 4
P_C4_2/mnm		$\frac{4}{4} \frac{2}{4} \frac{14_2}{mnm}$	136.506		$\frac{2 14_2/mmm}{2 P4_2/nmc}$	137.507	8 2		137.508	8 2
$PC^{42/mmm}$ $P4_2/n'mc$	137.509	$\frac{4}{8} \frac{4}{2} \frac{P_1 4_2}{nm'c}$	137.510		$\frac{2 P4_2/nmc}{2 P4_2/nmc'}$	137.511	8 2		137.512	8 2
$P4_2/nm'c'$	137.513	8 2 P4'_2/n'mc'	137.514		$\frac{2 P4_2/n'm'c' }{2 P4_2/mmc}$	137.515			137.516	
P_C4_2/nmc	137.517	$8 4 P_1 4_2/nmc$	137.518		$\frac{2 P4_2/ncm}{4 P4'/mass'}$	138.519			138.520	4 4
$P4_2/n'cm$	138.521	$\frac{4}{4} \frac{4}{4} \frac{P4'_2/nc'm}{P4'_1/2}$	138.522		$\frac{4 P4_2/ncm'}{ P4_2 }$	138.523			138.524	4 4
$P4_2/nc'm'$	138.525	$\frac{4}{4} \frac{4}{4} \frac{P4_2'/n'cm'}{P4_2'}$	138.526	4	$\frac{4 P4_2/n'c'm'}{4 P4_2/n'c'm'}$	138.527			138.528	8 4
P_C4_2/ncm	138.529	$4 4 P_I 4_2/ncm$	138.530		4 <i>I</i> 4/ <i>mmm</i>	139.531			139.532	4 1
I4/m'mm	139.533	4 1 I4'/mm'm	139.534		$\frac{1}{I}\frac{I4'/mmm'}{I}$	139.535			139.536	4 1
I4/mm'm'	139.537	$\frac{4}{1} \frac{1}{I4'/m'mm'}$	139.538	4	1 I4/m'm'm'	139.539	4 1		139.540	4 2
I4/mcm	140.541	$4 \ 2 \ I4/mcm1'$	140.542	4	2 I4/m'cm	140.543		I4'/mc'm	140.544	4 2
I4'/mcm'	140.545	$4 \ 2 \ I4'/m'c'm$	140.546		2 I4/mc'm'	140.547			140.548	4 2
I4/m'c'm'	140.549	$4 \ 2 \ I_c 4/mcm$	140.550	4	$2 I4_1/amd$	141.551	4 2	$I4_1/amd1'$	141.552	4 2
$I4_1/a'md$	141.553	$4 \ 2 \ I4'_1/am'd$	141.554	4	$2 I4'_1/amd'$	141.555	4 2	$I4_1'/a'm'd$	141.556	4 2
$I4_1/am'd'$	141.557	$4 \ 2 \ I4'_1/a'md'$	141.558	4	$2I_{41}/a'm'd'$	141.559			141.560	8 4
$I4_1/acd$	142.561	$8 \ 4 \ I4_1/acd1'$	142.562		$4 I 4_1/a' c d$	142.563			142.564	8 4
$I4'_1/acd'$	142.565	$8 \ 4 \ I4'_1/a'c'd$	142.566	8	$4 I 4_1/ac'd'$	142.567			142.568	8 4
$I4_1/a'c'd'$	142.569	$8 \ 4 \ I_c 4_1 / acd$	142.570	8	4 P3	143.1		P31'	143.2	2 1
P_c3	143.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	144.4	3	$\frac{1}{3}P_{3_1}1'$	144.5	3 3		144.6	6 6
$P3_2$	145.7	$\frac{2}{3} \frac{2}{3} \frac{1}{P_{3_2} 1'}$	145.8	3	$\frac{3}{1} P_c 3_2$	145.9	6 6	R3	146.10	1 1
				2	$2 P\bar{3}$	147.13		$P\overline{3}1'$	147.14	4 1
K31	146.11	$2 1 R_I 3$	140.12			1.40.15				
R31' P3'	147.15	$3 \ 1 \ P_c 3$	146.12 147.16	6	2 R3	148.17		R31'	148.18	3 1
P3' R3'	147.15 148.19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20	6	$ \begin{array}{c c} 2 & R3 \\ \hline 2 & P312 \end{array} $	149.21	2 1	P3121'	149.22	$\begin{array}{ccc} 3 & 1 \\ 2 & 1 \end{array}$
P3' R3' P312'	147.15 148.19 149.23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24	$\begin{array}{r} 6 \\ 6 \\ 2 \end{array}$	$ \begin{array}{c cccc} 2 & R3 \\ 2 & P312 \\ 2 & P321 \end{array} $	149.21 150.25	$\begin{array}{c c} 2 & 1 \\ \hline 2 & 1 \end{array}$	P3121' P3211'	149.22 150.26	$\begin{array}{r} 3 & 1 \\ 2 & 1 \\ 4 & 1 \end{array}$
P3' R3' P312' P32'1	147.15 148.19 149.23 150.27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24 150.28	$\begin{array}{r} 6 \\ 6 \\ 2 \\ 4 \end{array}$	2 R3 2 P312 2 P321 2 P3 ₁ 12	149.21 150.25 151.29	$ \begin{array}{c cccc} & 2 & 1 \\ \hline & 2 & 1 \\ \hline & 3 & 3 \end{array} $	P3121' P3211' P3 ₁ 121'	149.22 150.26 151.30	$ \begin{array}{r} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \end{array} $
P3' R3' P312' P32'1 P3 ₁ 12'	147.15 148.19 149.23 150.27 151.31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24 150.28 151.32	$ \begin{array}{r} 6 \\ \hline 6 \\ \hline 2 \\ \hline 4 \\ \hline 6 $	2 R3 2 P312 2 P321 2 P3 ₁ 12 6 P3 ₁ 21	149.21 150.25 151.29 152.33	2 1 2 1 3 3 3 3	P3121' P3211' P3 ₁ 121' P3 ₁ 211'	149.22 150.26 151.30 152.34	3 1 2 1 4 1 3 3 3 3
P3' R3' P312' P32'1 P3 ₁ 12' P3 ₁ 2'1	147.15 148.19 149.23 150.27 151.31 152.35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24 150.28 151.32 152.36	6 6 2 4 6 6	$\begin{array}{c ccccc} 2 & R3 \\ 2 & P312 \\ 2 & P321 \\ 2 & P3_112 \\ 6 & P3_121 \\ 6 & P3_212 \end{array}$	149.21 150.25 151.29 152.33 153.37	$\begin{array}{c cccc} 2 & 1 \\ 2 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \end{array}$	P3121' P3211' P3 ₁ 121' P3 ₁ 211' P3 ₂ 121'	149.22 150.26 151.30 152.34 153.38	3 1 2 1 4 1 3 3 3 3 3 3
P3' R3' P312' P32'1 P3 ₁ 12' P3 ₁ 2'1 P3 ₂ 12'	147.15 148.19 149.23 150.27 151.31 152.35 153.39	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24 150.28 151.32 152.36 153.40	6 6 2 4 6 6 6	2 R3 2 P312 2 P321 2 P321 6 P3 ₁ 21 6 P3 ₂ 12 6 P3 ₂ 21	149.21 150.25 151.29 152.33 153.37 154.41	2 1 2 1 3 3 3 3 3 3 3 3	P3121' P3211' P3 ₁ 121' P3 ₁ 211' P3 ₂ 121' P3 ₂ 211'	149.22 150.26 151.30 152.34 153.38 154.42	3 1 2 1 4 1 3 3 3 3 3 3 3 3
P3' R3' P312' P32'1 P3 ₁ 12' P3 ₂ 12'1 P3 ₂ 2'1	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24 150.28 151.32 152.36 153.40 154.44	6 6 2 4 6 6 6	2 R3 2 P312 2 P321 2 P321 2 P3 ₁ 12 6 P3 ₁ 21 6 P3 ₂ 12 6 P3 ₂ 21 6 R32	149.21 150.25 151.29 152.33 153.37 154.41 155.45	2 1 2 1 3 3 3 3 3 3 3 3 2 1	P3121' P3211' P3 ₁ 121' P3 ₁ 211' P3 ₂ 121' P3 ₂ 211' R321'	149.22 150.26 151.30 152.34 153.38 154.42 155.46	3 1 2 1 4 1 3 3 3 3 3 3 3 3 2 1
P3' R3' P312' P32'1 P3 ₁ 12' P3 ₁ 2'1 P3 ₂ 12'	147.15 148.19 149.23 150.27 151.31 152.35 153.39	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24 150.28 151.32 152.36 153.40	6 6 2 4 6 6 6 6 2 4	$\begin{array}{c ccccc} 2 & R3 \\ 2 & P312 \\ 2 & P321 \\ 2 & P3_112 \\ 6 & P3_121 \\ 6 & P3_212 \\ 6 & P3_221 \\ 6 & R32 \\ 2 & P3m1 \\ 2 & P31m \end{array}$	149.21 150.25 151.29 152.33 153.37 154.41	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1	P3121' P3211' P3 ₁ 121' P3 ₁ 211' P3 ₂ 121' P3 ₂ 211' R321' P3m11' P31m1'	149.22 150.26 151.30 152.34 153.38 154.42	3 1 2 1 4 1 3 3 3 3 3 3 3 3 2 1 2 1 4 1
P3' R3' P312' P32'1 P312' P312'1 P322'1 R32' P3m'1 P31m'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16 \\ 148.20 \\ 149.24 \\ 150.28 \\ 151.32 \\ 152.36 \\ 153.40 \\ 154.44 \\ 155.48 \\ 156.52 \\ 157.56 \\ \end{array}$	6 6 2 4 6 6 6 6 2 4	2 R3 2 P312 2 P312 2 P3112 6 P3 ₁ 21 6 P3 ₂ 21 6 R32 2 P3m1 2 P31m 2 P3c1	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2	P3121' P3211' P3 ₁ 121' P3 ₁ 211' P3 ₂ 121' P3 ₂ 211' R321' P3m11' P3lm1' P3c11'	149.22 150.26 151.30 152.34 153.38 154.42 155.46 156.50 157.54 158.58	3 1 2 1 4 1 3 3 3 3 3 3 3 3 2 1 2 1 4 1 4 1
P3' R3' P312' P312' P3 ₁ 12' P3 ₁ 2'1 P3 ₂ 12' P3 ₂ 2'1 R32' P3m'1 P31m' P3c'1	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16 \\ 148.20 \\ 149.24 \\ 150.28 \\ 151.32 \\ 152.36 \\ 153.40 \\ 154.44 \\ 155.48 \\ 156.52 \\ 157.56 \\ 158.60 \\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 2	$\begin{array}{c cccc} 2 & R3 \\ 2 & P312 \\ 2 & P312 \\ 2 & P311 \\ 2 & P3_112 \\ 6 & P3_212 \\ 6 & P3_221 \\ 6 & R32 \\ 2 & P3m1 \\ 2 & P31m \\ 2 & P3c1 \\ 2 & P3lc \\ \end{array}$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2	P3121' P3211' P31121' P31211' P32211' P32211' R321' P3m11' P31m1' P3c11'	149.22 150.26 151.30 152.34 153.38 154.42 155.46 156.50 157.54 158.58 159.62	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 2 1 4 1 4 1 4 2 4 2
P3' R3' P312' P32'1 P3 ₁ 12' P3 ₁ 2'1 P3 ₂ 2'1 R32' P3m'1 P31m' P3c'1 P31c'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16 \\ 148.20 \\ 149.24 \\ 150.28 \\ 151.32 \\ 152.36 \\ 153.40 \\ 154.44 \\ 155.48 \\ 156.52 \\ 157.56 \\ 158.60 \\ 159.64 \\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 2	$\begin{array}{c ccccc} 2 & R3 \\ 2 & P312 \\ 2 & P321 \\ 2 & P321 \\ 2 & P3_112 \\ 6 & P3_121 \\ 6 & P3_212 \\ 6 & P3_221 \\ 6 & R32 \\ 2 & P3m1 \\ 2 & P31m \\ 2 & P3c1 \\ 2 & P3c1 \\ 2 & P3lc \\ 2 & P3m \\ \end{array}$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 1	P3121' P3211' P31121' P3121' P32211' P32211' R321' P3m11' P31m1' P31c1' R3m1'	149.22 150.26 151.30 152.34 153.38 154.42 155.46 156.50 157.54 158.58 159.62 160.66	3 1 2 1 4 1 3 3 3 3 3 3 3 3 2 1 2 1 4 1 4 2 4 2 2 1
P3' R3' P312' P32'1 P3 ₁ 12' P3 ₁ 2'1 P3 ₂ 12' P3 ₂ 2'1 R32' P3m'1 P31m' P3c'1 P31c' R3m'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24 150.28 151.32 152.36 153.40 154.44 155.48 156.52 157.56 158.60 159.64 160.68	6 6 2 4 6 6 6 6 2 4 4 4 2 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69	2 1 2 1 3 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 1 2 2	P3121' P3211' P31121' P31211' P32211' P32211' R321' P3m11' P31m1' P3c11' P3c11' R3c1' R3c1'	149.22 150.26 151.30 152.34 153.38 154.42 155.46 156.50 157.54 158.58 159.62 160.66 161.70	3 1 2 1 4 1 3 3 3 3 3 3 3 3 2 1 2 1 4 1 4 2 4 2 2 1 4 2 4 2 2 1
P3' R3' P312' P32'1 P3112' P3212' P322'1 R32' P3m'1 P31m' P3c'1 P31c' R3m' R3c'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16 \\ 148.20 \\ 149.24 \\ 150.28 \\ 151.32 \\ 152.36 \\ 153.40 \\ 154.44 \\ 155.48 \\ 156.52 \\ 157.56 \\ 158.60 \\ 159.64 \\ 160.68 \\ 161.72 \\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 4 2 4 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 4 1	$\begin{array}{c} P3121' \\ P3211' \\ P3211' \\ P3_1121' \\ P3_1211' \\ P3_2121' \\ P3_2211' \\ R321' \\ P3m11' \\ P3c11' \\ P31m1' \\ P31c1' \\ P31c1' \\ R3c1' \\ P31m1' \\ R3c1' \\ P31m1' \\ R3c1' \\ P31m1' \end{array}$	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ \hline 152.34 \\ 153.38 \\ 154.42 \\ \hline 155.46 \\ 156.50 \\ 157.54 \\ \hline 158.58 \\ \hline 159.62 \\ \hline 160.66 \\ \hline 161.70 \\ \hline 162.74 \\ \end{array}$	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 2 1 2 1 4 1 4 2 4 2 2 1 4 2 4 2 4 2
P3' R3' P312' P32'1 P3 ₁ 12' P3 ₂ 12' P3 ₂ 2'1 R32' P3m'1 P31m' P3c'1 P31c' R3m' R3c' P3'1m	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 2 4 2 4 4 2	$\begin{array}{c cccc} 2 & R3 \\ 2 & P312 \\ 2 & P321 \\ 2 & P3_112 \\ 6 & P3_121 \\ 6 & P3_212 \\ 6 & P3_221 \\ 6 & R32 \\ 2 & P3m1 \\ 2 & P3m1 \\ 2 & P3c1 \\ 2 & P3c1 \\ 2 & P3c1 \\ 2 & R3m \\ 2 & R3c \\ 2 & P31m \\ 1 & P31m' \end{array}$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 3 1 3 3	P3121' P3211' P31121' P3121' P32121' P32211' R321' P3m11' P31m1' P31c1' R3m1' R3m1' R3m1' R3m1' R3c1' R3m1' R3c1' P31m1' P31m1' R3c1' P31m1' P31m1'	149.22 150.26 151.30 152.34 153.38 154.42 155.46 156.50 157.54 158.58 159.62 160.66 161.70 162.74 162.78	$\begin{array}{c} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 1 \\ 2 & 1 \\ 4 & 2 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 4 & 2 \\ 4 & 2 \\ 4 & 1 \\ 6 & 2 \\ \end{array}$
P3' R3' P312' P32'1 P312' P312'1 P322'1 R32'7 R32'1 R32' P31m' P31m' P31c' R3m' R3c' P3'1m P31c	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16 \\ 148.20 \\ 149.24 \\ 150.28 \\ 151.32 \\ 152.36 \\ 153.40 \\ 154.44 \\ 155.48 \\ 156.52 \\ 157.56 \\ 158.60 \\ 159.64 \\ 160.68 \\ 161.72 \\ 162.76 \\ 163.80 \\ \end{array}$	6 6 2 4 6 6 6 6 6 2 4 4 2 4 4 2 4 6	$\begin{array}{c ccccc} 2 & R3 \\ 2 & P312 \\ 2 & P312 \\ 2 & P3112 \\ 6 & P3_121 \\ 6 & P3_212 \\ 6 & P3_221 \\ 6 & R32 \\ 2 & P3m1 \\ 2 & P31m \\ 2 & P31c \\ 2 & R3m \\ 2 & R3c \\ 2 & P31m \\ 1 & P31m \\ 1 & P31m \\ 2 & P31m \\ 2 & P31c \\ 2 & P31$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81	2 1 2 1 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 4 1 3 6 2	P3121' P3211' P31121' P31121' P31211' P32211' P32211' R321' P3m11' P31m1' P31c1' R3m1' R3c1' P31m1' P31c1' R3c1' P31m1' P31c1'	149.22 150.26 151.30 152.34 153.38 154.42 155.46 156.50 157.54 158.58 159.62 160.66 161.70 162.74 162.78 163.82	$\begin{array}{c} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 1 \\ 4 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 6 & 2 \\ \end{array}$
P3' R3' P312' P32'1 P312' P312'1 P3212' P322'1 R32' P3m'1 P31m' P3c'1 P31c' R3m' R3c' P3'1m P31c P31c'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ \end{array}$	6 6 2 4 6 6 6 2 4 4 2 4 4 2 4 6 6 6 6 3 6 6 3 4 4 6 6 6 6 6 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 2 1 3 1 6 2 4 1	P3121' P3211' P31121' P31121' P31211' P32211' P32211' R321' P3m11' P31m1' P31c1' R3m1' R3c1' R3m1' R3c1' R3c1' P31m1' P31m1' P31m1'	149.22 150.26 151.30 152.34 153.38 154.42 155.46 156.50 157.54 158.58 159.62 160.66 161.70 162.74 162.78 163.82 164.86	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 4 1 4 1 4 2 4 2 4 1 4 2 4 1 6 2 4 1
P3' R3' P312' P312' P3112' P3112' P3112' P3212' P322'1 R32' P3m'1 P31m' P31c' R3m' R3c' P3'1m P31c'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 160.67 161.71 162.75 163.79 163.83 164.87 165.91	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	147.16 148.20 149.24 150.28 151.32 152.36 153.40 154.44 155.48 156.52 157.56 158.60 159.64 160.68 161.72 162.76 163.80 163.84 164.88 165.92	6 6 2 4 6 6 6 2 4 4 2 4 4 2 4 6 6 6 6 3 6 6 3 4 4 6 6 6 6 6 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93	2 1 2 1 3 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 1 2 2 4 1 3 1 6 2	P3121' P3211' P3211' P3121' P3121' P32211' P32211' R321' P3m11' P31m1' P31c1' R3c1' P31c1' R3c1' P31m1' P31m1' P31m1' P31m1' P31m1 P3'1c' P3m11' P3'm1 P3'1c' P3m11' P3m11' P3m11' P3m11' P3m1 P3'c'1	149.22 150.26 151.30 152.34 153.38 154.42 155.46 156.50 157.54 158.58 159.62 160.66 161.70 162.74 162.78 163.82 164.86 164.90 165.94	$\begin{array}{c} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 1 \\ 4 & 1 \\ 4 & 2 \\ 4 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 1 \\ 6 & 2 \\ 4 & 1 \\ 6 & 2 \\ 4 & 1 \\ 6 & 2 \\ 6 & 2 \\ 4 & 1 \\ 8 & 2 \\ 6 & 2 \\$
P3' R3' P312' P32'1 P312'1 P312'1 P32'1 P32'1 P32'1 R32' P33c'1 P31c' R3m' R3c' P3'1m P31c P31c' P31c' P3'm1 P31c' P3'm1 P3c1 P3c1 P3c1	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16 \\ 148.20 \\ 149.24 \\ 150.28 \\ 151.32 \\ 152.36 \\ 153.40 \\ 154.44 \\ 155.48 \\ 156.52 \\ 157.56 \\ 158.60 \\ 159.64 \\ 160.68 \\ 161.72 \\ 162.76 \\ 163.80 \\ 163.84 \\ 164.88 \\ 165.92 \\ 165.96 \\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 2 4 4 2 4 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93 166.97	2 1 2 1 3 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 1 2 1 2 2 4 1 3 1 6 2 4 1 3 1 6 2 3 1	P3121' P3211' P3211' P3121' P3121' P32211' P32211' R321' P3m11' P31m1' P31c1' P31c1' P31c1' P31m1' P31c1' R3m1' R3c1' P31m1' Pc31m P3'1c' P3m11' Pc3m1 Pc3m1 Pc3m1 R3m1' Ram1'	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ \end{array}$	$\begin{array}{c} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 1 \\ 4 & 2 \\ 4 & 2 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 4 & 2 \\ 4 & 2 \\ 4 & 1 \\ 6 & 2 \\ 6 & 2 \\ 4 & 1 \\ 8 & 2 \\ 6 & 2 \\ 3 & 1 \\ \end{array}$
P3' R3' P312' P32'1 P312' P312'1 P322'1 P322'1 R32' P332'1 R32' P31n' P31n' P31c' R3n' R3c' P3'1m P31c' P31c' P3'2n P31c' R3n' R3c' P3'm R3c' R3c' R3c' R3c' R3c' R3c' R3c' R3c'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.83 164.87 165.91 165.95 166.99	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 2 2 4 4 2 3 8 6 6 6 6 3 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93 166.97 166.101	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 4 1 3 1 6 2 3 1	P3121' P3211' P31121' P31121' P31211' P31211' P32211' R321' P3m11' P31m1' P31c1' R3c1' P31m1' P31c1' R3m1' R3c1' P31m1' Pc31m P3'1c' P3m11' Pc3m1 P3'c'1 R3m1' R3m1' R3m1' R3m1' R3m1'	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ 166.102 \\ \end{array}$	$\begin{array}{c} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 1 \\ 4 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 3 & 1 \\ 6 & 2 \\ 6 & 2 \\ 3 & 1 \\ 6 & 2 \\$
P3' R3' P312' P32'1 P312' P312'1 P321' P322'1 R32' P326'1 R31m' P31c' R3m' R3c' P31c' P31c' P31c' P31c' P31c' P31c' P36'1 R3c' P3'm1 P3c1 P3c1 R3c' R3c' R3c' R3c' R3c' R3c' R3c' R3c'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95 166.99 167.103	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 2 2 4 4 2 3 8 6 6 6 6 3 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.77 163.81 164.85 164.89 165.93 166.97 166.101 167.105	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 4 1 3 1 6 2 3 1 6 2	P3121' P3211' P3211' P3121' P3121' P3121' P32211' P32211' P32211' P31m1' P31c1' P31c1' R3m1' P31c1' R3m1' R3c1' P31m1' P-31m1' P-31m1' P-31m1' P-31m1' P-31m1' P-31m1' P-3m1 P3'c'1 R3m1'	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ 166.102 \\ 167.106 \\ \end{array}$	$\begin{array}{c} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 1 \\ 4 & 1 \\ 4 & 2 \\ 4 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 1 \\ 6 & 2 \\ 4 & 1 \\ 8 & 2 \\ 6 & 2 \\ 3 & 1 \\ 6 & 2 \\$
P3' R3' P312' P32'1 P312' P312'1 P312'1 P3212' P3212' P32'1 R32' P3m'1 P31m' P3c'1 P31c' R3m' R3c' P3'1m P31c P31c' P3'm1 P3c1 R3'm R3c' R3c' R3c' R3c' R3c' R3c' R3c' R3c'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95 166.99 167.103 167.107	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16 \\ 148.20 \\ 149.24 \\ 150.28 \\ 151.32 \\ 152.36 \\ 153.40 \\ 154.44 \\ 155.48 \\ 156.52 \\ 157.56 \\ 158.60 \\ 159.64 \\ 160.68 \\ 161.72 \\ 162.76 \\ 163.80 \\ 163.84 \\ 164.88 \\ 165.92 \\ 165.96 \\ 166.100 \\ 167.104 \\ 167.108 \\ \end{array}$	6 6 6 6 6 6 2 4 4 2 4 4 2 4 6 6 6 3 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93 166.97 166.101 167.105 168.109	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 2 1 3 1 6 2 3 1 6 2 3 1	$\begin{array}{c} P3121' \\ P3211' \\ P3211' \\ P3_1121' \\ P3_1211' \\ P3_2211' \\ P3_2211' \\ P32211' \\ P3m11' \\ P3lm1' \\ P3lm1$	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ 166.102 \\ 167.106 \\ 168.110 \\ \end{array}$	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 3 3 4 1 4 1 4 2 4 2 4 1 6 2 6 2 4 1 8 2 6 2 6 2 4 1 6 2 6 2 4 1 8 2 4 1 8 2 4 1 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2
P3' R3' P312' P321 P312' P312' P312' P3221 R32' P3m'1 P31m' P31c' R3m' R3c' P3'1m P31c P31c' P3'm1 P31c P31c' P3'm1 P3c1 P3c1 R3'm R3c, R3'm R3c, R3c' P6'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95 166.99 167.103 167.107 168.111	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.80\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ 167.108\\ 168.112\\ \end{array}$	6 6 6 6 6 6 6 2 4 4 2 4 4 2 4 6 6 6 6 3 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93 166.97 166.101 167.105 168.109 169.113	2 1 2 1 3 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 1 2 2 4 1 3 1 6 2 3 1 6 6	P3121' P3211' P3211' P31121' P3121' P31211' P32211' R3221' R321' P3m11' P31m1' P31c1' R3c1' R3m1' R3c1' R3m1' R3c1' R3m1' R3c1' R3m1 P3'1c' R3m1 P3'1c' P611' P611'	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ 166.102 \\ 167.106 \\ 168.110 \\ 169.114 \\ \end{array}$	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 3 3 4 1 4 2 4 2 4 2 4 1 6 2 6 2 6 2 3 1 6 2 6 2 4 1 6 6 6 2 6 2 6 2 6 2 6 2 6 2 6 3 6 4 6 5 6 6 7 6 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
P3' R3' P312' P321 P312' P312' P312' P312' P3221 R32' P3m'1 P31m' P31c' R3m' R3c' P3'1m P31c P31c' P3'm1 P31c' P3'm1 P3c1 P3c1 P3c' P3'm1 P3c' P3'm1 P3c' P3'm1 P3c' P3'm1 P3c' P3'm6 P3c' P3'm6 P3c' P3'm6 P3c' P3'm7 P3c' P3'm7 P3c' P3'm1	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95 166.99 167.103 167.107 168.111 169.115	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ 167.108\\ 168.112\\ 169.116\\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 2 4 4 2 4 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93 166.97 166.101 167.105 168.109 169.113 170.117	$\begin{array}{c} 2 & 1 \\ 2 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 2 \\ 2 & 1 \\ 2 & 2 \\ 2 & 1 \\ 2 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 3 & 1 \\ 6 & 2 \\ 4 & 1 \\ 6 & 2 \\ 6 & 6 \\ 6 & 6 \\ 6 & 6 \\ 6 & 6 \\ \end{array}$	P3121' P3211' P3211' P3121' P3121' P3121' P32211' R3212' P3m11' P31m1' P31m1' P31c1' R3m1' R3c1' P31m1' P31m1' R3c1' P31m1' R3c1' P31m1' R3c1' P31m1' Pc31m P3'1c' P3m11' Pc31m P3'c' P3m11' Pc3m1 P3'c' P3m11' Pc3m1 P3'c' P3m1' R13m R3'c' P61' P61' P61'	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ \hline 152.34 \\ 153.38 \\ \hline 154.42 \\ \hline 155.46 \\ 156.50 \\ \hline 157.54 \\ \hline 158.58 \\ \hline 159.62 \\ \hline 160.66 \\ \hline 161.70 \\ \hline 162.74 \\ \hline 162.78 \\ \hline 163.82 \\ \hline 164.90 \\ \hline 165.94 \\ \hline 166.102 \\ \hline 167.106 \\ \hline 168.110 \\ \hline 169.114 \\ \hline 170.118 \\ \hline \end{array}$	$\begin{array}{c} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 1 \\ 4 & 2 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 2 & 1 \\ 4 & 2 \\ 2 & 1 \\ 6 & 2 \\ 6 & 2 \\ 4 & 1 \\ 6 & 2 \\ 6 & 2 \\ 4 & 1 \\ 6 & 6 \\ 6 & 6 \\ 6 & 6 \\ 6 & 6 \\ \end{array}$
P3' R3' P312' P3211 P312' P312'1 P312'1 P322'1 R32' P332'1 R32' P3m'1 P31m' P31c' R3m' R3c' P3'1m P31c' P31c' P31c' R3m' R3c' P6' P6' P6' P6' P6' P6' P6' P6' P6' P6	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.83 164.87 165.91 166.99 167.103 167.107 168.111 169.115 170.119	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ 167.108\\ 168.112\\ 169.116\\ 170.120\\ \end{array}$	6 6 2 4 6 6 6 6 2 4 4 2 4 4 2 4 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 149.21 \\ 150.25 \\ \hline 151.29 \\ 152.33 \\ 153.37 \\ \hline 154.41 \\ 155.45 \\ \hline 156.49 \\ 157.53 \\ \hline 158.57 \\ \hline 159.61 \\ \hline 160.65 \\ \hline 161.69 \\ \hline 162.73 \\ \hline 162.77 \\ \hline 163.81 \\ \hline 164.85 \\ \hline 164.85 \\ \hline 164.89 \\ \hline 165.93 \\ \hline 166.97 \\ \hline 166.101 \\ \hline 167.105 \\ \hline 168.109 \\ \hline 169.113 \\ \hline 170.117 \\ \hline 171.121 \\ \end{array}$	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 4 1 3 1 6 2 4 1 3 1 6 2 3 1 6 2 3 1 6 6 6 6 6 6 6 6 6	P3121' P3211' P3211' P3121' P3121' P3121' P32211' P32211' R321' P3m11' P31m1' P31c1' R3c1' P31m1' P31c1' R3c1' P31m1' R3c1' P31m1 P3'1c' P3m11' Pc3m1 P3'1c' P3m11' Pc3m1 P3'1c' P3m11' Pc3m1 P3'c' P3m11' Pc3m1 P3'c' P6p1' P6p1' P6p1' P6p1' P6p1'	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ 166.102 \\ 167.106 \\ 168.110 \\ 169.114 \\ 170.118 \\ 171.122 \\ \end{array}$	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 2 1 4 1 4 2 4 2 4 1 6 2 6 2 6 2 4 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
P3' R3' P312' P32'1 P32'1 P32'1 P322'1 P322'1 R32' P332'1 R32' P31c' R3m' R3c' R3r' R3c' P3'm1 P31c' R3'm R3c R3c' R3c' P6' P6' P6' P6' P6' P6' P6' P6' P6' P6	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.83 164.87 165.91 165.95 166.99 167.103 167.107 168.111 169.115 170.119 171.123	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ 167.108\\ 168.112\\ 169.116\\ 170.120\\ 171.124\\ \end{array}$	6 6 6 6 6 6 6 2 4 4 2 4 4 2 4 6 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 149.21 \\ 150.25 \\ \hline 151.29 \\ 152.33 \\ 153.37 \\ \hline 154.41 \\ 155.45 \\ \hline 156.49 \\ \hline 157.53 \\ 158.57 \\ \hline 159.61 \\ \hline 160.65 \\ \hline 161.69 \\ \hline 162.73 \\ \hline 162.77 \\ \hline 163.81 \\ \hline 164.85 \\ \hline 164.85 \\ \hline 164.89 \\ \hline 165.93 \\ \hline 166.97 \\ \hline 166.101 \\ \hline 167.105 \\ \hline 168.109 \\ \hline 169.113 \\ \hline 170.117 \\ \hline 171.121 \\ \hline 172.125 \\ \hline \end{array}$	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 4 1 3 1 6 2 3 1 6 2 3 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 3 3 3	$\begin{array}{c} P3121'\\ P3211'\\ P3211'\\ P31211'\\ P31211'\\ P31211'\\ P32211'\\ R321'\\ P3m11'\\ P31m1'\\ P31c1'\\ R3m1'\\ R3c1'\\ P31m1'\\ R3c1'\\ P31m1'\\ R3c1'\\ P31m1'\\ R3c1'\\ P31m1'\\ R_3c1'\\ P31m1'\\ P_c31m\\ P3'1c'\\ P3m11'\\ P_c3m1\\ P_d3'c'1\\ R_dm'\\ R_d'c'\\ P_{d1}'\\ P_{d1}'\\ P_{d1}'\\ P_{d2}1'\\ P_{d2}1'\\ P_{d4}1'\\ \end{array}$	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ 166.102 \\ 167.106 \\ 168.110 \\ 169.114 \\ 170.118 \\ 171.122 \\ 172.126 \\ \end{array}$	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 2 1 4 1 4 2 4 2 4 1 6 2 6 2 4 1 6 2 6 2 4 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
P3' R3' P312' P32'1 P312' P322'1 P322'1 R32' P322'1 R32' P316' R3m' R3c' P31c' R3m' R3c' P3'm1 P31c' R3c'1	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95 166.99 167.103 167.107 168.111 169.115 170.119 171.123 172.127	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ 167.108\\ 168.112\\ 169.116\\ 170.120\\ 171.124\\ 172.128\\ \end{array}$	6 6 6 6 6 6 6 2 4 4 2 4 4 2 4 6 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93 166.97 166.101 167.105 168.109 169.113 170.117 171.121 172.125 173.129	2 1 2 1 3 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 1 2 2 2 2 2 1 2 2 2 4 1 3 1 6 2 4 1 3 1 6 2 3 1 6 6 6 6 6 6 6 3 3 3 3 3 2 2	P3121' P3211' P3211' P3121' P3121' P3121' P32211' P32211' R321' P3m11' P31m1' P31c1' R3c1' P31m1' P31c1' R3m1 R3c1' P31m1' Pc31m P3'1c' P3m11' Pc3m1 P3'c'1 R3m1' R3m' R3'c' P61' P61' P61' P621' P621' P631'	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ 166.102 \\ 167.106 \\ 168.110 \\ 169.114 \\ 170.118 \\ 171.122 \\ 172.126 \\ 173.130 \\ \end{array}$	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 2 1 4 1 4 1 4 1 4 1 4 2 2 1 4 1 6 2 6 2 4 1 8 2 6 2 4 1 6 6 6 6 6 6 6 6 3 3 3 3 3 3 4 2
P3' R3' P312' P32'1 P312' P312'1 P312' P322'1 R32' P322'1 R32' P316' R316' R36' P316'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95 166.99 167.103 167.107 168.111 169.115 170.119 171.123 172.127	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ 167.108\\ 168.112\\ 169.116\\ 170.120\\ 171.124\\ 172.128\\ 173.132\\ \end{array}$	6 6 6 6 6 6 6 2 4 4 2 4 4 2 4 4 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93 166.97 166.101 167.105 168.109 169.113 170.117 171.121 172.125 173.129 174.133	2 1 2 1 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 2 1 3 1 6 2 3 1 6 6 6 6 6 6 6 6 6 6 6 6 3 3 3 3 3 3 3 3	P3121' P3211' P3211' P3121' P3121' P3121' P32211' P32211' R321' P3m11' P31m1' P31c1' R3m1' R3c1' P31m1' P31m1' P31m1' P631m P3'1c' P3m1 P3'1c' P4m1' P61' P61' P61' P61'	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.102 \\ 167.106 \\ 168.110 \\ 169.114 \\ 170.118 \\ 171.122 \\ 172.126 \\ 173.130 \\ 174.134 \\ \end{array}$	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 3 3 4 1 4 1 4 2 4 1 4 2 4 1 8 2 6 2 6 2 4 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
P3' R3' P312' P32'1 P312' P312'1 P312'1 P322'1 R32' P322'1 R32' P3m'1 P31m' P3c'1 P31c' R3m' R3c' P3'mn P31c P31c' P3'm1 P3c1 P3c1 P3c1 P3c1 P3c1 P3c1 P3c1 P3c	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95 166.99 167.103 167.107 168.111 169.115 170.119 171.123 172.127 173.131 174.135	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ 167.108\\ 168.112\\ 169.116\\ 170.120\\ 171.124\\ 172.128\\ 173.132\\ 174.136\\ \end{array}$	6 6 6 6 6 6 6 2 4 4 2 4 4 2 4 4 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.77 163.81 164.85 164.89 165.93 166.97 166.101 167.105 168.109 169.113 170.117 171.121 172.125 173.129 174.133 175.137	2 1 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 1 2 2 2 2 2 1 3 1 6 2 3 1 6 6 6 6 6 3 3 3 3 3 3 3 2 2 1 1 1 3 1	P3121' P3211' P3211' P3121' P3121' P32211' P32211' P32211' P32211' P31m1' P31m1' P31c1' R3m1' R3c1' P31m1' P31m1' P3-31m P3'1c' P31m1' P-31m P3'1c' P3m1 P3'1c' P61' P61' P61' P61' P61' P61' P61' P61	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.98 \\ 166.102 \\ 167.106 \\ 168.110 \\ 169.114 \\ 170.118 \\ 171.122 \\ 172.126 \\ 173.130 \\ 174.134 \\ 175.138 \\ \end{array}$	$\begin{array}{c} 3 & 1 \\ 2 & 1 \\ 4 & 1 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 4 & 2 \\ 4 & 1 \\ 4 & 2 \\ 4 & 1 \\ 6 & 2 \\ 4 & 1 \\ 8 & 2 \\ 6 & 2 \\ 3 & 1 \\ 6 & 6 & 2 \\ 4 & 1 \\ 6 & 6 & 6 \\ 6 & 6 & 6 \\ 3 & 3 & 3 \\ 3 & 3 \\ 4 & 2 \\ 2 & 1 \\ 4 & 1 \\ \end{array}$
P3' R3' P312' P32'1 P312' P312'1 P312' P322'1 R32' P322'1 R32' P316' R3m' R3c' P316'	147.15 148.19 149.23 150.27 151.31 152.35 153.39 154.43 155.47 156.51 157.55 158.59 159.63 160.67 161.71 162.75 163.79 163.83 164.87 165.91 165.95 166.99 167.103 167.107 168.111 169.115 170.119 171.123 172.127	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 147.16\\ 148.20\\ 149.24\\ 150.28\\ 151.32\\ 152.36\\ 153.40\\ 154.44\\ 155.48\\ 156.52\\ 157.56\\ 158.60\\ 159.64\\ 160.68\\ 161.72\\ 162.76\\ 163.80\\ 163.84\\ 164.88\\ 165.92\\ 165.96\\ 166.100\\ 167.104\\ 167.108\\ 168.112\\ 169.116\\ 170.120\\ 171.124\\ 172.128\\ 173.132\\ \end{array}$	6 6 6 6 6 6 6 2 4 4 2 4 4 2 4 4 6 6 6 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149.21 150.25 151.29 152.33 153.37 154.41 155.45 156.49 157.53 158.57 159.61 160.65 161.69 162.73 162.77 163.81 164.85 164.89 165.93 166.97 166.101 167.105 168.109 169.113 170.117 171.121 172.125 173.129 174.133	2 1 2 1 3 3 3 3 3 3 3 3 3 3 2 1 2 1 2 1 2 2 2 2 2 2 2 1 3 1 6 2 3 1 6 6 6 6 6 6 6 6 6 6 6 6 6 7 3 3 7 3 1 8 3 1 8 3 1 8 4 1 8 5 1 8 6 1 8 7 1 8	$\begin{array}{c} P3121'\\ P3211'\\ P3211'\\ P32121'\\ P3_121'\\ P3_2211'\\ P3_2211'\\ P3_2211'\\ P3_2211'\\ P31m1'\\ P31m1$	$\begin{array}{c} 149.22 \\ 150.26 \\ 151.30 \\ 152.34 \\ 153.38 \\ 154.42 \\ 155.46 \\ 156.50 \\ 157.54 \\ 158.58 \\ 159.62 \\ 160.66 \\ 161.70 \\ 162.74 \\ 162.78 \\ 163.82 \\ 164.86 \\ 164.90 \\ 165.94 \\ 166.102 \\ 167.106 \\ 168.110 \\ 169.114 \\ 170.118 \\ 171.122 \\ 172.126 \\ 173.130 \\ 174.134 \\ \end{array}$	3 1 2 1 4 1 3 3 3 3 3 3 3 3 3 3 3 3 4 2 4 1 4 2 4 1 6 2 6 2 6 2 4 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

