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THE BIGGER PICTURE Deep neural networks (DNNs) are often presented as ‘‘the best model’’ of human
perception, achieving or even exceeding ‘‘human-level performance.’’ However, it remains difficult to
describe what information these DNNs process from their inputs to produce their decisions. In naturalistic
images, multiple cues can lead to the same decision. For example, a DNN can identify Peter’s face from his
darker eyebrows or high cheekbones. However, a human knowing Peter could identify his same face with
similar accuracy, but using different features (e.g. his chin or hairstyle). Decision accuracy thus only tells the
visible part of the story. The hidden part is the specific information processed to decide. To address this, we
compared DNNs that predicted human face identity decisions to varying faces generated with a computer
graphics program.With such controlled stimuli, we revealed the hidden part of the specific face information
that caused the same behavioral decisions in humans and DNNs.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Deep neural networks (DNNs) can resolve real-world categorization tasks with apparent human-level perfor-
mance. However, true equivalence of behavioral performance between humans and their DNN models re-
quires that their internal mechanisms process equivalent features of the stimulus. To develop such feature
equivalence, our methodology leveraged an interpretable and experimentally controlled generative model
of the stimuli (realistic three-dimensional textured faces). Humans rated the similarity of randomly generated
faces to four familiar identities. We predicted these similarity ratings from the activations of five DNNs trained
with different optimization objectives. Using information theoretic redundancy, reverse correlation, and the
testing of generalization gradients, we show that DNN predictions of human behavior improve because their
shape and texture features overlapwith those that subsume human behavior. Thus, wemust equate the func-
tional features that subsume the behavioral performances of the brain and its models before comparing
where, when, and how these features are processed.
INTRODUCTION

Visual categorization is the pervasive process that transforms

retinal input into a representation that is used for higher-level

cognition, such as for memory, language, reasoning, and deci-

sion. For example, to guide adaptive behaviors we routinely

categorize faces as being relatively happy, aged, or familiar,
This is an open access article und
using different visual features. A long-standing challenge in the

field of cognitive science is therefore to understand the catego-

rization function, which selectively uses stimulus features to

enable flexible behavior.1–3

From a computational standpoint, this challenge is often

framed as understanding the encoding function4 that

maps high-dimensional, highly variable input images to the
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lower-dimensional representational space of features that serve

behavior. Deep neural networks (DNNs) have recently become

the model of choice to implement this encoding function. Two

key properties justify popularity of DNNs: first, they can solve

complex, end-to-end (e.g., image-to-behavior) tasks by gradu-

ally compressing real-world images over their hierarchical layers

into highly informative lower-dimensional representations. Sec-

ond, evidence suggests that the activations of DNN models

share certain similarities with the sensory hierarchies in the brain,

strengthening their plausibility.5–10 Such findings underlie the

surge of renewed research at the intersection between compu-

tational models, neuroscience, and cognitive science.11

However, there is ample andmounting evidence that DNNs do

not yet categorize like humans. Arguably, the most striking evi-

dence comes from adversarial examples, whereby a change in

the stimulus imperceptible to humans can counter-intuitively

change its categorization in a DNN12 and vice versa.13 Even

deceptively simple visual discrimination tasks reveal clear incon-

sistencies in the comparison between humans and state-of-the-

art models.14 Furthermore, when tested with photos of everyday

objects taken from unusual perspectives, DNNs trained on com-

mon databases of naturalistic images decrease in test-set per-

formance in ways humans do not.15 In sum, although DNNs

can achieve human-like performance on some defined tasks,

they often do so via different mechanisms that process stimulus

features different from those of humans.16,17

These results suggest that successful predictions of human

behavioral (or neural) responses with DNN models are not suffi-

cient to fully evaluate their similarity, a classic argument on the

shortcomings of similarity in cognitive science.18,19 In fact, we

already know that similar behaviors in a task can originate from

two human participants processing different features.20 Gener-

alizing to the comparison of a human and their DNN model,

consider the example whereby both categorize a given picture

as a horse. Should we conclude that they processed the same

features? Not if the DNN learned to use the incidental horse-spe-

cific watermarks from the image database.21 This simple

example illustrates both the general importance of attributing

behavior to the processing of specific features, and the long-

standing challenge of doing so, especially given the dense and

unknown correlative structure of real-world stimuli.22 From an in-

formation-processing standpoint, we should know what stim-

ulus information (i.e., features) the brain and its DNNmodels pro-

cess, before comparing where, when, and how they do so.23,24

Otherwise, we risk studying the processing of different features

without being aware of the problem (cf. watermark example

above). Thus, to realize the potential of DNNs as information-

processing models of human cognition,25 we need to first take

a step back and demonstrate that similar behavior in a task is

grounded in the same stimulus features—i.e., more specifically,

in similar functional features: those stimulus features that influ-

ence the behavioral output of the considered system.1 When

such functional feature equivalence is established, we can

meaningfully compare where, when, and how the processing

of these same functional features is reduced with equivalent

(or different) algorithmic-implementation-level mechanisms in

humans and their models.

