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Supplementary Text 

Viscous liquids vs. elastic solids: distinction in shear relaxation 

In a viscous liquid, a bead experiences a frictional force that is proportional to its velocity. In 

contrast, in an elastic solid, the bead experiences a resistance that is proportional to its 

displacement. A corresponding contrast between the viscous liquid and elastic solid exists when 

these materials are deformed by shearing. The resulting stress, τ̃, is proportional to the shear rate 

ε̇̃ =
𝜕

𝜕𝑡
ε̃ in the liquid but is proportional to the shear strain ε̃ itself in the solid. 

Viscous liquids and elastic solids are opposite extremes of viscoelastic fluids. The latter 

materials, including biomolecular condensates, generally behave as partly liquid and partly solid. 

There the stress is determined by the entire history of the shear rate: 

 τ̃(𝑡) = ∫ 𝑑𝑡′𝐺(𝑡 − 𝑡′)

𝑡

−∞

ε̇̃(𝑡′) [S1] 

The function 𝐺(𝑡) is called the shear relaxation modulus. This expression for the shear stress is 

similar in form and substance to the frictional force on a generalized Langevin particle; the 

counterpart of 𝐺(𝑡 − 𝑡′) is the memory kernel. Note that 𝐺(𝑡 − 𝑡′) must be 0 when 𝑡′ > 𝑡 (such 

that future shear rate does not affect present stress); hence the upper limit of the integral can 

extend to +∞. In a purely viscous liquid (also known as a Newtonian fluid), the stress is affected 

by the shear rate only at the present time, not any earlier time. That is, 

 τ̃(𝑡) = 𝜂ε̇̃(𝑡) [S2a] 

where 𝜂 is the viscosity. Here the shear relaxation modulus has no memory, as represented by a 

delta function 

 𝐺(𝑡) = 𝜂𝛿(𝑡) [S2b] 

and hence shear relaxation is instantaneous. In contrast, the shear relaxation modulus of an 

elastic solid is a constant (denoted as 𝐺0), meaning that the stress never relaxes. The result is the 

expected strain-stress relation 

 τ̃(𝑡) = 𝐺0 ∫𝑑𝑡′
𝑡

−∞

𝜕

𝜕𝑡′
ε̃(𝑡′)  

 = 𝐺0ε̃(𝑡) [S3] 

Let us further illustrate with a unit-step strain introduced at time 𝑡 = 0 (Supplementary Fig. 

1a): 

 ε̃(𝑡) = Θ(𝑡) [S4] 

Noting the derivative of the Heaviside step function Θ(𝑡) is a delta function, we find 

 ε̇̃(𝑡) = 𝛿(𝑡) [S5] 

Substituting into Eq [S1], we have 

 τ̃(𝑡) = 𝐺(𝑡) [S6] 

The shear relaxation modulus thus represents the stress in response to a unit step strain 

introduced at time 𝑡 = 0. In the viscous liquid, the stress disappears after 𝑡 = 0 (Supplementary 

Fig. 1b, top); i.e., shear relaxation is instantaneously as stated already. In the elastic solid, the 
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stress, once generated at 𝑡 = 0, stays forever (Supplementary Fig. 1c, top). Viscoelastic fluids fall 

in between, with shear relaxation occurring over a time period that is between 0 and infinity. An 

example is a Maxwell fluid, with 𝐺(𝑡) given by an exponential function of time (Supplementary 

Fig. 1d, top). When a Newtonian component and a Maxwell component are added, one arrives at 

the Jeffreys model of linear viscoelasticity. The combination of two Maxwell components (with 

different time constants; see Eq. [1] in the main text) makes up the Burgers model. 

Another type of shear strain of common interest is a sinusoidal function of time, 

 ε̃(𝑡) = ε̃0𝑒
𝑖𝜔𝑡 [S7a] 

The corresponding shear rate is 

 ε̇̃(𝑡) = 𝑖𝜔ε̃0𝑒
𝑖𝜔𝑡 [S7b] 

and the stress is 

 τ̃(𝑡) = 𝑖𝜔ε̃0𝑒
𝑖𝜔𝑡 ∫ 𝑑𝑡′𝐺(𝑡′)𝑒−𝑖𝜔𝑡

′

+∞

−∞

≡ 𝐺∗(𝜔)ε̃(𝑡) [S8] 