$P6_3'/m'$	176.147	6	2	P_c6_3/m	176.148	6 9	2 7	P622	177.149	4	1	P6221'	177.150	4 1
P6'2'2	177.151			$\frac{P6'22'}{P6'22'}$	177.152			P62'2'	177.153	3		P_c622	177.154	6 2
$P6_{1}22$	178.155			$P6_{1}221'$	178.156			$P6_{1}^{\prime}2^{\prime}2$	178.157			$P6_{1}^{\prime}22^{\prime}$	178.158	6 6
$P6_12'2'$	178.159		_	$\frac{P_c 6_1 221}{P_c 6_1 22}$	178.160			$P6_{5}22$	179.161	6		$P6_{5}221'$	179.162	6 6
$P6_{5}^{\prime 2}$	179.163			$P6_{5}'22'$	179.164			$P6_52'2'$	179.165			$P_c 6_5 22$	179.166	6 6
$P6_{2}22$	180.167	3	3	$P6_{2}221'$	180.168			$P6_{2}^{7}2^{\prime}2$	180.169	3	3	$P6_{2}'22'$	180.170	3 3
$P6_{2}2'2'$	180.171			$P_{c}6_{2}22$	180.172	6 6	$6 \mid I$	$P6_422$	181.173			$P6_4221'$	181.174	3 3
$P6_{4}^{\prime}2^{\prime}2$	181.175			$P6'_{4}22'$	181.176	3 3	$3 \mid I$	$P6_42'2'$	181.177		3	$P_c 6_4 22$	181.178	6 6
$P6_{3}22$	182.179	4	2	$P6_{3}221'$	182.180	4 2	2 I	$P6_3'2'2$	182.181	4		$P6_{3}^{\prime}22^{\prime}$	182.182	2 2
$P6_{3}2'2'$	182.183	2	2	$\frac{P_c 6_3 22}{P_c 2}$	182.184	6 2	$\frac{2}{1}$	$\frac{P6mm}{p}$	183.185	4		P6mm1'	183.186	4 1
P6'm'm $P6cc$	183.187 184.191	<u>3</u>	1	P6'mm' $P6cc1'$	183.188 184.192			P6m'm' P6'c'c	183.189 184.193	3	1	P_c6mm $P6'cc'$	183.190 184.194	$\begin{array}{c c} 8 & 2 \\ \hline 6 & 2 \end{array}$
P6c'c'	184.191 184.195	6	$\frac{2}{2}$	P_c6cc	184.192 184.196	6 2	$\frac{2}{2}$	$P6_3cm$	185.197	4	$\frac{2}{2}$	$P6_3cm1'$	185.198	8 2
$P6_3c'm$	185.199	4	$\frac{2}{2}$	$P6_3'cm'$	185.200	4 2	$\frac{2}{2}$	$P6_3c'm'$	185.201	$\frac{1}{4}$	$\frac{2}{2}$	$P_c 6_3 cm$	185.202	$\begin{array}{rrr} 8 & 2 \\ \hline 6 & 2 \end{array}$
$P6_3mc$	186.203	4	2	$P6_3mc1'$	186.204	4 2	$2 \mid I$	$P6_3^{\prime}m^{\prime}c$	186.205	2	2	$P6_3'mc'$	186.206	4 2
$P6_3m'c'$	186.207	2	2	P_c6_3mc	186.208	8 2	$2 \mid i$	$P\overline{6}m2$	187.209	2	1	$P\overline{6}m21'$	187.210	2 1
$P\overline{6}'m'2$	187.211	2	1	$P\bar{6}'m2'$	187.212	2 1	$1 \mid I$	$P\overline{6}m'2'$	187.213	1	1	$P_c \bar{6} m2$	187.214	4 2
P6c2	188.215	2	$\frac{2}{3}$	P6c21'	188.216	$\frac{4}{2}$	$\frac{2}{3}$	$P6'c'2 \\ P62m$	188.217	$\frac{4}{2}$	$\frac{2}{1}$	P6'c2'	188.218	2 2 4 1
$\frac{P6c'2'}{P6'2'm}$	188.219 189.223	2 4	1	$\frac{P_c6c2}{P6'2m'}$	188.220 189.224			P62m	189.221 189.225	$\frac{2}{2}$	1 1	$P62m1'$ P_c62m	189.222 189.226	$\begin{array}{c c} & 4 & 1 \\ \hline & 4 & 2 \end{array}$
$\frac{P62c}{P62c}$	$\frac{189.225}{190.227}$	9	9	$\frac{1.0.211}{P62c1'}$	189.224 190.228	4 1	$\frac{1}{2} \frac{1}{2}$	P6'2'c	190.229	4	9	P_c 02 m P6'2c'	$\frac{189.220}{190.230}$	4 2
P62'c'	190.231	$\frac{2}{2}$	$\tilde{2}$	$\frac{P62c1'}{P_c62c}$	190.232	4 2	$\frac{1}{2}$	P6/mmm	191.233	$\frac{4}{4}$	1	P6/mmm1'	191.234	$\begin{array}{rrr} & \frac{1}{4} & \frac{2}{2} \\ & 4 & 1 \end{array}$
P6/m'mm	191.235			P6'/mm'm				P6'/mmm'	191.237	4		P6'/m'm'm		4 1
P6'/m'mm'					191.240			P6/m'm'm'		4		/	191.242	8 2
P6/mcc	192.243			P6/mcc1'	192.244	8 2	$2 \mid I$	P6/m'cc	192.245	6		P6'/mc'c	192.246	6 2
P6'/mcc'	192.247				192.248			P6'/m'cc'	192.249			P6/mc'c'	192.250	6 2
P6/m'c'c'	192.251			P_c6/mcc	192.252			$P6_3/mcm$	193.253	6			193.254	8 2
$P6_3/m'cm$	193.255				193.256			$P6_3'/mcm'$	193.257	6			193.258	8 2
	193.259			$P6_3/mc'm'$				$P6_3/m'c'm'$		8		$P_c 6_3/mcm$	193.262	6 2
$P6_3/mmc$	194.263	6	2	$P6_3/mmc1'$	194.264			$P6_3/m'mc$	194.265			$P6_3^{\prime}/mm^{\prime}c$	194.266	6 2
$P6_3^{\prime}/mmc^{\prime}$	194.267			$P6_3'/m'm'c$				$P6_3^7/m'mc'$	194.269			$P6_3/mm'c'$	194.270	6 2
$P6_3/m'm'c'$	194.271				194.272			P23	195.1	3		P231'	195.2	3 1
$P_I 23$	195.3			F23	196.4			F231'	196.5	3		$F_S 23$	196.6	6 2
I23	197.7	3	1	I231'	197.8	3 1	$1 \mid I$	$P2_{1}3$	198.9	4	4	$P2_{1}31'$	198.10	8 4
P_12_13	198.11	12	8	$I2_{1}3_{1}$	199.12			$\frac{I2_{1}31'}{2}$	199.13			$Pm\bar{3}$	200.14	3 1
Pm31'	200.15			$Pm'\bar{3}'$	200.16			$P_I m \bar{3}$	200.17	8	2	$Pn\bar{3}$	201.18	6 2
$\frac{Pn31'}{Fm31'}$	201.19 202.23			$\frac{Pn'3'}{Fm'3'}$	201.20 202.24	6 1	$\frac{2}{1}$	$\frac{P_I n 3}{F_S m 3}$	201.21 202.25	8	2	$Fm\overline{3}$ $Fd\overline{3}$	202.22 203.26	$\begin{array}{c c} 6 & 1 \\ \hline 6 & 2 \end{array}$
$Fd\overline{3}1'$	203.27		2	$\frac{Fm}{Fd'\overline{3}'}$	203.28	6 9	$\frac{1}{2} \frac{1}{i}$	$F_S d\overline{3}$	203.29	12	1	$Im\bar{3}$	203.20	4 1
$\frac{1 d31}{ Im31'}$	204.31	8	1	$\frac{I \cdot a \cdot 5}{Im'\overline{3}'}$	204.32	4 1	$\frac{2}{1}$	Pa3	205.33	4		$Pa\overline{3}1'$	205.34	8 4
$Pa'\bar{3}'$	205.35	8	4	$P_I a \bar{3}$	205.36	24 8	$8 \mid I$	$Ia\bar{3}$	206.37	12	4	$Ia\bar{3}1'$	206.38	12 4
Ia'3'	206.39	12	4	P432	207.40	3 1	1 i	P4321'	207.41	6	1	P4'32'	207.42	6 1
P_I432	207.43			P4232	208.44			P4 ₂ 321'	208.45			P4'232'	208.46	6 2
$F_{I}4_{2}32$ $F_{S}432$	$\frac{208.47}{209.51}$			$\frac{F432}{F4_132}$	$\frac{209.48}{210.52}$	6 1	$\frac{1}{2} \frac{1}{2}$	$\frac{F4321'}{F4_1321'}$	209.49 210.53	<u>6</u> 8		F4'32' F4'32'	209.50 210.54	$\begin{array}{c c} 6 & 1 \\ \hline 6 & 2 \end{array}$
F_S432 F_S4_132	$\frac{209.51}{210.55}$			$\frac{I^{4}132}{I432}$	$\frac{210.52}{211.56}$			I4321'	211.57	8		$I4_{1}32'$	211.58	6 1
$P4_{3}32$	212.59			$P4_{3}321'$	212.60	8 4	$\frac{1}{4}$	$P4_{3}^{\prime}32^{\prime}$	212.61	4	4	$P_{I}4_{3}32$	212.62	12 8
$P4_{1}32$	213.63			$P4_{1}321'$	213.64	8 4	$\frac{1}{4}$	$P4'_{1}32'$	213.65	$\frac{1}{4}$		$P_{I}4_{1}32$	213.66	12 8
$I4_{1}32$	214.67	8	4	$I4_{1}321'$	214.68	8 4	$4 \mid I$	$14'_{1}32'$	214.69	6	4	P43m	215.70	3 1
P43m1'	215.71	3	1	P4'3m'	215.72	3 1	$1 \mid I$	$P_I 43m$	215.73	12	2	F43m	216.74	3 1
F43m1'	216.75			$\frac{F4'3m'}{F4'2}$	216.76	3 1	1 I	$F_S 43m$	216.77	6	2	I43m	217.78	6 1
P4'3n'	217.79	6	1	$\frac{I4'3m'}{P_I43n}$	217.80	6 1		$F\overline{43n}$ $F\overline{43c}$	218.81 219.85	6	$\frac{2}{2}$	$P\overline{4}3n1'$ $F\overline{4}3c1'$	218.82 219.86	6 2 6 2
$F\overline{4'3c'}$	218.83 219.87	<u> </u>	2	$\frac{P_I 43n}{F_S 43c}$	218.84 219.88			$\frac{F43c}{I43d}$	219.85			$\frac{F43c1}{I43d1'}$	219.86	16 6
I4'3d'	220.91	12	6	Pm3m	221.92			Pm3m1'	221.93	6	1	Pm'3'm	221.94	6 1
Pm3m'	221.95	6	1	$\frac{Pm3m}{Pm'3'm'}$	221.96	3 1	$1 \mid I$	$P_I m 3m$	221.97	16	2	Pn3n	222.98	12 2
Pn3n1'	222.99	16	2	Pn'3'n	222.100	$12\overline{2}$	2 [I]	$\frac{Pn3n'}{Para3ra1'}$	222.101	$\frac{12}{13}$	$\frac{2}{2}$	Pn'3'n' $Pm'3'n$	222.102	12 2 8 2
$\frac{ P_I n 3n }{ P m 3n' }$	222.103 223.107	12	2	$\frac{Pm3n}{Pm'3'n'}$	$\frac{223.104}{223.108}$			$\frac{Pm\overline{3}n1'}{Pm\overline{3}n}$	223.105 223.109	16	2	Pm 3 n	223.106 224.110	
$Pm3n$ $Pn\bar{3}m1'$	$\frac{223.107}{224.111}$	<u>8</u> 12	2	$\frac{Pm \ 3 \ n}{Pn' \overline{3}' m}$	$\frac{223.108}{224.112}$	19 9	$\frac{2 1}{2 1}$	$\frac{P_I m \bar{3} n}{P n \bar{3} m'}$	224.113	12	2	$Pn\overline{3}m$ $Pn'\overline{3}'m'$	224.110	$\begin{array}{c c} 12 & 2 \\ \hline 12 & 2 \end{array}$
$P_I n 3m$	224.115	16	2	$Fm\bar{3}m$	225.116	6 1	$\frac{1}{1}$	Fm3m1'	225.117			$Fm'\overline{3}'m$	225.118	6 1
$Fm\bar{3}m'$	225.119	6	1	$Fm'\bar{3}'m'$	225.120	6 1	$1 \mid I$	$F_S m \bar{3} m$	225.121	12	2	$Fm\bar{3}c$	226.122	6.2
Fm3c1'	226.123	12	2	$Fm'\bar{3}'c$	226.124	12 2	$2 \mid I$	Em3c'	226.125	12	2	$Fm'\bar{3}'c'$	226.126	$\begin{array}{c c} 6 & 2 \\ 8 & 2 \end{array}$
F_Sm3c	226.127			Fd3m	227.128			$\frac{Fd3m1'}{Fd3m}$	227.129	8	2	Fd'3'm	227.130	
$\frac{Fd3m'}{Fd3c1'}$	$\frac{227.131}{228.135}$			$\frac{Fd'\overline{3}'m'}{Fd'\overline{3}'c}$	$\frac{227.132}{228.136}$			$\frac{F_S d\bar{3}m}{F d\bar{3}c'}$	$\frac{227.133}{228.137}$			$Fd\overline{3}c$ $Fd'\overline{3}'c'$	$\frac{228.134}{228.138}$	$\frac{12}{12} \frac{4}{4}$
$F_{S}d3c$	228.139			$\frac{Fa3c}{Im3m}$	229.140			Im3m1'	229.141	8		Im'3'm	229.142	8 1
$Im\bar{3}m'$	229.143	6	1	$Im'\bar{3}'m'$	229.144	6 1	$1 \mid i$	$Ia\bar{3}d$	230.145	12	8	$Ia\bar{3}d1'$	230.146	16 8
$Ia'\bar{3}'d$	230.147	12	8	$Ia\bar{3}d'$	230.148	12 8	$81\overline{I}$	$Ia'\bar{3}'d'$	230.149	16	8			

Supplementary Table 23: Maximum and minimum dimensions of the double-valued EBRs of the 1,651 double SSGs. In order, the columns in this table list the symbol of the SSG, the number of the SSG in the BNS setting 67 , the maximum EBR dimension in the SSG (M), and the minimum EBR dimension in the SSG (m).

Symbol P1 P11' P21'	BNS Number M		$\frac{EJHISSI}{P11'}$	BNS Number		Symbol	BNS Number M n		/	BNS Number	· M m
$\frac{P\overline{1}1'}{P21'}$			P + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	1.2	2 2	$P_S 1$	1.3 2	$\overline{2}$	P1	2.4	1 1
P21'	2.5 2		$\frac{111}{P1'}$	2.6		$P_S \overline{1}$	2.7 2	2	$\overline{P2}$	3.1	1 1
	$\frac{-1}{3.2}$ 2		$\overline{P2'}$	3.3		$P_a 2$	3.4 2	2	$P_b 2$	3.5	2 2
P_C2			$\overline{P2_1}$	4.7	2 2	$P2_{1}1'$	4.8 4	4	$P2_1'$	4.9	2 2
$P_a 2_1$	4.10		$P_b 2_1$	4.11		$P_C \hat{2}_1$	4.12	$\overline{2}$	$C2^{1}$	5.13	1 1
C21'	5.14	2 2	C2'	5.15	1 1	$C_c 2$			$C_a 2$	5.17	2 2
Pm	6.18	1 1	Pm1'	6.19		Pm'			$P_a m$	6.21	2 2
$P_b m$	6.22 2	2 2	$P_C m$	6.23	2 2	Pc		2	Pc1'	7.25	4 4
Pc'		2 2	$P_a c$	7.27		$P_c c$		$\overline{2}$	P_bc	7.29	4 4
$P_C c$		4 4	$P_A c$	7.31	2 2	Cm	8.32		Cm1'	8.33	$\begin{array}{c c} 2 & 2 \\ \hline 2 & 2 \end{array}$
Cm'	8.34	1 1	$C_c m$	8.35	2 2	$C_a m$	8.36	2	Cc	9.37	2 2
Cc1'			Cc'	9.39	2 2	$C_c c$	9.40 2	2	$C_a c$	9.41	4 4
P2/m	10.42 1	1 1	P2/m1'	10.43	2 2	P2'/m			P2/m'	10.45	2 2
P2'/m'	10.46	1 1	$P_a 2/m$	10.47	2 2	$P_b 2/m$	10.48 2	2	$P_C 2/m$	10.49	2 2
$P2_1/m$	11.50	2 2	$P2_1/m1'$	11.51	4 4	$P2_1'/m$	11.52 2	2	$P2_1/m'$	11.53	2 2
$P2'_{1}/m'$			$P_a 2_1/m$	11.55		$P_b 2_1/m$			$P_C 2_1/m$	11.57	4 4
$\frac{C2/m}{C2}$			$\frac{C2/m1'}{C}$	12.59		C2'/m			$\frac{C2/m'}{C}$	12.61	2 2
C2/m			$\frac{C_c 2/m^4}{C_c 2/m}$	12.63		$C_a 2/m$			$\frac{C2/m}{P2/c}$	13.65	$\frac{2}{2} \frac{2}{2}$
		4 4	$\frac{C_c Z/III}{D\Omega^l/r}$								
P2/c1'			$\frac{P2'/c}{P_1^2/c}$	13.67	2 2		13.68 2	2	$\frac{P2'/c'}{P_{r}^{2}^{2}/c}$	13.69	2 2
$P_a 2/c$			$P_b 2/c$	13.71		$P_c 2/c$			$P_A 2/c$	13.73	4 4
$P_C 2/c$			$P2_1/c$	14.75		$P2_{1}/c1'$			$P2_1'/c$	14.77	4 4
$P2_1/c'$			$P2_1'/c'$	14.79	2 2	$P_a 2_1/c$			$P_b 2_1/c$	14.81	4 4
$P_c 2_1/c$		$4 \mid 4 \mid$	$P_A 2_1/c$	14.83	2 2	$P_C 2_1/c$			C2/c	15.85	2 2
C2/c1'	15.86	1 4	C2'/c	15.87	2 2	C2/c'	15.88 2	2	C2'/c'	15.89	2 2
$C_c 2/c$	15.90	1 2	$C_a 2/c$	15.91	4 4	P222	16.1 2	2	P2221'	16.2	2 2
P2'2'2	16.3		$P_a 222$	16.4		P_C222			$P_I 222$	16.6	4 4
$P222_{1}$		$\frac{1}{2}$	$P222_{1}1'$	17.8	4 4	$P2'2'2_1$			$P22'2'_{1}$	17.10	2 2
$P_a 222_1$	17.11	1 4	$P_{c}222_{1}$	17.12		$P_{B}222_{1}$			$P_C 222_1$	17.14	$\frac{1}{4}$ 4
$P_{I}222_{1}$			$P2_{1}2_{1}2$	18.16	2 2	$P2_{1}2_{1}21'$	18.17 4	4	$P2_{1}^{\prime}2_{1}^{\prime}2$	18.18	2 2
$P2_{1}2_{1}^{\prime}2^{\prime}$	18.19		$P_b 2_1 2_1 2$	18.20		$P_{c}2_{1}2_{1}2$			$P_B 2_1 2_1 2$	18.22	4 4
$P_C 2_1 2_1 2$			$P_{I}2_{1}2_{1}2$	18.24	2 2	$P2_{1}2_{1}2_{1}$			$P2_{1}2_{1}2_{1}1'$	19.26	8 8
$P2_{1}^{\prime}2_{1}^{\prime}2_{1}$	19.27		$P_c 2_1 2_1 2_1$	19.28		$P_C 2_1 2_1 2_1$			$P_{I}2_{1}2_{1}2_{1}$	19.30	4 4
$C222_{1}$			$C222_{1}1'$	20.32		$C2'2'2_1$			$C22'2_1'$	20.34	2 2
$C_{c}222_{1}$	20.35 4	1 2	$C_a 22 \tilde{2}_1$	20.36		$C_A 222_1$			C222	21.38	2 2 2 2 4 2 2 2 2 2 4 4
C2221'	21.39	1 2	C2'2'2	21.40	2 1	C22'2'		1	C_c222	21.42	4 2
$C_a 222$		2 2	$C_A 222$	21.44		F222			F2221'	22.46	2 2
F2'2'2	22.47 1		$F_S 222$	22.48		I222			I2221'	23.50	2 2
I2'2'2	23.51 1	1 1	$I_{c}222$	23.52	4 2	$I2_{1}2_{1}2_{1}$		2	$I2_{1}2_{1}2_{1}1'$	24.54	4 4
$I2_{1}^{\prime}2_{1}^{\prime}2_{1}$			$I_c 2_1 2_1 2_1$	24.56	4 2	Pmm2			Pmm21'	25.58	2 2
Pm'm2'	25.59 1		Pm'm'2	25.60		P_cmm2	25.61 4	4	P_amm2	25.62	$\begin{array}{ccc} 2 & 2 \\ 2 & 2 \end{array}$
$\frac{P_Cmm2}{2}$			$\frac{P_Amm2}{P_Amm2}$	25.64		P_Imm2	25.65 4	4	$Pmc2_1$	26.66	$\frac{2}{2}$
$Pmc2_11'$			$\frac{Pm'c2'_1}{2}$	26.68		$Pmc'2'_1$	26.69 2	2	$Pm'c'2_1$	26.70	2 2
$\frac{P_amc2_1}{P_Bmc2_1}$			P_bmc2_1	26.72 26.76		P_cmc2_1 P_Imc2_1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	$\frac{P_Amc2_1}{Pcc2}$	26.74 27.78	$\frac{2}{2}$
Pcc21'			$\frac{P_Cmc2_1}{Pc'c2'}$	27.80		Pc'c'2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$\frac{FCC2}{P_ccc2}$	27.82	$\frac{2}{2} \frac{2}{2}$
P_acc2			$\frac{FCC2}{P_Ccc2}$	27.84	$\frac{2}{4} \frac{2}{4}$	$P_{A}cc2$	27.85 4	$\frac{2}{4}$	$\frac{F_cCC2}{P_Icc2}$	27.86	2 2 2 2 2 2 2 2 4 4
Pma2		2 2	Pma21'	28.88		Pm'a2'	28.89 2	$\frac{1}{2}$	Pma'2'	28.90	2 2
Pm'a'2	28.91	2 2	P_ama2	28.92	2 2	P_bma2	28.93 4	4	P_cma2	28.94	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$P_A ma2$	28.95 4	$4 \mid 4 \mid$	P_Bma2	28.96	4 4	$ P_Cma2 $	28.97 4	2	P_Ima2	28.98	$4 ext{ } 4$
$Pca2_1$			$Pca2_11'$	29.100		$Pc'a2_1'$	29.101 4	4	$Pca'2'_1$	29.102	4 4
$Pc'a'2_1$	29.103 4	4	$P_a ca 2_1$	29.104		$P_b ca 2_1$	29.105 8	8	$P_c ca 2_1$	29.106	4 4
$P_A ca 2_1$		4 4	$P_B ca2_1$	29.108	4 4	$P_C ca 2_1$	29.109 4	4	$P_I ca 2_1$	29.110	4 4
$\frac{Pnc2}{Pn'c'2}$	30.111 2	$\frac{2}{3} = \frac{2}{3}$	$\frac{Pnc21'}{P_anc2}$	30.112	$\frac{4}{1}$	Pn'c2'	30.113 2	$\frac{2}{4}$	Pnc'2'	30.114	$\begin{array}{ccc} 2 & 2 \\ 4 & 4 \end{array}$
$\frac{Pn\ c\ 2}{P_Anc2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$	$\frac{P_a nc2}{P_B nc2}$	30.116 30.120	$\frac{4}{4} \frac{4}{4}$	P_bnc2 P_Cnc2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$\frac{P_c nc2}{P_I nc2}$	30.118 30.122	$\frac{4}{4} \frac{4}{4}$
	$\frac{30.119}{31.123}$		$\frac{FBRC2}{Pmn2_11'}$	31.124		$Pm'n2'_1$	$\frac{30.121}{31.125}$ $\frac{4}{2}$	9	$\frac{FInc2}{Pmn'2'_1}$	31.126	$\frac{4}{2} \frac{4}{2}$
$\frac{Pmn2_1}{Pm'n'2_1}$				31.128	4 4	P_bmn2_1				31.130	
$P_A m n 2_1$ $P_A m n 2_1$	$\begin{array}{ccc} 31.127 & 2 \\ \hline 31.131 & 4 \\ \end{array}$	$\begin{array}{c c} 2 & 2 \\ 4 & 4 \end{array}$	$\frac{P_amn2_1}{P_Bmn2_1}$	31.128		P_bmn2_1 P_Cmn2_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$\frac{P_cmn2_1}{P_Imn2_1}$	31.130	$\frac{4}{2} \frac{4}{2}$
Pba2	32.135))	$\frac{Pba21'}{Pba21'}$	32 136	$\frac{2}{1} \frac{2}{1}$	Pb'a2'	39 137 9	2	$\frac{Pb'a'2}{Pb'a'2}$	32 138	$\frac{2}{2} \frac{2}{2}$
P_cba2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4	P_bba2	32.136 32.140	$\frac{1}{4}$ $\frac{7}{4}$	P_Cba2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{2}$	P_Aba2	$\frac{32.138}{32.142}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$
P_Iba2	32.143	1 4	$\overline{Pna2}_{1}$	33.144		$Pna2_11'$	33.145 8	8	$Pn'a2'_1$	33.146	4 4
$Pna'2'_1$			$Pn'a'2_1$	33.148		$P_a na 2_1$			$P_b na2_1$	33.150	8 8
$P_c na 2_1$			$P_A na 2_1$	33.152		$P_B na 2_1$	33.153 4	4	$P_C na 2_1$	33.154	4 4
P_Ina2_1	33.155 4	4 4	Pnn2	34.156		Pnn21'	34.157 4	4	Pn'n2'	34.158	2 2
Pn'n'2		2 2	P_ann2	34.160	4 4	P_cnn2	34.161 4	4	P_Ann2	34.162	4 4
P_Cnn2	34.163	4 4	P_Inn2	34.164	2 2	Cmm2	35.165 2	2	Cmm21'	35.166	4 2
Cm'm2'	35.167 2	2 1	Cm'm'2	35.168		C_cmm2	35.169 4	4	C_amm2	35.170	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C_Amm2	35.171 4	$4 \overline{4}$	$Cmc2_1$	36.172		$Cmc2_11'$			$Cm'c2'_1$	36.174	2 2
$Cmc'2'_1$	36.175	2 2	$Cm'c'2_1$	36.176	2 2	C_cmc2_1	36.177 4	ว⊺ี	C_amc2_1	36.178	4 4

C	26 170	4 2 Co.	on 97 10	0 9 9	C a 21/	27 101 /	1 4	C 2/ 29/	27 100 0	
$C_A mc2_1$ $Cc'c'2$	36.179 37.183	4 2 Ccc 2 2 Ccc			$Ccc21'$ C_acc2				$\frac{37.182}{37.186}$ $\frac{2}{4}$	
$\frac{CCC2}{Amm2}$	38.187	$\frac{2}{2}$ $\frac{2}{2}$ $\frac{C_c c}{Am}$	$\frac{c2}{m21'} = \frac{37.18}{38.18}$	$\frac{4}{8}$ $\frac{4}{2}$ $\frac{2}{2}$	Am'm2'	38.189 1	1 .	Amm'2'	$\frac{37.180}{38.190}$ 1	1
Am'm'2	38.191	$1 1 \mid A_a \eta$	mm2 38.19	$\overline{2}$ $\overline{2}$ $\overline{2}$	A_bmm2	38.193 2	2	A_Bmm2	38.194 4	4
Abm2	39.195	$\frac{2}{2}$ $\frac{2}{4}$ $\frac{Abi}{4}$	$\frac{m21'}{39.19}$	$6 \qquad 4 \qquad 4$	Ab'm2'	39.197 2	$\frac{2}{2}$	Abm'2'	$\frac{39.198}{39.393}$ 2	
Ab'm'2 $Ama2$	39.199 40.203	$ \begin{array}{c cccc} 2 & 2 & A_a b \\ 2 & 2 & Am \end{array} $	$\frac{bm2}{a21'}$ $\frac{39.20}{40.20}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		39.201 2 40.205 2	2 .		$\frac{39.202}{40.206}$ $\frac{4}{2}$	$\frac{2}{2}$
Amaz Am'a'2	40.203	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ma2 40.20 40.20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{40.205}{40.209}$ 4	$\frac{2}{4}$	$Ama\ 2$ $A_Bma\ 2$	$\frac{40.200}{40.210}$ 4	
Aba2	41.211	2 2 Abc	$\frac{10.20}{121'}$ 41.21	2 4 4	Ab'a2'	41.213 2	$\frac{1}{2}$	Aba'2'	41.214 2	$\frac{\bar{2}}{2}$
Ab'a'2	41.215	$2 2 A_a b$	ba2 41.21	6 4 4	A_bba2	41.217 4	4 .	A_Bba2	41.218 4	2
Fmm2	42.219	$\frac{2}{2}$ $\frac{2}{2}$ $\frac{Fm}{Fd}$	$\frac{1}{12}$ $\frac{42.22}{43.22}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		42.221 2	11		$\frac{42.222}{42.226}$ 2	$\frac{1}{2}$
F_Smm2 $Fd'd'2$	42.223 43.227	2 2 Fdc 2 2 Fsc	$\frac{d2}{dd2}$ $\frac{43.22}{43.22}$			$ \begin{array}{r} 43.225 & 4 \\ 44.229 & 2 \end{array} $	$\frac{4}{2}$		$\frac{43.226}{44.230}$ $\frac{2}{2}$	$\frac{2}{2}$
Im'm2'	44.231	$\frac{2}{1}$ $\frac{2}{1}$ $\frac{I}{Im}$	$\frac{43.22}{m'^2}$ 44.23			44 233 4	4	$I_{-}mm2$	$\frac{44.230}{44.234}$ 2	
Iba2	45.235	2 2 Iba	21' 45.23	6 4 4	Ib'a2'	45.237 2	$\overline{2}$	Ib'a'2	45.238 2	2
I_cba2	45.239	$4 2 I_a b$	a2 45.24	0 4 4	Ima2	46.241 2	$2 \mid$	Ima21'	46.242 4	4
Im'a2'	46.243	2 2 Im	$\frac{a'2'}{2}$ 46.24	$\frac{4}{2}$		46.245 2	$\frac{2}{2}$	I_cma2	$\frac{46.246}{47.250}$	
$\frac{I_a ma2}{Pm'mm}$	$\frac{46.247}{47.251}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{na2}{n'm'm} \frac{46.24}{47.25}$			$\frac{47.249}{47.253}$ $\frac{2}{2}$			$\frac{47.250}{47.254}$ $\frac{2}{4}$	
P_Cmmm	47.255	$\frac{2}{4}$ $\frac{2}{4}$ $\frac{PH}{P_I r}$	$\frac{1}{nmm} \frac{41.25}{47.25}$	$\frac{2}{6}$ $\frac{1}{4}$ $\frac{1}{4}$		41.255 <u>2</u> 48.257 4	$\frac{2}{4}$		41.254 48.258 8	4
Pn'nn	48.259	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{70707}{707}$ 48.26	0 4 2		48.261 4	4	$P_c nnn$	48.262 8	
$P_{C}nnn$	48.263	$4 4 P_{I}r$	nn 48.26	4 8 4	Pccm	49.265 2	$2 \Box$	Pccm1'	$\frac{10.202}{49.266}$ 4	- 4
Pc'cm	49.267	2 2 Pcc	cm' = 49.26	8 2 2	Pc'c'm	49.269 2	$2 \Box$	Pc'cm'	49.270 2	2
$\frac{Pc'c'm'}{P}$	49.271	$\frac{4}{4}$ $\frac{4}{4}$ $\frac{P_ac}{P_ac}$	$\frac{ccm}{49.27}$	$\frac{2}{c}$ $\frac{4}{4}$ $\frac{4}{4}$		49.273 2	2 .	$P_{B}ccm$	49.274 4	4
$P_{Cccm} = Pb'an$	49.275 50.279	$\begin{array}{c cccc} 4 & 4 & P_I a \\ \hline 2 & 2 & Pba \end{array}$	$\frac{ccm}{an'} = \frac{49.27}{50.28}$	$\frac{6}{0}$ $\frac{4}{2}$ $\frac{4}{2}$	$Pban \\ Pb'a'n$	$ \begin{array}{r} 50.277 & 4 \\ 50.281 & 4 \end{array} $	$\frac{4}{2}$	Pban1' $Pb'an'$	50.278 8 50.282 4	4
Pb'a'n'	50.283	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{an}{ban} = \frac{50.28}{50.28}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P_cban	50.285	41.	$P_{A}ban$	50.282 4 50.286 8	8
P_Cban	50.287	$4 4 P_{I}h$	an = 50.28	8 8 8	Pmma	51.289 2	2	Pmma1'	51.290 4	- 4
Pm'ma	51.291	2 2 Pm	nm'a = 51.29	2 2 2	Pmma'	51 293 4	4	Pm'm'a	51.294 2	2
P. mma	51.295 51.200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{n'ma'}{mma} = \frac{51.29}{51.30}$	$\frac{6}{0}$ $\frac{2}{4}$ $\frac{2}{4}$		$\frac{51.297}{51.301}$ $\frac{2}{4}$	2 .		$\frac{51.298}{51.302}$ $\frac{2}{4}$	
P_bmma P_Cmma	51.299 51.303	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nma = 51.30 $nma = 51.30$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P_Amma $Pnna$	$\frac{51.301}{52.305}$ 4	4 1	Pnna1'	52.306 8	8
Pn'na	52 307	$4 4 \mid Pn$	n'a = 52.30	8 4 4		52.309 4	4	Pn'n'a	$\frac{52.300}{52.310}$ $\frac{5}{4}$	- 4
Pnn'a'	52.311	4 4 Pn'	'na' 52.31	$2 \qquad \qquad 4 4$	Pn'n'a'	52.313 4	$4 _{\perp}$	P_anna	52.314 8	4
P_bnna	52.315	$8 ext{ } 4 ext{ } P_c r$	nna 52.31	6 8 8		52.317 4	4 .	$P_B nna$	52.318 8	4
$\frac{P_C nna}{P_m'_{n,a}}$	52.319	8 4 P _I r 4 4 Pm	$\begin{array}{ccc} nna & 52.32 \\ nn'a & 53.32 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{Pmna}{Pmna'}$	53.321 4 53.325 4	2 .	Pmna1' $Pm'n'a$	53.322 8 53.326 4	
$Pm'na \ Pmn'a'$	53.323 53.327	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} nn & a & & 53.32 \\ n'na' & & 53.32 \end{array}$	$\frac{4}{8}$ $\frac{4}{4}$ $\frac{4}{2}$	Pmna $Pm'n'a'$	53.325 4 53.329 4	4	$P_{a}mna$	$\frac{53.326}{53.330}$ $\frac{4}{4}$	4
P_bmna	53.331	$8 4 P_c r$	nna 53.33	$2 \qquad \qquad 4 4$	P_Amna	53.333 4	$4 _{\perp}$	P_Bmna	53.334 2	2
P_Cmna	53.335	$8 4 P_I r$	nna 53.33	6 4 4	Pcca	54.337 4	4	Pcca1'	54.338 8	8
$\frac{Pc'ca}{Pcc'c'}$	54.339	4 4 Pcg	$\frac{c'a}{a}$ $\frac{54.34}{54.34}$		Pcca'	54.341 4	4	$\frac{Pc'c'a}{Pc'a}$	54.342 4	4
$\frac{Pcc'a'}{P_bcca}$	54.343 54.347	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} ca' & 54.34 \\ ca & 54.34 \end{array}$			54.345 4 54.349 8	$\frac{4}{8}$		$ \begin{array}{r} 54.346 & 4 \\ 54.350 & 4 \end{array} $	4
$P_{C}cca$	54.351	$\frac{8}{8}$ 4 P_Ic	cca = 54.34						$\frac{54.550}{55.354}$ 4	
Pb'am	55.355	4 4 Pbe	am' = 55.35	$\frac{2}{6}$ $\frac{3}{4}$ $\frac{3}{4}$		55.357 2	2	Pb'am'	55.358 2	2
Pb'a'm'	55.359	$4 4 P_a b$	55.36	0 4 4	P_cbam	55.361 4	4	P_Abam	<u>55.362</u> 8	4
P_Cbam	55.363	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{55.36}{56.36}$	$\frac{4}{9}$ $\frac{4}{4}$ $\frac{4}{4}$		56.365 4	4 .		56.366 8 56.370	8
$Pc'cn \ Pc'c'n'$	56.367 56.371	4 4 Pcc 4 4 P _b c			$Pc'c'n$ P_cccn	56.369 4 56.373 8	$\frac{4}{4}$		$\begin{array}{ccc} 56.370 & 4 \\ 56.374 & 8 \end{array}$	
$P_{C}ccn$	56.375	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ccn = \frac{50.37}{56.37}$			57.377 4	4	$\frac{Pbcm1'}{Pbcm1'}$	57.378 8	8
Pb'cm	57.379	4 4 Pba	c'm = 57.38	0 4 4	Pbcm'	57.381 4	4	Pb'c'm	57.382 4	4
Pbc'm'	57.383	4 4 Pb'	cm' = 57.38	$4 \qquad 4 \qquad 4$	Pb'c'm'	57.385 4	4	P_abcm	57.386 8	
P_bbcm	57.387 57.201	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{57.38}{57.30}$			57.389 4	$\frac{4}{2}$	P_Bbcm	57.390 8 58.304 4	8
P_Cbcm $Pn'nm$	57.391 58.395	8 4 P _I b	$\frac{57.39}{nm'}$	$\frac{2}{6} \qquad \frac{8}{4} \qquad \frac{4}{4}$	$\frac{Pnnm}{Pn'n'm}$	58.393 2 58.397 2	2 .	$\frac{Pnnm1'}{Pnn'm'}$	$\frac{58.394}{58.398}$ $\frac{4}{2}$	4
Pn'n'm'	58.399	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$nm = \frac{36.39}{58.40}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_c nnm$	58.401 4	4	P_Bnnm	58.402 4	
P_{Cnnm}	58.403	$4 4 P_I r$	nnm = 58.40	4 2 2	Pmmn	59.405 4	4	Pmmn1'	59.406 8	4
$Pm'_{\prime}mp_{\prime}$	59.407	$\frac{2}{2}$ $\frac{2}{2}$ $\frac{Pm}{Pm}$	nmn' 59.40	8 4 4	Pm'm'n	59.409 4	2	Pmm'n'	59.410 4	- 2
$\frac{Pm'm'n'}{P}$	59.411	$\frac{2}{4}$ $\frac{2}{4}$ $\frac{P_b r_b}{P_b r_b}$	$\frac{nmn}{59.41}$		Phon	59.413 8	8 .		59.414 8	8
$\frac{P_Cmmn}{Pb'cn}$	59.415 60.419	4 4 P _I r 4 4 Pbq	$\frac{nmn}{c'n} \frac{59.41}{60.42}$			$\frac{60.417}{60.421}$ 4	4 .		$\frac{60.418}{60.422}$ 8 4	8
Pbc'n'	60.423	4 4 Pb'	cn' = 60.42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		60.425 4	$4 \mid_{\perp}$	P_abcn	60.426 8	8
P_bbcn	60.427	$8 8 P_c b$	cn = 60.42	8 8 4	P_Abcn	60.429 8	81.	P_Bbcn	60.430 8	4
P_Cbcn	60.431	4 4 P _I b		$\frac{2}{6}$ $\frac{4}{4}$ $\frac{4}{4}$		61.433 4	4		61.434 8	
Pb'ca	61.435	8 8 Pb'							61.438 8	
$\frac{P_Cbca}{Pn'ma}$	61.439 62.443	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{0}{4}$ $\frac{8}{4}$ $\frac{8}{4}$				$\frac{Pnma1'}{Pn'm'a}$	$\frac{62.442}{62.446}$ 8 4	
Pnm'a'	62.447	4 4 Pn	'ma' 62.44	8 4 4	Pn'm'a'	62.449 4	4	$P_a nma$	62.450 8	4
P_bnma	62.451	$4 4 \mid P_c r$	1000000000000000000000000000000000000	2 8 8	$P_A nma$	62.453 8	4	$P_B nma$	62.454 4	. 4
P_{Cnma}	62.455	$8 8 P_{IT}$	1000 ma 62.45	6 4 4	Cmcm	63.457 4	$2 \mid \epsilon$	Cmcm1'	63.458 8	4
Cm'cm	63.459	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{nc'm}{63.46}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		63.461 2 63.465 2	$\frac{2}{3}$		63.462 4 63.466 4	$\frac{2}{2}$
$Cmc'm' = C_amcm$	63.463 63.467	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{n'cm'}{mcm} = \frac{63.46}{63.46}$	4 4 2 8 4 4		63.465 2 64.469 4	$\frac{4}{2} \frac{6}{4}$		$\frac{63.466}{64.470}$ $\frac{4}{8}$	
$C_a mcm$ Cm'ca	64.471	4 4 Cm	nc'a 64.47	$\frac{2}{2}$ $\frac{4}{4}$ $\frac{4}{4}$	Cmca'	$\frac{64.409}{64.473}$ 4	$\frac{2}{4}$	Cm'c'a	$\frac{64.470}{64.474}$ 4	2
Cmc'a'	64.475	$4 \ 2 Cm$	n'ca' 64.47	$\frac{5}{6}$ $\frac{1}{4}$ $\frac{1}{2}$	Cm'c'a'	64.477 4	$4 \mid \epsilon$	$C_c mca$	<u>64.478</u> 4	4
$C_a mca$	64.479	$4 4 C_A$	mca = 64.48	0 4 2	Cmmm	65.481 2	2ϵ	Cmmm1'	65.482 4	. 2
Cm'mm	65.483 65.487	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{mm'}{65.48}$			65.485 2 65.489 4	$\frac{\prod}{2}$		$\frac{65.486}{65.490}$ $\frac{2}{4}$	$\frac{1}{4}$
$\frac{ Cm'm'm' }{ Cccm }$	66.491	$ \begin{array}{c cccc} 2 & 2 & C_c r \\ 2 & 2 & C_c c \end{array} $	$\begin{array}{ccc} nmm & 65.48 \\ cm1' & 66.49 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{65.489}{66.493}$ $\frac{4}{2}$	$\frac{4}{2} \frac{6}{4}$		$\frac{65.490}{66.494}$ $\frac{4}{2}$	
Cc'c'm	66.495	2 2 Ccc	c'm' 66.49	$\frac{2}{6}$ $\frac{4}{2}$ $\frac{4}{2}$	Cc'c'm'	66.497 4	$\frac{7}{4}$		66.498 4	