To develop such equivalence of functional features, we explic-

itlymodeled stimulus informationwith an interpretable generative
2 Patterns 2, 100348, October 8, 2021
model of faces (GMF).26 The GMF allows parametric experi-

mental control over complex realistic face stimuli in terms of their

three-dimensional (3D) shape and two-dimensional (2D) RGB

texture. As illustrated in Figure 1, a candidate DNNmodel is typi-

cally evaluated on how it predicts human responses, by

computing the bivariate relationship between human responses

and DNN predictions. Here, we further constrained this evalua-

tion by relating human behavioral responses and their DNN pre-

dictions to the same set of experimentally controlled GMF fea-

tures. Conceptually, this is represented as the triple intersection

in Figure 1, where the pairwise intersections <GMF features; hu-

man> and <GMF features; DNN predictions> comprise the func-

tional face features that subsume human responses and their

DNN models. The triple intersection further tests whether the

same responses in the two systems arise from the same face fea-

tures, on the same trials.We then compared how each candidate

DNN model represents these face features to predict human

behavior and reconstructed the internal face representations of

humans and their DNNmodels with reverse correlation.27 Lastly,

and importantly, we used our generative model to compare the

generalization gradients of humans and DNNs to typical out-of-

distribution stimuli (i.e., generalizations to changes of face

pose, age, and sex to create siblings with family resemblance).

With this approach, we rankedmodels not only according to their

surface similarity of predictedhumanbehavior but also according

to the deeper similarity of the underlying functional features that

subsume behavioral performance.

RESULTS

Weused a generative model that parameterizes faces in terms of

their 3D shape and 2DRGB texture (GMF; see ‘‘generativemodel

of 3D faces’’ in experimental procedures) to control the synthesis

of �3 million 2D face images that varied in identity, sex, age,

ethnicity, emotion, lighting, and viewing angles (see Figure S1

for a demonstration; see ‘‘networks, training set’’ in experimental

procedures). We used these images to train five DNNs that

shared a common ResNet31 encoder architecture but differed

in their optimization objectives. The five DNNs were as follows

(see Figure 2 for their schematic architectures and perfor-

mances): (1) a triplet loss network32 that learned to place images

of the same (versus different) identity at short (versus long)

Euclidean distances on its final layer; (2) a classification

network33 that learned to classify 2,004 identities (2,000 random

faces, plus four faces familiar to our participants as work col-

leagues, ‘‘ClassID’’); (3) another classification network that

learned to classify 2,004 identities plus six other factors of varia-

tion of the generative model (‘‘ClassMulti’’); (4) an autoencoder

(AE)34 that learned to reconstruct all input images; and (5) a

view-invariant autoencoder (viAE)35 that learned to reconstruct

the frontal face image of each identity irrespective of the pose

of the input.

We used these five DNNs to model the behavior of each of

n = 14 individual human participants who resolved a face famil-

iarity experiment (see ‘‘participants’’ in experimental procedures

and Zhan et al.26) In this experiment, participants were asked to

rate, from memory, the similarity of random face stimuli gener-

ated by the GMF (Figure 2A) to four familiar identities (see ‘‘ex-

periments’’ in experimental procedures and Zhan et al.26) On



Figure 1. Trivariate relationship to under-

stand the functional features of DNN models

that predict human behavior

In general, complex visual inputs are processed in

an unknown way in the brain and its DNN models to

produce behavior. DNNs (schematized as layers of

neurons) can predict human behavior and can in

principle be used to facilitate our understanding of

the inaccessible information-processing mecha-

nisms of the brain. However, nonlinear trans-

formations of information in DNNs complicate our

understanding, in turn limiting our understanding of

the mechanistic causes of DNN predictions (and

human behavior). To address this issue of inter-

pretability, we used a generative model of realistic

faces (GMF) to control the high-level stimulus in-

formation (3D shape and RGB texture). The Venn

diagram illustrates the logic of our approach. Hu-

man behavior and its DNN model predictions are

both referred to in the same stimulus model: (1) the

GMF features that underlie human behavior; (2) the

GMF features that underlie DNN predictions of hu-

man behavior. The question then becomes: are

these GMF features equivalent? That is, do the

two intersections intersect?28 We quantify GMF

feature overlap with information theoretic redun-

dancy29,30— i.e., as the information that GMF fea-

tures and the activations of the embedded layers of

DNN models provide about human behavior. In

doing so, we assess the functional feature equiva-

lence of individual human participants and their

DNN models in relation to a specific model of the

stimulus and behavioral task. See Figure 2 for a

detailed overview of the analysis pipeline. Our re-

sults develop why such feature equivalence en-

hances our understanding of the information-pro-

cessing mechanisms underlying behavior in the

human brain and its DNN models.
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each of 1,800 trials, each participant was presented six random

faces. They were asked to first choose the face most similar to a

target identity and then rate this similarity on a 6-point scale.