The last identity generalizes Eq [S3] and formally defines the complex shear modulus, 𝐺∗(𝜔). 
The latter is essentially the Fourier transform of the shear relaxation modulus, 

 𝐺∗(𝜔) = 𝑖𝜔 ∫ 𝑑𝑡′𝐺(𝑡′)𝑒−𝑖𝜔𝑡
′

+∞

−∞

 [S9] 

For a viscous liquid (Eq [S2b]), we have 

 𝐺∗(𝜔) = 𝑖𝜔𝜂 [S10] 

which has only an imaginary part (Supplementary Fig. 1b, bottom). On the other hand, for an 

elastic solid, by comparing Eqs [S3] and [S8], we find 

 𝐺∗(𝜔) = 𝐺0 [S11] 

which has only a real part (Supplementary Fig. 1c, bottom). In general, viscoelastic fluids have 

both real and imaginary parts, 

 𝐺∗(𝜔) = 𝐺′(𝜔) + 𝑖𝐺"(𝜔) [S12] 

The real part is called the elastic (or storage) modulus, whereas the imaginary part is called the 

viscous (or loss) modulus. The elastic and viscous moduli of a Maxwell fluid are shown in 

Supplementary Fig. 1d, bottom. 

 

Comparison of condensate viscosities by OT and by FRAP 

In a previous study 1, we fit fluorescence recovery after photobleaching (FRAP) data to an 

exponential function 

 𝐹(𝑡) = 𝐹(∞)[1 − 𝑒−𝑡/𝜏FR] [S13] 

Here we use the resulting time constant (𝜏FR) to deduce the viscosity inside condensates. 

According to Soumpasis 2, the half-time, 𝜏1/2 = (ln 2)𝜏FR, and the radius, 𝑟B, of the bleached 

region, can be used to find the diffusion constant of the fluorescently labeled species as 

 𝐷 =
0.224𝑟B

2

𝜏1/2
=

0.224𝑟B
2

(ln2)𝜏FR
 [S14] 
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In the FRAP experiments, 𝑟B was kept at 1.39 m; 𝜏FR was found to be 2.1 ± 0.2, 10.6 ± 0.4, 

26.8 ± 1.6, and 105.1 ± 2.3 s, respectively for pK:H, P:H, S:P, and S:L condensates. The 

fluorescently labeled species was H in the first two cases and S in the last cases. The samples 

were otherwise the same as in the present study, with the following exceptions. The pK and H 

concentrations in the pK:H FRAP samples were 50 M instead of the 100 M of the present 

work; the L concentration in the S:L FRAP samples were 2000 M instead of the 300 M of the 

present work. The much higher L concentration makes the condensates denser and hence more 

viscous. Thus the FRAP-derived viscosity for the S:L condensates should be somewhat higher 

than the corresponding OT-derived value. 

To find the viscosity in condensates, we compare 𝐷 calculated from 𝜏FR using Eq [S14] to 

the diffusion constant, 𝐷0, obtained for H or S determined in water. The viscosity of the 

condensates is 

 𝜂 =
𝐷0𝜂w
𝐷

=
(ln 2)𝐷0𝜂w𝜏FR

0.224𝑟B
2  [S15] 

where 𝜂w = 8.9  10-4 Pa s is the viscosity of water at 25 C. For H, 𝐷0 for a polymer fraction 

with molecular weight around 18 kD (as in our samples) was approximately 60 m2/s at 20 C 3. 

Using the Stokes-Einstein relation and the viscosities of water, 𝐷0 for H at 25 C can be found to 

be 69 m2/s. For S in water, we use a scaling relation between 𝐷0 (in m2/s at 20 C) and 

molecular weight (𝑀, in Dalton), 104/𝐷0 = 4.0𝑀1/3 − 6.8, derived for globular proteins 4, 

along with 𝑀 = 42849 Dalton to find 𝐷0 = 75 m2/s. The latter translates into 𝐷0 = 87 m2/s at 

25 C. 

 

Shear thickening and thinning in droplet shape recovery 

In a recent theoretical study 5, the effects of viscoelasticity were investigated by solving the 

fluid-dynamics equations governing the shape recovery of droplets upon deformation. The 

theoretical results for shape recovery dynamics showed that, with a Jeffreys model for linear 

viscoelasticity (Eq [1] in the main text, with 𝜏0 → 0), droplets exhibit shear thickening at short 𝜏1 