$ \begin{array}{c} Cm^2 no & 07.985 & 2 & 2 & Cmmo & 07.981 & 2 & 2 & Cmmo & 07.995 & 2 & Cmmo & 07.995 & 2 & 2 & Cmmo & 07.995 & 2 & 2 & Cmmo & 07.995 & 2 & Cmm$	C	<i>CC</i> 400	1 1	C	66 500	4 0	C 200 200 2	67 501	2 2	C 200 200 0 1/	67 500	4 4
$ \begin{array}{c} Cn'm'm' & 07,607 \\ CGSG \\ CGS$	$C_a ccm$	66.499 67.503			66.500 67.504		$\frac{Cmma}{Cm'm'a}$	67.501 67.505	$\frac{2}{2}$ $\frac{2}{2}$	Cmma1	67.502 67.506	$\frac{4}{2} \frac{4}{2}$
$\begin{array}{c} Ggga & 88.511 & 4.4 (Cocut. 86.512) & 8.4 (Cocut. 86.513) & 4.2 (Cocut. 86.513) &$						4 4	C_amma		2 2	C_Amma		4 4
$ \begin{array}{c} C_{CCO} & 68.510 & 4.4 \left(C_{AGCA} & 68.520 \\ E_{RP} nnm & 69.521 & 2.2 \right) F_{RP} m, m & 69.524 \\ F_{RP} nnm & 69.525 & 2.2 F_{RP} m, m & 69.524 \\ F_{RP} nnm & 69.525 & 2.2 F_{RP} m, m & 69.525 & 2.2 F_{RP} nnm & 69.52$			4 4	Cccq1'		8 4	Cc'ca		4 2	Ccca'		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									4 4	$C_c cca$		4 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									$\frac{2}{2}$ $\frac{2}{2}$	Famman		4 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												4 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						8 4	Immm	71.533	$\overline{4}$ $\overline{2}$	Immm1'		8 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		71.535				4 1	Im'm'm'		2 2	I_cmmm		4 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{72.539}{72.542}$	$\frac{4}{4} \frac{2}{2}$	Ibam1'	$\frac{72.540}{72.544}$	8 4	$\frac{1}{1}\frac{Ib'am}{Ib'a'a'a'a'}$				72.542	$\frac{2}{4} \frac{2}{3}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									8 8	$I_c oam$ $I_b c_a$		4 <u>2</u> 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		73.551							4 4	Imma		2 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Imma1'	74.555	4 4	Im'ma	74.556	2 2	2 Imma'	74.557	4 4	Im'm'a	74.558	2 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 2			2 2	$2 I_c mma$		4 4	I_bmma		4 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						4 2	P4'					4 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 Z 1 1	$\frac{P_I 4}{P_I A_I}$								<u>88</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\frac{4}{2} \frac{4}{2}$	$P4_01'$					$\frac{0}{2}$ $\frac{0}{2}$	$P A_0$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 4	P_14_2					$\frac{2}{4} \frac{2}{4}$	$P4_{2}1'$		8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P4_3'$		4 4	P_c4_3								4 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{I4}$	79.25	$2 ext{ } 1$	I41'	79.26	4 2	2 I4'	79.27	2 2	I_c4	79.28	4 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 2	$I4_11'$		4 4	$1 I4'_1$		2 2	I_c4_1		4 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				P41'								4 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 2	$\frac{P_I 4}{I A}$		4 2	2 14					2 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 2	DA/m'		9 9	$\frac{\Gamma 4/m}{D D A'/m'}$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$			1 0	$\frac{\Gamma 4/m}{D_{-}A/m}$					2 2	$\frac{F_c4/m}{DA_c/m^{1/}}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										P 42/III1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									4 2	P_c42/m		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									4 4	P 4/111		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									4 4	$\frac{\Gamma_c 4/1t}{DA/m1'}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 4	$\frac{\Gamma I4/\pi}{DA_{-}/n'}$					4 2	$\frac{\Gamma 42/111}{D A_{-}/m}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 1	$\frac{1.42/\pi}{P_r A_2/n}$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 4	$\frac{II42/Ii}{IA/m'}$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 2	$\frac{14/11}{14.7a1'}$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9 9	$I A_1/a_1$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\frac{2}{2}$	$\frac{I_c 4_1 / u}{D 4 2' 2'}$								4 2
$\begin{array}{c} P_1''2_1'' & 90.97 & 4 & 2 & P42_1'2' & 90.98 & 2 & 2 & P4_2''1_2 & 90.99 & 4 & 4 & P_42_12 & 90.100 & 4 & 4 \\ P_6'4_12^2 & 90.101 & 4 & 2 & P_42_12 & 90.102 & 4 & 2 & P_4_22 & 91.103 & 4 & 4 & P_4_221' & 91.104 & 8 & 8 \\ P_4'1_22' & 91.105 & 4 & 4 & P_4_1_2'2' & 91.106 & 4 & 4 & P_4_1_2'2 & 91.107 & 4 & 4 & P_4_4_221' & 91.108 & 4 & 4 \\ P_6'4_12^2 & 91.109 & 8 & 8 & P_1'4_1_2^2 & 91.110 & 8 & 4 & P_4_1_2_1^2 & 92.111 & 4 & 4 & P_4_1_2_1^2 & 92.112 & 8 & 8 \\ P_4'1_21^2 & 92.113 & 4 & 4 & P_4_1_2'1_2 & 92.114 & 4 & 4 & P_4_1_2'1_2 & 92.115 & 4 & 4 & P_4_1_2^2 & 92.116 & 8 & 4 \\ P_6'4_12^2 & 92.117 & 8 & 8 & P_1'4_1_2^2 & 92.118 & 8 & 4 & P_4_2^2 & 93.119 & 4 & 4 & P_4_2^2 & 93.120 & 4 & 4 \\ P_6'4_22^2 & 93.125 & 2 & 2 & P_4_2^2^2 & 93.126 & 4 & 4 & P_4_2^2 & 2 & 93.123 & 2 & 2 & P_4_2^2 & 2 & 93.124 & 4 \\ P_6'4_22^2 & 93.125 & 4 & 4 & P_1^4_2^2 & 94.130 & 4 & 2 & P_4^2_2^2 & 94.131 & 4 & 4 & P_4^2_2^2 & 94.132 & 8 & 4 \\ P_6'4_212^2 & 94.133 & 4 & 4 & P_4^4_2^2 & 94.134 & 4 & P_4^4_2^2 & 95.135 & 4 & 4 & P_4^4_2^2 & 95.136 & 8 & 8 \\ P_6'4_22^2 & 95.141 & 8 & 8 & P_4^4_2^2 & 95.138 & 4 & 4 & P_4^4_2^2 & 95.139 & 4 & 4 & P_4^4_2^2 & 95.140 & 4 & 4 \\ P_6'4_21^2 & 96.145 & 8 & 4 & P_4^4_2^2 & 96.150 & 8 & 4 & P_4^4_2^2 & 96.143 & 4 & P_4^4_2^2 & 96.144 & 8 & 8 \\ P_6'4_21^2 & 96.149 & 8 & 8 & P_4^4_2^2 & 96.150 & 8 & 4 & P_4^4_2^2 & 96.143 & 4 & P_4^4_2^2 & 97.155 & 2 & P_4^4^2 & 97.155 & 2 & P_4^4^2 & 98.160 & 4 & 2 \\ P_4'1^2 & 98.161 & 4 & 1 & P_4^4^2 & 98.165 & 2 & P_4^4^2 & 98.160 & 4 & 2 & P_4^4^2 & 98.160 & 4 & 2 \\ P_4'1^2 & 98.161 & 4 & 4 & P_4^4^2 & 98.165 & 2 & P_4^4^2 & 98.160 & 4 & 2 \\ P_4'1^2 & 98.161 & 4 & 4 & P_4^4^2 & 98.165 & 2 & P_4^4 & P_4^4$									$\frac{2}{4} \frac{2}{2}$	$P42_{1}21'$		4 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												$\frac{1}{4} \frac{1}{4}$
$\begin{array}{c} P_4'(22') & 91.105 & 4 & 4 & P_4(1'2') & 91.106 & 4 & 4 & P_4(1'2') & 91.107 & 4 & 4 & P_c4_12_2 & 91.108 & 4 & 4 \\ P_6'4_2(1') & 91.103 & 8 & P_1'4_1(1') & 91.110 & 8 & 4 & P_4'_1(1') & 92.111 & 4 & 4 & P_4'_1(1') & 92.111 & 8 & 8 \\ P_4'(1,1') & 92.117 & 8 & 8 & P_1'4_1(1') & 92.118 & 8 & 4 & P_4'_1(1') & 92.115 & 4 & 4 & P_6'_1(1') & 92.116 & 8 & 4 \\ P_6'4_2(1') & 93.121 & 2 & 2 & P_4'_2(1') & 93.122 & 2 & 2 & P_4'_2(1') & 93.123 & 2 & 2 & P_6'_4(2') & 93.123 & 4 & 4 \\ P_6'_4(1') & 93.121 & 2 & 2 & P_4'_2(1') & 93.122 & 2 & 2 & P_4'_2(1') & 93.123 & 2 & 2 & P_6'_4(2') & 93.124 & 4 & 4 \\ P_6'_4(1') & 94.129 & 4 & 2 & P_6'_4(1') & 94.120 & 4 & 2 & P_6'_4(1') & 94.120 & 4 \\ P_6'_4(1') & 94.129 & 4 & 2 & P_6'_4(1') & 94.130 & 4 & 2 & P_6'_4(1') & 94.131 & 4 & P_6'_4(1') & 94.128 & 8 & 4 \\ P_6'_4(1') & 94.129 & 4 & 2 & P_6'_4(1') & 94.131 & 4 & P_6'_4(1') & 94.132 & 8 & 4 \\ P_6'_4(1') & 94.129 & 4 & 2 & P_6'_4(1') & 94.134 & 4 & P_6'_4(1') & 95.135 & 4 & 4 & P_6'_4(1') & 95.136 & 8 & 8 \\ P_6'_4(1') & 95.137 & 4 & 4 & P_6'_4(1') & 95.138 & 4 & 4 & P_6'_4(1') & 95.135 & 4 & 4 & P_6'_4(1') & 95.136 & 8 & 8 \\ P_6'_4(1') & 95.137 & 4 & 4 & P_6'_4(1') & 95.138 & 4 & 4 & P_6'_4(1') & 95.139 & 4 & 4 & P_6'_4(1') & 95.136 & 8 & 8 \\ P_6'_4(1') & 95.137 & 4 & 4 & P_6'_4(1') & 95.138 & 4 & 4 & P_6'_4(1') & 95.139 & 4 & 4 & P_6'_4(1') & 95.136 & 8 & 8 \\ P_6'_4(1') & 95.137 & 4 & 4 & P_6'_4(1') & 95.138 & 4 & 4 & P_6'_4(1') & 95.139 & 4 & 4 & P_6'_4(1') & 95.136 & 8 & 8 \\ P_6'_4(1') & 95.137 & 4 & 4 & P_6'_4(1') & 95.138 & 4 & 4 & P_6'_4(1') & 95.139 & 4 & 4 & P_6'_4(1') & 95.136 & 8 & 8 \\ P_6'_4(1') & 95.137 & 4 & 4 & P_6'_4(1') & 95.138 & 4 & 4 & P_6'_4(1') & 95.139 & 4 & 2 & P$	$P_{C}42_{1}2$					4 2	$P4_{1}22$		4 4	$P4_{1}221'$	91.104	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						4 4	$1 P4_1'2'2$					4 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_{C}4_{1}22$		8 8	$P_{I}4_{1}22$		8 4	$\frac{1 P4_{1}2_{1}2}{1 P4_{1}2_{1}2}$		4 4	$P4_{1}2_{1}21'$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P4_{1}^{\prime}2_{1}^{\prime}2_{1}^{\prime}$		4 4	$P4_{1}2_{1}^{\prime}2_{1}^{\prime}$		4 4	$P4_12_12$		4 4	$P_c4_12_12$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{P_C 4_1 2_1 2}{D_A' 22'}$		8 8	$P_{I}4_{1}2_{1}2$		9 9	$\frac{1 P 4_2 22}{P A' 9' 9}$		$\frac{4}{2} \frac{4}{2}$	P4 ₂ 221		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 1	$P_{1}A_{2}P_{2}$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4 2	$P4_{2}2_{1}^{\prime}2_{1}^{\prime}$		4 2	$P4_{2}^{7}2_{1}^{7}2$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_C 4_2 2_1 2$		4 4	$P_{I}4_{2}2_{1}2$		4 4	$1 P4_{3}22$		4 4	$P4_{3}221'$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4 4	$P4_32'2'$		4 4	$1 P4_3^7 2^7 2$		4 4	$P_{c}4_{3}22$		4 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_{C}4_{3}22$		8 8	$P_{I}4_{3}22$		8 4	$P4_{3}2_{1}2$		4 4	$P4_32_121'$		8 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P4_{3}^{\prime}2_{1}^{\prime}2_{1}^{\prime}$		4 4	$P4_{3}2'_{1}2'$		4 4	$1 P4_3'2_1'2$		4 4	$P_c4_32_12$		8 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ P_C 4_3 2_1 2 $		8 8	$\frac{P_{I}4_{3}2_{1}2}{I_{A}9'9'}$		8 4	1422		2 2	14221′		4 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2 I	1422		4 2	I_{C}^{422} $I_{A_{1}}^{9'9'}$		4 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,2,2								2 2	P4mm1'		4 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P4'm'm		2 2	P4'mm'					2 1	P_c4mm		4 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_C4mm		4 4	P_I4mm		4 4	P4bm		4 2	P4bm1'	100.172	4 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P4'b'm	100.173	4 4	P4'bm'	100.174	4 2	P4b'm'	100.175	2 2	P_c4bm	100.176	8 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									$4 ext{ } 4$	$P4_2cm1'$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 4	P42cm'								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		101.185				<u>8 8</u>	$P4_2nm$		4 4	$PA_{2}nm1$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u>4 2</u>	P4cc		4 2	P4cc1'		8 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\frac{3}{4}$ 4	P4'cc'		4 4	P4c'c'		$\frac{1}{4} \frac{2}{2}$	P_c4cc		4 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_C4cc					4 4	P4nc		$\frac{1}{4} \frac{2}{2}$	P4nc1'		8 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P4'n'c	104.205	4 4	P4'nc'	104.206	4 4	P4n'c'	104.207	4 2	P_c4nc	104.208	4 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_C4nc		8 4	P_I4nc					$\frac{4}{2}$	$P4_2mc1'$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\overline{I4'm'm}$ 107.229 2 2 $\overline{I4'mm'}$ 107.230 2 2 $\overline{I4m'm'}$ 107.231 2 1 $\overline{I_c4mm}$ 107.232 4 4												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\frac{0}{2} \frac{4}{2}$	I4'mm'		2 2			$\frac{2}{2} \frac{2}{1}$	I_c4mm		4 4
	$\overline{I4cm}$								$\frac{1}{4} \frac{1}{4}$	I4'cm'		

T. 1. 1	100.00	2 2	T .	100.000	4 2	1.74	100.000	4 4	T.4. 11./	100.010	
I4c'm'	108.237		I_c4cm	108.238		$2 I4_1md$	109.239		$\frac{I4_1md1'}{IA}$	109.240	4 4
$I4'_1m'd$	109.241		$I4'_1md'_1$	109.242		$I4_1m'd'$	109.243		$\frac{I_c 4_1 md}{I_s 4' \circ d'}$	109.244 110.248	8 8
$I4_1cd$ $I4_1c'd'$	110.245 110.249		I_c4_1cd1'	110.246 110.250		$\frac{14_1'c'd}{P42m}$	110.247 111.251		$\frac{I4_1'cd'}{P42m1'}$	110.248	$\begin{array}{c c} 4 & 4 \\ \hline 4 & 2 \end{array}$
P4'2'm	$\frac{110.249}{111.253}$	$\frac{4}{2} \frac{4}{2}$		$\frac{110.250}{111.254}$		P42m	111.255		$\frac{P42m1}{P_c42m}$	$\frac{111.252}{111.256}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$P_C \overline{42m}$	111.257		$P_I \overline{42m}$	111.258		P42c	112.259	$\frac{2}{2}$	P42c1'	112.260	4 4
P4'2'c	112.261		P4'2c'	112.262	4 4	$P\bar{4}2'c'$	112.263		$P_c \overline{42c}$	112.264	4 2
$P_C \overline{42}c$	112.265		$P_I \overline{42}c$	112.266	4 4	$P\overline{4}2_1m$	113.267		$P\overline{4}2_1m1'$	113.268	$\begin{array}{ccc} 4 & 2 \\ 4 & 4 \end{array}$
$P\overline{4}'2'_1m$	113.269			113.270	4 2	$2 P42_1'm'$	113.271	2 2	$P_c \overline{42_1} m$	113.272	8 4
$P_C \overline{4} 2_1 m$	113.273			113.274		$P\overline{4}2_1c$	114.275	4 2	$P\overline{4}2_1c1'$	114.276	8 4
$P4'2'_1c$	114.277		$P4'2_1c'$	114.278	4 4	$P42_{1}'c'$	114.279		P_c42_1c	114.280	4 4
$P_C\overline{42}_1c$	114.281	8 4		114.282	4 2	$P\overline{4m2}$	115.283		$P\overline{4}m21'$	115.284	$\begin{array}{ccc} 4 & 2 \\ 4 & 4 \end{array}$
$P_C 4m2$	115.285 115.289	2 2	$P_I \overline{4m2'}$	115.286 115.290		P4m'2' $P4c2$	$\frac{115.287}{116.291}$		$\frac{P_c4m2}{P4c21'}$	115.288 116.292	4 4 8 4
P_C^{4m2}	116.293		P4'c2'	$\frac{115.290}{116.294}$	4 4	$\frac{174c2}{P4c'2'}$	116.295	4 2	$\frac{P4c21}{P_c4c2}$	$\frac{110.292}{116.296}$	4 2
$P_C \overline{4c2}$	$\frac{116.293}{116.297}$	4 4		116.298		$P\overline{4b2}$	117.299		$\frac{P_c 462}{P4b21'}$	117.300	4 4
P4'b'2	117.301		P4'b2'	117.302		P4b'2'	117.303		$\frac{1}{P_c 4b2}$	117.304	4 4
$P_C \overline{4}b2$	117.305			117.306		$P\overline{4}n2$	118.307	4 2	$P\overline{4}n21'$	118.308	4 4
$P\overline{4}'n'2$	118.309	4 4	$P\bar{4}'n2'$	118.310		$P\bar{4}n'2'$	118.311	2 2	$P_c \bar{4}n2$	118.312	4 4
P_C4n2	118.313	4 4		118.314	4 2	2I4m2	119.315		I4m21'	119.316	2 2
I4'm'2	119.317	2 2	I4'm2'	119.318	2 2	$\frac{14m'2'}{14'/2}$	119.319		$\frac{I_c 4m2}{I_d I_d Q'}$	119.320	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{I4c2}{I4c'2'}$	$\frac{120.321}{120.325}$	$\begin{array}{ccc} 2 & 2 \\ 2 & 2 \end{array}$	I_c4c21' I_c4c2	$\frac{120.322}{120.326}$		$1 \overline{4} c'2$ $1 \overline{4} 2m$	$\frac{120.323}{121.327}$	$\begin{array}{c c} 4 & 4 \\ \hline 2 & 2 \end{array}$	$\frac{I\overline{4}'c2'}{I42m1'}$	$\frac{120.324}{121.328}$	$\frac{2}{4} \frac{2}{2}$
$\frac{14c}{I4'2'm}$	$\frac{120.323}{121.329}$	$\frac{2}{2} \frac{2}{2}$	I_c^{4c2}	$\frac{120.320}{121.330}$	$\frac{4}{2} \frac{2}{2}$	2 I 42m 2 I 42'm'	121.321		$\frac{142m1}{I_c42m}$	121.328	$\frac{4}{4} \frac{2}{2}$
$\frac{142}{142d}$	122.333	4 2	I42d1'	122.334		142/h	122.335	4 4	I4'2d'	$\frac{121.332}{122.336}$	4 4
$I\bar{4}2'd'$	122.337	4 2	$I_c \overline{4}2d$	122.338	4 4	P4/mmm	123.339	4 2	P4/mmm1'	123.340	4 2
P4/m'mm	123.341	2 2		123.342	2 2	P4'/mmm		4 2	P4'/m'm'm	123.344	2 2
P4/mm'm'	123.345	2 1	P4'/m'mm'		2 2	P4/m'm'm			P_c4/mmm	123.348	8 4
	123.349	4 4	P_I4/mmm	123.350	8 4	P4/mcc	124.351	4 2	P4/mcc1'	124.352	8 4
P4/m'cc	124.353		P4'/mc'c	124.354	4 4	P4'/mcc'	124.355		P4'/m'c'c	124.356	4 4
P4/mc'c'	124.357			124.358		P4/m'c'c'	124.359		P_c4/mcc	124.360	4 2
P_C4/mcc	124.361			124.362		P4/nbm	125.363		$\overline{P4/nbm1'}$	125.364	8 4
P4/n'bm	125.365	4 2	P4'/nb'm	125.366	4 4	P4'/nbm'	125.367	4 4	P4'/n'b'm	125.368	4 4
P4/nb'm'	125.369	4 2		125.370		P4/n'b'm'	125.371		P_c4/nbm	125.372	8 4
P_C4/nbm	125.373	4 4		125.374		P4/nnc	126.375	8 4	$\overline{P4/nnc1'}$	126.376	16 4
P4/n'nc	126.377	4 2		126.378		P4'/nnc'	126.379		P4'/n'n'c	126.380	4 4
P4/nn'c'	126.381	8 2		126.382		P4/n'n'c'	126.383		P_c4/nnc	126.384	8 4
P_C4/nnc	126.385			126.386		P4/mbm	127.387		$\overline{P4/mbm1'}$	127.388	4 4
P4/m'bm	127.389			127.390		P4'/mbm'	127.391	4 2	P4'/m'b'm	127.392	4 4
P4/mb'm'	127.393	2 2		127.394		P4/m'b'm'			P_c4/mbm	127.396	8 4
P_C4/mbm	127.397	4 2		127.398	8 4	P4/mnc	128.399		$\overline{P4/mnc1'}$	128.400	8 4
P4/m'nc	128.401	4 4	P4'/mn'c	128.402	4 4	P4'/mnc'	128.403	4 4	P4'/m'n'c	128.404	4 4
P4/mn'c'	128.405	4 2	P4'/m'nc'	128.406	4 4	P4/m'n'c'	128.407	4 4	P_c4/mnc	128.408	4 4
P_C4/mnc	128.409	8 4	P_I4/mnc	128.410	4 2	P4/nmm	129.411		$\overline{P4/nmm1'}$	129.412	8 4
P4/n'mm	129.413	4 4	P4'/nm'm	129.414		P4'/nmm'	129.415	4 4	P4'/n'm'm	129.416	4 2
P4/nm'm'	129.417	4 2		129.418		P4/n'm'm			P_c4/nmm	129.420	8 8
P_C4/nmm	129.421	4 4	P_I4/nmm	129.422	8 4	P4/ncc	130.423		$\overline{P4/ncc1'}$	130.424	16 8
P4/n'cc	130.425	4 4		130.426		P4'/ncc'	130.427		P4'/n'c'c	130.428	8 4
P4/nc'c'	130.429		P4'/n'cc'	130.430		P4/n'c'c'	130.431		P_c4/ncc	130.432	8 4
P_C4/ncc	130.433			130.434		$P4_2/mmc$	131.435		$\overline{P4_2/mmc1'}$	131.436	4 4
$P4_2/m'mc$	131.437			131.438		$P4_2^{7/}/mmc'$				131.440	2 2
	131.441			131.442		$P4_2/m'm'e$			$P_c 4_2 / mmc$	131.444	8 4
$P_C 4_2 / mmc$				131.446		$P4_2/mcm$	132.447			132.448	8 4
$P4_2/m'cm$	132.449			132.450		$P4_2^{7}/mcm'$	132.451		$P4_2^{7}/m'c'm$	132.452	4 4
$P4_2/mc'm'$	132.453			132.454		$P4_2/m'c'm$			P_c4_2/mcm	132.456	4 4
	132.457			132.458		$P4_2/nbc$	133.459		$P4_2/nbc1'$	133.460	16 8
$P4_2/n'bc$	133.461			133.462		$P4_2^{7}/nbc'$	133.463		$P4_2^{7}/n'b'c$	133.464	4 4
$P4_2/nb'c'$	133.465			133.466		$P4_2/n'b'c'$	133.467		$P_c 4_2/nbc$	133.468	8 4
$P_C 4_2/nbc$	133.469			133.470		$P4_2/nnm$	134.471		$\overline{P4_2/nnm1'}$	134.472	8 4
$P4_2/n'nm$	134.473			134.474		$P4_2^{7}/nnm'$	134.475		$P4_2^{7}/n'n'm$	134.476	4 4
$P4_2/nn'm'$	134.477			134.478		$P4_2/n'n'm$			$P_c 4_2/nnm$	134.480	8 8
P_C4_2/nnm	134.481			134.482		$P4_2/mbc$	135.483		$P4_2/mbc1'$	135.484	8 8
$P4_2/m'bc$	135.485			135.486		$P4_2^7/mbc'$	135.487		$P4_2'/m'b'c$	135.488	4 4
$P4_2/mb'c'$	135.489			135.490		$P4_2/m'b'c'$			$\frac{P_c 4_2/mbc}{P_c 4_2/mbc}$	135.492	8 4
P_C4_2/mbc	135.493			135.494		$P4_2/mnm$				136.496	8 4
	136.497			136.498		$P4_2'/mnm'$			$P4_2'/m'n'm$		4 4
$P4_2/mn'm'$			$P4_2'/m'nm'$			$P4_2/m'n'n$			$\frac{P_c 4_2/mnm}{P_c 4_2/mnm}$	136.504	8 8
P_C4_2/mnm				136.506		$P4_2/nmc$	137.507		$P4_2/nmc1'$	137.508	16 4
$P4_2/n'mc$	137.509			137.510		$P4'_2/nmc'$	137.511		$P4_2'/n'm'c$	137.512	4 2
$P4_2/nm'c'$	137.513			137.514		$P4_2/n'm'c$			$\frac{P_c 4_2/nmc}{P_c 4_2/nmc}$	137.516	8 8
			-/			2/		-	~ -, · · · · · ·		