Importantly for our modeling, we propagated these 2D images

through the five DNNs and then used the activations of their

respective layer of maximum compression (i.e., the ‘‘embedding

layer’’) for the subsequent analyses detailed below.

To assess functional feature equivalence between human par-

ticipants and the DNNmodels, we proceeded in four stages (see

Figure 2 for an overview of our pipeline). First, we used the rep-

resentations of the experimental stimuli on the DNNs’ embed-

ding layers to predict the corresponding behavior of humans in

the experiment (Figures 2C and 2D). We did so using linear

models to restrict the assessment to explicit representations.4

We call this first stage of seeking to equate human and DNN

behavior ‘‘forward modeling.’’ In a second stage, we analyzed

the face features represented on the DNN embedding layers

that predict human behavior. In a third stage (Figures 2E and

2F), we used reverse correlation to reconstruct and compare

these categorization features between humans and their DNN

models. Lastly, in a fourth stage (Figure 2G), we compared the

generalization performances of humans and DNNs under new

testing conditions of face viewing angles, sex, or age that did

not appear in the data used to fit the forward models.
On previewing the results of the DNN models tested, the viAE

afforded the best predictions of human behavior. These could be

attributed to the shape features of the GMF, which also sub-

sumed human behavior. That is, the surface similarity of behav-

ioral performance was grounded in a deeper similarity of func-

tional face features. Of the DNN models tested, the viAE model

was therefore the most functionally similar to humans.

Forward modeling of human behavior using DNN
activations
To evaluate how accurately the compressed stimulus represen-

tations on the DNNs’ embedding layers predicted the face sim-

ilarity ratings (on a 6-point rating scale, see Figure S2) of human

participants, we activated their embedding layers with the 1,800

2D face stimuli rated in terms of similarity to each target identity

in the human experiment. We then used these activations to lin-

early predict the corresponding human ratings in a nested cross-

validation37 (see ‘‘forward models’’ in experimental procedures).

We compared DNN performances with three additional bench-

mark models that also linearly predicted human behavior. The

first model used on each trial the objective 3D shape parameters

of the GMF that define the identity of each face stimulus (rather

than the face image); the second one used instead the GMF

texture parameters (cf. Figures 1 and 2, and 3D shape and 2D
Patterns 2, 100348, October 8, 2021 3



Figure 2. Study overview

We seek to establish the GMF feature equivalence between humans and their DNN models.

(A) We used the GMF to synthesize random faces (3D shape and RGB texture).

(B) We asked humans to rate the similarity of these synthesized faces to the faces of four familiar colleagues (symbolized by purple, light-blue, gray, and

olive dots).

(C) Linear multivariate forwardmodels predicted human responses (denoted by themultiplication with linear weightsB) fromGMF shape and texture features and

DNN activations (DNN architectures are schematizedwith white circles symbolizing neurons, embedding layers are colored; scatterplots for Triplet network show

two-dimensional t-stochastic neighborhood embeddings36 of the embedding layer when activated with 81 different combinations of viewing and lighting angles

per colleague). As a baseline model, we also included the first 512 components of a principal components analysis on the pixel images (‘‘pixelPCA,’’ not

shown here).

(D) We then evaluated shared information between human behavior, DNN predictions from embedded activations, and GMF features using partial information

decomposition.36 Here, the Venn diagram shows the mutual information (MI) between human responses and their predictions based on the GMF shape features

(blue circle) or based on the Triplet model (yellow circle). The overlapping region denotes redundancy (R).

(E–G) We performed reverse correlation (E) to reconstruct internal templates (F) of the familiar colleague faces from human and model predicted behavior. Lastly,

we amplified either the task-relevant versus task-irrelevant features of the four colleagues (identified in E) and rendered these faces in five different generalization

conditions (G) that humans and DNNs had to identify.

See also Figure S1.
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RGB texture). Finally, the third model was a simpler architecture

that linearly predicted human behavior from the first 512 compo-

nents of a principal components analysis (PCA) of all stimulus im-

ages (‘‘pixelPCA’’).

For each model, we evaluated predictions of human behavior

with two information theoretic quantities (Figures 3A and 3B).