(shear relaxation time) but shear thinning at long 𝜏1. Qualitatively, this is the characteristic 

behavior of associative polymers and also exactly what we observed on the four types of 

macromolecular droplets, with S:P and S:L as short-𝜏1 examples whereas pK:H and P:H as long-

𝜏1 examples (Fig. 4d). The qualitative agreement of the theoretical calculations and experimental 

observations lends strong support to our conclusion that shear relaxation provides the governing 

measure of condensate dynamics, with the shear relaxation time (𝜏1) as a key determinant. 
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Supplementary Fig. 1 Shear relaxation of liquids, solids, and viscoelastic fluids. a A unit-step 

shear strain introduced at time t = 0. b-d Top: the resulting stress inside a viscous liquid, an 

elastic solid, or a Maxwell fluid. Bottom: the corresponding elastic and viscous moduli. All axes 

have a linear scale. 
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Supplementary Fig. 2 Images of trapped beads at the center or poles of a droplet before 

measurements. a Set up for measuring viscoelasticity. This experiment was repeated on 3 to 4 

different droplets; for each droplet, measurements were carried at 9 to 10 oscillation frequencies. 

b Set up for measuring interfacial tension. This experiment was repeated on 10 to 13 different 

droplets. 
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Supplementary Fig. 3 Active-passive calibration, demonstrating that the trap stiffness is 

unchanged inside macromolecular droplets. a Power spectrum of a bead trapped in deionized 

water. The white trace displays the data; the red trace is a fit to the Lorentzian function (Eq [10] 

in Methods), with 𝜔c/2𝜋 = 3273 Hz. b Time traces of the trap position (𝑋t; green) and trapping 

force (𝐹t; black) on the same bead in water. The trapping force was smoothed by moving average 

over a 12.8-ms window. A fit of the force trace to a cosine function of time is shown in red. The 

oscillation frequency (𝜔/2𝜋) was 1 Hz; the amplitude of the trap position was 15 m. The data 

in (a) and (b) together yielded a trap stiffness of 319 pN/m for this particular bead. c Power 

spectrum of a bead trapped inside a pK:H droplet. The white trace displays the data; the red trace 

is a fit to a stretched Lorentzian function (Eq [13] in Methods), with 𝛼 = 1.55 and 𝜔eff/2𝜋 = 6.5 

Hz. d Time traces of the trap position (𝑋t; green) and trapping force (𝐹t; black) on the same bead 

inside the pK:H droplet. The trapping force was smoothed by moving average over a 64-ms 

window. A fit of the force trace to a cosine function of time is shown in red. The oscillation 

frequency was 0.1 Hz; the amplitude of the trap position was 1 m. The data in (c) and (d) 

together yielded a trap stiffness of 300 pN/m. 
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Supplementary Fig. 4 Dependence of the crossover frequency x on 0/1 and 0/1. The value 

of x1 is displayed by color, according to the scale on the right. The pK:H, P:H, S:P, and S:L 

condensates are located on the map according to the measured 0/1 and 0/1; S:P has 0/1 = 0 

and is placed along the abscissa. Red regions have x close to 1/1 whereas blue regions have x 

close to 1/0. Inside the triangular region bordered by green curves, 𝐺′(𝜔) and 𝐺"(𝜔) cross each 

other three times; only the smallest crossover frequency is displayed. 
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Supplementary Fig. 5 Raw data for interfacial tension measurements by stretching droplets. a 

Typical traces of the trap 1 position (Xt1; green) and traps 1 and 2 forces (Ft1 and Ft2; black), one 

set each from pK:H, P:H, S:P, and S:L droplets. The plot for pK:H is the same as displayed in 

Fig. 2d. The force traces were smoothed by moving average over a 64-ms window; linear fits are 

overlaid. The slopes of the linear fits are used in Eq [39] of Methods to obtain 𝜒sys0; this 𝜒sys0 

along with the stiffnesses of the two traps (450 to 750 pN/m) are used in Eq [38] to obtain 𝜒0. b 

Plot of 𝜒sys0 and 𝜒0 from (a) for the four droplets, showing successive increases from pK:H to 

P:H to S:P to S:L. 
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Supplementary Fig. 6 Rupture force of a pK:H droplet. The trap 1 force was smoothed by 

moving average over a 64-ms window. For this particular droplet, the rupture force was 367.9 

pN, corresponding to an interfacial tension of 53.2 pN/m according to Eq [43] in Methods. 
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