P_C4_2/nmc	137.517	8 8	$8 P_I4_2/nmc$	137.518	8 4	$1P4_2/ncm$	138.519	4 4	$\frac{1}{4 P4_2/ncm1'}$	138.520	8 8
$P4_2/n'cm$	138.521	8 4		138.522		$P4_2/ncm'$	138.523		$\frac{4 P4_2/ncm1}{4 P4_2/n'c'm}$	138.524	8 4
$P4_2/nc'm'$	138.525		$1 P4'_2/n'cm'$	138.526		$P4_2/n'c'm'$	138.527		$\frac{1}{4} \frac{P_c 4_2}{ncm}$	138.528	8 4
P_C4_2/ncm	138.529		$1 P_I 4_2/ncm$	138.530		$\frac{12/100m}{14/mmm}$	139.531		2 I4/mmm1'	139.532	8 2
I4/m'mm	139.533		2I4'/mm'm	139.534		2 I4'/mmm'	139.535		2 I4'/m'm'm	139.536	2 2
I4/mm'm'	139.537	4 1		139.538		2I4/m'm'm'	139.539		$2 I_c 4/mmm$	139.540	4 4
I4/mcm	140.541	4 2	2I4/mcm1'	140.542		II/m'cm	140.543		2 I4'/mc'm	140.544	4 4
I4'/mcm'	140.545		2I4'/m'c'm	140.546		II/mc'm'	140.547		2I4'/m'cm'	140.548	4 2
I4/m'c'm'	140.549		$\frac{1}{I_c 4/mcm}$	140.550		$2I4_1/amd$	141.551		$4 I 4_1/amd1'$	141.552	8 4
$I4_1/a'md$	141.553	4 4		141.554	4 4	II'/amd'	141.555	4 4	$4 I4_1'/a'm'd$	141.556	2 2
$I4_1/am'd'$	141.557	4 2	$2I4_1'/a'md'$	141.558		$II_{1/a'm'd'}$	141.559		$4 I_c 4_1/amd$	141.560	8 8
$I4_1/acd$	142.561	8 4	$\frac{1}{4}I4_1/acd1'$	142.562		$I4_1/a'cd$	142.563		$4 I 4'_1/ac'd$	142.564	8 8
$I4'_1/acd'$	142.565	8 4		142.566		$II_{1/ac'd'}$	142.567		$4 I4'_1/a'cd'$	142.568	8 4
$I4_1/a'c'd'$	142.569	8 8	I_c4_1/acd	142.570		1 P3	143.1		1 P31'	143.2	2 2
P_c3	143.3	2 2	$P3_1$	144.4	3 3	$\frac{1}{2} \frac{P3_11'}{1}$	144.5	6 6	$\frac{3}{2} P_c 3_1$	144.6	6 6
$P3_2$	145.7	3 3	$\frac{1}{8} \frac{P3_21'}{P3_2}$	145.8	6 6	$\frac{1}{2} \frac{P_c 3_2}{P_c^2}$	145.9		$\frac{3}{1}$ $\frac{R3}{1}$	146.10	$\frac{1}{c}$
R31' P3'	146.11 147.15	$\frac{2}{2} \frac{2}{2}$	$2 R_I 3$ $2 P_c 3$	146.12 147.16	$\frac{2}{6}$ $\frac{2}{2}$	2 P3 2 R3	147.13 148.17		$\frac{1}{1} \frac{P\bar{3}1'}{R\bar{3}1'}$	147.14 148.18	$\frac{6}{6} \frac{2}{2}$
R3'	148.19	$\frac{2}{2}$ $\frac{2}{2}$	$2R_I 3$	148.20	6 2	2 P312	149.21	2 1		149.22	$\frac{0}{2}$
P312'	149.23	1 1	$1 P_c 312$	149.24	2 2	P321	150.25	2 1	1 P3211'	150.26	$ \begin{array}{c cccc} & 1 & 1 \\ & 6 & 2 \\ \hline & 6 & 2 \\ & 2 & 2 \\ \hline & 4 & 2 \\ & 6 & 6 \end{array} $
P32'1	150.27	2 1	$1 P_c 321$	150.28	4 2	P_{3_112}	151.29		$3 P3_1121'$	151.30	6 6
$P3_112'$	151.31	3 3	$\frac{3}{2} \frac{P_c 3_1 12}{P_c 3_1 3_1}$	151.32	6 6	$P3_{1}21$	152.33	3 3	$\frac{3 P3_1211'}{2 P3_121'}$	152.34	6 6
$P3_12'1 P3_212'$	152.35 153.39		$\frac{3 P_c 3_1 21}{3 P_c 3_2 12}$	152.36 153.40		$ \begin{array}{c c} & P3_212 \\ & P3_221 \end{array} $	153.37 154.41	$\frac{3}{3}$	$ \begin{array}{c c} 3 & P3_2121' \\ 3 & P3_2211' \end{array} $	153.38 154.42	$\begin{array}{c c} 6 & 6 \\ \hline 6 & 6 \end{array}$
$P_{3_22'1}$	154.43		$\frac{1}{8} \frac{P_c 3_2 12}{P_c 3_2 21}$	154.44	6 6	$\frac{183221}{1832}$	$\frac{154.41}{155.45}$		$\frac{1}{1} \frac{R}{1} \frac{R}$	$\frac{154.42}{155.46}$	2 2
R32'	155.47	1 1	$1 R_I32$	155.48	2 2	P3m1	156.49	2 1	1 P3m11'	156.50	$ \begin{array}{c cccc} 2 & 2 \\ 2 & 2 \\ \hline 4 & 2 \\ \hline 4 & 4 \end{array} $
P3m'1	156.51	1 1	$1 P_c 3m1$	156.52	4 2	P31m	157.53	2 1	1 P31m1'	157.54	4 2
P31m'	157.55	2 1	LITCOIN	157.56	4 2	P3c1	158.57	2 2	$\frac{2 P3c11'}{2 P31c1'}$	158.58	4 4
$P3c'1 \\ P31c'$	158.59 159.63		$\frac{2 P_c3c1}{2 P_c31c}$	$\frac{158.60}{159.64}$	$\frac{2}{4}$ $\frac{2}{2}$	P31c R3m	159.61 160.65		2 P31c1' 1 R3m1'	159.62 160.66	$\begin{array}{c c} 4 & 4 \\ \hline 2 & 2 \end{array}$
R3m'	160.67		$1 R_I 3m$	$\frac{159.64}{160.68}$	4 2	$\frac{R3m}{R3c}$	161.69		$\frac{1}{2} \frac{R3c1'}{R3c1'}$	161.70	$\begin{array}{c c} & z & z \\ \hline & 4 & 4 \end{array}$
R3c'	161.71	$\frac{1}{2}$ 2		161.72	$\frac{1}{2}$ $\frac{2}{2}$	$P\overline{3}1m$	162.73	4 1		162.74	6 2
$P\overline{3}'1m$	162.75	2 2	2 P3'1m'	162.76	4 2	$2 P\bar{3}1m'$	162.77		$1 P_c\bar{3}1m$	162.78	6 2
$P\overline{3}1c$	163.79	6 2	$\frac{2}{2} \frac{P\bar{3}1c1'}{P\bar{3}1}$	163.80	$\frac{12}{6}$	$P_{2}^{3'}1c$	163.81		$\frac{2 P\bar{3}'1c' }{2 P\bar{3}'1c' }$	163.82	$\frac{4}{6} \frac{2}{3}$
$\frac{P\overline{3}1c'}{P\overline{3}'m1}$	163.83 164.87	$\frac{6}{4} \frac{2}{2}$	$ \begin{array}{c c} P_c 31c \\ P 3' m' 1 \end{array} $	163.84 164.88	$\frac{6}{2}$	$\frac{P\bar{3}m1}{P\bar{3}m'1}$	164.85 164.89	$\frac{4}{3}$	$\frac{1}{1} \frac{P3m11'}{P_c3m1}$	164.86 164.90	$\frac{6}{8} \frac{2}{2}$
$P\overline{3}c1$	165.91	6 2		$\frac{104.88}{165.92}$		$\frac{1}{1} \frac{1}{P_3} \frac{3m}{c_1}$	165.93		$\frac{1}{2} \frac{1}{P3} \frac{c}{c} \frac{3m1}{1}$	165.94	6 2 6 2 4 2 6 2 8 2 4 2 6 2 6 2 4 2 6 2 6 2
$P\bar{3}c'1$	165.95	6 2	$2 P_c3c1$	165.96	6 2	$2 R\bar{3}m$	166.97	3 1	$1 R\bar{3}m1'$	166.98	$6 \overline{2}$
R3'm	166.99	2 2	2 R3'm'	166.100	2 2	2 R3m'	166.101	3 1	$1 R_I 3m$	166.102	6 2
$\frac{R3c}{R3c'}$	$\frac{167.103}{167.107}$	$\frac{6}{6}$ $\frac{2}{2}$	$2 R\bar{3}c1'$ $2 R_I 3c$	$\frac{167.104}{167.108}$	$\frac{12}{6}$ $\frac{4}{2}$	$\frac{1}{2} \frac{R\bar{3}'c}{P6}$	$\frac{167.105}{168.109}$		$\frac{2 R\bar{3}'c' }{1 P61' }$	$\frac{167.106}{168.110}$	$\frac{4}{6} \frac{2}{2}$
P6'	168.111	3 1	P_c6	168.112	6 2	P_{6_1}	169.113		$\frac{1}{6} P6_1 1'$	$\frac{169.110}{169.114}$	12 12
$P6_1'$	169.115		P_c6_1	169.116	6 6	$P6_{5}$	170.117		$\frac{5}{6}P6_{5}1'$	170.118	12 12
$P6_5'$	170.119	6 6	P_c6_5	170.120	6 6	$P6_2$	171.121	3 3	$P6_{2}1'$	171.122	6 6
$P6_2'$	171.123		P_c6_2	171.124		$8P6_4$	172.125	3 3	$8 P6_41'$	172.126	6 6
$P6_4'$	172.127	3 3		172.128		$\frac{1}{2}$ $\frac{P6_3}{P6_3}$	173.129		$\frac{2 P6_{3}1'}{2 P6_{3}1'}$	173.130	$\begin{array}{rrr} 4 & 4 \\ \hline 2 & 2 \\ \hline 6 & 2 \end{array}$
$P6_3'$	173.131		$\frac{P_c 6_3}{P_c 6_3}$	173.132		$P_{\overline{6}}$	174.133		$\frac{1}{1} \frac{P\bar{6}1'}{Pc'}$	174.134	2 2
$\frac{P\overline{6}'}{P6'/m}$	174.135	2 1	$\frac{1}{2} \frac{P_c \overline{6}}{P6/m'}$	174.136	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2 P6/m}{2 P6'/m'}$	175.137	$\frac{3}{4}$ 1		175.138	6 2
Do /	175.139		/ /	175.140	- 10	Del /	175.141		Do / /	175.142	6 2
$P6_{3}/m$ $P6'_{3}/m'$	$\frac{176.143}{176.147}$		$\frac{2 P6_3/m1'}{2 P_c6_3/m}$	$\frac{176.144}{176.148}$		$\frac{1}{2} \frac{P6_3/m}{P622}$	$\frac{176.145}{177.149}$		$\frac{2 P6_3/m'}{2 P6221'}$	$\frac{176.146}{177.150}$	$\begin{array}{c cc} & 4 & 2 \\ \hline & 6 & 2 \end{array}$
$P6'_{3}/m$ $P6'_{2}'_{2}$	177.151		$1 P_c 0_3 / m$	$\frac{170.148}{177.152}$		P62'2'	177.149		$\frac{2 P6221}{1 P_c622}$	177.154	6 2
$P6_{1}22$	178.155		$\frac{1}{6} P6_1 221'$	178.156		$P6_{1}^{\prime}2^{\prime}2$	178.157		$\frac{1}{6} \frac{P_{c022}}{P_{122}}$	178.154	6 6
$P6_12'2'$	178.159	6 6	$6 P_c 6_1 22$	178.160	6 6	$6P6_{5}22$	179.161	6 6	$6 P6_5 221'$	179.162	12 12
$P6_{5}'2'2$	179.163	6 6	$6 P6_{5}'22'$	179.164	6 6	$8P6_52'2'$	179.165	6 6	$6 P_c 6_5 22$	179.166	6 6
$P6_222$	180.167	6 6	$6 P6_2 221'$	180.168		$8 P6_2'2'2$	180.169		$\frac{3 P6_{2}'22'}{2}$	180.170	3 3
$P6_{2}2'2'$	180.171	3 5	P_c6_222	180.172	6 6	$\frac{6}{96422}$	181.173	6 6	$\frac{6 P6_4221'}{P6_4221}$	181.174	6 6
$P6_{4}^{\prime}2^{\prime}2$ $P6_{3}22$	181.175 182.179		3 P6 ₄ 22' 2 P6 ₃ 221'	181.176 182.180	$\frac{3}{4}$ $\frac{3}{4}$	$P6_42'2'$ $P6_3'2'2$	181.177 182.181	$\frac{3}{4} \frac{3}{2}$	$\frac{3 P_c 6_4 22}{2 P 6_3' 22'}$	181.178 182.182	$\begin{array}{c c} 6 & 6 \\ \hline 2 & 2 \end{array}$
$P6_{3}2'2'$	182.183	9 9	$\frac{2 P_{03}221}{2 P_{c}6_{3}22}$	182.184	6 2	$P6_322$ $P6mm$	183.185	$\frac{4}{4}$ $\frac{2}{2}$	$\begin{array}{c c} 2 & P & 0_3 & 22 \\ \hline 2 & P & 6mm & 1' \end{array}$	183.186	$\frac{2}{6}$
P6'm'm	183.187	3 1	1 P6'mm'	183.188	4 1	P6m'm'	183.189	3 1	$1 P_c 6mm$	183.190	8 4
P6cc	184.191	6 2	2 P6cc1'	184.192	12 4	P6'c'c	184.193	6 2	2 P6'cc'	184.194	6 2
P6c'c'	184.195	6 2	$\frac{2 P_c 6cc}{P_c 6cc}$	184.196	6 2	$P6_3cm$	185.197	4 2	$\frac{2 P 6_3 cm 1'}{P 6_3 cm}$	185.198	
$P6_3c'm$ $P6_3mc$	185.199 186.203		$2 P6_3'cm' = 2 P6_3mc1'$	185.200 186.204		$\frac{2 P6_3c'm'}{P6_3m'c}$	185.201 186.205	$\frac{4}{2}$	P_c6_3cm P_c6_3mc'	185.202 186.206	$\begin{array}{c c} 6 & 2 \\ \hline 4 & 2 \end{array}$
$P6_3mc$ $P6_3m'c'$	186.207	9 9	$\frac{2 P_{03}mc_{1} }{2 P_{c}6_{3}mc_{1} }$	186.208		$\frac{1}{2} \frac{P_{03}m c}{P_{6}m_2}$	187.209	$\frac{2}{2}$	$\frac{2 P0_3mc}{2 P6m21'}$	187.210	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
P6'm'2	187.211	2 1	$\frac{1}{1} \frac{P6'm2'}{P6'm2'}$	187.212	2 1	P6m'2'	187.213	1 1	$\frac{2 1 0 m 2 1}{1 P_c 6 m 2}$	187.214	$\frac{2}{4}$ $\frac{2}{2}$
$P\overline{6}c2$	188.215	2 2	2 P6c21'	188.216	4 4	$P\bar{6}'c'2$	188.217	4 2	$2 P\bar{6}'c2'$	188.218	2 2
P6c'2'	188.219	2 2	P_c6c2	188.220	2 2	$\frac{P62m}{P69'\cdots'}$	189.221		$\frac{2 P62m1'}{P(\overline{c})}$	189.222	4 2
$P\overline{6}'2'm$ $P\overline{6}2c$	189.223 190.227		$\frac{1}{2} \frac{P\bar{6}'2m'}{P\bar{6}2c1'}$	189.224 190.228		$\frac{P\bar{6}2'm'}{P\bar{6}'2'c}$	189.225 190.229		$\frac{1}{2} \frac{P_c \bar{6}2m}{P \bar{6}' 2c'}$	189.226 190.230	$\frac{4}{4} \frac{2}{2}$
P62c	190.221		$2 P_{0} 2c_{1} P_{c} 62c$	190.228 190.232		P6/mmm	190.229			190.230	$\begin{array}{c c} & 2 \\ \hline & 6 & 2 \end{array}$
P6/m'mm	191.235			191.236		P6'/mmm'	191.237		$\frac{2}{P6'/m'm'm}$		4 1
P6'/m'mm'			1 P6/mm'm'	191.240		P6/m'm'm'	191.241		$\frac{1}{2} P_c 6/mmm$	191.242	12 4
						· /					

P6/mcc	192.243	6	2	P6/mcc1'	192.244	12	4	P6/m'cc	192.245	6	2	P6'/mc'c	192.246	6	2
P6'/mcc'	192.247	6		P6'/m'c'c	192.248	8		P6'/m'cc'	192.249			P6/mc'c'	192.250	6	2
P6/m'c'c'	192.251	8		P_c6/mcc	192.252	6		$P6_3/mcm$	193.253	6		$P6_3/mcm1'$	193.254	12	4
$P6_3/m'cm$	193.255		2	$P6_3^{\prime}/mc^{\prime}m$	193.256	4			193.257			$P6_3/m'c'm$	193.258	8	2
$P6_3^{\prime}/m^{\prime}cm^{\prime}$	193.259	6		$P6_3/mc'm'$	193.260	6		$P6_3/m'c'm'$	193.261			$P_c 6_3/mcm$	193.262	6	2
$P6_3/mmc$	194.263			$\frac{P6_3/mc1'}{P6_3/mc1'}$		$\frac{3}{12}$		$P6_3/m'mc$	194.265			$\frac{P6_3^{\prime}/mm^{\prime}c}{P6_3^{\prime}/mm^{\prime}c}$	194.266	2	2
$P6_3/mmc'$	194.267			$\frac{P6_3^{\prime}/m^{\prime}m^{\prime}c}{P6_3^{\prime}/m^{\prime}m^{\prime}c}$		6		$P6_3/mmc'$	194.269			$\frac{P6_3/mm'c'}{P6_3/mm'c'}$	194.270	6	2
$P6_3/m'm'c'$		4			194.272	8	2	P23	195.1		2	$\frac{103/mmc}{P231'}$	195.2	6	2
$P_I 23$	195.3	4		F23	196.4	2		F231'	196.5			$\frac{F_S 23}{F_S 23}$	196.6	6	1
123 123	197.7	2	2	$\frac{123}{1231'}$	197.8	6		$\frac{1231}{P2_13}$	198.9			$\frac{P_{S23}}{P2_{1}31'}$	198.10	8	$\frac{4}{8}$
$P_{I}2_{1}3$	198.11	12		$\frac{1231}{I2_13}$	199.12	6		$\frac{1213}{I2131'}$	199.13			$\frac{12131}{Pm3}$	$\frac{100.10}{200.14}$	6	$\frac{3}{2}$
$Pm\overline{31'}$	200.15	6		$Pm'\bar{3}'$	200.16	4		$P_I m \bar{3}$	200.17			$Pn\bar{3}$	201.18	4	4
$Pn\bar{3}1'$	201.19	12	4	$Pn'\bar{3}'$	201.20	4		$P_I n \bar{3}$	201.21			$\overline{Fm3}$	202.22	6	2
Fm31'	202.23	12	2	Fm'3'	202.24	4		F_Sm3	202.25	8	4	Fd3	203.26	4	4
$Fd\bar{3}1'$	203.27	8	4	$Fd'\bar{3}'$	203.28	4	4	$F_S d\bar{3}$	203.29	12		$Im\bar{3}$	204.30	6	2
$Im\bar{3}1'$	204.31	8	2	$Im'\bar{3}'$	204.32	4	2	$Pa\bar{3}$	205.33	4		$Pa\bar{3}1'$	205.34	8	$\begin{array}{c} 2 \\ 8 \\ 8 \end{array}$
$Pa'\bar{3}'$	205.35	8	8	$P_I a \bar{3}$	205.36	24		$Ia\bar{3}$	206.37	12		$Ia\bar{3}1'$	206.38	24	8
$Ia'\bar{3}'$	206.39	12		P432	207.40	4		P4321'	207.41	6	2	P4'32'	207.42	6	$\frac{2}{4}$
$P_{I}432$	207.43	12		$\frac{P4_{2}32}{P4_{2}32}$	208.44	4		$P4_2321'$	208.45	12		P4'232'	208.46	6	4
$P_{I}4_{2}32$	208.47	12		F432	209.48	4		F4321'	209.49	12		F4'32'	209.50	6	2
F_S432	209.51	12		$\frac{F4_{1}32}{F4_{1}32}$	210.52	4		$F4_1321'$	210.53			$F4'_{1}32'_{14'_{1}22'_{1}}$	210.54	4	4
$F_S4_132 P4_332$	210.55 212.59	12	8	$\frac{I432}{P4_3321'}$	$\frac{211.56}{212.60}$	$\frac{4}{8}$	2	I4321' P4' ₃ 32'	$\frac{211.57}{212.61}$			$\frac{I4'32'}{P_14_332}$	211.58 212.62	6 12	8
$P4_{1}32$	213.63	<u>8</u>		$P4_{1}321'$	213.64	8		$P4_{1}32'$	213.65			$\frac{P_{I}4_{3}32}{P_{I}4_{1}32}$	213.66	12	8
$I4_{1}32$	213.03			$\frac{F4_{1}321}{I4_{1}321'}$	213.64	$\frac{0}{12}$		$\frac{F4_{1}32}{I4'_{1}32'}$	213.69			$\frac{P_{I}4_{1}32}{P43m}$	215.70	6	2
P43m1'	214.07	6		$\frac{14_{1}321}{P4'3m'}$	214.08							$\frac{F43m}{F43m}$	216.74		2
F43m1'	$\frac{215.71}{216.75}$	4		$\frac{F4.3m}{F4'3m'}$	216.76	$\frac{2}{2}$	2	$\frac{P_I \bar{4}3m}{F_S 43m}$	215.73 216.77			$\frac{F43m}{I43m}$	217.78	$\frac{4}{6}$	$\frac{2}{2}$
$\frac{143m1}{143m1'}$	217.79	12	$\frac{2}{2}$	$\frac{I'4'3m'}{I4'3m'}$	217.80	$\frac{2}{2}$		P43n	218.81			$\frac{143m}{P43n1'}$	218.82	12	1
P4'3n'	218.83	$\frac{12}{4}$		$P_I 43n$	218.84	$\frac{12}{12}$		F43c	219.85			F43c1'	$\frac{219.82}{219.86}$	$\frac{12}{12}$	$\frac{4}{4}$
$F\overline{4'3c'}$	219.87	4		$F_S 43c$	219.88	6		$\overline{I43d}$	220.89			$\overline{I43d1'}$	220.90		12
$I\bar{4}'3d'$	220.91	12	8	$Pm\bar{3}m$	221.92	6	2	$Pm\bar{3}m1'$	221.93	6	2	$Pm'\bar{3}'m$	221 94	6	$\overline{2}$
$Pm\bar{3}m'$	221.95	6		$Pm'\bar{3}'m'$	221.96	4		$P_I m \bar{3} m$	221.97		4	$Pn\bar{3}n$	222.98	12	$\frac{2}{4}$
Pn3n1'	222.99	24		Pn'3'n	222.100	12		Pn3n'	222.101	12		Pn'3'p'	222.102	8_	4
$P_I n \bar{3} n$	222.103	12		$\frac{Pm\bar{3}n}{2}$	223.104	12		$Pm\bar{3}n1'$	223.105		4	$Pm'\bar{3}'n$	223.106	8	4
Pm3n'	223.107	12		$\frac{Pm'3'n'}{p'3'}$	223.108	8 12		$P_I m 3n$	223.109 224.113	24 12	4	$\frac{Pn3m}{Pn'3'm'}$	224.110 224.114	12	4
$\frac{Pn3m1'}{P_In3m}$	$\frac{224.111}{224.115}$	24 16		$\frac{Pn'\bar{3}'m}{Fm\bar{3}m}$	$\frac{224.112}{225.116}$	$\frac{12}{12}$		$\frac{Pn\bar{3}m'}{Fm\bar{3}m1'}$	$\frac{224.113}{225.117}$	$\frac{12}{12}$		Fm'3'm	$\frac{224.114}{225.118}$	<u>4</u> 4	$\frac{4}{2}$
$Fm\bar{3}m'$	225.119	6		$\frac{Fm3m}{Fm'3'm'}$	$\frac{225.110}{225.120}$	4		$F_Sm\bar{3}m$	$\frac{225.117}{225.121}$		1	$\frac{Fm3m}{Fm3c}$	$\frac{225.118}{226.122}$	12	$\frac{2}{4}$
$Fm\bar{3}c1'$	226.123	12		$\frac{Fm'3'n}{Fm'3'c}$	226.124	$\frac{4}{12}$	4	$Fm\bar{3}c'$	$\frac{226.121}{226.125}$	12		$\frac{Fm3c}{Fm'3'c'}$	226.126	8	4
F_Sm3c	226.127	$\frac{12}{12}$		Fd3m	$\frac{220.124}{227.128}$	8		Fd3m1'	227.129	8		$Fd'\bar{3}'m$	227.130	8	4
Fd3m'	227.131	4		Fd'3'm'	227.132	4		$F_S d3m$	227.133			Fd3c	228.134	12	8
$Fd\bar{3}c1'$	228.135	24	8	$Fd'\bar{3}'c$	228.136	12	8	$Fd\bar{3}c'$	228.137	8	8	$Fd'\bar{3}'c'$	228.138	8	$\frac{8}{2}$
$F_S d\overline{3}c$	228.139	$\overline{24}$	8	$Im\bar{3}m$	229.140	$\overline{12}$		Im3m1'	229.141			Im'3'm	229.142	8	2
$Im\bar{3}m'$	229.143	12	2	$Im'\bar{3}'m' Ia\bar{3}d'$	229.144	4	2	$Ia\bar{3}d$	230.145	12	8	$Ia\bar{3}d1'$	230.146	24	16
Ia'3'd	230.147	12	81	Ia3d'	230.148	$1\overline{2}$	8	Ia'3'd'	230.149	$\overline{16}$	8				

39. Minimal SSG Dependencies for the Double SIs in the 1,651 Double SSGs

In this section, we list the minimal double SSG M with the minimal double SIs on which the double SIs in each double SSG G are dependent (see SN $\frac{30}{30}$ for calculation details).

Supplementary Table 24: Minimal SSG dependencies for the double SIs in the 1,651 double SSGs. In order, the columns in this table list the symbol of the SSG G, the number of G in the BNS setting⁶⁷, the type of G (see SN 2), the number of the minimal double SSG M with the minimal double SIs on which the double SIs in G are dependent (see SN 30), the symbol of M, and the type of M. Entries for which G = M are highlighted in bold text. We have omitted double SSGs G for which $|Z^G| = 1$ [see SEq. (217) and the surrounding text].

Dou	ble SSG	Type	Minin	nal SSG	Type	Dou	ble SSG	Type	Minin	nal SSG	Type
2.4	ΡĪ	I	2.4	ΡĪ	Ī	2.5	$P\overline{1}1'$	ΙΙ	2.5	$P\bar{1}1'$	ΙĪ
2.7	$\frac{P_S 1}{P_S 2}$	IV IV	2.4	$\frac{P1}{P2}$	l l	3.1	P2	I	3.1	P2	I
3.4	$\frac{P_a 2}{P2/m1'}$	II	3.1	$\frac{P2}{P\overline{1}1'}$	I	10.42 10.46	$\frac{\mathbf{P2/m}}{P2'/m'}$	III	10.42 2.4	P2/m P1	I
10.45	$\frac{P2/m1}{P_a2/m}$	IV	10.42	P11 $P2/m$	I	10.46	$P_b 2/m$	IV	2.4	$\frac{P1}{P1}$	T
10.47	$\frac{P_a z/m}{P_C 2/m}$	IV	2.4	P2/m $P1$	I	11.50	$\frac{P_b 2/m}{P2_1/m}$	I	2.4	$\frac{P1}{P1}$	$\frac{1}{I}$
11.51	$\frac{1}{P2_1/m1'}$	II	2.5	P11'	II	11.54	$P2_1/m'$	III	2.4	$\frac{1}{P1}$	I
11.55	$\frac{P_a 2_1/m_1}{P_a 2_1/m}$	IV	2.3	P1	I	11.54	$P_b 2_1/m$	IV	2.4	$\frac{P1}{P1}$	$\frac{1}{I}$
11.57	$\frac{P_{C}2_{1}/m}{P_{C}2_{1}/m}$	IV	2.4	$\frac{1}{P1}$	I	12.58	$\frac{r_b z_1/m}{C2/m}$	I	2.4	$\frac{1}{P1}$	T
12.59	$\frac{C21/m}{C2/m1'}$	II	2.5	$P\overline{11'}$	II	12.62	$\frac{C2/m}{C2'/m'}$	III	2.4	$\frac{1}{P1}$	I
12.63	$\frac{C_c 2/m_1}{C_c 2/m}$	IV	2.4	$\frac{111}{P1}$	I	12.64	$C_a 2/m$	IV	2.4	$\frac{1}{P1}$	I
13.65	$\frac{C_c 2/m}{P2/c}$	I	2.4	$\frac{1}{P1}$	I	13.66	P2/c1'	II	2.5	$P\overline{11}'$	II
13.69	$\frac{12/c}{P2'/c'}$	III	2.4	$\frac{1}{P1}$	I	13.70	$P_a 2/c$	IV	2.4	$\frac{111}{P1}$	I
13.71	$\frac{P_b 2/c}{P_b 2/c}$	IV	2.4	P1	Ī	13.72	$P_c 2/c$	IV	2.4	$\frac{11}{P1}$	T
13.73	$\frac{P_{A}2/c}{P_{A}2/c}$	IV	2.4	$\frac{1}{P1}$	Ī	13.74	$\frac{r_c z/c}{P_C 2/c}$	IV	2.4	$\frac{1}{P1}$	Ī
14.75	$\frac{P2_1/c}{P}$	I	2.4	$\frac{1}{P1}$	Ī	14.76	$P2_1/c1'$	II	2.5	$P\overline{1}1'$	II
14.79	$\frac{121/c}{P2'_{1}/c'}$	III	2.4	$\frac{1}{P1}$	Ī	14.80	$P_a 2_1/c$	IV	2.4	$\frac{111}{P1}$	Ī
14.81	$\frac{P_b 2_1/c}{P_b 2_1/c}$	IV	2.4	P1	Ī	14.82	$P_c 2_1/c$	IV	2.4	P1	Ī
14.83	$\frac{P_A 2_1/c}{P_A 2_1/c}$	IV	2.4	P1	I	14.84	$\frac{P_C 2_1/c}{P_C 2_1/c}$	IV	2.4	$\frac{11}{P1}$	Ī
15.85	$\frac{R_1}{C_2/c}$	I	2.4	P1	I	15.86	C2/c1'	II	2.5	$P\overline{1}1'$	II
15.89	C2'/c'	III	2.4	P1	I	15.90	$C_c 2/c$	IV	2.4	$\overline{P1}$	I
15.91	$C_a 2/c$	IV	2.4	P1	I	16.3	P2'2'2	III	3.1	P2	I
17.10	$P22'2'_{1}$	III	3.1	P2	I	18.18	$P2_{1}^{\prime}2_{1}^{\prime}2$	III	3.1	P2	I
21.40	C2'2'2	III	3.1	P2	I	25.60	Pm'm'2	III	3.1	P2	I
27.81	$\mathbf{P}\mathbf{c}'\mathbf{c}'2$	III	27.81	$\begin{array}{c} P2 \\ \mathbf{Pc'c'2} \\ Pc'c'2 \end{array}$	ŢŢŢ	28.91	Pm'a'2	ĮĮĮ	3.1	$\frac{P2}{P2}$	Ļ
30.117	$\frac{P_b nc2}{P_C nn2}$	IV	27.81 27.81	Pc c 2 $Pc'c'2$	III	32.138 35.168	$\frac{Pb'a'2}{Cm'm'2}$	III	3.1	$\frac{P2}{P2}$	<u>1</u>
37.183	$\frac{Cc'c'2}{Cc'c'2}$	III	27.81	Pc'c'2	III	37.185	$C_a cc2$	IV	27.81	$\frac{12}{Pc'c'2}$	III
39.199	Ab'm'2	III	$\frac{27.81}{27.81}$	Pc'c'2	III	41.215	$\mathbf{A}\mathbf{b}'\mathbf{a}'2$	III	41.215	$\frac{\mathbf{A}\mathbf{b}'\mathbf{a}'2}{\mathbf{A}\mathbf{b}'\mathbf{a}'2}$	III
42.222	Fm'm'2	ΙΪΙ	27.81	Pc'c'2	ΙĨΙ	45.238	Ib'a'2	ΙΪΙ	27.81	Pc'c'2	ΙΪΪ
47.249 47.252	Pmmm $Pm'm'm$	III	47.249 10.42	$\frac{\mathbf{Pmmm}}{P2/m}$	I	47.250 47.254	$Pmmm1'$ P_ammm	II IV	$\frac{2.5}{47.249}$	$\frac{P11'}{Pmmm}$	II
47.255	$P_{C}mmm$	IV	47.249	$\frac{1}{Pmmm}$	T	47.256	$P_I mmm$	IV	47.249	$\frac{Pmmm}{Pmmm}$	+ +
48.257	Pnnn	I	2.4	$P\bar{1}$	Ī	48.258	Pnnn1'	II	2.5	$\frac{1}{P11'}$	İİ
48.260	Pn'n'n	III	2.4	$P\overline{1}$	I	48.262	P_cnnn	IV	2.4	$P\overline{1}$	I
48.263	$P_C nnn$	IV	2.4	$\frac{P1}{P1}$	I	48.264	P_Innn	IV	2.4	$\frac{P1}{P11}$	I
49.265 49.269	$\frac{Pccm}{Pc'c'm}$		$\frac{2.4}{10.42}$	$\frac{P\overline{1}}{P2/m}$	I	49.266 49.270	$\frac{Pccm1'}{Pc'cm'}$	III	$\frac{2.5}{2.4}$	$\frac{P\bar{1}1'}{P\bar{1}}$	I
49.272	$\frac{P_{a}ccm}{P_{a}ccm}$	IV	2.4	P1	I	49.273	$P_c ccm$	IV	2.4	P1	T
49.274	$P_{B}ccm$	IV	2.4	P1	Ī	49.275	$P_{C}ccm$	IV	2.4	P1	Ť
49.276	P_Iccm	ĬV	2.4	$P\overline{1}$	Ī	50.277	Pban	I	2.4	$P\overline{1}$	Ī
50.278	Pbqn1'	II	2.5	$P\overline{1}1'$	ΙΊ	50.281	Pb'a'n	ĨĬĬ	2.4	$P\overline{1}$	Į
50.282	$\frac{Pb'an'}{Db'an}$	III	2.4	<u>P1</u> P1	1	50.284	P_aban	IV	2.4	$\frac{P\overline{1}}{P1}$	I I
50.285 50.287	$\frac{P_c ban}{P_C ban}$	IV IV	2.4	P <u>1</u> P1	1 T	50.286	$P_A ban$ $P_I ban$	IV IV	2.4	<u>P1</u> P1	<u>I</u>
51.289	$\frac{P_C ban}{Pmma}$	I	$\frac{2.4}{10.42}$	$\frac{P1}{P2/m}$	Ī	51.290	$\frac{PIoan}{Pmma1'}$	II	$\frac{2.4}{2.5}$	$\frac{P1}{P11'}$	II
51.294	Pm'm'a	III	2.4	P1	Ī	51.295	Pmm'a'	III	2.4	P1	I
51.296	Pm'ma'	III	10.42	P2/m	Ì	51.298	P_amma	IV	10.42	P2/m	Î
51.299	P_bmma	IV	2.4	P1	I	51.300	P_cmma	IV	10.42	P2/m	I
51.301	P_Amma	IV	2.4	$P\overline{1}$	I	51.302	P_Bmma	IV	10.42	P2/m	I
51.303	P_Cmma	IV	2.4	$P\overline{1}$	I	51.304	$P_{I}mma$	IV	2.4	P1	I
52.305	Pnna	I	2.4	$P\overline{1}$	Į	52.306	Pnng1'	II	2.5	$P\overline{1}1'$	Ϊ́Ι
52.310 52.312	$\frac{Pn'n'a}{Pn'na'}$	III	$\frac{2.4}{2.4}$	<u>P1</u> P1	+	52.311 52.314	$Pnn'a' P_anna$	III IV	2.4 2.4	<u>P1</u> P1	++-
$\frac{52.312}{52.315}$	$\frac{P_b nna}{P_b nna}$	IV	$\frac{2.4}{2.4}$	P1	Ť	52.314	$P_c nna$	IV	2.4	P1	++
	- 0						- (

F9.917	D	TX 7	0.4	D1	т	F0 210	D	T 7 7	0.4	D1	
52.317 52.319	$P_Anna \ P_Cnna$	IV	$\frac{2.4}{2.4}$	<u>P1</u> P1	I	52.318 52.320	P_Bnna P_Inna	IV	2.4 2.4	<u>P1</u> P1	T
53.321	\overline{Pmna}	I	2.4	$\frac{11}{P1}$	İ	53.322	$\frac{1}{Pmna1'}$	II	2.5	P11'	İİ
53.326	Pm'n'a	III	2.4	$P\overline{1}$	I	53.327	Pmn'a'	III	10.42	P2/m	I
53.328	Pm'na'	III	2.4	P1	Ĩ	53.330	P_amna	IV	2.4	<u>P1</u>	Ī
53.331	P_bmna	IV	2.4	<u>P1</u> P1	I I	53.332	P_cmna	IV	2.4	<u>P1</u> P1	I I
53.333 53.335	$P_Amna \ P_Cmna$	IV	$\frac{2.4}{2.4}$	P1 P1	I	53.334	P_Bmna P_Imna	IV	2.4 2.4	$\frac{P1}{P1}$	T
54.337	$\frac{Pcca}{}$	I	2.4	P1	İ	54.338	$\frac{Pccq1'}{}$	II	2.5	$\frac{1}{P11'}$	İİ
54.342	Pc'c'a	ĬĮĮ	54.342	Pc'c'a	ΙĴΙ	154.343	Pcc'a'	ÎÎÎ	2.5 2.4	P1	Ĩ
54.344	Pc'ca'	III	$\frac{2.4}{2.4}$	<u>P1</u> P1	I I	54.346 54.348	P_acca	IV	2.4	<u>P1</u> P1	I I
54.347 54.349	P_bcca P_Acca	IV IV	$\frac{2.4}{2.4}$	$\frac{P1}{P1}$	Ī	54.350	P_ccca P_Bcca	IV IV	2.4	$\frac{P1}{P1}$	
54.351	$P_{C}cca$	ΪV	2.4	$P\overline{1}$	Ī	54.352	P_Icca	ĪV	2.4	$P\overline{1}$	Î
55.353	Pbam	I	10.42	P2/m	I	55.354	Pbam1'	II	2.5	$P\overline{1}1'$	II
55.357	Pb'a'm	III	10.42	P2/m	I	55.358	Pb'am'	III	2.4	$P\overline{1}$	I
55.360	P_abam	IV	10.42	P2/m	I	55.361	P_cbam	IV	2.4	$P\overline{1}$	I
55.362	P_Abam	IV	2.4	P1	I	55.363	$P_C bam$	IV	10.42	P2/m	I
55.364	P_Ibam	IV	2.4	$P\overline{1}$	I	56.365	Pccn	I	2.4	$P\bar{1}$	I
56.366 56.370	$\frac{Pccn1'}{Pc'cn'}$	III	2.5	P11' P1	Н	56.369 56.372	$Pc'c'n$ P_bccn	IV	56.369 2.4	<u>Pc'c'n</u> P1	III
56.373	P_cccn	IV	2.4	P1	Ī	56.374	P_Accn	IV	2.4	$\frac{11}{P1}$	İ
56.375	$P_{C}ccn$	IV	2.4	$P\overline{1}$	I	56.376	P_Iccn	IV	2.4	$P\overline{1}$	I
57.377	$Pbcm \ Pb.cm$	III	2.4	<u>P1</u> P1	Į	57.378	Pbcm1' $Pbc'm'$	III	2.5	P11' P1	ļ Ų.
57.382 57.384	Pb'cm'	III	$\frac{2.4}{2.4}$	$\frac{P1}{P1}$	+	57.383 57.386	$P_{a}bcm$	IV	2.4 2.4	$\frac{P_1}{P_1}$	+
57.387	P_bbcm	IV	2.4	P1	Ī	57.388	P_cbcm	ĬV	2.4	$\frac{1}{P1}$	Ī
57.389	P_Abcm	IV	2.4	$P\overline{1}$	I	57.390	P_Bbcm	IV	2.4	$P\overline{1}$	I
57.391	P_Cbcm	IV	2.4	<u>P1</u> P1	I	57.392 58.394	P_Ibcm	IV	2.4	<u>P1</u> P11'	II
58.393 58.397	$\frac{Pnnm}{Pn'n'm}$	III	$\frac{2.4}{10.42}$	$\frac{P1}{P2/m}$	+	58.394	Pnnm1' $Pnn'm'$	III	2.5 2.4	$\frac{P11}{P1}$	1
58.400	P_annm	IV	2.4	$\frac{12/m}{P1}$	Ī	58.401	P_cnnm	IV	2.4	$\frac{11}{P1}$	Ī
58.402	$P_B nnm$	IV	2.4	P1	Ì	58.403	$P_C nnm$	ĬV	2.4	P1	Ì
58.404	$P_{I}nnm$	IV	2.4	$P\overline{1}$	I	59.405	Pmmn	I	2.4	$P\overline{1}$	I
59.406 59.410	$\frac{Pmmn1'}{Pmm'n'}$	III	$\frac{2.5}{2.4}$	P11' P1	II	59.409 59.412	$Pm'm'n$ P_bmmn	III IV	2.4 2.4	<u>P1</u> P1	I I
59.413	P_cmmn	IV	$\frac{2.4}{2.4}$	$\frac{F1}{P1}$	Ī	59.414	P_Bmmn	IV	$\frac{2.4}{2.4}$	$\frac{P1}{P1}$	Ť
59.415	P_Cmmn	IV	2.4	$P\overline{1}$	Ī	59.416	$P_{I}mmn$	ĪV	2.4	$P\overline{1}$	Ī
60.417	Pbcn	Ţ	2.4	P1	Ĩ	60.418	Pbcn1'	ΪΪ	2.5	P11'	Ϊ́Ι
60.422 60.424	$\frac{Pb'c'n}{\mathbf{Pb'cn'}}$	III	2.4 60.424	$\frac{P1}{\mathbf{Pb'cn'}}$	III	60.423 60.426	$Pbc'n' \ P_abcn$	III	2.4 2.4	— <u>P1</u> P1	
60.427	P_bbcn	IV	2.4	P1	I	60.428	P_cbcn	IV	2.4	$\frac{1}{P1}$	Ť
60.429	P_Abcn	IV	$\frac{1}{2.4}$	$P\overline{1}$	I	60.430	P_Bbcn	IV	2.4	$P\overline{1}$	I
60.431	$P_C bcn$	IV	2.4	P1	Ĩ	60.432	P_Ibcn	IV	2.4	P1	I
61.433 61.436	$Pbca \ Pb'c'a$	III	2.4	$\frac{P\overline{1}}{P\overline{1}}$	l l	61.434 61.438	$Pbca1'$ P_abca	II IV	$\frac{2.5}{2.4}$	$\frac{P\bar{1}1'}{P\bar{1}}$	ΙŢ
61.439	P_Cbca	IV	2.4	P1	Ī	61.440	P_Ibca	IV	2.4	$\frac{11}{P1}$	Ī
62.441	Pnma	Ĭ	2.4	$\overline{P1}$	Î	62.442	Pnma1'	II	$\frac{1}{2.5}$	$P\overline{1}1'$	Î
62.446	$\frac{Pn'm'a}{Pn'ma'}$	III	$\frac{2.4}{2.4}$	P1 P1	Į	62.447	$\frac{Pnm'a'}{Pnma}$	III IV	2.5 2.4 2.4	— <u>P1</u> P1	Į Į
62.448 62.451	$Pn'ma'$ P_bnma	IV	$\frac{2.4}{2.4}$	$\frac{P1}{P1}$	I	62.450 62.452	$P_a nma$ $P_c nma$	IV	2.4	$\frac{P1}{P1}$	T
62.453	$P_A nma$	IV	2.4	P1	Ī	62.454	$P_B nma$	IV	2.4	$\frac{11}{P1}$	Ī
62.455	$P_C nma$	IV	2.4	$P\overline{1}$	I	62.456	$P_{I}nma$	IV	2.4	$P\overline{1}$	I
63.457	Cmcm	III	2.4	<u> </u>	I I	63.458	Cmcm1'	III	2.5	$\frac{P\bar{1}1'}{P1}$	Ţ
63.462	$\frac{Cm'c'm}{Cm'cm'}$	III	$\frac{2.4}{2.4}$	$\frac{P1}{P1}$	+ + -	63.463	$Cmc'm' \ C_cmcm$	IV	$\begin{array}{ c c c }\hline 2.4 \\ 2.4 \\ \end{array}$	$\frac{P_1}{P_1}$	
63.467	C_amcm	IV	2.4	P1	Ī	63.468	C_Amcm	IV	2.4	P1	Ī
64.469	Cmca	I	2.4	$\frac{P\overline{1}}{D1}$	Į	$\begin{array}{ c c c c c } \hline 64.470 \\ \hline 64.475 \\ \hline \end{array}$	Cmcq1'	II	2.5	$P\overline{11}'$	Ţ
64.474 64.476	$\frac{Cm'c'a}{Cm'ca'}$	III	2.4	P1 P1	+	64.478	$Cmc'a' \ C_cmca$	III IV	2.4 2.4	— <u>P1</u> P1	+
64.479	$C_a m c a$	IV	2.4	$\frac{1}{P1}$	Î	64.480	$C_{A}mca$	IV	2.4	$P\overline{1}$	Ī
65.481	Cmmm	I	47.249	$P_{n}mm$	Ţ	65.482	Cmmm1'	II	2.5	P11'	Ţ
65.485 65.488	$Cm'm'm \ C_cmmm$	III IV	10.42 47.249	P2/m	I	65.486	$Cmm'm'$ C_ammm	III	2.4 47.249	$\frac{P1}{Pmmm}$	I
65.490	$C_c m m m$ $C_A m m m$	IV	47.249	$\frac{Pmmm}{Pmmm}$	I	66.491	C_{ccm}	I	2.4	$\frac{Pmmm}{P1}$	T
66.492	Cccm1'	II	2.5	P11'	II	66.495	Cc'c'm	III	10.42	P2/m	I
66.496	Ccc'm'	III	2.4	$P\overline{1}$	I	66.498	$C_c ccm$	IV	2.4	$P\overline{1}$	I
66.499	$C_a ccm$	IV	2.4	$P\overline{1}$	Ī	66.500	C_Accm	IV	2.4	$P\overline{1}$	I
67.501 67.505	$Cmma \ Cm'm'a$	III	$\frac{2.4}{2.4}$	<u>P1</u> P1	+	67.502 67.506	$Cmma1' \ Cmm'a'$	III	$\frac{2.5}{2.4}$	P11' P1	II
67.508	$C_c mma$	ΙV	2.4	P1	i	67.509	$C_a mma$	ΙV	2.4	P1	† †
67.510	C_Amma	IV	2.4	$P\overline{1}$	I	68.511	Ccca	I	2.4	$P\overline{1}$	I
68.512	Cccg1'	Ш	2.5	$\frac{P11'}{P1}$	ĮĮ.	68.515	Cc'c'a	III	54.342	Pc'c'a	ΙΪΙ
68.516 68.519	$\frac{Ccc'a'}{C_acca}$	III IV	$\frac{2.4}{2.4}$	<u>P1</u> P1	1 T	68.518 68.520	$C_c cca$ $C_A cca$	IV IV	2.4	<u> </u>	 1
69.521	Fmmm	I	47.249	$\frac{1}{Pmmm}$	Li	69.522	Fmmm1'	II	2.5	$P\bar{1}1'$	İ
69.524	Fm'm'm	ΙΪΙ	2.4	$P\overline{1}$	Ī	69.526	F_Smmm	ΙV	47.249	Pmmm	Ĭ
70.527 70.530	Fddd Fd'd'd	III	2.4	P1 P1	++	70.528 70.532	Fddd1'	II IV	$\frac{2.5}{2.4}$	P11' P1	II I
	1: O. O. O.	111	⊔ 4.4		1 1	<u> </u>	$F_S ddd$	I V	4.4	1 1	1 1