With mutual information (MI), we quantified the strength of
4 Patterns 2, 100348, October 8, 2021
the relationship between the observed human and DNN pre-

dicted similarity ratings (Figures 3A and 3B, y axes). Impor-

tantly, we also used redundancy (from partial information

decomposition)29 to evaluate the triple set intersection of Fig-

ure 1, which quantifies the overlap between predictions from

DNN models and predictions from GMF shape parameter

models (Figure 3B, x axes). This overlap indicates the extent



Figure 3. Relationship among GMF features, DNN activations, and observed behavior

(A) Mutual information (MI) between human behavior and test-set predictions from GMF features.

(B) y axis: MI between human behavior and test-set DNN predictions; x axis: redundant information about human behavior that is shared between DNN pre-

dictions and GMF shape feature predictions. These plots show that DNN prediction performance of human behavior increases on the y axis when the DNN

embedding layers represent the same shape features as humans. Each data point in (A) and (B) represents the combination of one test set, one participant, and

one familiar identity. Overlaid lines reflect the 95% (bold) and 50% (light) highest posterior density intervals (HPDIs) of the corresponding main effects of predictor

spaces from Bayesian linear models fitted to the MI and redundancy values.

(C) Fractions of MI and redundancy data points exceeding noise threshold (95th percentile of MI and redundancy distributions obtained from trial-shuffled data).

(D) Comparisons of the posterior distributions of the main effects for all predictor spaces from Bayesian linear modeling of the raw performances. For each pair in

the matrices, the grayscale color map shows the fraction of samples of the predictor space color coded on the y axis that is larger than the predictor space color

coded on the x axis (testing a hypothesis).

Colors in (C) and (D) correspond to those in (A) and (B). See also Figures S2–S8 and S21.
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to which the DNN embedding layers and the GMF shape pa-

rameters both predict the same human behaviors on the

same trials. With Bayesian linear models,38 we then statistically

compared the bivariate relationships (i.e., MI) and overlaps (i.e.,

redundancy) of different GMF parameters and DNN embedding

layers with each other.
Of all models, the viAE best predicted human behavior (see

Figure 3B), closely followed by the AE, with a performance level

similar to that of the GMF shape parameters (fraction of samples

of posterior in favor of viAE over shape: fh1 = 0.7536; AE > shape:

fh1 = 0.6457; fh1 = 0 for all other networks versus shape). Surpris-

ingly, the simple pixelPCA came close to the complex AEs (with
Patterns 2, 100348, October 8, 2021 5



Figure 4. DNN representations of face-shape features for the forward linear models of human behavior

(A) Schema of the analyses.

(B) Legend for 3D color codes in (C) and (H).

(C) Linear readout of face-shape features from the embedding layers of the five DNNs, where readout fidelity of GMF parameters is plotted per face vertex as the

mean absolute error (MAE, averaged across a large set of test faces). Higher fidelity (lower MAE) of (vi)AE activations (compared with other DNNs) shows they

better represent GMF shape features.

(legend continued on next page)
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the AE only narrowly beating pixelPCA, fh1 = 0.8582, Figure 3B).

Critically, as model predictions increased in accuracy, they also

increased in overlap (i.e., redundancy) with the GMF shape pa-

rameters (Figure 3B), implying that single-trial behavior across

systems (i.e., humans, viAE, and pixelPCA) could be attributed

to these same specific parameters of 3D face shape—i.e., under

these conditions they used the same functional face features to

achieve the same behaviors.

Furthermore, we validated this overlap in shape parameters

by showing that a model using jointly (vi)AE activations and

GMF shape parameters (versus (vi)AE activations on their

own) did not improve prediction of human behavior (see Fig-

ures S4 and S8 for additional candidate models, including

combinations of the predictor spaces reported here, weighted

and unweighted Euclidean distances, variational AEs, and de-

cision neuron activities; see Figure S5 for the same compari-

son using Kendall’s tau as an evaluation metric; see Figures

S6 and S7 for a model comparison on the across-participant

average). Note that the performances of these models could

not be reached when predicting the behavior of participants

with the behavior of other participants (see Figures S3–S5).

This means that participants behaved in systematically idio-

syncratic ways.

In sum, in our first stage to assess functional equivalence be-

tween humans and their DNN models, we built forward models

that predicted human behavior from the DNNs’ embedding

layers. The embedding layer of the (vi)AE won. We further

showed that better predictions of human behavior from the

embedding layers of DNNs were caused by their increased rep-

resentation of the 3D face features that predict human behavior.

However, a simple PCA of the pixel images performed compet-

itively. At this stage, we know that better predictions of human

behavior are caused by better representations of the 3D shape

features that humans use for behavior. Next, we characterized

what these 3D features are.

Embedded face-shape features that predict human
behavior
The viAE learned to represent on its embedding layer, from 2D

images, the face-shape features that provide the best per-trial

prediction of human behavior. Here, we establish: (1) how the

DNNs represent these face-shape features on their embedding

layers; and (2) how each feature impacts behavioral prediction

in the forward models discussed in stage 1 above. We did not
(D) Correlation matrix of error patterns across DNNs. Colored dots on x and y axe

from (C) across models reveals a high similarity of errors across models: vertices

viAE activity.

(E) Simulating DNN predictions of observed human behavior with GMF shape fe

(SRFs) that predict human behavior fromGMF shape features. Second, we estima

estimate BSN
, the SRFs that predict DNN predictions of human behavior from GM

(F) Aggregated SRF results from all participants and target familiar colleagues. x a

simulated predictions; y axis: correlations between the human SRFs with DNN S

comes closest to this location. Each dot is one test set of one participant in one ta

(light) HPDIs of main effects of feature spaces from Bayesian linear models of th

(G) Comparisons of the posterior distributions of main effects of the models from

(H) Weight profiles of forward models (SRFs) plotted on 3D scatter of vertices. Fro

schematic in A, and equations in E for explanations) and weights of the direct GM

participant with the lowest average difference from the six pooled group median

Color coding in (D), (F), and (G) is the same.
analyze the GMF texture features further because they could

not predict human behavior (see Figure 3).

Face-shape features represented on the embedding

layers of DNNs

To reveal these face-shape features, we built linear decoding

models. These used the embedding layer activations to predict

the positions of individual 3D vertices (see ‘‘decoding of shape

information from embedding layers’’ in experimental proced-

ures). We then evaluated the fidelity of their reconstructions

with the Euclidean distance between the linearly predicted and

the objective 3D face vertex positions. Fidelity increased from

the Triplet to the two classifier networks, to the (vi)AE (which

had the lowest error, see Figure 4C). The pixelPCA achieved a

similarly low error, and all models shared a common type of

reconstruction errors (Figure 4D) which misrepresented the

depth of the peripheral and nasal face regions.

Patterns of face-shape features that predict behavior in

the DNN forward models

To better understand the shape features that the aforementioned

forward models used to predict human behavior, we examined

their linear weights (see ‘‘forward models’’ in experimental pro-

cedures). The forward GMF shape model weights directly relate

a 3D shape space to human behavior. Thus, their weights form

an interpretable face-space pattern that modulates behavior—

i.e., a ‘‘shape receptive field’’ (SRF), see Figure 4H (rightmost

column). In contrast, the forward models based on the DNN

relate (i.e., linearly weigh) DNN activations, not GMF shape pa-

rameters, to human behavior. Thus, we used an indirect

approach to interpret these weights. We built auxiliary forward

models that simulated (i.e., linearly re-predicted, Figure 4E) the

DNN predictions of human behavior, but this time using the

GMF shape parameters instead of the embedding layers. This

produced interpretable SRFs (Figure 4H) with which we could

therefore understandwhich shape features are (or are not) repre-

sented on the DNN embedding layers to predict human

behavior. Specifically, we reasoned that DNN activations and

GMF features would similarly predict behavior if: (1) both shared

the same SRF; and (2) predictions from DNN activations were

similar to their simulations based on GMF features. Our analyses

revealed that the (vi)AE best satisfied these two conditions (Fig-

ures 4F and 4G). PixelPCA features were again close to the per-

formance of the best DNN models (Figure 4F).

In this second stage to assess functional feature equivalence,

we identified, at the level of individual 3D face vertices, the shape
s represent each DNNmodel (see F for a legend). Correlating the MAE patterns

that are difficult to decode from Triplet activity are also difficult to decode from

atures using re-predictions. First, we estimate BS, the shape receptive fields

teBN, the weights that predict human behavior fromDNN activations. Third, we

F shape features.

xis: correlations between original DNN predictions of human behavior and the

RFs. The ideal DNN model should be located in the top right corner. The (vi)AE

rget familiar colleague condition. Overlaid crosses denote 95% (bold) and 50%

e raw results.

Bayesian linear modeling of the results in (F).

m the left, simulated shape weights of each DNN forward model (see main text,

F shape forward model of human responses. Plots show results from a typical

s in (F).

Patterns 2, 100348, October 8, 2021 7
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features that DNNs represent to predict (cf. ‘‘forwardmodeling of

human behavior using DNN activations’’) human behavior. Of all

five DNNs, we found that the (vi)AE represents face-shape

vertices most faithfully, leading to the most accurate predictions

of human behavior. However, the simpler pixelPCA used appar-

ently very similar features.