71 599	т	т	17.040	D	т 1	71 F94	T 1/	TT	0.5	D11/	TT
71.533 71.536	$\frac{Immm}{Im'm'm}$	III	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{Pmmm}{P1}$	ļ ļ	71.534 71.538	$\frac{Immm1'}{I_cmmm}$	IV	$\frac{2.5}{47.249}$	$\frac{P11'}{Pmmm}$	 II
72.539	$\frac{Illi lli lli}{Ibam}$	Ĭ	2.4	$\frac{1}{P1}$	Ť	72.540	$\frac{I_{c}mmn}{Ibam1'}$	II	2.5	P11'	TT
72.543	Ib'a'm	ΙΪΙ	$\frac{2.4}{2.4}$	$P\overline{1}$	Î	72.544	Iba'm'	III	$\begin{array}{r} 2.5 \\ 2.4 \\ 2.4 \end{array}$	P1	Ï
72.546	I_cbam	IV	$\parallel 2.4 \parallel$	$P\overline{1}$	I	72.547	$I_b bam$	IV	2.4	P1	I
73.548	Ibca	I	2.4	$\frac{P1}{P1}$	Į	73.549	$\underline{Ibca1'}$	II	$\frac{2.5}{2.4}$	P_{D1}^{1}	Ų
73.551	Ib'c'a	III	2.4	<u> </u>	1 T	73.553	I_cbca	IV	2.4	$\frac{P\overline{1}}{P\overline{1}1'}$	II
$\frac{74.554}{74.558}$	$\frac{Imma}{Im'm'a}$	TIT	$\frac{2.4}{2.4}$	$\frac{P1}{P1}$	+	74.559	$\frac{Imma1'}{Imm'a'}$	Ш	2.5 2.4 2.4	P11 P1	+ ++
74.561	I_cmma	ΪV	2.4	P1	İ	74.562	$I_{b}mma$	ĬV	2.4	$P\overline{1}$	İ
75.1	P4	Ţ	75.1	P4	I	75.5	P_C4	IV	75.1	P4	I
77.13	$P4_2$	I T	77.13	P4 ₂	I I	77.17	$P_C 4_2$	IV	77.13	$P4_2$	1
79.25 81.34	$\frac{I4}{P41'}$	II	75.1 81.33	P4 P4	+	81.33 81.36	$\frac{\mathbf{P4}}{P_c4}$	IV	81.33 81.33	<u>P4</u> P4	++
81.37	PC4	IV	81.33	P4	Ī	81.38	$\frac{r_c \tau}{P_I 4}$	IV	81.33	$\frac{14}{P4}$	Ť
82.39	$\frac{IC4}{I4}$	I	81.33	P4	Î	82.40	$\frac{111}{I41'}$	II	81.33	$\frac{14}{P4}$	İ
82.42	$I_c \overline{4}$	IV	81.33	$\overline{P4}$	Ī	83.43	P4/m	I	83.43	P4/m	Ī
83.44	P4/m1'	II	83.44	P4/m1'	II	83.45	P4'/m	III	83.45	P4'/m	III
83.47	P4'/m'	III	81.33	$P\overline{4}$	I	83.48	P_c4/m	IV	83.43	P4/m	I
83.49	P_C4/m	IV	83.43	P4/m	I	83.50	P_I4/m	IV	83.43	P4/m	I
84.51	$P4_2/m$	I	84.51	$P4_2/m$	I	84.52	$P4_2/m1'$	II	2.5	$P\dot{1}1'$	II
84.53	$P4_2'/m$	III	10.42	P2/m	I	84.55	$P4_2'/m'$	III	81.33	$P\overline{4}$	I
84.56	$P_c 4_2/m$	IV	83.45	P4'/m	III	84.57	$P_C 4_2/m$	IV	84.51	$P4_2/m$	I
84.58	$P_I 4_2/m$	IV	83.45	P4'/m	III	85.59	$\frac{16.27m}{P4/n}$	I	81.33	P4	I
85.60	$\frac{P4/n1'}{P4/n1'}$	II	2.5	P11'	II	85.61	$\frac{P4'/n}{}$	III	2.4	P1	I
85.63	$\frac{P4'/n'}{P4'/n'}$	III	81.33	P4	I	85.64	$\frac{P_c4/n}{}$	IV	2.4	P1	I
85.65	$\frac{P_C 4/n}{P_C 4}$	IV	2.4	$\frac{1}{P1}$	Ī	85.66	$\frac{P_{I}4/n}{P_{I}4/n}$	IV	2.4	$\frac{11}{P1}$	Ī
86.67	$P4_2/n$	I	81.33	$\frac{11}{P4}$	I	86.68	$\frac{P4_2/n1'}{P4_2/n1'}$	II	2.5	$\frac{11}{P11'}$	II
86.69	$\frac{P4_2/n}{P4_2/n}$	III	2.4	$\frac{14}{P1}$	I	86.71	$\frac{142/n1}{P4_2/n'}$	III	81.33	$\frac{111}{P4}$	I
86.72	$\frac{14_2/n}{P_c4_2/n}$	IV	2.4	$\frac{11}{P1}$	I	86.73	$\frac{P_C 4_2/n}{P_C 4_2/n}$	IV	2.4	P1	I
86.74	$\frac{P_I 4_2/n}{P_I 4_2/n}$	IV	2.4	$\frac{11}{P1}$	I	87.75	$\frac{I(42/n)}{I4/m}$	I	83.43	P4/m	I
87.76	$\frac{142/n}{14/m1'}$	II	87.76	$\overline{14/\text{m}1'}$	II	87.77	$\frac{14/m}{I4'/m}$	III	83.45	$\frac{14/m}{P4'/m}$	III
87.79	$\frac{14/1111}{I4'/m'}$	III	81.33	$P\overline{4}$		87.80	$\frac{I4/m}{I_c4/m}$	IV	83.43	$\frac{14/m}{P4/m}$	I
88.81		I	88.81		I	88.82		II	2.5	$\frac{P4/m}{P11'}$	II
88.83	$\frac{\mathbf{I4_1/a}}{I4_1'/a}$	III	2.4	14 ₁ /a P1			$\frac{I4_{1}/a1'}{I4'_{1}/a'}$	III	81.33	$\frac{P11}{P4}$	I
				$\frac{P1}{P1}$	I	88.85					
88.86	$I_c 4_1/a$	IV	2.4		I	89.90	P42'2'	III	75.1	P4	I
90.98	$P42_{1}^{\prime}2^{\prime}$ $P4_{2}2_{1}^{\prime}2^{\prime}$	III	75.1	P4	I	93.122	$P4_{2}2'2'$	III	77.13	$P4_2$	I
1 94 130 1							T 10/0/	TTT	PP 1	D 4	
	D4:2212	III	77.13	$P4_2$	I	97.154	I42'2'	III	75.1	P4	I
99.167	P4m'm'	III	75.1	P4	I	100.175	P4b'm'	III	75.1	P4	I
99.167 101.183	$P4m'm'$ $P4_2c'm'$		75.1 27.81	P4 $Pc'c'2$	I III III	$\begin{array}{c c} 100.175 \\ 102.191 \end{array}$	$\begin{array}{c} P4b'm' \\ P4_2n'm' \end{array}$		75.1 77.13	P4 P4 ₂ Pc'c'2	I I I
99.167 101.183 103.199 104.209	$P4m'm' \\ P4_2c'm' \\ \mathbf{P4c'c'} \\ P_C4nc$	III III III IV	75.1 27.81 103.199 103.199	P4 Pc'c'2 P4c'c' P4c'c'		100.175 102.191 104.207 105.215	$\begin{array}{c} P4b'm' \\ P4_2n'm' \\ P4n'c' \\ P4_2m'c' \end{array}$	III	75.1 77.13 27.81 27.81	$\begin{array}{c} P4 \\ P4_2 \\ Pc'c'2 \\ Pc'c'2 \end{array}$	I
99.167 101.183 103.199 104.209 106.223	$P4m'm' \\ P4_2c'm' \\ P4c'c' \\ P_C4nc \\ P4_2b'c'$	III III IV III	75.1 27.81 103.199 103.199 27.81	P4 Pc'c'2 P4c'c' P4c'c' Pc'c'2	III III III	100.175 102.191 104.207 105.215 107.231	$P4b'm' \\ P4_2n'm' \\ P4n'c' \\ P4_2m'c' \\ I4m'm'$	III III III III	75.1 77.13 27.81 27.81 27.81	$P4$ $P4_2$ $Pc'c'2$ $Pc'c'2$ $Pc'c'2$	I I III III
99.167 101.183 103.199 104.209 106.223 108.237	$P4m'm' \\ P4_2c'm' \\ P4c'c' \\ P_C4nc \\ P4_2b'c' \\ I4c'm'$	III III III IV	75.1 27.81 103.199 103.199 27.81 103.199	P4 Pc'c'2 P4c'c' P4c'c' Pc'c'2 P4c'c'	III III	100.175 102.191 104.207 105.215 107.231 110.249	$P4b'm'$ $P4_2n'm'$ $P4_2n'c'$ $P4_2m'c'$ $I4m'm'$ $I4_1c'd'$	III III III III III	75.1 77.13 27.81 27.81 27.81 110.249	$\begin{array}{c} P4 \\ P4_2 \\ Pc'c'2 \\ Pc'c'2 \\ Pc'c'2 \\ \mathbf{I4_1c'd'} \end{array}$	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251	$P4m'm'$ $P4_{2}c'm'$ $P4c'c'$ $P_{C}4nc$ $P4_{2}b'c'$ $I4c'm'$ $P42m$	III III IV III III I	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' Pc'c'2 P4c'c' P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252	$P4b'm'$ $P4_2n'm'$ $P4n'c'$ $P4_2m'c'$ $I4m'm'$ $I4_1c'd'$ $P42m1'$	III III III III III III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	$\begin{array}{c} P4 \\ P4_2 \\ Pc'c'2 \\ Pc'c'2 \\ Pc'c'2 \\ \hline 14_1c'd' \\ P4 \end{array}$	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255	$P4m'm' \\ P4_2c'm' \\ P4c'c' \\ P_C4nc \\ P4_2b'c' \\ I4c'm' \\ P42m \\ P42'm'$	III III IV III III III III III III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' Pc'c'2 P4c'c' P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256	$\begin{array}{c} P4b'm' \\ P4_2n'm' \\ P4n'c' \\ P4_2m'c' \\ I4m'm' \\ I4_1c'd' \\ P42m1' \\ P_c42m \end{array}$	III III III III III III III III III IV	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257	$P4m'm' \\ P4_2c'm' \\ P4c'c' \\ P_C4nc \\ P4_2b'c' \\ I4c'm' \\ P42m \\ P42'm' \\ P_C42m$	III III IV III III I	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' Pc'c'2 P4c'c' P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.258	$\begin{array}{c} P4b'm' \\ P4_2n'm' \\ P4n'c' \\ P42m'c' \\ I4m'm' \\ I4_1c'd' \\ P42m1' \\ P_c42m \\ P_f42m \end{array}$	III III III III III III III III IV IV	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255	P4m'm' P42c'm' P4c'c' Pc4nc P42b'c' I4c'm' P42m P42'm' Pc42m P42c	III III IV III III III III III III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' Pc'c'2 P4c'c' P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256	P4b'm' P4 ₂ n'm' P4n'c' P4 ₂ m'c' I4m'm' I4 ₁ c'd' P42m1' P _c 42m P ₁ 42m P ₂ 42n1'	III III III III III III III III III IV	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.259	$P4m'm' \\ P4_2c'm' \\ P4c'c' \\ P_C4nc \\ P4_2b'c' \\ I4c'm' \\ P42m \\ P42'm' \\ P_C42m$	III III IV III III III III III IV IV IV	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.256 111.258 112.260	$\begin{array}{c} P4b'm' \\ P4_2n'm' \\ P4n'c' \\ P42m'c' \\ I4m'm' \\ I4_1c'd' \\ P42m1' \\ P_c42m \\ P_f42m \end{array}$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.263 112.265 113.267	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ \hline P4c'c'\\ P_C4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42'm'\\ P_C42m\\ P42c\\ P42'c'\\ P_C42c\\ P42_1m\\ \end{array}$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' Pc'c'2 P4c'c' P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.256 111.256 112.260 112.264 113.268	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4n'c'\\ P42m'c'\\ I4m'm'\\ \hline I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_42c1'\\ P_c42c\\ P_142c\\ P_42_1m1'\\ \end{array}$	III III III III III III III III IV IV IV	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.259 112.263 112.265 113.267	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ \hline P4c'c'\\ P_C4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42'm'\\ P_C42m\\ P42c\\ P42'c'\\ P_C42c\\ P42_1m\\ P42_1m'\\ \end{array}$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.256 111.256 112.260 112.264 113.268 113.268	$\begin{array}{c} P4b'm' \\ P4_2n'm' \\ P4_2n'm' \\ P4n'c' \\ P42m'c' \\ I4m'm' \\ I4_1c'd' \\ P42m1' \\ P_c42m \\ P_142m \\ P_242c' \\ P_c42c \\ P_142c \\ P_42_1m1' \\ P_c42_1m \end{array}$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.259 112.263 112.265 113.267 113.271	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ \hline P4c'c'\\ P24nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42'm'\\ P242m\\ P42'c'\\ P242c\\ P42_1c'\\ P242_1m\\ P42_1m'\\ P242_1m\\ P242_1m\end{array}$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.258 112.260 112.264 113.268 113.272	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ I4m'm'\\ I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_42c1'\\ P_c42c\\ P_14$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.265 113.265 113.271 113.273 114.275	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ \hline P4c'c'\\ P_C4nc\\ P_24nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42'm'\\ P_C42m\\ P42'c'\\ P_C42c\\ P42_1m\\ P42_1m'\\ P_C42_1m\\ P42_1c\\ \end{array}$	III	75.1 27.81 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P6c'c'2 P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.260 112.264 113.268 113.268 113.272 113.274 114.276	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ I4m'm'\\ \hline I4_1c'd'\\ P42ml'\\ P_c42m\\ P_142m\\ P_242m\\ P_242c\\ P_142c\\ P_142c\\ P_242_1m1'\\ P_c42_1m\\ P_142_1m\\ P_142_1m\\ P_142_1m\\ P_142_1m\\ \end{array}$	III III III III III III IV IV IV IV IV I	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 112.259 112.263 112.265 113.267 113.271 113.273 114.275 114.279	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ \hline P4c'c'\\ Pc4nc\\ Pc4nc\\ P4_2b'c'\\ \hline I4c'm'\\ P42m\\ P42'm'\\ Pc42m\\ P42_c\\ P42_c\\ P42_1m\\ \hline P42_1m'\\ Pc42_1m\\ P42_1c'\\ \hline P42_1c'\\ \end{array}$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.260 112.264 112.266 113.268 113.272 113.274 114.276 114.280	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ I4m'm'\\ I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_242c\\ P_142c\\ P_142c\\ P_42_1m1'\\ P_c42_1m\\ P_142_1m\\ P_142_1m\\ P_142_1c1'\\ P_c42_1c\\ P_c42_1c\\ \end{array}$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.263 113.267 113.271 113.273 114.275 114.275 114.279	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P2_4nc\\ P2_4nc\\ P4_2b'c'\\ P42_2m\\ P42'm'\\ P2_42m\\ P42_1c'\\ P2_42_1m\\ P42_1m'\\ P2_42_1m\\ P42_1c'\\ P2_42_1c'\\ P$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.258 112.260 112.264 113.268 113.272 113.274 114.276 114.280 114.280	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ I4m'm'\\ I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_242c'\\ P_242c\\ P_142c\\ P_42_1m1'\\ P_c42_1m\\ P_142_1m\\ P_142_1c1'\\ P_242_1c1'\\ P_242_1c\\ P_142_1c\\ P_142_1c\\ \end{array}$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 112.259 112.263 112.263 113.267 113.273 114.275 114.275 114.275	P4m'm' P42c'm' P4c'c' Pc4nc P42b'c' I4c'm' P42m P42'm' P42c P42c P42c P42c P42c P42c P42c P42c	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.260 112.264 112.266 113.268 113.272 113.274 114.276 114.280	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ I4m'm'\\ I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_242c\\ P_142c\\ P_142c\\ P_42_1m1'\\ P_c42_1m\\ P_142_1m\\ P_142_1m\\ P_142_1c1'\\ P_c42_1c\\ P_c42_1c\\ \end{array}$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.255 112.263 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 115.289	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42m\\ P42'm'\\ P242m\\ P42_1c'\\ P242_1m\\ P42_1m'\\ P342_1c\\ P42_1c'\\ P42$	III	75.1 27.81 103.199 27.81 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.260 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.280 114.282 115.284 115.284	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ I4m'm'\\ \hline I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_242c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142_1m\\ P_142_1m\\ P_142_1m\\ P_142_1c'\\ P_142_1c\\ P_14$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P4 ₂ Pc'c'2 Pc'c'2 Pc'c'2 I4 ₁ c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 112.259 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.283 115.287 115.289 116.291	P4m'm' P42c'm' P4c'c' P2dnc P2dnc P42b'c' I4c'm' P42m P42'm' P42c P42c P42lm P42c P42lm P42'c' Pc42c P42lm P42'lm' Pc42lm P42'lc' Pc42ln P42lc P42lc P42lc P42lc P42lc P4m2 P4m2 P4m2 P4m2 P4m2 P4m2 P4m2	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.266 112.266 113.268 113.272 113.274 114.276 114.280 114.280 114.282 115.284 115.284 115.284 115.288 115.290 116.292	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ I4m'm'\\ \hline I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142_1m\\ P_142_1m\\ P_142_1c1'\\ P_c42_1c\\ P_1$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 112.259 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 115.289 116.291 116.295	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P2_4nc\\ P4_2b'c'\\ P4_2m\\ P4_2m'\\ P4_2m'\\ P4_2c\\ P4_2$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.282 115.284 115.284 115.284 115.289 116.296	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ 14m'm'\\ \hline 14_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_242c'\\ P_242c\\ P_42_1m1'\\ P_c42_1m'\\ P_c42_1m\\ P_142_1m\\ P_142_1c'\\ P_242_1c'\\ P_142_1c$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.263 112.265 113.267 113.273 114.275 114.275 114.279 114.281 115.283 115.287 116.295 116.297	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'c\\ P_C4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42'm'\\ P_C42m\\ P42_1c'\\ $	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.264 112.266 113.268 113.274 114.276 114.280 114.282 115.284 115.288 115.289 116.292 116.298	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ 14m'm'\\ \hline \textbf{I4_1c'd'}\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_242c\\ P_142c\\ P_142c\\ P_242c\\ $	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.263 112.263 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 116.291 116.295 116.297 117.299	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'\\ P_24nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42'm'\\ P242m\\ P42'c'\\ P242c\\ P42'c'\\ P242c\\ P42'1m'\\ P242_1m\\ P42_1c\\ P42_1c'\\ P24_2c'\\ P24_2c'\\ P24_2c\\ P42_1c'\\ P24_2c'\\ P$	III	75.1 27.81 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.260 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.282 115.284 115.284 115.288 115.290 116.292 116.296 116.298 117.300	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2n'c'\\ P4_2m'c'\\ I4m'm'\\ I4_1c'd'\\ P42m1'\\ P_c42m'\\ P_c42m\\ P_142m\\ P_242c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142_1m\\ P_242_1m\\ P_242_1m\\ P_242_1c1'\\ P_242_1c\\ P_14$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.263 112.265 113.267 113.273 114.275 114.275 114.279 114.281 115.283 115.287 116.295 116.297	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'c\\ P_C4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42'm'\\ P_C42m\\ P42_1c'\\ $	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.264 112.266 113.268 113.274 114.276 114.280 114.282 115.284 115.288 115.289 116.292 116.298	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ 14m'm'\\ \hline \textbf{I4_1c'd'}\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_242c\\ P_142c\\ P_142c\\ P_242c\\ $	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.263 112.265 113.267 113.271 113.273 114.275 114.281 115.283 115.283 115.289 116.291 116.295 116.297 117.299 117.303	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42m\\ P42c\\ P42c'\\ P242m\\ P42_1m'\\ P242_1m\\ P42_1m'\\ P242_1m\\ P42_1c'\\ P242_1$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.260 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.280 114.282 115.284 115.288 115.290 116.292 116.296 116.292 116.298 117.300 117.304	$\begin{array}{c} P4b'm'\\ P4_{2}n'm'\\ P4_{2}n'm'\\ P4_{2}m'c'\\ P4_{2}m'c'\\ I4m'm'\\ \hline I4_{1}c'd'\\ P42m1'\\ P_{c}42m\\ P_{1}42m\\ P_{1}42m\\ P_{2}42c\\ P_{1}42c\\ P_{2}42c\\ P_{2}42c\\ P_{3}42c\\ P_{4}21m1'\\ P_{c}42_{1}m\\ P_{1}42_{1}m\\ P_{2}42_{1}c\\ P_{1}42_{1}c\\ P_{2}42_{1}c\\ P_{3}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{2}c\\$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 116.297 117.299 117.303 117.303 117.305 118.307	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P2_4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42'm'\\ P2_42m\\ P42_1c'\\ P2_42_1m\\ P42_1m'\\ P2_42_1m\\ P42_1c'\\ P2_4$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.282 115.284 115.284 115.284 115.289 116.296 116.296 116.298 117.300 117.304 117.306 118.308 118.312	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2m'c'\\ P4_2m'c'\\ I4m'm'\\ I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_242c'\\ P_242c\\ P_242c\\ P_242c\\ P_242c\\ P_242c\\ P_242c\\ P_242c\\ P_242c\\ P_242c\\ P_242c\\ P_242c\\ P_2421m1'\\ P_c421m\\ P_2421c'\\ P_2421c\\ P_2421c\\ P_24m2\\ P_24m2\\ P_24m2\\ P_24m2\\ P_24c2\\ P_24c2\\ P_24c2\\ P_24c2\\ P_24b21'\\ P_26c2\\ P_24b21'\\ P_26c2\\ P_24b21'\\ P_26c2\\ P_24b21'\\ P_26c2\\ P_24b21'\\ P_26c2\\ P_24b21'\\ P_26c2\\ $	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.263 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.289 116.291 116.295 116.297 117.303 117.305 118.307 118.307 118.311	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'\\ P2_4nc\\ P4_2b'c'\\ P4_2m\\ P42m\\ P42m\\ P42_m\\ P42_m\\ P42_c\\ P42_c\\ P42_1m'\\ P2_42_1m\\ P42_1m'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_$	III	75.1 27.81 103.199 27.81 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.260 112.264 112.266 113.274 114.276 114.280 114.282 115.284 115.286 116.296 116.296 116.306 117.306 118.308 118.314	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2n'c'\\ P4_2m'c'\\ I4m'm'\\ I4_1c'd'\\ P42m'\\ P_c42m'\\ P_c42m'\\ P_c42m'\\ P_c42c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142_1m'\\ P_c42_1m'\\ P_c42_1m'\\ P_c42_1m'\\ P_c42_1m'\\ P_c42_1c'\\ P_c42_1c'\\ P_c42_1c'\\ P_c42_1c'\\ P_14m_2\\ P_14m_2\\ P_14m_2\\ P_14m_2\\ P_14m_2\\ P_14c_2\\ P_14c_2\\ P_14c_2\\ P_14b_2\\ P_14b_2\\ P_14b_2\\ P_14n_2'\\ P_c4n_2\\ P_14n_2'\\ P_c4n_2\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'\\ P_14n_2'$	III	75.1 77.13 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.255 111.257 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.283 115.289 116.291 116.295 116.297 117.303 117.305 118.307 118.311 118.313	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P2_4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42m\\ P42'm'\\ P2_42m\\ P42_1c'\\ P2_42_1m\\ P42_1m'\\ P42_1m'\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1c'\\ P2_42_1c\\ P4_1c'\\ P2_42_$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 112.260 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.280 114.282 115.284 115.284 115.284 115.284 115.284 115.290 116.292 116.298 117.306 117.306 118.308 117.306 118.308 118.314 119.316	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2n'c'\\ P4_2m'c'\\ I4m'm'\\ \hline I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142m\\ P_142m\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142_1m\\ P_142_1m\\ P_142_1m\\ P_142_1m\\ P_142_1c'$	III	75.1 77.13 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.259 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 115.289 116.297 117.299 117.303 117.305 118.307 118.311 118.313 119.315	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2b'c'\\ Pc4nc\\ P4_2b'c'\\ P42m\\ P42'm'\\ P42m\\ P42c\\ P42_1m'\\ P42_1m'\\ P42_1m'\\ P42_1m'\\ P42_1c\\ P42_1c\\ P42_1c'\\ P24_1c\\ P42_1c'\\ P24_1c\\ P4m'2'\\ P4m'2'$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.260 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.282 115.284 115.288 115.290 116.292 116.296 116.292 116.296 116.298 117.300 117.304 117.306 118.312 118.314 119.316	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2n'c'\\ P4_2m'c'\\ I4m'm'\\ \hline I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142_1m\\ P_142_1m\\ P_142_1m\\ P_142_1c1'\\ P_c42_1c\\ P_142$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 P42 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.259 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 115.289 116.291 116.295 116.297 117.303 117.305 118.307 118.313 119.315 119.319 120.321	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P2_4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42m\\ P42c\\ P42'c'\\ Pc42c\\ P42_1m\\ P42_1m'\\ Pc42_1m\\ P42_1c'\\ Pc42_1c\\ P42_1c'\\ Pc42_1c\\ P42_1c'\\ Pc42_1c\\ P46_2c\\ P46_$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.282 115.284 115.284 115.288 115.290 116.292 116.296 116.398 117.300 117.304 117.306 118.308 118.312 118.314 119.316 119.320 120.322	$\begin{array}{c} P4b'm'\\ P4_{2}n'm'\\ P4_{2}n'm'\\ P4_{2}n'c'\\ P4_{2}m'c'\\ I4m'm'\\ \hline I4_{1}c'd'\\ P42ml'\\ P_{c}42m\\ P_{1}42m\\ P_{2}42c\\ P_{1}42c\\ P_{2}42c\\ P_{2}42c\\ P_{3}42c\\ P_{4}2ml'\\ P_{c}42_{1}m\\ P_{2}42_{1}m\\ P_{3}42_{1}m\\ P_{3}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{1}c\\ P_{4}42_{2$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.259 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 115.289 116.297 117.299 117.303 117.305 118.307 118.311 118.313 119.315	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'\\ P2_4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42m\\ P42'm'\\ P2_42m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1c'\\ P2$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.260 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.282 115.284 115.288 115.290 116.292 116.296 116.292 116.296 116.298 117.300 117.304 117.306 118.312 118.314 119.316	$\begin{array}{c} P4b'm'\\ P4_2n'm'\\ P4_2n'm'\\ P4_2n'c'\\ P4_2m'c'\\ I4m'm'\\ \hline I4_1c'd'\\ P42m1'\\ P_c42m\\ P_142m\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142c\\ P_142_1m\\ P_142_1m\\ P_142_1m\\ P_142_1c1'\\ P_c42_1c\\ P_142$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.259 112.263 112.265 113.267 113.271 114.279 114.281 115.283 115.287 115.289 116.297 117.299 117.303 117.305 118.307 118.311 118.313 119.315 119.319 120.325 121.327 121.331	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P2_4nc\\ P2_4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42m\\ P42m\\ P42_m'\\ P2_42m\\ P42_1m'\\ P2_42_1m\\ P42_1m'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1c'\\ P$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.260 112.264 112.266 113.274 114.276 114.280 114.282 115.284 115.280 116.292 116.292 116.296 116.292 116.296 117.306 118.308 118.312 118.314 119.316 119.320 120.322 120.326 121.328	$\begin{array}{c} P4b'm' \\ P4_2n'm' \\ P4_2n'm' \\ P4_2n'm' \\ P4_2n'c' \\ P4_2m'$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.257 112.259 112.263 112.265 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 115.289 116.297 117.299 117.303 117.305 118.307 118.311 118.313 119.315 119.319 120.325 121.327 121.331 122.333	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P2_4nc\\ P2_4nc\\ P4_2b'c'\\ P2_4nc\\ P4_2m\\ P4_2m\\ P4_2m\\ P4_2m\\ P4_2m\\ P4_2c\\ P4_2m\\ P4_2c\\ P4_2m\\ P4_2c\\ P4_2m\\ P4_2$	III	75.1 27.81 103.199 103.199 27.81 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	III III III	100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.264 112.266 113.268 113.272 113.274 114.276 114.280 114.282 115.284 115.284 115.288 115.290 116.292 116.296 116.398 117.300 117.304 117.306 118.314 119.316 119.316 119.320 120.322 120.326 121.328 121.338	$\begin{array}{c} P4b'm' \\ P4_2n'm' \\ P4_2n'm' \\ P4_2n'c' \\ P4_2m'c' \\ I4m'm' \\ I4_1c'd' \\ P42m' \\ P42m' \\ P42m' \\ P42m' \\ P42m' \\ P42m' \\ P42n' \\ P642c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P142c \\ P14c$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III
99.167 101.183 103.199 104.209 106.223 108.237 111.251 111.255 111.255 111.257 112.263 112.263 112.263 112.263 113.267 113.271 113.273 114.275 114.279 114.281 115.283 115.287 115.289 116.291 116.295 116.297 117.303 117.303 117.305 118.307 118.311 118.313 119.315 119.319 120.321 120.325 121.327 121.337	$\begin{array}{c} P4m'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P4_2c'm'\\ P2_4nc\\ P2_4nc\\ P4_2b'c'\\ I4c'm'\\ P42m\\ P42m\\ P42m\\ P42_m'\\ P2_42m\\ P42_1m'\\ P2_42_1m\\ P42_1m'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1m\\ P42_1c'\\ P2_42_1c'\\ P$	III	75.1 27.81 103.199 103.199 81.33	P4 Pc'c'2 P4c'c' P4c'c' P4c'c' P4c'c' P4c'c' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4		100.175 102.191 104.207 105.215 107.231 110.249 111.252 111.256 111.256 112.266 113.264 112.266 113.274 114.276 114.280 114.282 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.284 115.280 116.292 116.292 116.296 116.292 116.296 116.298 117.300 117.304 117.306 118.314 119.316 119.320 120.322 120.326 121.332 122.334	$\begin{array}{c} P4b'm' \\ P4_2n'm' \\ P4_2n'm' \\ P4_2n'm' \\ P4_2n'c' \\ P4_2m'$	III	75.1 77.13 27.81 27.81 27.81 110.249 81.33	P4 P42 Pc'c'2 Pc'c'2 Pc'c'2 Pc'c'2 I41c'd' P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	I I III III