Decoding the shape features with reverse correlation
So far, we have assessed the functional equivalence between

human behavior and DNN-based forward models in two stages:

we have quantified to what degree the DNNmodel predictions of

human behavior are attributable to GMF face-shape parameters

(in stage 1), and we have characterized how the DNN models

used specific patterns of face-shape parameters to predict

behavior (in stage 2). In this third stage, we use the behavior

observed in humans and predicted by DNN models to recon-

struct, visualize, and compare the actual 3D shape features of

the target faces represented in both humans and their DNN

models.

To run the human experiments26 with the DNN models, we

proceeded in three steps (see‘‘reverse correlation’’ in experi-

mental procedures). First, we used the forward models

described in stage 1 to predict human behavior in response to

all face stimuli of the human experiment (6 3 1,800 = 10,800

face stimuli per familiar target face).26 On each trial, the forward

models ‘‘chose’’ the face stimulus with the highest predicted rat-

ing from an array of 6 (see Figure S3). This resulted in 1,800 cho-

sen faces and their corresponding similarity rating predictions.

Second, for each model and participant, we regressed (mass

univariately) the GMF parameters of the chosen faces on the cor-

responding ratings to derive a slope and intercept per GMF

shape and texture parameter. Third, we multiplied these slopes

by individual ‘‘amplification values’’ that maximized the behav-

ioral responses (Figure 4B). The results were faces whose func-

tional features elicited a high similarity rating in the DNN models

(Figure 4C), analogous to faces that elicited high similarity ratings

in each human participant, as in the original study.26

We then compared the functional face features of human par-

ticipants and their DNN models (Figure 5D, left). We also

computed how veridical these human and DNN features were

to the ground truth faces of familiar colleagues (Figure 5D, right).

How human-like are DNN features?

The viAE had the most human-like features, with the lowest

mean absolute error (MAE, Figure 5D, left, y axis; comparison

with second best DNNmodel, AE > viAE: fh1 = 0.9943) and a cor-

relation with human features similar to that of the AE (Figure 5D,

left, x axis; viAE > AE: fh1 = 0.8489). All DNN models had a lower

MAE than the simple pixelPCAmodel (all DNNs < pixelPCA: fh1 >

0.9492), but only the (vi)AE had a better correlation with human

features (AE and viAE > pixelPCA: both fh1 > 0.9729).

How veridical are DNN and human features?

viAE features were closest to the veridicality of human features to

the ground truth 3D faces, with the lowest MAE (Figure 5D, right,

y axis; second best DNN model AE > viAE: fh1 = 0.9558; viAE >

human: fh1 = 0.9996) and a correlation comparable with that of

the AE. All DNN models had a lower MAE than the simple pix-

elPCA model (all DNNs < pixelPCA: all fh1 > 0.9732), but only

the (vi)AE had a better correlation with the ground truth face iden-

tity features (AE and viAE > pixelPCA: both fh1 > 0.8842).
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In sum, this analysis compared the internal representations of

the target faces in human participants and their DNN models,

and all with the ground truth 3D shapes of the target identities.

These comparisons, supported by intuitive visualizations, re-

vealed that the viAE had internal feature representations that

best matched the internal representations of humans.

Generalization testing
A crucial test of models of human behavior is their generalization

to conditions that differ from the distribution of the training data.

We performed such out-of-distribution testing in five different

tasks,26 using the GMF to change the viewing angle, the age

(to 80 years), and the sex (to the opposite sex) of the target

familiar face (Figure 6C). Importantly, we did so while also selec-

tively amplifying functional face features that were expected

(Figure 6A) or not expected (Figure 6B) to cause the identification

of each familiar face (based on reverse correlation, see ‘‘experi-

ments—generalization testing’’in experimental procedures;

Zhan et al.26). Using these new stimuli, we compared the gener-

alization performance of a new group of n =12 human validators

and the DNN models. On each trial, validators responded by se-

lecting the familiar identity that wasmost similar to the face stim-

ulus (or used a fifth option when the stimulus was not similar to

any familiar face). For each face stimulus, we predicted the hu-

man similarity ratings using the forward models fitted to each

of the 14 participants and four familiar faces as described in

stage 1 above, and chose the faces that yielded the highest pre-

dicted rating. We then compared the absolute error of the model

choice accuracies with the human choice accuracies.

The viAE best matched human identification performance,

which both increased when the functional features were ampli-

fied in the stimulus (Figures 6D–6F). The viAE had only a slightly

smaller error compared with the AE for the frontal view (viAE <

AE: fh1 = 0.8958), but a better view invariance with a clearly

smaller error for the �30� (viAE < AE: fh1 = 0.9995) and +30�

views (viAE < AE: fh1 = 0.9696). Only the GMF shape feature

model came close to the (vi)AE (and was better than both AEs

at �30�, both fh1 = 1, and +30�, both fh1 > 0.7656). However,

recall that the GMF is a non-image-computable ‘‘ground truth’’

3D model whose input is not affected by 2D image projection.

Critically, the simple pixelPCA model did not generalize well to

viewpoint changes (viAE and AE < pixelPCA: fh1 = 1) except in

the age generalization task, where it had a slightly lower error

than the second best viAE (pixelPCA < viAE: fh1 = 0.9940). In

the opposite sex task, the viAE again had the lowest error

(viAE < second best AE: fh1 = 1).

Whereas previous analyses suggested that a model as simple

as the pixelPCA could explain human responses, more compre-

hensive tests of the typical generalization gradients of face iden-

tity demonstrated that such a conclusion was unwarranted.

Thus, rigorous comparative tests of typical generalization gradi-

ents are required to properly assess human visual categorization

in relation to their DNN models.

DISCUSSION

In this study, we sought to address the long-standing problem of

interpreting the information processing performed by DNN

models so as to ground their predictions of human behavior in



Figure 5. Internal templates reconstructed

from human behavior and its model predic-

tions

(A) Schema of analysis. We predicted human

behavior from GMF features (1.) and DNN activa-

tions (2.). With mass-univariate regression, we pre-

dicted each individual GMF feature from human

behavior and its DNN predictions (3.).

(B) Amplification tuning curves. We presented the

reverse correlated templates amplified at different

levels to each model. Solid lines denote pooled

median across participants and colleagues, shaded

regions denote 95% (frequentist) confidence in-

tervals. Black lines at the top denote 95% (bold) and

50% (light) highest density estimates of human

amplification values. The linear GMF shape and

texture forward models predicted monotonically

increasing responses for higher amplification levels.

Other models peaked at a given amplification level.

See Figure S9 for amplification tuning responses of

a broader range of models.

(C) Comparison of rendered faces. Panels show

ground truth face of one exemplary target familiar

colleague captured with a face scanner (top left) and

reconstructions of the face features from human

behavior and its DNN predictions for one typical

participant (i.e., closest to the pooled group me-

dians shown in D). Figure S14 presents the three

other familiar colleagues.

(D) Evaluation of correspondence of humans and

model templates (‘‘humanness,’’ left) and the rela-

tion of templates to ground truth faces (‘‘veridi-

cality,’’ right). The x axis shows Pearson correlation

of the 3D features projected onto a single inward-

outward direction; the y axis shows the mean ab-

solute error (MAE) of the 3D features. Each dot

corresponds to a single participant in a specific

target familiar colleague condition. Crosses denote

95% (bold) and 50% (light) HPDIs for each system

from Bayesian linear modeling of the results.

(E) Comparison of main effects of systems in

Bayesian linear models of the results in (D).

See also Figures S9–S14 and S21.

ll
OPEN ACCESSArticle
interpretable functional stimulus features. Key to achieving this

was our use of a generativemodel to control stimulus information

(3D face shape and RGB texture). We trained five DNN models

with different objectives, following which we activated the

DNNs’ embedding layers with the face stimuli of a human exper-

iment (in which participants were asked, based on their memory,

to assess the similarity of random faces to the faces of four

familiar colleagues). We then used these activations to fit forward

models that predicted human behavior. Of the testedmodels, (vi)

AE embeddings best predicted human behavior, because these

embeddings represented the human-relevant 3D shape of

familiar faces with the highest fidelity. Next, we reconstructed

the face features represented in the embeddings that impact

the behavioral predictions. The 3D reconstructions demon-

strated that the viAE models and humans used the most similar

functional features for behavior. Lastly, we found that the viAE
best matched human generalization performance in a range of

five different out-of-distribution changes of the stimuli (testing

several viewing angles, older age, and opposite sex versions of

the four colleagues).

Together, our approach (cf. Figure 1) and analyses suggests a

more stringent test of functional feature equivalence between

human responses and their DNN models beyond the simple

equivalence of responses to uncontrolled naturalistic stimuli.

Such deeper functional features equivalence enables the mech-

anistic interpretations of the processing of these same features

across the layers of the human brain and its DNN models. How-

ever, as shown in psychophysics, exhaustively testing the gener-

alization gradients of human visual categorization is difficult

because it requires not onlymodeling behavioral (or neuronal) re-

sponses but also the real-world (and artificial) dimensions of var-

iations of the stimulus categories under consideration.
Patterns 2, 100348, October 8, 2021 9



Figure 6. Generalization testing

(A) Example stimuli for the task-relevant condition in the 0� viewing angle condition of one familiar colleague. Using a group model, each face feature of each

familiar identity was classified as being either task relevant or task irrelevant for human identification. Versions of each colleague were then created whereby the

task-relevant (versus -irrelevant) features were amplified at different levels, while the remaining features were defined as those of the average face.