123.342	P4'/mm'm	III	47.249	Pmmm	I	123.343	P4'/mmm'	III	47.249	Pmmm	I
123.344	P4'/m'm'm	III	81.33	$P\overline{4}$	I	123.345	P4/mm'm'	III	83.43	P4/m	I
123.346	P4'/m'mm'	III	81.33	P4	I	123.348	P_c4/mmm	IV	123.339	P4/mmm	I
123.349	P_C4/mmm	IV	123.339	P4/mmm	I	123.350	P_I4/mmm	IV	123.339	P4/mmm	I
124.351	P4/mcc	I	83.43	P4/m	I	124.352	P4/mcc1'	II	83.44	P4/m1'	II
124.354	P4'/mc'c	III	83.45	P4'/m	III	124.355	P4'/mcc'	III	83.45	P4'/m	III
124.356	P4'/m'c'c	III	81.33	$P\overline{4}$	I	124.357	P4/mc'c'	III	83.43	P4/m	I
124.358	P4'/m'cc'	III	81.33	$P\overline{4}$	I	124.360	P_c4/mcc	IV	83.43	P4/m	I
124.361	P_C4/mcc	IV	83.43	P4/m	I	124.362	P_I4/mcc	IV	83.43	P4/m	I
125.363	P4/nbm	Ι	2.4	$P\overline{1}$	I	125.364	P4/nbm1'	II	2.5	$P\overline{1}1'$	II
125.366	P4'/nb'm	III	2.4	$P\overline{1}$	I	125.367	P4'/nbm'	III	2.4	$P\bar{1}$	I
125.368	P4'/n'b'm	III	81.33	$P\overline{4}$	I	125.369	P4/nb'm'	III	81.33	$P\overline{4}$	I
125.370	P4'/n'bm'	III	81.33	$P\overline{4}$	I	125.372	P_c4/nbm	IV	2.4	$P\overline{1}$	I
125.373	P_C4/nbm	IV	2.4	$P\overline{1}$	I	125.374	P_I4/nbm	IV	2.4	$P\overline{1}$	I
126.375	P4/nnc	I	2.4	P1	I	126.376	P4/nnc1'	II	2.5	$P\overline{1}1'$	II
126.378	P4'/nn'c	III	2.4	P1	I	126.379	P4'/nnc'	III	2.4	$P\overline{1}$	I
126.380	P4'/n'n'c	III	81.33	$P\overline{4}$	I	126.381	P4/nn'c'	III	54.342	Pc'c'a	III
126.382	P4'/n'nc'	III	81.33	$P\overline{4}$	I	126.384	P_c4/nnc	IV	2.4	$P\overline{1}$	I
126.385	P_C4/nnc	IV	2.4	P1	I	126.386	P_I4/nnc	IV	2.4	P1	I
127.387	P4/mbm	I	83.43	P4/m	I	127.388	P4/mbm1'	II	83.44	P4/m1'	II
127.390	P4'/mb'm	III	47.249	Pmmm	I	127.391	P4'/mbm'	III	83.45	P4'/m	III
127.390	P4'/m'b'm	III	81.33	$P\overline{4}$	I	127.391	P4/mb'm'	III	83.43	P4/m	I
127.394	P4'/m'bm'	III	81.33	$P\overline{4}$	I	127.395	P_c4/mbm	IV	47.249	Pmmm	I
127.394	$P4/m\ bm$ P_C4/mbm	IV	83.43	P4 $P4/m$	I	127.396		IV	47.249	Pmmm	I
127.397			83.43	P4/m $P4/m$		127.398	P_I4/mbm $P4/mnc1'$	II			II
128.399	P4/mnc $P4'/mn'c$	III	83.45	P4/m $P4'/m$	III	128.400		III	83.44	P4/m1' $P4'/m$	III
				P4/m $P4$			P4'/mnc'		83.45		
128.404	P4'/m'n'c	III	81.33		I	128.405	P4/mn'c'	III	83.43	P4/m	I
128.406	P4'/m'nc'	III	81.33	$P\overline{4}$	I	128.408	P_c4/mnc	IV	83.43	P4/m	I
128.409	P_C4/mnc	IV	83.43	P4/m	I	128.410	P_I4/mnc	IV	83.43	P4/m	I
129.411	P4/nmm	I	2.4	$P\overline{1}$	I	129.412	P4/nmm1'	II	2.5	$P\overline{1}1'$	II
129.414	P4'/nm'm	III	2.4	$P\overline{1}$	I	129.415	P4'/nmm'	III	2.4	P1	I
129.416	P4'/n'm'm	III	81.33	$P\overline{4}$	I	129.417	P4/nm'm'	III	81.33	$P\overline{4}$	I
129.418	P4'/n'mm'	III	81.33	P4	I	129.420	P_c4/nmm	IV	2.4	$P\overline{1}$	I
129.421											
	P_C4/nmm	IV	2.4	P1	I	129.422	P_I4/nmm	IV	2.4	P1	I
130.423	P4/ncc	Ι	2.4	P1	Ι	130.424	P4/ncc1'	II	2.5	$P\overline{1}1'$	II
130.423 130.426	P4/ncc $P4'/nc'c$	III	2.4 2.4	$P\overline{1}$ $P\overline{1}$	I I	130.424 130.427	$\frac{P4/ncc1'}{P4'/ncc'}$	III	2.5 2.4	P11' P1	II I
130.423 130.426 130.428	$ \begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \end{array} $	I III III	2.4 2.4 81.33	P1 P1 P4	I I I	130.424 130.427 130.429	P4/ncc1' P4'/ncc' P4/nc'c'	III III	2.5 2.4 130.429	$\frac{P\overline{1}1'}{P\overline{1}}$ $\mathbf{P4/nc'c'}$	II
130.423 130.426 130.428 130.430	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \end{array}$	I III III	2.4 2.4 81.33 81.33	P1 P1 P4 P4	I I I	130.424 130.427 130.429 130.432	$\begin{array}{c} P4/ncc1' \\ P4'/ncc' \\ P4/nc'c' \\ P_c4/ncc \end{array}$	II III IV	2.5 2.4 130.429 2.4	P11' P1 P4/nc'c' P1	II I III I
130.423 130.426 130.428 130.430 130.433	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc	I III III IV	2.4 2.4 81.33 81.33 2.4	P1 P1 P4 P4 P1	I I I I	130.424 130.427 130.429 130.432 130.434	$\begin{array}{c} P4/ncc1' \\ P4'/ncc' \\ P4/nc'c' \\ \hline P_c4/ncc \\ \hline P_I4/ncc \\ \end{array}$	II III III IV IV	2.5 2.4 130.429 2.4 2.4	P11' P1 P4/nc'c' P1 P1	II I III I
130.423 130.426 130.428 130.430 130.433 131.435	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P24/ncc \\ P42/mmc \end{array}$	I III III IV I	2.4 2.4 81.33 81.33 2.4 47.249	P1 P1 P4 P4 P1 Pmmm	I I I I I	130.424 130.427 130.429 130.432 130.434 131.436	$P4/ncc1'$ $P4'/ncc'$ $P4/nc'c'$ P_c4/ncc P_14/ncc P_{14}/ncc $P_{24}/mmc1'$	II III III IV IV II	2.5 2.4 130.429 2.4 2.4 2.5	P11' P1 P4/nc'c' P1 P1 P1 P1'	II I III I
130.423 130.426 130.428 130.430 130.433 131.435 131.438	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc	I III III IV I III	2.4 2.4 81.33 81.33 2.4 47.249 2.4	P1 P1 P4 P4 P1 P1 Pnmm P1	I I I I	130.424 130.427 130.429 130.432 130.434 131.436 131.439	$P4/ncc1'$ $P4'/ncc'$ $P4/nc'c'$ P_c4/ncc P_c4/ncc P_14/ncc $P_{42}/mmc1'$ $P4'_{22}/mmc'$	II III III IV IV II III	2.5 2.4 130.429 2.4 2.4 2.5 47.249	P11' P1 P4/nc'c' P1 P1 P1 P1 Pnmm	II I III I
130.423 130.426 130.428 130.430 130.433 131.435	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P24/ncc \\ P42/mmc \end{array}$	I III III IV I III III	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33	P1 P1 P4 P4 P1 P1 Pmmm P1 P4	I I I I I	130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441	$P4/ncc1'$ $P4'/ncc'$ $P4/nc'c'$ P_c4/ncc P_14/ncc P_{14}/ncc $P_{24}/mmc1'$	II III III IV IV II	2.5 2.4 130.429 2.4 2.5 47.249 84.51	P11' P1 P4/nc'c' P1 P1 P1 P1'	II I III I I I I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.438	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ $P_{C}4/ncc$ $P_{C}4/ncc$ $P_{C}4/ncc$ $P_{C}4/ncc$ $P_{C}4/ncc$ $P_{C}4/ncc$ $P_{C}4/ncc$	I III III IV I III III	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33	P1 P1 P4 P4 P1 P1 Pnmm P1	I I I I I I	130.424 130.427 130.429 130.432 130.434 131.436 131.439	$P4/ncc1'$ $P4'/ncc'$ $P4/nc'c'$ P_c4/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc	II III IV IV II III III III III III	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249	P11' P1 P4/nc'c' P1 P1 P11' Pnmm P42/m Pmmm	II I III I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.438 131.440	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc $P_{C4/ncc}$ $P_{C4/ncc}$ $P_{C4/ncc}$ $P_{C4/ncc}$ $P_{C4/ncc}$	I III III IV I III III	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33	P1 P1 P4 P4 P1 P1 Pmmm P1 P4	I I I I I I I	130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441	$P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc'$ P_c4/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/nmc' P_{14}/nmc' P_{14}/nmc P_{14}/nmc	II III IV IV II III III III	2.5 2.4 130.429 2.4 2.5 47.249 84.51	P11' P1 P4/nc'c' P1 P1 P11' Pnmm P42/m Pmmm Pmmm	II I II I I I I I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.438 131.440 131.442	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc $P4_2/mmc$ $P4_2/mm'c$ $P4_2/m'm'c$ $P4_2/m'mc'$ P_C4_2/mmc $P4_2/mc$	I III III IV I III III	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33	P1 P1 P4 P4 P1 Pmmm P1 P4 P4 P4	I I I I I I I	130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441	$P4/ncc1'$ $P4'/ncc'$ $P4/nc'c'$ P_c4/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc	II III IV IV II III III III III III	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249	P11' P1 P4/nc'c' P1 P1 P11' Pnmm P42/m Pmmm	II I III I I II I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.438 131.440 131.442 131.445	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc $P4_2/mmc$ $P4_2/mm'c$ $P4_2/m'mc'$ $P4_2/m'mc'$ $PC4_2/mmc$	I III III III III III IV	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33	P1 P1 P4 P4 P1 Pmmm P1 P4 P4 P4 PP4 PPMmm	I I I I I I I I	130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441 131.444 131.446	$P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc'$ P_c4/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/nmc' P_{14}/nmc' P_{14}/nmc P_{14}/nmc	II III IV IV II III III III IV IV IV	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 47.249	P11' P1 P4/nc'c' P1 P1 P11' Pnmm P42/m Pmmm Pmmm	II I II I I I I I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.438 131.440 131.442 131.445 132.447	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc $P4_2/mmc$ $P4_2/mm'c$ $P4_2/m'm'c$ $P4_2/m'mc'$ P_C4_2/mmc $P4_2/mc$	I III III III III III IV I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249	P1 P4 P4 P1 Pmmm P1 P4 P4 PP Pmmm Pnmm Pnmm	I I I I I I I I	130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441 131.444 131.446 132.448	$P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc'$ P_c4/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/nmc' P_{14}/mmc' P_{14}/mmc P_{14}/mmc P_{14}/mmc P_{14}/mmc	II III IV IV III III III IV IV IV IV II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 47.249 2.5	P11' P1 P4/nc'c' P1 P1 P11' Pmmm P42/m Pmmm Pmmm P11'	II I III I II I I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc $P4_2/mmc$ $P4_2/mm'c$ $P4_2/m'mc'$ $P4_2/m'mc'$ $P4_2/mcm$ $P4_2/mcm$ $P4_2/mc'm$ $P4_2/m'c'm$ $P4_2/m'c'm$	I III III III III III IV I III III III	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 47.249	P1 P1 P4 P4 P1 Pmmm P1 P4 P4 P4 Pmmm Pmmm		130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441 131.444 131.446 132.448 132.451	$P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc$ P_c4/ncc P_14/ncc $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$	II III IV IV III III III III IV IV IV IV	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 47.249 2.5 2.4	P11' P1 P4/nc'c' P1 P1 P11' Pmmm P42/m Pmmm Pmmm P11' P11'	II I III I III I I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.452	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc $P4_2/mmc$ $P4_2/mm'c$ $P4_2/m'mc'$ P_C4_2/mmc $P4_2/mcm$ $P4_2/mcm$ $P4_2/mc'm$	I III III III IV I III III III III	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 47.249 81.33	P1 P1 P4 P4 P1 Pmmm P1 P4 P4 PPmmm P4 Pmmm Pmmm		130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441 131.444 131.446 132.448 132.451 132.453	$P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc'$ P_c4/ncc P_14/ncc $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$	II III IV IV II III III III III IV IV II II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 47.249 2.5 2.4 84.51	$P11'$ $P1$ $P4/nc'c'$ $P1$ $P1$ $P11'$ $P11'$ $Pmmm$ $P4_2/m$ $Pmmm$ $Pmmm$ $P11'$ $P1$ $P1$ $P1$	II I III I III I I II I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.452 132.454	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ P_C4/ncc $P4_2/mmc$ $P4_2/mm'c$ $P4_2/m'mc'$ $P4_2/m'mc'$ $P4_2/mcm$ $P4_2/mcm$ $P4_2/mc'm$ $P4_2/m'c'm$ $P4_2/m'c'm$	I III III III III III III III	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 47.249 81.33 81.33	P1 P1 P4 P4 P1 Pmmm P1 P4 P4 P4 Pmmm Pmmm		130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441 131.444 131.446 132.448 132.451 132.453 132.456	$P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc'$ P_c4/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/nmc' P_{12}/mmc' P_{14}/mmc P_{14}/mmc P_{14}/mcm P_{14}/mcm' P_{14}/mcm' P_{14}/mcm' P_{14}/mcm' P_{14}/mcm'	II III III IV IV II III III IV IV IV IV	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ P1 \\ P1 \\ P11' \\ Pmmm \\ P4_2/m \\ Pmmm \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P10' \\ P1 \\ P1 \\ P2_2/m \\ Pmmm$	II I I I I I I I I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.452 132.454 132.457	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P_C4/ncc \\ P4_2/mmc \\ P4'_2/m'm'c \\ P4'_2/m'mc' \\ P4'_2/m'mc' \\ P4'_2/mcm \\ P4'_2/mc'm \\ P4'_2/m'c'm \\ P4'_2/m'cm' \\ P4'_2/m'cm' \\ PC_4_2/mcm \end{array}$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 81.33 81.33 47.249	P1 P1 P4 P4 P1 Pmmm P1 P4 P4 Pmmm Pmmm P		130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441 131.444 131.446 132.448 132.451 132.453 132.456 132.458	$P4/ncc1'$ $P4'/ncc'$ $P4'/ncc'$ $P4/ncc'$ P_c4/ncc P_14/ncc P_{14}/ncc $P_{2}/mmc1'$ P_{2}/mmc' P_{42}/mmc' P_{42}/mmc P_{142}/mmc P_{42}/mmc $P_{42}/mcm1'$ P_{42}/mcm' P_{42}/mcm' P_{42}/mcm' P_{42}/mcm P_{142}/mcm P_{142}/mcm P_{142}/mcm	II III III IV IV III III III III IV IV I	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 47.249	P11' P1 P4/nc'c' P1 P1 P11' Pmmm P42/m Pmmm Pmmm P11' P1 P1 P42/m Pmmm Pnmm	
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.452 132.454 132.457 133.459	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4/n'cc' \\ P_{C}4/ncc \\ P4_{2}/mmc \\ P4_{2}/m'm'c \\ P4_{2}/m'm'c \\ P4_{2}/m'mc' \\ PC_{42}/mmc \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mc'm \\ P4_{2}/m'c'm \\ P4_{2}/m'cm' \\ PC_{42}/mcm \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mc \\ \end{array}$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 81.33 81.33 47.249 2.4	P1 P4 P4 P1 P4 P1 P4 P4 PPmmm P1 P4 Pmmm Pmmm		130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441 131.444 132.448 132.451 132.453 132.456 132.458	$P4/ncc1'$ $P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ P_c4/ncc P_14/ncc $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$ $P_{14/ncc}$	II III III IV IV III III III IV IV IV II II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.5	P11' P1 P4/nc'c' P1 P1 P11' Pmmm P42/m Pmmm Pmmm P11' P1 P42/m Pmmm P11' P1 P42/m Pmmm P11'	II I I I I I I I I I I I I I I I I I I
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.462	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4/n'cc' \\ P_C4/ncc \\ P4_2/mmc \\ P4_2/m'm'c \\ P4_2/m'mc' \\ P4_2/m'mc' \\ PC_4/mcm \\ P4_2/mcm \\ P4_2/mc'm \\ P4_2/m'c'm \\ P4_2/m'c'm \\ P4_2/m'cm' \\ PC_4/mcm \\ P4_2/m'cm' \\ PC_4/mcm \\ P4_2/nb'c \\ P4_2/nb'c \\ P4_2/nb'c \\ P4_2/nb'c \\ \end{array}$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 81.33 81.33 47.249 2.4 2.4	P1 P1 P4 P1 P4 P1 P4 P1 P4 P4 Pmmm Pmmm		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.444 131.446 132.448 132.451 132.453 132.456 133.460 133.463	$P4/ncc1'$ $P4'/ncc'$ $P4'/ncc'$ $P4/ncc'$ P_c4/ncc P_14/ncc P_{14}/ncc $P_{2}/mmc1'$ P_{2}/mmc' P_{42}/mmc' P_{42}/mmc P_{142}/mmc P_{42}/mmc $P_{42}/mcm1'$ P_{42}/mcm' P_{42}/mcm' P_{42}/mcm' P_{42}/mcm P_{142}/mcm P_{142}/mcm P_{142}/mcm P_{142}/mcm	II III III IV IV III III IV IV IV IV II II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 2.5 2.4	P11' P1 P4/nc'c' P1 P1 P1' Pmmm P42/m Pmmm Pmmm P11' P1 P42/m Pmmm P11' P1 P41 P1 P1 P1 P1 P1 P1 P1 P1 P1	
130.423 130.426 130.430 130.433 131.435 131.438 131.440 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.462 133.464	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P_C4/ncc \\ P4_2/mmc \\ P4_2/mm'c \\ P4_2/m'mc' \\ P4_2/m'mc' \\ PC_42/mmc \\ P4_2/mcm \\ P4_2/mc'm \\ P4_2/mc'm \\ P4_2/mc'm \\ P4_2/m'c'm \\ P4_2/mbc \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nb'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'bc' \\ P4_2/n'bc' \end{array}$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 81.33 81.33 47.249 2.4 81.33	P1 P1 P4 P4 P1 P4 P4 PMmm P1 P4 Pmmm Pmmm Pmmm P4 P4 P1 P4 P1 P4 P1 P1 P4		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.451 132.456 132.458 133.460 133.463 133.465	$P4/ncc1'$ $P4'/ncc'$ $P4'/ncc'$ $P4/ncc'$ P_c4/ncc P_{14}/ncc P_{14}/ncc $P_{2}/mmc1'$ P_{2}/mmc' P_{2}/mmc P_{14}/mmc P_{14}/mmc P_{14}/mmc P_{2}/mmc P_{2}/mmc P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm P_{3}/mcm P_{42}/mcm P_{42}/mcm P_{42}/mcm P_{42}/mcm P_{42}/mcm P_{42}/mcm	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 54.342 2.4	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ P1 \\ P1 \\ P11' \\ Pmmm \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ Pmmm \\ P11' \\ Pmmm \\ Pmmm \\ P11' \\ P1 \\ Pmmm \\ Pmmm \\ P11' \\ P1 \\ Pc'c'a \\ \end{array}$	II
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.457 132.452 132.454 132.457 133.459 133.462 133.464 133.466	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4/n'cc' \\ P_C4/ncc \\ P4_2/mmc \\ P4_2/m'm'c \\ P4_2/m'mc' \\ P4_2/m'mc' \\ PC_42/mmc \\ P4_2/mcm \\ P4_2/mc'm \\ P4_2/mc'm \\ P4_2/mc'm \\ P4_2/m'cm' \\ P4_2/m'cm' \\ P2_4/m'cm' \\ P2_4/m'cm' \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nb'c \\ P4_2/nb'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ \end{array}$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 81.33 47.249 2.4 2.4 2.4 81.33	P1 P1 P4 P4 P1 P4 P1 P4 PMmm P1 P4 Pmmm Pmmm Pmmm P4 P4 P4 P1 P4 PH P1 P1 P4 P4 P4		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.451 132.453 133.460 133.463 133.465 133.468	$P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ P_4/ncc P_14/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/nmc' P_{2}/mmc' P_{2}/mmc P_{14}/mmc P_{14}/mmc P_{2}/mmc P_{2}/mmc' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm P_{3}/mc P_{4}/mc	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 84.51 47.249 47.249	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ \\ P1 \\ P1 \\ P11' \\ \\ Pmmm \\ P4_2/m \\ \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ \\ Pmmm \\ P11' \\ P1 \\ Pmmm \\ P11' \\ P1 \\ Pf'c'a \\ P1 \\ \end{array}$	
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.454 132.457 133.459 133.464 133.466 133.469 134.471	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P_C4/ncc \\ P4_2/mmc \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm' \\ PC_2/mmc \\ P4_2/mcm \\ P4_2/mcm \\ P4_2/mc'm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm' \\ PC_2/nbc \\ P4_2$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 81.33 81.33 47.249 2.4 2.4 2.4 2.4 2.4	P1 P1 P4 P4 P1 P4 P4 PMmm Pmmm Pmmm Pmmm P4 P4 PH P4 PH PH P1 P1 P1 P1 P1		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.453 132.453 132.456 133.460 133.463 133.468 133.470 134.472	$P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ P_4/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/ncc P_{14}/nmc' P_{2}/mmc' P_{2}/mmc P_{14}/mmc P_{14}/mmc P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm P_{2}/nbc' P_{2}/nbc' P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 2.5 2.4	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ \hline \\ P1 \\ P1' \\ \hline \\ P1mm \\ P4_2/m \\ \hline \\ Pmmm \\ P11' \\ \hline \\ P1 \\ P4_2/m \\ \hline \\ Pmmm \\ \hline \\ P1 \\ P4_2/m \\ \hline \\ Pmmm \\ \hline \\ P11' \\ \hline \\ P1 \\ \hline \\ \ \\ P1 \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$	
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.454 132.457 133.459 133.464 133.466 133.469 134.471 134.474	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P_{C}4/ncc \\ P4_{2}/mmc \\ P4_{2}/mm'c \\ P4_{2}/m'm'c \\ P4_{2}/m'mc' \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mc'm \\ P4_{2}/m'cm \\ P4_{2}/m'cm' \\ P6_{2}/mmc \\ P4_{2}/m'cm' \\ P6_{2}/nbc \\ P4_{2}/nbc \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P4_{2}/nbc' \\ P6_{2}/nnm \\ P4_{2}/nbc' \\ P6_{2}/nnm \\ P4_{2}/nbc' \\ \end{array}$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 47.249 81.33 81.33 47.249 2.4 2.4 2.4 2.4 2.4 2.4	P1 P1 P4 P4 P1 P4 PMmm P1 P4 Pmmm Pmmm Pmmm P4 P4 P4 PH P4 PH P1 P1 P4 P1		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.453 132.453 132.456 133.460 133.463 133.465 133.468 133.470 134.472 134.475	$P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ P_4/ncc P_14/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/nmc' P_{2}/mmc' P_{2}/mmc P_{14}/mmc P_{14}/mmc P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm' P_{2}/mcm P_{2}/mcm P_{2}/mcm P_{2}/nbc' P_{2}/nbc' P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc P_{2}/nbc	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 2.5 2.4	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ \hline \\ P1 \\ P1' \\ \hline \\ P1mm \\ P4_2/m \\ \hline \\ Pmmm \\ P11' \\ \hline \\ P1 \\ P4_2/m \\ \hline \\ Pmmm \\ \hline \\ P11' \\ \hline \\ P1 \\ \hline \\ Pmmm \\ \hline \\ Pmmm \\ \hline \\ Pmmm \\ \hline \\ P11' \\ \hline \\ P1 \\ \hline \\ P2'c'a \\ \hline \\ P1 \\ \hline \\ P1 \\ \hline \\ P1 \\ \hline \end{array}$	
130.423 130.426 130.428 130.430 130.433 131.435 131.435 131.440 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.464 133.466 133.469 134.471 134.474 134.476	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P_{C}4/ncc \\ P4_{2}/mmc \\ P4_{2}/mm'c \\ P4_{2}/m'm'c \\ P4_{2}/m'mc' \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mc'm \\ P4_{2}/mc'm \\ P4_{2}/m'c'm \\ P4_{2}/m'cm' \\ P2_{4}/m'cm' \\ P2_{4}/mbc \\ P4_{2}/nbc \\ P4_{2}/nbc' \\ P4_{2}/n'bc' \\ P4_{2}/nbc' \\ P4_{2}/nbc \\ P4_{2}/nbc \\ P4_{2}/nbc'$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 2.4 2.4 2.4 2.4 81.33 81.33	P1 P1 P4 P4 P1 P4 P1 P4 P4 Pmmm Pmmm Pmm		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.453 132.453 132.456 133.460 133.463 133.465 133.468 133.470 134.472 134.477	$P4/ncc1'$ $P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ P_4/ncc P_14/ncc P_14/ncc P_{14}/ncc $P_{14}/nmc1'$ P_{12}/mmc P_{12}/mmc P_{14}/mmc P_{14}/mmc P_{14}/mmc P_{14}/mmc P_{14}/mcm P_{14}/mcm P_{14}/mcm P_{14}/mcm P_{14}/mcm P_{14}/mc	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 84.51 47.249 47.249 2.5 2.4 84.51 47.249 2.5 2.4 84.51 47.249 47.249 47.249 2.5 2.4 84.31 47.249 2.5 2.4 84.31 47.249 2.5 2.4 84.31 47.249 47.249 2.5 2.4 84.31 47.249 47.249 2.5 2.4 84.31 47.249 47.249 2.5 2.4 84.31 47.249 47.249 2.5 2.4 84.31 47.249 47.249 2.5 2.4 84.31 47.249	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ P1 \\ P1 \\ P11' \\ Pmmm \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ Pmmm \\ P11' \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ $	
130.423 130.426 130.428 130.430 130.433 131.435 131.438 131.440 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.464 133.466 133.469 134.471 134.474 134.476 134.478	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P_{C}4/ncc \\ P4_{2}/mmc \\ P4_{2}/m'm'c \\ P4_{2}/m'm'c \\ P4_{2}/m'mc' \\ PC_{2}/mmc \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mc'm \\ P4_{2}/mc'm \\ P4_{2}/m'cm' \\ PC_{2}/mcm' \\ PC_{2}/mc'm \\ PC_{2}/mc'm \\ PC_{2}/m'cm' \\ PC_{2}/n'bc' \\ PC_{2}/n'bc' \\ PC_{3}/n'bc' \\ PC_{4}/nbc \\$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 81.33 81.33 47.249 2.4 2.4 2.4 2.4 81.33 81.33 81.33	P1 P1 P4 P4 P1 P4 P1 P4 P4 PMmm Pmmm Pmmm P4 P4 PH P1 P1 P1 P1 P1 P1 P4 P4 P4 P4 P4		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.453 132.456 132.456 132.456 133.463 133.463 133.463 133.463 133.470 134.472 134.477 134.480	$P4/ncc1'$ $P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc$ P_14/ncc P_14/ncc P_{14}/ncc P_{14}/ncc P_{14}/nmc' P_{12}/mmc' P_{12}/mmc P_{142}/mmc P_{142}/mmc P_{142}/mcm' P_{142}/mcm' P_{142}/mcm' P_{142}/mcm' P_{142}/mcm' P_{142}/mcm' P_{142}/mc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc' P_{142}/nbc'	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 2.5 2.4 54.342 2.4 2.5 2.4 2.5	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ P1 \\ P1 \\ P11' \\ Pmmm \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ $	
130.423 130.426 130.428 130.430 130.433 131.435 131.435 131.440 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.464 133.466 133.469 134.471 134.474 134.476 134.478 134.478	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P_{C}4/ncc \\ P4_{2}/mmc \\ P4_{2}/mm'c \\ P4_{2}/m'm'c \\ P4_{2}/m'mc' \\ P4_{2}/m'mc' \\ P4_{2}/mcm \\ P4_{2}/mcm \\ P4_{2}/mc'm \\ P4_{2}/m'c'm \\ P4_{2}/m'c'm \\ P4_{2}/m'cm' \\ P2_{4}/m'cc' \\ P4_{2}/nbc \\ P4_{2}/nbc \\ P4_{2}/nbc' \\ P4_{2}/n'bc' \\ P4_{2}/nbc' \\ P4_{2}/$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 47.249 47.249 47.249 2.4 2.4 2.4 2.4 81.33 81.33 81.33 47.249 2.4 2.4 2.4 2.4 81.33 81.33	P1 P1 P4 P4 P1 P4 P1 P4 P4 PMmm Pmmm Pmmm P4 P4 PH P1 P1 P1 P1 P1 P1 P4 P4 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.451 132.456 132.456 132.456 133.463 133.463 133.463 133.463 134.472 134.475 134.477 134.480 134.482	$P4/ncc1'$ $P4/ncc1'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc$ P_14/ncc P_14/ncc P_{14}/ncc P_{14}/ncc $P_{14}/mmc1'$ P_{12}/mmc P_{12}/mmc P_{142}/mmc P_{142}/mmc P_{142}/mcm P_{142}/mcm P_{142}/mcm P_{142}/mcm P_{142}/mcm P_{142}/mc	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 2.5 2.4 54.342 2.4 2.5 2.4 2.4 2.5	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ P1 \\ P1 \\ P11' \\ Pnmm \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ $	
130.423 130.426 130.430 130.433 131.435 131.435 131.440 131.442 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.466 133.466 133.469 134.471 134.474 134.478 134.478 134.481 135.483	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P_{C}4/ncc \\ P4_{2}/mmc \\ P4_{2}/mm'c \\ P4_{2}/m'm'c \\ P4_{2}/m'mc' \\ P4_{2}/m'mc' \\ P4_{2}/m'mc' \\ P4_{2}/m'cm \\ P4_{2}/m'c'm \\ P4_{2}/m'c'm \\ P4_{2}/m'c'm \\ P4_{2}/m'c'm \\ P4_{2}/m'c'm \\ P4_{2}/n'b'c \\ P4_{2}/nb'c \\ P4_{2}/nb'c \\ P4_{2}/nb'c \\ P4_{2}/n'b'c \\ P4_{2}/n'b'c \\ P4_{2}/n'mm \\ P4_{2}/nnm \\ P4_{2}/nn'm \\ P4_{2}/n'nm' \\ P4_{2}/n'nm' \\ P4_{2}/nnm $	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 47.249 47.249 81.33 81.33 47.249 2.4 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 81.33 81.33	P1 P1 P4 P4 P1 P4 P1 P4 PMmm P1 P4 PMmm Pmmm P4 P4 PH P1 P1 P1 P1 P1 P1 P4 P4 P4 P1 P1 P1 P1 P4 P4 P4		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.451 132.456 132.456 132.456 133.460 133.463 133.463 133.470 134.472 134.477 134.480 134.482 135.484	$P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ P_4/ncc P_14/ncc P_14/ncc P_{14}/ncc P_{14}/nmc' P_{12}/mmc' P_{12}/mmc P_{14}/mmc P_{14}/mmc P_{14}/mcm P_{14}/mcm' P_{14}/mcm' P_{14}/mcm' P_{14}/mcm' P_{14}/mcm' P_{14}/mc' P_{14}/mc' P_{14}/mc' P_{14}/nbc'	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 54.342 2.4 2.5 2.4 2.4 2.5 2.4 2.5	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ P1 \\ P1 \\ P11' \\ Pnmm \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ Pmmm \\ P11' \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ $	
130.423 130.426 130.428 130.430 130.433 131.435 131.438 131.440 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.466 133.466 133.469 134.471 134.474 134.476 134.478 134.481 135.483 135.486	$P4/ncc$ $P4'/nc'c$ $P4'/n'c'c$ $P4'/n'cc'$ $P4'/n'cc'$ $P_{C}4/ncc$ $P4_{2}/mmc$ $P4_{2}/mm'c$ $P4_{2}/m'm'c$ $P4_{2}/m'm'c$ $P4_{2}/m'mc'$ $P4_{2}/mcm$ $P4_{2}/mcm$ $P4_{2}/m'cm$ $P4_{2}/m'cm$ $P4_{2}/m'cm$ $P4_{2}/m'cm$ $P4_{2}/m'cm$ $P4_{2}/m'cm$ $P4_{2}/m'cm$ $P4_{2}/nbc$ $P4_{2}/nbc$ $P4_{2}/nbc$ $P4_{2}/nbc$ $P4_{2}/nm$ $P4_{2}/nm$ $P4_{2}/nnm$ $P4_{2}/nnm$ $P4_{2}/nnm$ $P4_{2}/nnm$ $P4_{2}/nnm$ $P4_{2}/nnm$ $P4_{2}/nnm$ $P4_{2}/nnm$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 47.249 81.33 81.33 47.249 2.4 2.4 2.4 81.33 81.33 2.4 2.4 2.4 81.33 81.33 2.4 2.4 2.4 81.33 81.33 2.4 2.4 2.4 81.33	P1 P1 P4 P4 P1 P4 P1 P4 P4 PMmm Pmmm Pmmm P4 P4 PH P1 P1 P1 P1 P1 P1 P4 P4 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.451 132.456 132.456 132.456 132.456 132.456 133.460 133.463 133.463 133.463 134.472 134.475 134.477 134.480 134.482 135.484 135.484	$P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ P_4/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/nmc' P_14/nmc' P_14/nmc P_14/nmc P_14/nmc P_14/nmc P_14/nmc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/nc	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 54.342 2.4 2.5 2.4 2.5 2.4 135.487	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ P1 \\ P1 \\ P1 \\ P11' \\ Pmmm \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ $	
130.423 130.426 130.428 130.430 130.433 131.435 131.435 131.440 131.442 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.466 133.466 133.469 134.471 134.474 134.476 134.478 134.478 135.483 135.488	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P24/ncc \\ P4_2/mmc \\ P4_2/mm'c \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm' \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/n'b'c \\ P4_2/nb'c \\ P4_2/nb'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mbc \\ P4_2/mb'c \\ $	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 47.249 81.33 81.33 47.249 2.4 2.4 81.33 81.33 2.4 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 81.33 81.33	P1 P1 P4 P4 P1 P4 P1 P4 P4 P4 P7 PMmm Pmmm Pmmm P4 P4 PM P1 P1 P1 P4 P1 P1 P1 P4 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.451 132.456 132.456 132.456 133.460 133.463 133.463 133.463 133.463 134.472 134.475 134.477 134.480 134.482 135.484 135.489	$P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ P_4/ncc P_14/nc P_14	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 54.342 2.4 2.5 2.4 2.5 2.4 135.487 84.51	$\begin{array}{c} P11' \\ P1 \\ P4/nc'c' \\ P1 \\ P1 \\ P1 \\ P11' \\ Pnmm \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ $	
130.423 130.426 130.428 130.430 130.433 131.435 131.438 131.440 131.445 132.447 132.450 132.452 132.457 133.459 133.464 133.466 133.469 134.471 134.474 134.476 134.478 135.483 135.488 135.488 135.480	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P4'/n'cc' \\ P24/ncc \\ P4_2/mmc \\ P4_2/mmc \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm' \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/m'cm \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/m'm' \\ P2_2/m'm' \\ P4_2/m'b'c$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 47.249 47.249 2.4 2.4 81.33 81.33 2.4 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 81.33	P1 P1 P4 P4 P1 P4 P4 PP PMmm P1 P4 PMmm Pmmm P4 P4 P1 P1 P4 P1 P1 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P4 P1 P4 P4 P1 P4 P4		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.444 131.446 132.448 132.453 132.456 132.458 133.463 133.465 133.463 134.472 134.477 134.477 134.482 135.484 135.484 135.489 135.492	$P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ P_4/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/nmc' P_14/nmc' P_14/nmc P_14/nmc P_14/nmc P_14/nmc P_14/nmc P_14/ncc P_14/ncc P_14/ncc P_14/nbc'	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 54.342 2.4 2.5 2.4 2.5 2.4 3.5 3.4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	$\begin{array}{c} P11' \\ P1 \\ P4/\text{nc'c'} \\ P1 \\ P1 \\ P1 \\ P11' \\ P1 \\ P2/m \\ Pmmm \\ P11' \\ P1 \\ P4_2/m \\ Pmmm \\ P11' \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ P1 \\ $	II
130.423 130.426 130.428 130.430 130.433 131.435 131.438 131.440 131.445 132.447 132.450 132.452 132.454 132.457 133.459 133.464 133.466 133.469 134.471 134.474 134.476 134.478 135.488 135.488 135.488 135.489 135.490 135.493	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P24/ncc \\ P4_2/mmc \\ P4_2/mm'c \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'm'm \\ P4_2/n'n'm \\ P4_2/n'n'm \\ P4_2/n'n'm \\ P4_2/n'n'm \\ P4_2/n'n'm \\ P4_2/n'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm \\ P4_2/m'$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 47.249 47.249 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P1 P1 P4 P4 P4 P1 P4 P4 P4 P7 PMmm P1 P4 P4 PMmm P1 P1 P1 P1 P1 P4 P4 P1 P1 P1 P1 P4 P4 P4 P1 P4 P4 P1 P4 P4 P1 P4 P4 P4 P4 P1 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4		130.424 130.427 130.429 130.432 130.434 131.436 131.439 131.441 131.446 132.448 132.451 132.456 132.458 133.460 133.463 133.463 133.463 133.463 133.468 133.470 134.472 134.475 134.477 134.480 135.484 135.484 135.489 135.494	$P4/ncc1'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ $P4/ncc'$ P_4/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/ncc P_14/nc $P_14/$	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 54.342 2.4 2.5 2.4 2.5 2.4 2.5 2.4 3.5 3.4 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	P11' P1 P4/nc'c' P1 P1 P1 P1' Pmmm P42/m Pmmm P11' P1 P42/m Pmmm P11' P1 P42/m Pmmm Pnmm P11' P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	II
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.452 132.454 132.457 133.466 133.466 133.466 134.471 134.476 134.476 134.478 134.478 135.483 135.488 135.483 135.483 135.490 135.495	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P24/ncc \\ P4_2/mmc \\ P4_2/mm'c \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'n'm'm \\ P4_2/n'm'm'm \\ P4_2/n'm'm'm \\ P4_2/n'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 81.33 81.33 47.249 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P1 P1 P4 P4 P1 P4 P1 P4 P4 P1 P4 PMmm Pmmm Pmmm P4 P4 P1 P1 P4 P1 P1 P1 P4 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 PB P4 PB PB PB PB PB PB PB PB PB PB PB PB PB		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.456 132.458 133.465 133.465 133.465 134.477 134.477 134.482 135.484 135.484 135.489 135.494 136.496	$P4/ncc1'$ $P4'/ncc'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc$ P_14/ncc P_14/ncc P_14/ncc P_14/ncc $P_24/nmc1'$ P_24/nmc' P_24/nmc P_14_2/mmc P_14_2/mcm' P_24_2/mcm' P_34_2/mcm' P_42/ncm' P_42/ncm' P_42/nbc' P_42/nbc' P_42/nbc' P_42/nbc P_42/nm' P_42/nm' P_42/nm' P_42/nm' P_42/nm' P_42/nm' P_42/nm' P_42/nm P_142/nm	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 54.342 2.4 2.5 2.4 81.33 2.4 2.5 135.487 84.51 83.45 83.45 83.45	P11' P1 P4/nc'c' P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P2 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	
130.423 130.426 130.428 130.430 130.433 131.435 131.440 131.442 131.445 132.447 132.450 132.452 132.454 133.462 133.466 133.466 133.469 134.471 134.476 134.478 134.478 135.483 135.488 135.490 136.495 136.498	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P24/ncc \\ P4_2/mmc \\ P4_2/mm'c \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm'm \\ P4_2/mcm \\ P4_2/mcm \\ P4_2/mc'm \\ P4_2/mc'm \\ P4_2/m'c'm \\ P4_2/m'c'm \\ P4_2/m'c'm \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/nbc \\ P4_2/n'bc' \\ PC_2/n'm \\ P4_2/n'm \\ P4_2/n'm' \\ P2_2/n'm'm \\ P4_2/n'm' \\ P4_2/mbc \\ P4_2/$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 47.249 81.33 81.33 47.249 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 81.33 47.249 47.249 47.249 47.249	P1 P1 P4 P4 P1 P4 P1 P4 PMmm P1 P4 PMmm Pmmm PMmm P4 P4 P1 P1 P1 P1 P1 P1 P4 P4 P1 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 PB P4 PB PB PB PB PB PB PB PB PB PB PB PB PB		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.446 132.448 132.456 132.458 133.465 133.465 133.465 134.477 134.482 135.484 135.484 135.489 135.494 136.499	$P4/ncc1'$ $P4'/ncc'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc$ P_14/ncc P_14/ncc P_14/ncc P_14/ncc $P_24/nmc1'$ P_24/nmc' P_24/nmc P_14_2/mmc P_14_2/mcm' P_24_2/mcm' P_34_2/mcm' P_42/ncm' P_42/ncm' P_42/nbc' P_42/nbc' P_42/nbc P_42/nbc P_42/nbc P_42/nmm' P_42/nmm' P_42/nmm' P_42/nmm' P_42/nmm' P_42/nmm P_142/nmm P_142/nmm $P_142/nmbc'$ P_42/mbc'	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 54.342 2.4 2.5 2.4 81.33 2.4 2.5 2.4 81.33 2.4 2.5 2.4 81.33 2.4 2.5 2.4 2.5 2.4 81.33 2.4 2.5 2.4 2.5 2.4 81.33 2.4 2.5 2.4 2.5 2.4 81.33 2.4 2.5 2.4 2.5 2.4 81.33 2.4 2.5 2.4 2.5 2.4 2.5 2.4 81.33 2.4 2.5 2.4 2.5 2.4 2.5 2.4 2.5 2.4 2.5 2.4 81.33 2.4 2.5 2.5 2.4 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.4 2.5 2.5 2.5 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	P11' P1 P4/nc'c' P1 P1 P1 P1' Pmmm P42/m Pmmm P11' P1 P42/m Pmmm Pmmm P11' P1 P42/m Pmmm Pn1' P1 P1 P42/m P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	
130.423 130.426 130.428 130.430 130.433 131.435 131.435 131.440 131.445 132.450 132.452 132.454 132.457 133.462 133.464 133.466 133.469 134.471 134.474 134.476 134.478 135.488 135.488 135.488 135.488 135.490 136.495 136.498 136.500	$\begin{array}{c} P4/ncc \\ P4'/nc'c \\ P4'/n'c'c \\ P4'/n'c'c \\ P4'/n'cc' \\ P24/ncc \\ P4_2/mmc \\ P4_2/mm'c \\ P4_2/m'm'c \\ P4_2/m'm'c \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'm'm \\ P4_2/m'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'b'c \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'm'm \\ P4_2/n'n'm'm \\ P4_2/n'm'm'm \\ P4_2/n'm'm'm \\ P4_2/n'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm \\ P4_2/m'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'm'$	I	2.4 2.4 81.33 81.33 2.4 47.249 2.4 81.33 81.33 47.249 81.33 81.33 47.249 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 2.4 2.4 81.33 81.33 81.33 81.33 81.33 81.33 81.33 81.33	P1 P1 P4 P4 P1 P4 P1 P4 P4 P1 P4 PMmm Pmmm Pmmm P4 P4 P1 P1 P4 P1 P1 P1 P4 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 P1 P4 PB P4 PB PB PB PB PB PB PB PB PB PB PB PB PB		130.424 130.427 130.429 130.434 131.436 131.439 131.441 131.444 132.448 132.456 132.458 133.460 133.465 133.465 134.477 134.480 134.477 134.480 135.484 135.484 135.487 135.489 136.499 136.501	$P4/ncc1'$ $P4'/ncc'$ $P4'/ncc'$ $P4/ncc'$ $P4/ncc$ P_14/ncc P_14/ncc P_14/ncc P_14/ncc $P_24/nmc1'$ P_24/nmc' P_24/nmc P_14_2/mmc P_14_2/mcm' P_24_2/mcm' P_34_2/mcm' P_42/ncm' P_42/ncm' P_42/nbc' P_42/nbc' P_42/nbc' P_42/nbc P_42/nm' P_42/nm' P_42/nm' P_42/nm' P_42/nm' P_42/nm' P_42/nm' P_42/nm P_142/nm	II	2.5 2.4 130.429 2.4 2.5 47.249 84.51 47.249 2.5 2.4 84.51 47.249 2.5 2.4 54.342 2.4 2.5 2.4 81.33 2.4 2.5 135.487 84.51 83.45 83.45 83.45	P11' P1 P4/nc'c' P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P2 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	

+136.505	P_C4_2/mnm	IV	47.249	Pmmm	Т	136.506	P_I4_2/mnm	IV	47.249	Pmmm	l T
137.507	$P4_2/nmc$	I	2.4	P1	I	137.508	$P4_2/nmc1'$	II	2.5	P11'	II
137.510	$P4'_2/nm'c$	III	2.4	P1	Ī	137.511	$P4_2/nmc'$	III	2.4	P1	I
137.512	$P4_2'/n'm'c$	III	81.33	P4	I	137.513	$P4_2/nm'c'$	III	54.342	Pc'c'a	III
137.514	$P4_2'/n'mc'$	III	81.33	P4	I	137.516	P_c4_2/nmc	IV	2.4	P1	I
137.517	$P_C 4_2/nmc$	IV	2.4	P1	I	137.518	$P_I 4_2/nmc$	IV	2.4	P1	I
138.519	$P4_2/ncm$	I	2.4	$P\overline{1}$	I	138.520	$P4_2/ncm1'$	II	2.5	$P\overline{1}1'$	II
138.522	$P4_2'/nc'm$	III	2.4	P1	I	138.523	$P4_2^{\prime}/ncm^{\prime}$	III	2.4	P1	I
138.524	$P4_2/n'c'm$	III	81.33	P4	I	138.525	$P4_2/nc'm'$	III	56.369	Pc'c'n	III
138.526	$P4_2'/n'cm'$	III	81.33	P4	I	138.528	P_c4_2/ncm	IV	2.4	P1	I
138.529	P_C4_2/ncm	IV	2.4	P1	I	138.530	P_I4_2/ncm	IV	2.4	P1	I
139.531	I4/mmm	I	123.339	P4/mmm	I	139.532	I4/mmm1'	II	87.76	I4/m1'	II
139.534	I4'/mm'm	III	47.249	Pmmm	I	139.535	I4'/mmm'	III	47.249	Pmmm	I
139.536	I4'/m'm'm	III	81.33	P4	I	139.537	I4/mm'm'	III	83.43	P4/m	I
139.538	I4'/m'mm'	III	81.33	P4	I	139.540	I_c4/mmm	IV	123.339	P4/mmm	I
140.541	I4/mcm	I	47.249	Pmmm	I	140.542	I4/mcm1'	II	87.76	I4/m1'	II
140.544	I4'/mc'm	III	47.249	Pmmm	I	140.545	I4'/mcm'	III	83.45	P4'/m	III
140.546	I4'/m'c'm	III	81.33	$P\overline{4}$	I	140.547	I4/mc'm'	III	83.43	P4/m	I
140.548	I4'/m'cm'	III	81.33	$P\overline{4}$	I	140.550	I_c4/mcm	IV	47.249	Pmmm	I
141.551 141.554	$I4_1/amd$	III	2.4	$P\overline{1}$ $P\overline{1}$	I	141.552 141.555	$I4_1/amd1'$	III	2.5 2.4	$\frac{P\overline{1}1'}{P\overline{1}}$	II
141.554	$I4'_1/am'd$ $I4'_1/a'm'd$	III	81.33	$P\overline{4}$	I	141.555	$I4'_1/amd'$ $I4_1/am'd'$	III	88.81	$\frac{P1}{I4_1/a}$	I
141.558	$I4_1/a m a$ $I4'_1/a'md'$	III	81.33	$P\overline{4}$	I	141.560	$I_c4_1/am\ a$ I_c4_1/amd	IV	2.4	$\frac{14_1/a}{P1}$	I
142.561	$I4_1/a ma$ $I4_1/acd$	I	2.4	$P\overline{1}$	I	142.562	$I_c 4_1/ama$ $I_4 1/acd1'$	II	2.4	$\frac{P1}{P\overline{1}1'}$	II
142.564	$I4_1/acd$ $I4_1/ac'd$	III	2.4	$P\overline{1}$	I	142.565	$I4_1/acd$ $I4_1/acd'$	III	2.4	$\frac{P\overline{1}}{P\overline{1}}$	I
142.566	$I4'_1/a'c'd$	III	81.33	P4	Ī	142.567	$I4_1/ac'd'$	III	88.81	$I4_1/a$	I
142.568	$I4'_1/a'cd'$	III	81.33	P4	Ī	142.570	I_c4_1/acd	IV	2.4	$\frac{111}{P1}$	I
143.1	P3	I	143.1	P3	Ī	147.13	P3	I	147.13	$\overline{P3}$	Ī
147.14	$P\overline{3}1'$	ĪĪ	2.5	P11'	II	147.16	P_c3	ΙV	2.4	P1	Ī
148.17	R3	IV	2.4 2.4	P1 P1	Į	148.18	R31'	II	$\frac{2.5}{143.1}$	$\frac{P\overline{1}1'}{D^2}$	Ţ
$148.20 \\ 150.27$	$R_{I}\bar{3} \\ P32'1$	III	143.1	P3	I T	149.23 156.51	$\begin{array}{c} P312' \\ P3m'1 \end{array}$	III	143.1 143.1	P3 P3	I
157.55	P31m'	III	143.1	P3 P3 P3	İ	158.59	P3c'1	İİİ	143.1	P3	İ
159.63	P31c'	Щ	143.1	P3 P11'	I	162.73	$P\overline{3}1m$	I	2.4	$\frac{P\overline{1}}{P\overline{3}}$	Į
$ \begin{array}{r} 162.74 \\ 162.78 \end{array} $	$P31m1'$ P_c31m	II IV	$\begin{array}{c c} 2.5 \\ 2.4 \end{array}$	P11	Ţ	162.77 163.79	P31m' $P31c$	111	147.13 2.4	$\frac{P.3}{P1}$	ļ ļ
163.80	$P\overline{3}1c1'$	II	2.5	$P\overline{1}1'$	Ĩ	163.83	$P\bar{3}1c'$	III	147.13	$P\bar{3}$	Ì
163.84	P_c31c	IV	2.4	P1	I	164.85	P3m1	I	2.4	<u>P1</u>	Ī
164.86 164.90	$\begin{array}{c} P3m11' \\ P_c3m1 \end{array}$	II IV	$\frac{2.5}{2.4}$	P11' P1	Щ	164.89 165.91	$\begin{array}{c c} P3m'1 \\ P3c1 \end{array}$	<u>III</u>	$\begin{array}{ c c c c }\hline 147.13 \\ 2.4 \end{array}$	P3 P1	ļ ļ
165.92	$P\overline{3}c11'$	II	$\parallel 2.5$	$\frac{1}{P11'}$	İΤ	165.95	$P\overline{3}c'1$	TÎT	147.13	$P\overline{3}$	Ī
165.96	$P_c\bar{3}c1$	ĬV	2.4	P1	Ĩ	166.97	$R\bar{3}m$	Ī	2.4	$P\overline{1}$	Î
166.98	$\frac{R3m1'}{R_I3m}$	II	2.5	P11' $P1$	ĮĮ	$\parallel 166.101$	R3m'	III	24	P1	
166.102							D2 c	T	5.1	D1	T
		IV	2.4		II	167.103	R3c	I	2.4 2.4 2.4	P1 P1	I
167.104 167.108	$R_{I}3m$ $R_{I}3c1'$ $R_{I}3c$	IV II IV	2.5	$P\overline{1}1'$ $P\overline{1}$	II I	167.103 167.107 168.109	R3c R3c' P6	III I	2.4 2.4 168.109	P1 P6	I I I
167.104 167.108 171.121	$ \begin{array}{c} R3c1' \\ R_13c \\ P6_2 \end{array} $	II	2.5 2.4 3.1	$\begin{array}{c} P\overline{1}1' \\ P\overline{1} \\ P2 \end{array}$	II I I	167.103 167.107 168.109 172.125	$R3c$ $R3c'$ P6 $P6_4$	I III I	2.4 168.109 3.1	P1 P6 P2	I I I
167.104 167.108 171.121 173.129	$R_{1}^{3}c_{1}' = R_{1}^{3}c_{2} = P_{6_{2}} = P_{6_{3}}$	II IV I I	2.5 2.4 3.1 143.1	P11' P1 P2 P3	I I I I	167.103 167.107 168.109 172.125 174.133	R3c R3c' P6 P64 P6	I I I	$ \begin{array}{r} 2.4 \\ 168.109 \\ \hline 3.1 \\ 174.133 \end{array} $	P1 P6 P2 P6	I I I I
167.104 167.108 171.121 173.129 174.134	$R_{J}3c_{1}'$ $R_{J}3c_{2}$ $P6_{2}$ $P6_{3}$ $P61'$	II IV I I	2.5 2.4 3.1 143.1 174.133	P11' P1 P2 P3 P6	II I I I I	167.103 167.107 168.109 172.125 174.133 174.136	$R3c$ $R3c'$ P6 $P6_4$ P6 P_c6	I I IV	2.4 168.109 3.1 174.133 174.133	P1 P6 P2 P6 P6	I I I I I
167.104 167.108 171.121 173.129 174.134 175.137	$R3c1'$ $R_{I}3c$ $P6_{2}$ $P6_{3}$ $P61'$ $P6/m$	II IV I I	2.5 2.4 3.1 143.1 174.133 175.137	P11' P1 P2 P3	I I I I I I	167.103 167.107 168.109 172.125 174.133 174.136 175.138	$\begin{array}{c} R3c \\ R3c' \\ \textbf{P6} \\ P6_4 \\ \textbf{P6} \\ P_c6 \\ \textbf{P6/m1}' \end{array}$	I I I	$\begin{array}{r} 2.4 \\ \textbf{168.109} \\ 3.1 \\ \textbf{174.133} \end{array}$	P1 P6 P2 P6 P6 P6	I I I I II II
167.104 167.108 171.121 173.129 174.134	$R_{J}3c_{1}'$ $R_{J}3c_{2}$ $P6_{2}$ $P6_{3}$ $P61'$	II IV I I II I	2.5 2.4 3.1 143.1 174.133	P11' P1 P2 P3 P6 P6/m		167.103 167.107 168.109 172.125 174.133 174.136	R3c R3c' P6 P64 P6 Pc6 P6/m1' P6'/m'	I I IV II	2.4 168.109 3.1 174.133 175.138	P1 P6 P2 P6 P6	
167.104 167.108 171.121 173.129 174.134 175.137	$R\bar{3}c1'$ $R_{I}\bar{3}c$ $P\bar{6}_{2}$ $P\bar{6}_{3}$ $P\bar{6}I'$ $P\bar{6}/m$	II IV I I I I II II III	2.5 2.4 3.1 143.1 174.133 175.137 174.133	P11' P1 P2 P3 P6 P6/m P6	I	167.103 167.107 168.109 172.125 174.133 174.136 175.138	$\begin{array}{c} R3c \\ R3c' \\ \textbf{P6} \\ P6_4 \\ \textbf{P6} \\ P_c6 \\ \textbf{P6/m1}' \end{array}$	I I IV III	2.4 168.109 3.1 174.133 175.138 2.4	P1 P6 P2 P6 P6 P6 P1 P6 P1	I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142	$R3c1'$ $R_{I}3c$ $P6_{2}$ $P6_{3}$ $P6I'$ $P6/m$ $P6'/m$ $P_{c}6/m$ $P_{c}8/m1'$	II IV I I II II II II IV IV	2.5 2.4 3.1 143.1 174.133 175.137 174.133 175.137 176.144 2.4	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1'	I I	167.103 167.107 168.109 172.125 174.133 174.136 175.138 175.141 176.143 176.145	R3c R3c' P6 P6 P6 P6 P6/m1' P6'/m' P63/m P63/m	I I IV II III I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143	P1 P6 P2 P6 P6 P6/m1' P1 P6 ₃ /m	I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153	$R3c1'$ $R_{I}3c$ $P6_{2}$ $P6_{3}$ $P61'$ $P6/m$ $P6/m$ $P_{c}6/m$ $P_{c}6/m$ $P6_{3}/m1'$ $P6_{2}/m'$	II	2.5 2.4 3.1 143.1 175.137 175.137 176.144 2.4 168.109	P11' P1 P2 P3 P6 P6/m P6 P6/m P1 P1 P1 P1 P1	I I II	167.103 167.107 168.109 172.125 174.133 174.136 175.138 175.141 176.143 176.144 176.145 176.148	R3c R3c' P6 P64 P64 P66 P6/m1' P63/m P63/m P692'2'	I I I I I I I I I I I I I I I I I I I	$\begin{array}{c} 2.4 \\ \textbf{168.109} \\ 3.1 \\ \textbf{174.133} \\ \textbf{175.138} \\ 2.4 \\ \textbf{176.143} \\ \textbf{174.133} \\ \textbf{176.143} \\ \textbf{3.1} \end{array}$	P1 P6 P2 P6 P6 P6 P6/m1' P1 P63/m P6 P63/m P2	I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177	$R3c1'$ $R_{I}3c$ $P6_{2}$ $P6_{3}$ $P61'$ $P6/m$ $P6/m$ P_{6}/m $P_{63}/m1'$ $P6_{3}/m'$ $P62'2'$ $P6_{4}2'2'$	II IV I I II III III III III III	2.5 2.4 3.1 174.133 175.137 174.133 175.137 176.144 2.4 168.109 3.1	P11' P1 P2 P3 P6 P6/m P6 P6/m P6 P6/m P63/m1' P1 P6 P2	I I II	167.103 167.107 168.109 172.125 174.133 174.136 175.138 175.141 176.143 176.145 176.148 180.171 182.183	R3c R3c' P6 P64 P64 P66 P6/m1' P63/m P63/m P692'2'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 176.143	P1 P6 P2 P6 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P6 P6 ₃ /m P2 P3	I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177	R_3c_1' R_13c P_6_2 P_6_3 $P_6 '$ P_6/m P_6/m P_6/m P_6/m P_6_3/m' P_6_3/m' $P_6_2'2'$ $P_6_42'2'$ $P_6_m'm'$	II	2.5 2.4 3.1 143.1 174.133 175.137 176.144 2.4 168.109 3.1 168.109	P11' P1 P2 P3 P6 P6/m P6/m P6 ₃ /m1' P1 P2 P6	I I II	167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 176.145 180.171 182.183	R3c R3c' P6 P6 P64 P66 P6/m1' P63/m P63/m P622'2' P632'2' P662'2'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 3.1 143.1 184.195	$\begin{array}{c} P1 \\ \textbf{P6} \\ P2 \\ \textbf{P6} \\ P6 \\ P6 \\ \textbf{P6} \\ \textbf{M1}' \\ P1 \\ \textbf{P6}_{3}/\mathbf{m} \\ P6 \\ P6_{3}/m \\ P2 \\ P3 \\ \textbf{P6c'c'} \end{array}$	I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201	$R3c1'$ $R_{I}3c$ $P6_{2}$ $P6_{3}$ $P6I'$ $P6/m$ $P6/m$ $P_{c}6/m$ $P6_{3}/m1'$ $P6_{3}/m'$ $P64_{2}'2'$ $P6_{4}2'2'$ $P6m'm'$ $P63_{c}'m'$	II IV I I II III III III III III	2.5 2.4 3.1 143.1 174.133 175.137 174.133 175.137 176.144 2.4 168.109 3.1 168.109 143.1 174.133	P11' P1 P2 P3 P6 P6/m P6 P6/m P6a/m1' P1 P6 P2 P8 P6 P8 P6 P8	I I II	167.103 167.107 168.109 172.125 174.136 175.138 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207	R3c R3c' P6 P6 P64 P66 P6/m1' P63/m P63/m P63/m P622'2' P632'2' P63m'c' P63m'c'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 3.1 143.1 184.195 143.1	P1 P6 P2 P6 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P6 P6 ₃ /m P2 P3 P6c'c' P3 P6	I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213	$R3c1'$ $R_{I}3c$ $P6c_{2}$ $P6c_{3}$ $P6f_{3}$ $P6f_{4}'$ $P6/m$ $P6'/m$ $P6s/m$ $P6s/m$ $P6s/m$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$	II	2.5 2.4 3.1 143.1 175.137 175.137 176.144 2.4 168.109 3.1 168.109 143.1 174.133 174.133	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P9 P6 P9	I I II	167.103 167.107 168.109 172.125 174.136 175.138 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207 187.210 187.210	$\begin{array}{c} R3c \\ R3c' \\ P6 \\ P6 \\ P6_4 \\ \hline P6 \\ P_c6 \\ \hline P6/m1' \\ P6_3/m \\ P6_3/m \\ P6_3/m \\ P6_32'2' \\ \hline P6_32'2' \\ \hline P6_3m'c' \\ P6_3m'c' \\ P6m21' \\ P_c6m2 \\ \end{array}$	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 174.133 175.138 2.4 176.143 176.143 3.1 143.1 184.195 143.1 174.133 174.133	P1 P6 P2 P6 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P6 P6 ₃ /m P2 P3 P6c'c' P3 P6 P6	I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.203 187.213	$R3c1'$ $R_{I}3c$ $P6c_{2}$ $P6c_{3}$ $P6f_{3}$ $P6f_{4}'$ $P6/m$ $P6'/m$ $P6s/m$ $P6s/m$ $P6s/m$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$ $P6s/m'$	II	2.5 2.4 3.1 143.1 174.133 175.137 176.144 2.4 168.109 3.1 168.109 143.1 174.133 174.133	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P6 P6 P6 P6 P6	I I II	167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 180.171 182.183 184.195 186.207 187.214 188.216	R3c R3c' P6 P64 P64 P66 P66/m1' P63/m P63/m P63/m P622'2' P632'2' P632'2' P63m'c' P6m21' P6m21' P6c21'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 176.143 3.1 143.1 184.195 143.1 174.133 174.133 174.133	P1 P6 P2 P6 P6 P6 P6/m1' P1 P63/m P6 P63/m P6 P63/c P3 P6c'c' P3 P6 P6 P6	I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P6 ₃ /m1' P6 ₃ /m' P62'2' P642'2' P6m'm' P63c'm' P6m2 P662 P662'	II	$\begin{array}{c} 2.5 \\ 2.4 \\ 3.1 \\ 143.1 \\ 174.133 \\ 175.137 \\ 176.144 \\ 2.4 \\ 168.109 \\ 3.1 \\ 168.109 \\ 143.1 \\ 174.133 \\ 174$	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P6 P6 P6 P6 P6 P6	I I II	167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207 187.210 187.210 188.216 188.220	$R3c$ $R3c'$ $P6$ $P6$ $P6$ $P6_4$ $P6$ $P6$ $P6/m1'$ $P6_3/m$ $P6_3/m$ P_c6_3/m P_c6_3/m $P6_22'2'$ $P6_32'2'$ $P6_3m'c'$ $P6m21'$ P_c6m2 $P6c21'$	I I I I I I I I I I I I I I I I I I I	$\begin{array}{c} 2.4 \\ \textbf{168.109} \\ 3.1 \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{175.138} \\ 2.4 \\ \textbf{176.143} \\ \textbf{176.143} \\ \textbf{3.1} \\ \textbf{143.1} \\ \textbf{184.195} \\ \textbf{143.1} \\ \textbf{174.133} \\ \textbf{174.134} \\ \textbf{174.134} \\ \textbf{174.134} \\ \textbf{174.134} \\ \textbf{174.135} \\ \textbf$	P1 P6 P2 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P2 P3 P6c'c' P3 P6 P6 P6	I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 188.215 188.215	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P6 ₃ /m P6 ₃ /m1' P6 ₃ /m' P62'2' P6m'm' P6m'm' P6m'2' P6c2 P6c2 P6c'2' P6c2 P6c'2' P6c'2'	II	2.5 2.4 3.1 143.1 174.133 175.137 174.133 175.137 176.144 2.4 168.109 3.1 168.109 143.1 174.133 174.133 174.133 174.133	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P6 P6 P6 P6 P6 P6 P6	I I II	167.103 167.107 168.109 172.125 174.136 175.138 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207 187.214 188.216 188.220 189.222 189.226	R3c R3c' R3c' P6 R3c' P6 P64 P6 P65 P6/m1' P63/m P63/m P63/m P622'2' P632'2' P652'c' P64m2' P6m21 P621' P621' P622'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 3.1 143.1 184.195 143.1 174.133 174.133 174.133 174.133 174.133 174.133	P1 P6 P2 P6 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P2 P3 P6c'c' P3 P6 P6 P6 P6 P6 P6	I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 188.219 189.225 190.227	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P ₆ /m P ₆ /m P6 ₃ /m1' P6 ₃ /m' P6 ₄ /2' P6 _m /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₃ /m' P6 ₆ /2' P6 ₆ /2' P6 ₂ /m' P6 ₂ /m' P6 ₂ /m' P6 ₂ /m'	II	2.5 2.4 3.1 143.1 175.137 174.133 175.137 176.144 2.4 168.109 3.1 168.109 143.1 174.133 174.133 174.133 174.133 174.133	P11' P1 P2 P6 P6/m P6 P6/m P6 P6/m P6 P6/m P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6	I I II	167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 180.171 182.183 184.195 186.207 187.214 188.216 188.220 189.222 189.226	R3c R3c' R3c' P6 R3c' P6 P64 P64 P66 P66 P6/m1' P63/m P63/m P622'2' P632'2' P632'2' P620'2' P621' P662 P621' P662 P62m1' P662 P621'	I I I I I I I I I I I I I I I I I I I	$\begin{array}{c} 2.4 \\ 168.109 \\ 3.1 \\ 174.133 \\ 175.138 \\ 2.4 \\ 176.143 \\ 174.133 \\ 176.143 \\ 174.133 \\ 174.133 \\ 143.1 \\ 184.195 \\ 143.1 \\ 174.133 \\ 174.134 \\ 174.134 \\ 174.134 \\ 174.134 \\ 174.134 \\ 174.134 \\ 174.134 \\ 174.134 \\ 174.134 \\ 174.1$	P1 P6 P2 P6 P6 P6 P6/m1' P1 P63/m P6 P63/m P2 P3 P6c'c' P3 P6 P6 P6 P6 P6 P6	I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 188.219 189.221 189.221 190.227	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P6 ₃ /m1' P6 ₃ /m' P62'2' P6 ₄ 2'2' P6m'm' P63c'm' P6m2 P6m'2 P6c2 P6c'2' P62m P62'm' P62c P62'm' P62c P62'c'	II	2.5 2.4 3.1 143.1 174.133 175.137 176.144 2.4 168.109 3.1 168.109 143.1 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133	P11' P1 P2 P3 P6 P6/m P6/m P6a/m1' P1 P2 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6		167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 180.171 182.183 184.195 186.207 187.214 187.214 188.216 188.220 189.222 189.222 190.232	R3c R3c' R3c' P6 R3c' P6 P64 P64 P66 P66 P6/m1' P63/m P63/m P62'2' P632'2' P63m'c' P6m21' Pc6m2 P6c21' Pc6c2 P62m1' Pc622 P62c1' Pc62c	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 3.1 143.1 184.195 143.1 174.133 174.133 174.133 174.133 174.133 174.133 174.133	P1 P6 P2 P6 P6 P6/m1' P1 P63/m P6 P63/m P2 P3 P6c'c' P3 P6 P6 P6 P6 P6 P6 P6 P6	I I I I I I I I I I I I I I I I I I I
167.104 167.108 177.121 173.129 174.134 175.137 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 188.215 189.225 190.227 190.231	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P6/m P63/m1' P63/m' P62'2' P642'2' P6m'm' P63c'm' P6m2 P66'2' P66'2' P62c P62'b' P62c P62'c' P62'c'		2.5 2.4 3.1 143.1 174.133 175.137 176.144 2.4 168.109 3.1 168.109 143.1 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6		167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 180.171 182.183 184.195 186.207 187.210 187.214 188.216 188.220 189.226 190.228 190.232 191.234	R3c R3c' R3c' P6 R3c' P6 P64 P64 P66 P66 P6/m1' P63/m P63/m P63/m P622'2' P632'2' P63m'c' P6m21' Pc6m2 P6c21' Pc622 P62m1' Pc622 P62c' P62c' P62c' P62c' P62m1' Pc62c P62m1'	I I I I I I I I I I I I I I I I I I I	$\begin{array}{c} 2.4 \\ \textbf{168.109} \\ 3.1 \\ \textbf{174.133} \\ \textbf{175.138} \\ 2.4 \\ \textbf{176.143} \\ \textbf{176.143} \\ \textbf{176.143} \\ \textbf{3.1} \\ \textbf{143.1} \\ \textbf{184.195} \\ \textbf{143.1} \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{175.138} \\ \end{array}$	P1 P6 P2 P6 P6/m1' P1 P63/m P6 P63/m P2 P3 P6c'c' P3 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6	I I I I I I I I I I I I I I I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 188.215 189.225 190.227 190.231 191.233	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P63/m1' P63/m' P62'2' P642'2' P6m'm' P63c'm' P6m2 P66'2 P66'2' P62c P62' P62'c' P62'c' P6/mmm P6'/mm'm		2.5 2.4 3.1 143.1 174.133 175.137 176.144 2.4 168.109 143.1 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6		167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207 187.210 187.210 187.214 188.220 189.222 189.226 190.228 190.232 191.234 191.237	R3c R3c' R3c' P6 R3c' P6 P64 P64 P66 P65 P6/m1' P63/m P63/m P63/m P622'2' P632'2' P632'2' P66c'c' P63m'c' P6m21' Pc6m2 Pc62 P62m1' Pc62 P62m1' Pc62c P64mm1' Pc62c P64mmm1' P6'/mmm'	I I I I I I I I I I I I I I I I I I I	$\begin{array}{c} 2.4 \\ \textbf{168.109} \\ 3.1 \\ \textbf{174.133} \\ \textbf{174.133} \\ \textbf{175.138} \\ 2.4 \\ \textbf{176.143} \\ \textbf{176.143} \\ \textbf{3.1} \\ \textbf{143.1} \\ \textbf{184.195} \\ \textbf{143.1} \\ \textbf{174.133} \\ \textbf{174.134} \\ \textbf$	P1 P6 P2 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P2 P3 P6 ₆ P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6	I I I I I I I I I I I I I I I I I I I
167.104 167.108 171.121 173.129 174.134 175.137 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 188.215 189.221 189.225 190.227 190.231 191.236 191.238	R3c1' R13c P62 P63 P61' P6/m P6/m P63/m1' P63/m' P62'2' P642'2' P6m'm' P63c'm' P6622 P662 P662' P62c' P62c P62'c' P6/mmm P6'/mm'm P6'/mm'm		2.5 2.4 3.1 143.1 174.133 175.137 176.144 2.4 168.109 143.1 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6		167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207 187.210 187.210 187.214 188.220 189.222 189.226 190.228 190.232 191.234 191.237 191.239	R3c R3c' R3c' P6 R3c' P6 P64 P64 P66 P65 P6/m1' P63/m P63/m P63/m P622'2' P632'2' P632'2' P66c'c' P63m'c' P6m21' Pc6m2 P6c21' Pc622 P62m1' Pc62m P62c1' Pc62c P64mm1' P66/mmm' P66/mmm'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 3.1 143.1 184.195 143.1 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133	P1 P6 P2 P6 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P2 P3 P6 ₆ P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6	
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 188.215 189.225 190.227 190.231 191.238 191.238	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P6/m P6 ₃ /m¹ P63/m¹ P62'2' P642'2' P6m'm' P6m2 P6m2 P6c'2'	II	$\begin{array}{c} 2.5 \\ 2.4 \\ 3.1 \\ 143.1 \\ 174.133 \\ 175.137 \\ 176.144 \\ 2.4 \\ 168.109 \\ 143.1 \\ 174.133 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\$	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6		167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207 187.210 187.210 187.214 188.220 189.222 189.226 190.228 190.232 191.234 191.237 191.239 191.242	R3c R3c' R3c' R6 R3c' P6 P64 P64 P66 P66 P6/m1' P63/m P63/m P63/m P622'2' P632'2' P632'2' P63m'c' P6m21' Pc6m2 P6c21' Pc62 P62m1' Pc62m P62c1' Pc62c P64mmm' P66/mmm' P66/mmm'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 3.1 143.1 144.135 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133	P1 P6 P2 P6 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P2 P3 P6 ₆ 'c' P3 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6	
167.104 167.108 171.121 173.129 174.134 175.137 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 189.225 190.227 190.231 191.238 191.238 191.240 192.243	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P6/m P6 ₃ /m¹ P63/m¹ P62'2' P6 ₄ 2'2' P6m'm' P63c'm' P6m2 P6c'2' P6c'2' P62c P62c P62' P62c P62c P62c P62c P62c P62c P62c P62c	II	$\begin{array}{c} 2.5 \\ 2.4 \\ 3.1 \\ 143.1 \\ 174.133 \\ 175.137 \\ 176.144 \\ 2.4 \\ 168.109 \\ 3.1 \\ 168.109 \\ 143.1 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 174.133 \\ 175.137 \\ 175.137 \\ \end{array}$	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P3 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6		167.103 167.107 168.109 172.125 174.136 175.138 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207 187.210 187.210 187.210 187.214 188.220 189.222 189.226 190.228 190.232 191.234 191.237 191.239 191.242 192.244	R3c R3c' R3c' R3c' R6 R6 P6 P64 P6 P66 P6/m1' P63/m P63/m P63/m P622'2' P632'2' P632'2' P63m'c' P6m21' Pc6m2 P6c21' Pc62 P62m' P621' Pc62 P62m' P62c1' Pc62c P64mmm' P66/mmm' P66/mmm' P66/mc1'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 3.1 143.1 184.195 143.1 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 175.138	P1 P6 P2 P6 P6 P6 P6 P6 P63/m P6 P63/m P2 P3 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6	
167.104 167.108 171.121 173.129 174.134 175.137 175.139 175.142 176.144 176.147 177.153 181.177 183.189 185.201 187.209 187.213 188.215 188.215 189.225 190.227 190.231 191.238 191.238	R3c1' R _I 3c P6 ₂ P6 ₃ P61' P6/m P6/m P6/m P6 ₃ /m¹ P63/m¹ P62'2' P642'2' P6m'm' P6m2 P6m2 P6c'2'	II	$\begin{array}{c} 2.5 \\ 2.4 \\ 3.1 \\ 143.1 \\ 174.133 \\ 175.137 \\ 176.144 \\ 2.4 \\ 168.109 \\ 143.1 \\ 174.133 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\ 174.134 \\ 175.137 \\$	P11' P1 P2 P3 P6 P6/m P6 P6/m P63/m1' P1 P6 P2 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6		167.103 167.107 168.109 172.125 174.133 174.136 175.141 176.143 176.145 176.148 180.171 182.183 184.195 186.207 187.210 187.210 187.214 188.220 189.222 189.226 190.228 190.232 191.234 191.237 191.239 191.242	R3c R3c' R3c' R6 R3c' P6 P64 P64 P66 P66 P6/m1' P63/m P63/m P63/m P622'2' P632'2' P632'2' P63m'c' P6m21' Pc6m2 P6c21' Pc62 P62m1' Pc62m P62c1' Pc62c P64mmm' P66/mmm' P66/mmm'	I I I I I I I I I I I I I I I I I I I	2.4 168.109 3.1 174.133 175.138 2.4 176.143 174.133 176.143 3.1 143.1 144.135 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133 174.133	P1 P6 P2 P6 P6 P6 P6/m1' P1 P6 ₃ /m P6 P6 ₃ /m P2 P3 P6 ₆ 'c' P3 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6 P6	

192.250	P6/mc'c'	III	175.137	P6/m	T	192.252	P_c6/mcc	IV	175.137	P6/m	I
193.253	$P6_3/mcm$	I	176.143	$\frac{P6_3/m}{P6_3/m}$	I	193.254	P_c0/mcc $P_{63}/mcm1'$	II	176.144	$P6_3/m1'$	II
	-0/			- 0/			-0/			-0/	
193.256	$P6_3^{\prime}/mc^{\prime}m$	III	174.133	P6	I	193.257	$P6_3^{\prime}/mcm^{\prime}$	III	174.133	P6	I
193.258	$P6_3/m'c'm$	III	2.4	P1	I	193.259	$P6_3/m'cm'$	III	2.4	P1	I
193.260	$P6_3/mc'm'$	III	176.143	$P6_3/m$	I	193.262	P_c6_3/mcm	IV	176.143	$P6_3/m$	I
194.263	$P6_3/mmc$	I	176.143	$P6_3/m$	I	194.264	$P6_3/mmc1'$	II	176.144	$P6_3/m1'$	II
194.266	$P6_3'/mm'c$	III	174.133	$P\bar{6}$	I	194.267	$P6_3'/mmc'$	III	174.133	$P\bar{6}$	I
194.268	$P6_3/m'm'c$	III	2.4	$P\overline{1}$	I	194.269	$P6_3'/m'mc'$	III	2.4	$P\overline{1}$	I
194.270	$P6_3/mm'c'$	III	176.143	$P6_3/m$	I	194.272	P_c6_3/mmc	IV	176.143	$P6_3/m$	I
200.14	$Pm\bar{3}$	Ι	47.249	Pmmm	I	200.15	$Pm\bar{3}1'$	II	2.5	$P\bar{1}1'$	II
200.17	$P_I m \bar{3}$	IV	47.249	Pmmm	I	201.18	$Pn\bar{3}$	I	2.4	$P\overline{1}$	I
201.19	Pn31'	II	2.5	P11'	II	201.21	$P_I n 3$	IV	2.4	P1	I
202.22	Fm3	I	47.249	\underline{Pmmm}	Ţ	202.23	$Fm\bar{3}1'$	_Ų_	2.5	$P\overline{1}1'$	ŢŢ
202.25	$F_S m \bar{3}$	IV	47.249	$\frac{Pmmm}{P\bar{1}1'}$	II	203.26	Fd3	IV	2.4	<u>P1</u>	<u> </u>
203.27	$Fd\bar{3}1'$	ΙΙ	2.5 47.249		11 T	203.29	$F_S d\bar{3}$ $Im \bar{3}1'$	IV II	2.4	$P\overline{1}$ $P11'$	II
205.33	$\frac{Im3}{Pa3}$	Ţ	2.4	$\frac{Pmmm}{P1}$	+	204.31 205.34	Pa31'	##	$\frac{2.5}{2.5}$	P11'	Ħ
205.36	P_Ia3	ΙV	2.4	P1	†	$\frac{205.34}{206.37}$	Ia3	Ť	2.4	P1	Ţ
206.38	$Ia\bar{3}1'$	Τİ	2.5	$\overline{P11'}$	ĪĪ	215.70	$P\overline{43m}$	Ī	81.33	$P\overline{4}$	Ī
215.71	P43m1'	ĪĪ	81.33	P4	Ī	215.73	$P_I \bar{4} 3m$	IV	81.33	P4	Ī
216.74	$F\overline{4}3m$	I	81.33	$P\overline{4}$	I	216.75	$F\bar{4}3m1'$	II	81.33	$P\overline{4}$	I
216.77	F_S43m	IV	81.33	$P\overline{4}$	Ī	217.78	I43m	I	81.33	$P\overline{4}$	<u> </u>
217.79	I43m1'	ĬĬ	81.33	P4	Ļ	218.81	P43n	177	81.33	P4	⊢ Ļ ⊢ļ
218.82	P43n1'	ΙΙ	81.33 81.33	<u>P4</u> P4	I I	218.84	P_I43n	IV	81.33 81.33	P4 P4	<u> </u>
$\frac{219.85}{219.88}$	$F43c$ F_843c	IV	81.33	$\frac{P4}{P4}$	+	219.86 220.89	F43c1' $I43d$	H H	81.33	P4	┝┼┤
$\frac{219.88}{220.90}$	$\frac{1543c}{I43d1'}$	II	81.33	$\frac{14}{P4}$	Ť	221.92	$Pm\bar{3}m$	Ť	123.339	P4/mmm	Ť
221.93	$Pm\bar{3}m1'$	II	83.44	P4/m1'	II	221.94	$Pm'\overline{3}'m$	III	81.33	$P\overline{4}$	Ī
221.95	$Pm\bar{3}m'$	III	47.249	$\frac{1}{Pmmm}$	I	221.97	$P_I m \bar{3} m$	IV	123.339	P4/mmm	I
222.98	$Pn\bar{3}n$	T	2.4	$P\overline{1}$	T	222.99	$Pn\bar{3}n1'$	II	2.5	P11'	II
222.100	Pn'3'n	TT	81.33	P4	†	222.101	Pn3n'	Ш	2.4	P1	Ţ
222.103	$P_I n \bar{3} n$	ĬV	2.4	P1	Î	223.104	Pm3n	Ĭ	47.249	Pmmm	Î
223.105	$Pm\bar{3}n1'$	II	2.5	$P\overline{1}1'$	II	223.106	$Pm'\bar{3}'n$	III	81.33	$P\overline{4}$	I
223.107	$Pm\bar{3}n'$	III	47.249	Pmmm	I	223.109	$P_I m \bar{3} n$	IV	47.249	Pmmm	I
224.110	$P\eta \bar{3}m$	I	2.4	P1	Ĩ	224.111	$Pn\overline{3}m1'$	_II_	2.5	P11'	Î
224.112 224.115	$\frac{Pn'3'm}{Pm^{2m}}$	III IV	81.33 2.4	<u>P4</u> P1	Ļ	224.113 225.116	Pn3m'	_IĮI_	2.4 123.339	P1 $P4/mmm$	⊢ Ļ ⊢∣
	$P_I n 3 m$				I		Fm3m	I			I
225.117	Fm3m1'	II	83.44	P4/m1'	II	225.118	Fm'3'm	III	81.33	P4	I
225.119	Fm3m'	III	47.249	Pmmm	I	225.121	$F_S m \bar{3} m$	IV	123.339	P4/mmm	I
226.122	Fm3c	1	47.249	Pmmm	1	226.123	Fm3c1'	II	87.76	I4/m1'	II
$\frac{226.124}{226.127}$	$Fm'3'c$ F_Sm3c	III IV	81.33 47.249	$\frac{P4}{Pmmm}$	+	226.125 227.128	$Fm3c' \\ Fd3m$	ΙĮΙ	47.249 2.4	Pmmm $P1$	-
227.129	$\frac{F_S m_3 c}{F d 3 m 1'}$	II	2.5	$\frac{FHHHHH}{P11'}$	II	227.130	$Fd'\bar{3}'m$	TIT	81.33	$\frac{F1}{P4}$	T
$\frac{227.129}{227.131}$	Fd3m'	TTT	$\frac{2.5}{2.4}$	$\frac{P_{11}}{P_1}$	 U	227.133	$F_S d3m$	ŤV	2.4	P1 P1	+
228.134	$\frac{Fd3n}{Fd3c}$	Ţ	2.4	$\frac{1}{P_1}$	Ť	228.135	$Fd\bar{3}c1'$	II	2.5	$\frac{1}{P11'}$	İĪ
228.136	$Fd'\bar{3}'c$	ΙΪΙ	81.33	P4	İ	228.137	$Fd\bar{3}c'$	III	2.4	$P\overline{1}$	Ï
228.139	$F_S d3c$	ĬV	2.4	P1	Ĩ	229.140	Im3m	Ĭ	123.339	P4/mmm	Ĩ
229.141	$Im\bar{3}m1'$	II	87.76	I4/m1'	II	229.142	$Im'\bar{3}'m$	III	81.33	$P\overline{4}$	I
229.143	$Im\bar{3}m'$	III	47.249	Pmmm	I	230.145	$Ia\bar{3}d$	I	2.4	$P\overline{1}$	I
230.146	$Ia\bar{3}d1'$	II	$\frac{2.5}{2.4}$	$P\bar{1}1'$	ĬĬ	230.147	$Ia^{\prime}3^{\prime}d$	ΙΪΙ	81.33	P4	Ī
230.148	Ia3d'	III	2.4	$P\overline{1}$	I						

SUPPLEMENTARY REFERENCES

Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298-305 (2017). URL https://doi.org/10.1038/nature23268.

- ² Elcoro, L. et al. Double crystallographic groups and their representations on the Bilbao Crystallographic Server. Journal of Applied Crystallography 50, 1457–1477 (2017). URL https://doi.org/10.1107/S1600576717011712.
- ³ Vergniory, M. G. et al. Graph theory data for topological quantum chemistry. Phys. Rev. E **96**, 023310 (2017). URL https://link.aps.org/doi/10.1103/PhysRevE.96.023310.
- ⁴ Cano, J. et al. Building blocks of topological quantum chemistry: Elementary band representations. Phys. Rev. B 97, 035139 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.97.035139.
- ⁵ Cano, J. et al. Topology of disconnected elementary band representations. Phys. Rev. Lett. 120, 266401 (2018). URL https://link.aps.org/doi/10.1103/PhysRevLett.120.266401.
- ⁶ Bradlyn, B., Wang, Z., Cano, J. & Bernevig, B. A. Disconnected elementary band representations, fragile topology, and Wilson loops as topological indices: An example on the triangular lattice. *Phys. Rev. B* **99**, 045140 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.99.045140.
- Yes Shubnikov, A. V. Symmetry and Antisymmetry of Finite Figures (USSR Academy of Sciences, Moscow, USSR, 1951).
- ⁸ Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. *Acta Crystallographica Section A* **62**, 115–128 (2006). URL https://doi.org/10.1107/S0108767305040286.
- 9 Altmann, S. & Herzig, P. Point-Group Theory Tables (University of Vienna, 2011), 2 edn. URL http://phaidra.univie.ac.at/o:104731.
- $^{10}\,$ Litvin, D. B. Magnetic~Group~Tables (International Union of Crystallography, 2013).
- ¹¹ Evarestov, R. & Smirnov, V. Site Symmetry in Crystals: Theory and Applications. Springer Series in Solid-State Sciences (Springer Berlin Heidelberg, 2012). URL https://books.google.com/books?id=h-79CAAAQBAJ.
- ¹² Evarestov, R. A., Smirnov, V. P. & Egorov, S. A. Band corepresentations of magnetic space groups. *physica status solidi* (b) **151**, 275–282 (1989). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2221510132.
- Aroyo, M. I. et al. Bilbao Crystallographic Server: I. Databases and crystallographic computing programs. Zeitschrift für Kristallographie Crystalline Materials 221, 15 27 (2006). URL https://www.degruyter.com/view/journals/zkri/221/1/article-p15.xml.
- Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallographica Section A 62, 115–128 (2006). URL https://doi.org/10.1107/S0108767305040286.
- Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. I. The commensurate case. Journal of Applied Crystallography 49, 1750-1776 (2016). URL http://scripts.iucr.org/cgi-bin/paper?ks5532.
- Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. II. The incommensurate case. Journal of Applied Crystallography 49, 1941-1956 (2016). URL http://scripts.iucr.org/cgi-bin/paper?ks5530.
- Gallego, S. V., Tasci, E. S., de la Flor, G., Perez-Mato, J. M. & Aroyo, M. I. Magnetic symmetry in the Bilbao Crystallographic Server: A computer program to provide systematic absences of magnetic neutron diffraction. *Journal of Applied Crystallography* 45, 1236–1247 (2012). URL https://doi.org/10.1107/S0021889812042185.
- Perez-Mato, J. et al. Symmetry-based computational tools for magnetic crystallography. Annual Review of Materials Research 45, 217-248 (2015). URL https://doi.org/10.1146/annurev-matsci-070214-021008. https://doi.org/10.1146/annurev-matsci-070214-021008.
- Wang, C., Duan, W., Glazman, L. & Alexandradinata, A. Landau quantization of nearly degenerate bands and full symmetry classification of Landau level crossings. *Phys. Rev. B* 100, 014442 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.100.014442.
- ²⁰ Zak, J. Band representations and symmetry types of bands in solids. Phys. Rev. B 23, 2824-2835 (1981). URL https://link.aps.org/doi/10.1103/PhysRevB.23.2824.
- ²¹ Zak, J. Band representations of space groups. Phys. Rev. B 26, 3010-3023 (1982). URL https://link.aps.org/doi/10. 1103/PhysRevB.26.3010.
- ²² Cano, J. & Bradlyn, B. Band representations and topological quantum chemistry. *Annual Review of Condensed Matter Physics* 12, 225-246 (2021). URL https://doi.org/10.1146/annurev-conmatphys-041720-124134.
- Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. *Phys. Rev. X* 7, 041069 (2017). URL https://link.aps.org/doi/10.1103/PhysRevX.7.

041069.

- Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nature Communications 8, 50 (2017). URL https://doi.org/10.1038/s41467-017-00133-2.
- Song, Z., Fang, Z. & Fang, C. (d 2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017). URL https://link.aps.org/doi/10.1103/PhysRevLett.119.246402.
- Song, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nature Communications 9, 3530 (2018). URL https://doi.org/10.1038/s41467-018-06010-w.
- ²⁷ Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous surface states of topological crystalline insulators. *Phys. Rev. X* **8**, 031070 (2018). URL https://link.aps.org/doi/10.1103/PhysRevX.8.031070.
- Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe₂ (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.123.186401.
- Song, Z., Zhang, T. & Fang, C. Diagnosis for nonmagnetic topological semimetals in the absence of spin-orbital coupling. Phys. Rev. X 8, 031069 (2018). URL https://link.aps.org/doi/10.1103/PhysRevX.8.031069.
- ³⁰ Po, H. C. Symmetry indicators of band topology. Journal of Physics: Condensed Matter 32, 263001 (2020). URL https://doi.org/10.1088%2F1361-648x%2Fab7adb.
- ³¹ Ono, S., Po, H. C. & Shiozaki, K. Z₂-enriched symmetry indicators for topological superconductors in the 1651 magnetic space groups. *Phys. Rev. Research* 3, 023086 (2021). URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.023086.
- ³² Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B **76**, 045302 (2007). URL https://link.aps.org/doi/10.1103/PhysRevB.76.045302.
- ³³ Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Clarendon Press, 1972). URL https://books.google.com/books?id=OKXvAAAAMAAJ.
- ³⁴ Schindler, F. et al. Higher-order topological insulators. Science Advances 4 (2018). URL http://advances.sciencemag.org/content/4/6/eaat0346.
- 35 Schindler, F. et al. Higher-order topology in bismuth. Nature Physics 14, 918-924 (2018). URL https://doi.org/10.1038/s41567-018-0224-7.
- ³⁶ Fang, C. & Fu, L. New classes of topological crystalline insulators having surface rotation anomaly. *Science Advances* **5** (2019). URL https://advances.sciencemag.org/content/5/12/eaat2374.
- ³⁷ Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-symmetric second-order topological insulators and superconductors. *Phys. Rev. Lett.* **119**, 246401 (2017). URL https://link.aps.org/doi/10.1103/PhysRevLett.119.246401.
- ³⁸ Wieder, B. J. & Bernevig, B. A. The Axion Insulator as a Pump of Fragile Topology. arXiv e-prints arXiv:1810.02373 (2018). 1810.02373.
- ³⁹ Wieder, B. J. et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science **361**, 246-251 (2018). URL http://science.sciencemag.org/content/361/6399/246.
- Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799-1802 (1987). URL https://link.aps.org/doi/10.1103/PhysRevLett.58.1799.
- ⁴¹ Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. *Phys. Rev. B* **78**, 195424 (2008). URL https://link.aps.org/doi/10.1103/PhysRevB.78.195424.
- Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009). URL https://link.aps.org/doi/10.1103/PhysRevLett.102.146805.
- ⁴³ Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011). URL https://link.aps.org/doi/10.1103/PhysRevB.83.245132.
- ⁴⁴ Turner, A. M., Zhang, Y., Mong, R. S. K. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. *Phys. Rev. B* **85**, 165120 (2012). URL https://link.aps.org/doi/10.1103/PhysRevB.85.165120.
- ⁴⁵ Xu, Y., Song, Z., Wang, Z., Weng, H. & Dai, X. Higher-Order Topology of the Axion Insulator EuIn₂As₂. Phys. Rev. Lett. 122, 256402 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.122.256402.
- Varnava, N. & Vanderbilt, D. Surfaces of axion insulators. Phys. Rev. B 98, 245117 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.98.245117.
- ⁴⁷ Varnava, N., Souza, I. & Vanderbilt, D. Axion coupling in the hybrid Wannier representation. *Phys. Rev. B* 101, 155130 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.101.155130.
- ⁴⁸ Ahn, J. & Yang, B.-J. Symmetry representation approach to topological invariants in $C_{2z}T$ -symmetric systems. *Phys. Rev.* B **99**, 235125 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.99.235125.
- ⁴⁹ Coh, S. & Vanderbilt, D. Canonical magnetic insulators with isotropic magnetoelectric coupling. Phys. Rev. B 88, 121106

- (2013). URL https://link.aps.org/doi/10.1103/PhysRevB.88.121106.
- Alexandradinata, A., Nelson, A. & Soluyanov, A. A. Teleportation of Berry curvature on the surface of a Hopf insulator. Phys. Rev. B 103, 045107 (2021). URL https://link.aps.org/doi/10.1103/PhysRevB.103.045107.
- ⁵¹ Klett, M. et al. Topology and magnetism in the Kondo insulator phase diagram. Phys. Rev. B 101, 161112 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.101.161112.
- ⁵² Ahn, J., Kim, D., Kim, Y. & Yang, B.-J. Band topology and linking structure of nodal line semimetals with Z₂ monopole charges. *Phys. Rev. Lett.* **121**, 106403 (2018). URL https://link.aps.org/doi/10.1103/PhysRevLett.121.106403.
- Kim, H., Shiozaki, K. & Murakami, S. Glide-symmetric magnetic topological crystalline insulators with inversion symmetry. Phys. Rev. B 100, 165202 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.100.165202.
- ⁵⁴ Takahashi, R., Tanaka, Y. & Murakami, S. Bulk-edge and bulk-hinge correspondence in inversion-symmetric insulators. *Phys. Rev. Research* 2, 013300 (2020). URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.013300.
- Okuma, N., Sato, M. & Shiozaki, K. Topological classification under nonmagnetic and magnetic point group symmetry: Application of real-space Atiyah-Hirzebruch spectral sequence to higher-order topology. *Phys. Rev. B* 99, 085127 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.99.085127.
- Lee, E., Furusaki, A. & Yang, B.-J. Fractional charge bound to a vortex in two-dimensional topological crystalline insulators. Phys. Rev. B 101, 241109 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.101.241109.
- Wieder, B. J., Lin, K.-S. & Bradlyn, B. Axionic band topology in inversion-symmetric Weyl-charge-density waves. *Phys. Rev. Research* 2, 042010 (2020). URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.042010.
- Olsen, T., Taherinejad, M., Vanderbilt, D. & Souza, I. Surface theorem for the Chern-Simons axion coupling. Phys. Rev. B 95, 075137 (2017). URL https://link.aps.org/doi/10.1103/PhysRevB.95.075137.
- Olsen, T., Rauch, T., Vanderbilt, D. & Souza, I. Gapless hinge states from adiabatic pumping of axion coupling. Phys. Rev. B 102, 035166 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.102.035166.
- wan Miert, G. & Ortix, C. Higher-order topological insulators protected by inversion and rotoinversion symmetries. Phys. Rev. B 98, 081110 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.98.081110.
- ⁶¹ Zamorzaev, A. M. Generalization of Fedorov Groups. Dissertation, Leningrad University, Leningrad (1953).
- ⁶² Belov, N., Neronova, N. & Smirnova, T. The 1651 Shubnikov groups. Trudy Inst. Kristall. 11, 33-67 (1955).
- 63 Shubnikov, A., Belov, N. & Shubnikova, A. Colored Symmetry (Macmillan, 1964). URL https://books.google.ca/books? id=QKk9AAATAAJ.
- ⁶⁴ Yang, J., Liu, Z.-X. & Fang, C. Unlocking of time reversal, space-time inversion and rotation invariants in magnetic materials. arXiv e-prints arXiv:2009.07864 (2020). 2009.07864.
- ⁶⁵ Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Science Advances 4 (2018). URL https://advances.sciencemag.org/content/4/8/eaat8685.
- Watanabe, H. Lieb-Schultz-Mattis-type filling constraints in the 1651 magnetic space groups. Phys. Rev. B 97, 165117 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.97.165117.
- ⁶⁷ Belov, N. & Neronova, T., N.N. and Smirnova. Shubnikov groups. Sov. Phys. Crystallogr. 2, 311 (1957).
- ⁶⁸ Opechowski, W. & Guccione, R. Magnetism, Ch. 3, vol. 2A (New York: Academic Press, 1965).
- ⁶⁹ Aroyo, M. I. (ed.) International Tables for Crystallography, Volume A: Space-Group Symmetry, vol. A (International Union of Crystallography, 2016). URL http://it.iucr.org/A/.
- Kopsky, V. & Litvin, D. International Tables for Crystallography, Volume E: Subperiodic Groups. International Tables for Crystallography (Springer Netherlands, 2002). URL https://books.google.com/books?id=if8nMGopkNgC.
- Wieder, B. J. et al. Strong and fragile topological Dirac semimetals with higher-order Fermi arcs. Nature Communications 11, 627 (2020). URL https://doi.org/10.1038/s41467-020-14443-5.
- Cano, J., Bradlyn, B. & Vergniory, M. G. Multifold nodal points in magnetic materials. APL Materials 7, 101125 (2019). URL https://doi.org/10.1063/1.5124314.
- Wieder, B. J. & Kane, C. L. Spin-orbit semimetals in the layer groups. Phys. Rev. B 94, 155108 (2016). URL https://link.aps.org/doi/10.1103/PhysRevB.94.155108.
- Young, S. M. & Wieder, B. J. Filling-Enforced Magnetic Dirac Semimetals in Two Dimensions. Phys. Rev. Lett. 118, 186401 (2017). URL https://link.aps.org/doi/10.1103/PhysRevLett.118.186401.
- ⁷⁵ Conway, J., Burgiel, H. & Goodman-Strauss, C. The Symmetries of Things. Ak Peters Series (Taylor & Francis, 2008). URL https://books.google.com/books?id=EtQCkOTNafsC.
- ⁷⁶ Ascher, E. & Janner, A. Subgroups of black-white point groups. *Acta Crystallographica* **18**, 325–330 (1965). URL https://onlinelibrary.wiley.com/doi/abs/10.1107/S0365110X65000762.
- Perez-Mato, J. M., Gallego, S. V., Elcoro, L., Tasci, E. & Aroyo, M. I. Symmetry conditions for type II multiferroicity in commensurate magnetic structures. *Journal of Physics: Condensed Matter* 28, 286001 (2016). URL http://stacks.iop.

- org/0953-8984/28/i=28/a=286001.
- ⁷⁸ Miller, S. & Love, W. Tables of Irreducible Representations of Space Groups and Corepresentations of Magnetic Space Groups (1967). URL https://books.google.com/books?id=jYQLtAEACAAJ.
- ⁷⁹ Aroyo, M. I. et al. Brillouin-zone database on the Bilbao Crystallographic Server. Acta Crystallographica Section A 70, 126–137 (2014). URL https://doi.org/10.1107/S205327331303091X.
- Wigner, E. P. Über die operation der zeitumkehr in der quantenmechanik. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 546-559 (1932). URL https://doi.org/10.1007/978-3-662-02781-3_15.
- Wigner, E. & Griffin, J. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, 1959). URL https://books.google.com/books?id=BZsEAQAAIAAJ.
- 82 Stokes, H. T., Campbell, B. J. & Cordes, R. Tabulation of irreducible representations of the crystallographic space groups and their superspace extensions. Acta Crystallographica Section A 69, 388–395 (2013). URL https://doi.org/10.1107/S0108767313007538.
- 83 Michel, L. & Zak, J. Elementary energy bands in crystals are connected. Physics Reports 341, 377 395 (2001). URL http://www.sciencedirect.com/science/article/pii/S0370157300000934.
- ⁸⁴ Bacry, H., Michel, L. & Zak, J. Symmetry and classification of energy bands in crystals. In Doebner, H.-D., Hennig, J.-D. & Palev, T. D. (eds.) Group Theoretical Methods in Physics, 289–308 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1988).
- ⁸⁵ Höller, J. & Alexandradinata, A. Topological Bloch oscillations. Phys. Rev. B 98, 024310 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.98.024310.
- Michel, L. & Zak, J. Connectivity of energy bands in crystals. Phys. Rev. B 59, 5998-6001 (1999). URL https://link.aps.org/doi/10.1103/PhysRevB.59.5998.
- ⁸⁷ Elcoro, L., Song, Z. & Bernevig, B. A. Application of induction procedure and Smith decomposition in calculation and topological classification of electronic band structures in the 230 space groups. *Phys. Rev. B* 102, 035110 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.102.035110.
- 88 Shi, W. et al. A charge-density-wave topological semimetal. Nature Physics 17, 381–387 (2021). URL https://doi.org/ 10.1038/s41567-020-01104-z.
- ⁸⁹ Iraola, M. et al. IrRep: symmetry eigenvalues and irreducible representations of ab initio band structures. arXiv e-prints arXiv:2009.01764 (2020). 2009.01764.
- ⁹⁰ Cracknell, A. P. The application of Landau's theory of continuous phase transitions to magnetic phase transitions. *Journal of Physics C: Solid State Physics* 4, 2488 (1971). URL http://stacks.iop.org/0022-3719/4/i=16/a=014.
- Samokhin, K. V. & Walker, M. B. Order parameter symmetry in ferromagnetic superconductors. Phys. Rev. B 66, 174501 (2002). URL https://link.aps.org/doi/10.1103/PhysRevB.66.174501.
- ⁹² Micklitz, T. & Norman, M. R. Odd parity and line nodes in nonsymmorphic superconductors. Phys. Rev. B 80, 100506 (2009). URL https://link.aps.org/doi/10.1103/PhysRevB.80.100506.
- Sumita, S., Nomoto, T. & Yanase, Y. Multipole Superconductivity in Nonsymmorphic Sr₂IrO₄. Phys. Rev. Lett. 119, 027001 (2017). URL https://link.aps.org/doi/10.1103/PhysRevLett.119.027001.
- ⁹⁴ Cao, K., Giustino, F. & Radaelli, P. G. Theory of Electromagnons in CuO. Phys. Rev. Lett. 114, 197201 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.114.197201.
- ⁹⁵ Benfatto, L. et al. Field dependence of the magnetic spectrum in anisotropic and Dzyaloshinskii-Moriya antiferromagnets. II. Raman spectroscopy. Phys. Rev. B 74, 024416 (2006). URL https://link.aps.org/doi/10.1103/PhysRevB.74.024416.
- ⁹⁶ Herring, C. Character tables for two space groups. Journal of the Franklin Institute 233, 525 543 (1942). URL http://www.sciencedirect.com/science/article/pii/S0016003242904629.
- ⁹⁷ Frobenius, G. & Schur, I. Über die reellen Darstellungen der endlichen Gruppen: Über die Äquivalenz der Gruppen linearer Substitutionen. Von G. Frobenius und I. Schur. Preussische Akademie der Wissenschaften Berlin: Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin (Reichsdr., 1906). URL https://books.google.com/books?id=lyU-cgAACAAJ.
- ⁹⁸ Fulton, W., Harris, W. & Harris, J. Representation Theory: A First Course. Graduate Texts in Mathematics (Springer New York, 1991). URL https://books.google.com/books?id=6GUH8ARxhp8C.
- ⁹⁹ Dimmock, J. & Wheeler, R. Irreducible representations of magnetic groups. Journal of Physics and Chemistry of Solids 23, 729 - 741 (1962). URL http://www.sciencedirect.com/science/article/pii/0022369762905310.
- Young, S. M. et al. Dirac Semimetal in Three Dimensions. Phys. Rev. Lett. 108, 140405 (2012). URL http://link.aps.org/doi/10.1103/PhysRevLett.108.140405.
- Watanabe, H., Po, H. C., Vishwanath, A. & Zaletel, M. Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals. *Proceedings of the National Academy of Sciences* 112, 14551-14556 (2015). URL http://www.pnas.org/content/112/47/14551.abstract.
- ¹⁰² Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012). URL https:

- //link.aps.org/doi/10.1103/PhysRevB.85.155118.
- Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac Semimetals in Three Dimensions. *Phys. Rev. Lett.* 116, 186402 (2016). URL http://link.aps.org/doi/10.1103/PhysRevLett.116.186402.
- Bradlyn, B. et al. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 353 (2016). URL http://science.sciencemag.org/content/353/6299/aaf5037.
- Chang, G. et al. Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017). URL https://link.aps.org/doi/10.1103/PhysRevLett.119.206401.
- ¹⁰⁶ Tang, P., Zhou, Q. & Zhang, S.-C. Multiple Types of Topological Fermions in Transition Metal Silicides. *Phys. Rev. Lett.* **119**, 206402 (2017). URL https://link.aps.org/doi/10.1103/PhysRevLett.119.206402.
- ¹⁰⁷ Chang, G. et al. Topological quantum properties of chiral crystals. Nature Materials 17, 978–985 (2018). URL https://doi.org/10.1038/s41563-018-0169-3.
- Scott, L. & Serre, J. Linear Representations of Finite Groups. Graduate Texts in Mathematics (Springer New York, 1996). URL https://books.google.com/books?id=NCfZgr54TJ4C.
- Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019). URL https://doi.org/10.1038/s41586-019-0954-4.
- ¹¹⁰ Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature **586**, 702-707 (2020). URL https://doi.org/10.1038/s41586-020-2837-0.
- Young, S. M. & Kane, C. L. Dirac Semimetals in Two Dimensions. Phys. Rev. Lett. 115, 126803 (2015). URL http://link.aps.org/doi/10.1103/PhysRevLett.115.126803.
- Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016). URL https://doi.org/10.1038/nature17410.
- Alexandradinata, A., Wang, Z. & Bernevig, B. A. Topological insulators from group cohomology. *Phys. Rev. X* 6, 021008 (2016). URL https://link.aps.org/doi/10.1103/PhysRevX.6.021008.
- Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. *Phys. Rev. B* **56**, 12847–12865 (1997). URL https://link.aps.org/doi/10.1103/PhysRevB.56.12847.
- Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 84, 1419-1475 (2012). URL https://link.aps.org/doi/10.1103/RevModPhys.84.1419.
- ¹¹⁶ Zak, J. Berry's phase for energy bands in solids. Phys. Rev. Lett. 62, 2747-2750 (1989). URL https://link.aps.org/doi/10.1103/PhysRevLett.62.2747.
- ¹¹⁷ King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. *Phys. Rev. B* 47, 1651–1654 (1993). URL https://link.aps.org/doi/10.1103/PhysRevB.47.1651.
- Soluyanov, A. A. & Vanderbilt, D. Smooth gauge for topological insulators. *Phys. Rev. B* 85, 115415 (2012). URL https://link.aps.org/doi/10.1103/PhysRevB.85.115415.
- Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of Z₂ topological invariant for band insulators using the non-Abelian Berry connection. *Phys. Rev. B* 84, 075119 (2011). URL https://link.aps.org/doi/10.1103/PhysRevB.84.075119.
- ¹²⁰ Fidkowski, L., Jackson, T. S. & Klich, I. Model Characterization of Gapless Edge Modes of Topological Insulators Using Intermediate Brillouin-Zone Functions. *Phys. Rev. Lett.* **107**, 036601 (2011). URL https://link.aps.org/doi/10.1103/PhysRevLett.107.036601.
- Alexandradinata, A., Dai, X. & Bernevig, B. A. Wilson-loop characterization of inversion-symmetric topological insulators. Phys. Rev. B 89, 155114 (2014). URL https://link.aps.org/doi/10.1103/PhysRevB.89.155114.
- Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. *Science* **357**, 61–66 (2017). URL http://science.sciencemag.org/content/357/6346/61.
- Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. *Phys. Rev. B* 96, 245115 (2017). URL https://link.aps.org/doi/10.1103/PhysRevB.96.245115.
- ¹²⁴ Schindler, F., Tsirkin, S. S., Neupert, T., Bernevig, B. A. & Wieder, B. J. In Preparation.
- 125 Kooi, S. H., van Miert, G. & Ortix, C. Classification of crystalline insulators without symmetry indicators: Atomic and fragile topological phases in twofold rotation symmetric systems. *Phys. Rev. B* 100, 115160 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.100.115160.
- Alexandradinata, A., Höller, J., Wang, C., Cheng, H. & Lu, L. Crystallographic splitting theorem for band representations and fragile topological photonic crystals. *Phys. Rev. B* 102, 115117 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.102.115117.
- Berg, M., De Witt-Morette, C., Gwo, S. & Kramer, E. The Pin Groups in Physics: C, P and T. Reviews in Mathematical Physics 13, 953-1034 (2001). URL https://doi.org/10.1142/S0129055X01000922.

- ¹²⁸ McQuarrie, D. A. & Simon, J. D. *Physical Chemistry: A Molecular Approach* (University Science Books, 1997). URL https://books.google.com/books?id=f-bje0-DEYUC.
- Blanco, M. A., Flórez, M. & Bermejo, M. Evaluation of the rotation matrices in the basis of real spherical harmonics. *Journal of Molecular Structure: THEOCHEM* 419, 19 27 (1997). URL http://www.sciencedirect.com/science/article/pii/S0166128097001851.
- Muggli, J. Cubic harmonics as linear combinations of spherical harmonics. Zeitschrift für angewandte Mathematik und Physik ZAMP 23, 311-317 (1972). URL https://doi.org/10.1007/BF01593094.
- Bethe, H. Termaufspaltung in kristallen. Annalen der Physik 395, 133-208 (1929). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19293950202.
- Van Vleck, J. H. Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group. Phys. Rev. 41, 208-215 (1932). URL https://link.aps.org/doi/10.1103/PhysRev.41.208.
- Mulliken, R. S. Electronic Structures of Polyatomic Molecules and Valence. IV. Electronic States, Quantum Theory of the Double Bond. *Phys. Rev.* 43, 279–302 (1933). URL https://link.aps.org/doi/10.1103/PhysRev.43.279.
- Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: Challenges and tools. *Computational Materials Science* **49**, 299 312 (2010). URL http://www.sciencedirect.com/science/article/pii/S0927025610002697.
- ¹³⁵ Yu, P. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties. No. v. 3 in Advanced texts in physics (Springer Berlin Heidelberg, 2005). URL https://books.google.com/books?id=W9pdJZoAeyEC.
- Po, H. C., Watanabe, H. & Vishwanath, A. Fragile Topology and Wannier Obstructions. *Phys. Rev. Lett.* **121**, 126402 (2018). URL https://link.aps.org/doi/10.1103/PhysRevLett.121.126402.
- Liu, S., Vishwanath, A. & Khalaf, E. Shift insulators: Rotation-protected two-dimensional topological crystalline insulators. Phys. Rev. X 9, 031003 (2019). URL https://link.aps.org/doi/10.1103/PhysRevX.9.031003.
- Bouhon, A., Black-Schaffer, A. M. & Slager, R.-J. Wilson loop approach to fragile topology of split elementary band representations and topological crystalline insulators with time-reversal symmetry. *Phys. Rev. B* **100**, 195135 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.100.195135.
- Ahn, J., Park, S. & Yang, B.-J. Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle. *Phys. Rev. X* 9, 021013 (2019). URL https://link.aps.org/doi/10.1103/PhysRevX.9.021013.
- Song, Z.-D., Elcoro, L., Xu, Y.-F., Regnault, N. & Bernevig, B. A. Fragile phases as affine monoids: Classification and material examples. *Phys. Rev. X* **10**, 031001 (2020). URL https://link.aps.org/doi/10.1103/PhysRevX.10.031001.
- Peri, V. et al. Experimental characterization of fragile topology in an acoustic metamaterial. Science **367**, 797-800 (2020). URL https://science.sciencemag.org/content/367/6479/797.
- ¹⁴² Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.123.036401.
- Song, Z.-D., Elcoro, L. & Bernevig, B. A. Twisted bulk-boundary correspondence of fragile topology. *Science* **367**, 794-797 (2020). URL https://science.sciencemag.org/content/367/6479/794.
- Hwang, Y., Ahn, J. & Yang, B.-J. Fragile topology protected by inversion symmetry: Diagnosis, bulk-boundary correspondence, and Wilson loop. Phys. Rev. B 100, 205126 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.100. 205126.
- Alexandradinata, A. & Höller, J. No-go theorem for topological insulators and high-throughput identification of Chern insulators. *Phys. Rev. B* **98**, 184305 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.98.184305.
- Nelson, A., Neupert, T., Bzdušek, T. c. v. & Alexandradinata, A. Multicellularity of delicate topological insulators. Phys. Rev. Lett. 126, 216404 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.126.216404.
- ¹⁴⁷ Bouhon, A., Lange, G. F. & Slager, R.-J. Topological correspondence between magnetic space group representations and subdimensions. *Phys. Rev. B* **103**, 245127 (2021). URL https://link.aps.org/doi/10.1103/PhysRevB.103.245127.
- Lange, G. F., Bouhon, A. & Slager, R.-J. Subdimensional topologies, indicators, and higher order boundary effects. Phys. Rev. B 103, 195145 (2021). URL https://link.aps.org/doi/10.1103/PhysRevB.103.195145.
- ¹⁴⁹ Cano, J., Elcoro, L., Aroyo, M. I., Bernevig, B. A. & Bradlyn, B. Topology invisible to eigenvalues in obstructed atomic insulators. *arXiv e-prints* arXiv:2107.00647 (2021). 2107.00647.
- Watanabe, H., Po, H. C., Zaletel, M. P. & Vishwanath, A. Filling-enforced gaplessness in band structures of the 230 space groups. *Phys. Rev. Lett.* **117**, 096404 (2016). URL https://link.aps.org/doi/10.1103/PhysRevLett.117.096404.
- Po, H. C., Watanabe, H., Zaletel, M. P. & Vishwanath, A. Filling-enforced quantum band insulators in spin-orbit coupled crystals. *Science Advances* 2 (2016). URL https://advances.sciencemag.org/content/2/4/e1501782.
- Lieb, E., Schultz, T. & Mattis, D. Two soluble models of an antiferromagnetic chain. *Annals of Physics* **16**, 407 466 (1961). URL http://www.sciencedirect.com/science/article/pii/0003491661901154.
- ¹⁵³ Else, D. V. & Thorngren, R. Topological theory of Lieb-Schultz-Mattis theorems in quantum spin systems. Phys. Rev. B

- 101, 224437 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.101.224437.
- Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac Line Nodes in Inversion-Symmetric Crystals. Phys. Rev. Lett. 115, 036806 (2015). URL https://link.aps.org/doi/10.1103/PhysRevLett.115.036806.
- ¹⁵⁵ Thouless, D. J. Wannier functions for magnetic sub-bands. *Journal of Physics C: Solid State Physics* 17, L325 (1984). URL http://stacks.iop.org/0022-3719/17/i=12/a=003.
- ¹⁵⁶ Qi, X.-L., Wu, Y.-S. & Zhang, S.-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. *Phys. Rev. B* **74**, 085308 (2006). URL https://link.aps.org/doi/10.1103/PhysRevB.74.085308.
- ¹⁵⁷ Soluyanov, A. A. & Vanderbilt, D. Wannier representation of Z₂ topological insulators. Phys. Rev. B 83, 035108 (2011). URL https://link.aps.org/doi/10.1103/PhysRevB.83.035108.
- ¹⁵⁸ Fu, L. & Kane, C. L. Time reversal polarization and a Z₂ adiabatic spin pump. *Phys. Rev. B* **74**, 195312 (2006). URL https://link.aps.org/doi/10.1103/PhysRevB.74.195312.
- Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. *Phys. Rev. B* **75**, 121306 (2007). URL http://link.aps.org/doi/10.1103/PhysRevB.75.121306.
- ¹⁶⁰ Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007). URL https://link.aps.org/doi/10.1103/PhysRevLett.98.106803.
- Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nature Communications 3, 982 (2012). URL https://doi.org/10.1038/ncomms1969.
- Teo, J. C. Y., Fu, L. & Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi_{1-x}Sb_x. Phys. Rev. B 78, 045426 (2008). URL https://link.aps.org/doi/10.1103/PhysRevB.78.045426.
- Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011). URL https://link.aps.org/doi/10.1103/ PhysRevLett.106.106802.
- Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012). URL https://link.aps.org/doi/10.1103/PhysRevB.86.115112.
- Damnjanović, M., Milošević, I. & Vujičić, M. Magnetic line groups. II. Corepresentations of the magnetic line groups isogonal to the point groups C_n, S_{2n}, and C_{nh}. Phys. Rev. B 39, 4610–4619 (1989). URL https://link.aps.org/doi/10.1103/PhysRevB.39.4610.
- Damnjanović, M. & Milošević, I. Magnetic line groups. III. Corepresentations of the magnetic line groups isogonal to the point groups D_n, C_{nv}, D_{nd}, and D_{nh}. Phys. Rev. B 43, 13482–13500 (1991). URL https://link.aps.org/doi/10.1103/PhysRevB.43.13482.
- Song, H., Huang, S.-J., Fu, L. & Hermele, M. Topological phases protected by point group symmetry. *Phys. Rev. X* 7, 011020 (2017). URL https://link.aps.org/doi/10.1103/PhysRevX.7.011020.
- Song, Z., Huang, S.-J., Qi, Y., Fang, C. & Hermele, M. Topological states from topological crystals. *Science Advances* 5, eaax2007 (2019). URL https://advances.sciencemag.org/content/5/12/eaax2007.
- Smith, H. J. S. & Sylvester, J. J. On systems of linear indeterminate equations and congruences. Philosophical Transactions of the Royal Society of London 151, 293-326 (1861). URL https://royalsocietypublishing.org/doi/abs/10.1098/rstl.1861.0016.
- Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019). URL https://doi.org/10.1038/s41586-019-0937-5.
- ¹⁷¹ Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475-479 (2019). URL https://doi.org/10.1038/s41586-019-0944-6.
- Vergniory, M. G. et al. All Topological Bands of All Stoichiometric Materials. arXiv e-prints arXiv:2105.09954 (2021). 2105.09954.
- Fang, C. & Fu, L. New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic. *Phys. Rev. B* **91**, 161105 (2015). URL https://link.aps.org/doi/10.1103/PhysRevB.91.161105.
- Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970-974 (2008). URL https://doi.org/10.1038/nature06843.
- Gao, J. et al. High-throughput screening for Weyl semimetals with S4 symmetry. Science Bulletin 66, 667-675 (2021). URL https://www.sciencedirect.com/science/article/pii/S2095927320307738.
- Peng, B., Jiang, Y., Fang, Z., Weng, H. & Fang, C. Topological classification and diagnosis in magnetically ordered electronic materials. arXiv e-prints arXiv:2102.12645 (2021). 2102.12645.
- Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010). URL https://link.aps.org/doi/10.1103/PhysRevB.81.245209.
- Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011). URL https://link.aps.org/doi/10.1103/

- PhysRevB.83.205101.
- Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. *Phys. Rev. X* 5, 011029 (2015). URL https://link.aps.org/doi/10.1103/PhysRevX.5.011029.
- ¹⁸⁰ Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs 349, 613-617 (2015). URL https://science.sciencemag.org/content/349/6248/613.
- Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. *Rev. Mod. Phys.* **90**, 015001 (2018). URL https://link.aps.org/doi/10.1103/RevModPhys.90.015001.
- Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011). URL https://link.aps.org/doi/10.1103/PhysRevLett.107.127205.
- Khalaf, E. Higher-order topological insulators and superconductors protected by inversion symmetry. *Phys. Rev. B* **97**, 205136 (2018). URL https://link.aps.org/doi/10.1103/PhysRevB.97.205136.
- Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. *Phys. Rev. B* **92**, 081201 (2015). URL https://link.aps.org/doi/10.1103/PhysRevB.92.081201.
- Li, K., Li, C., Hu, J., Li, Y. & Fang, C. Dirac and Nodal Line Magnons in Three-Dimensional Antiferromagnets. Phys. Rev. Lett. 119, 247202 (2017). URL https://link.aps.org/doi/10.1103/PhysRevLett.119.247202.
- ¹⁸⁶ Zilberberg, O. *et al.* Photonic topological boundary pumping as a probe of 4D quantum Hall physics. *Nature* **553**, 59–62 (2018). URL https://doi.org/10.1038/nature25011.
- Petrides, I. & Zilberberg, O. Higher-order topological insulators, topological pumps and the quantum Hall effect in high dimensions. Phys. Rev. Research 2, 022049 (2020). URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.022049.
- Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly". Phys. Rev. Lett. 61, 2015–2018 (1988). URL https://link.aps.org/doi/10.1103/PhysRevLett.61.2015.
- Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional Quantum Hall States at Zero Magnetic Field. Phys. Rev. Lett. 106, 236804 (2011). URL https://link.aps.org/doi/10.1103/PhysRevLett.106.236804.
- Alvarez-Gaumé, L. & Witten, E. Gravitational anomalies. Nuclear Physics B 234, 269 330 (1984). URL http://www.sciencedirect.com/science/article/pii/055032138490066X.
- 191 Redlich, A. N. Gauge noninvariance and parity nonconservation of three-dimensional fermions. *Phys. Rev. Lett.* **52**, 18–21 (1984). URL https://link.aps.org/doi/10.1103/PhysRevLett.52.18.
- ¹⁹² Jackiw, R. Fractional charge and zero modes for planar systems in a magnetic field. Phys. Rev. D 29, 2375–2377 (1984). URL https://link.aps.org/doi/10.1103/PhysRevD.29.2375.
- Mulligan, M. & Burnell, F. J. Topological insulators avoid the parity anomaly. Phys. Rev. B 88, 085104 (2013). URL https://link.aps.org/doi/10.1103/PhysRevB.88.085104.
- Lapa, M. F. Parity anomaly from the Hamiltonian point of view. Phys. Rev. B 99, 235144 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.99.235144.
- Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. *Science* 314, 1757–1761 (2006). URL http://science.sciencemag.org/content/314/5806/1757.