(B) Example stimuli for the task-irrelevant condition in the 0� viewing angle condition of the same target familiar identity as in (A).

(C) Renderings of the task-relevant face amplified at a level of 1.3 for five different generalization conditions.

(D) Difference of choice accuracy between the task-relevant and -irrelevant conditions. Positive values denote a higher accuracy when task-relevant features

were amplified.

(E) Posterior distributions of main effects of feature spaceswhenmodeling absolute error (relative to human behavior) with Bayesian linearmodels. Gray bandings

denote density estimates of thresholds separating the five possible different error values (human accuracies are averaged across five ratings of the same item).

(F) Comparison of the posterior distributions in (E). For each pair in thematrices, the color gradient reflects the fraction of samples of the feature space color coded

on the y axis > the predictor space color coded on the x axis.

See also Figures S15–S21.
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Why focus on functional equivalence?
A key finding that motivates usage of DNNs as models of the hu-

man brain is that their activations predict behavioral and neural re-

sponses to novel real-world stimuli better than any other model.

However, it remains unclear whether these surface similarities be-

tween humans and DNNs imply a deeper similarity of the under-

lying information-processing mechanisms.39 Real-world stimuli

comprise multiple unknown correlations of undefined features.

It is generally unknownwhich of these features DNNs use, leading

to unpredictable out-of-distribution generalizations. Conse-

quently, it is difficult to assess the featural competence of the

model that predicts the behavioral or neural responses. Surpris-

ingly simple feature alternatives (‘‘feature fallacy’’)40,41 could

explain such surface similarities.21 Relatedly, extensive testing

of the generalization gradients of humans and DNNs is required

to reveal algorithmic intricacies that would otherwise remain hid-

den, leading to failure with out-of-distribution exemplars.

Marr’s framework offers a solution to these problems:23 we

should constrain the similarity of complex information-processing

mechanisms at the abstract computational level of their functional

goals of seeking specific information to resolve a task. Our meth-

odology sought to assess whether the human participants and

their DNN models processed similar functional face features in a

face identity task where features are defined within a generative

model of the stimulus.Once functional equivalence is established,

we can turn to the algorithmic-implementation levels of Marr’s

analysis. That is, we can seek to understand where, when, and

how detailed mechanisms of the occipitoventral hierarchy, and

suitably constrained DNN architectures (e.g., with two communi-

cating hemispheres, properties of contralateral followed by bilat-

eral representations, and so forth) process the same functional

features of face identity, using a model of the stimulus.42

Such algorithmic-implementation-level explorations could then

consider estimates of the algorithmic complexity of the task43 to

regularize explanations of model predictions to be as simple as

possible.16,44–46 We see the deeper functional equivalence of the

information processed as a necessary prerequisite to surface

comparisons of network activations or behaviors in a task.

Hypothesis-driven research using generative models
The idea of using generative models in psychophysics and vision

research is not new.47–50 It arose from the recognition by synthe-

sis framework,51,52 itself an offspring of Chomsky’s generative

grammars. Explicit experimental hypotheses are directly tied to

the parameterization of stimuli by generative models and vice

versa. For example, we explicitly tested that a parameterization

of faces in termsof their 3DshapeandRGBtexture couldmediate

human andDNNbehavior in the task.26,53 Our study thereby con-

tributes to the debate about the degree to which convolutional

DNNs can make use of shape information in images.33,54–59 In

this context, the exact structure of the information represented

in the human brain remains an empirical question. The veridical

representation implied by computer graphics models53,60,61 is

one hypothesis. Other specific ideas about face, object, and

scene representations must and will be tested with different de-

signs of generative models, including DNNs (e.g., VanRullen

and Reddy,62–64 Bashivan et al.,62–64 Ponce et al.62–64). The ideal

generative model for the encoding function of visual categoriza-

tion would ‘‘simply’’ be the inverse of the function implemented
by the biological networks of the brain. Such an inverse would

provide the control to experiment with each stage of the brain’s

algorithm of the stimulus processing for visual categorizations.

In the absence of such an ideal, we must develop alternative

generative models to test alternative hypotheses of the brain’s

encoding function for categorization. Modern systems such as

generative adversarial networks65 and derivatives of the classical

variational autoencoders (VAEs) such as vector-quantized

VAEs66,67 and nouveau VAEs,68 which can be trained on large,

naturalistic face databases, can synthesize tantalizingly realistic

faces, complete with hair, opening up an interesting avenue for

future research and applications.69–73 However, understanding

and disentangling their latent spaces remains challenging.74,75

viAE wins
Among the tested DNNs and across the multiple tests, the viAE

provided the best face-shape representations to predict human

behavior. With the notable exception of the generalization

testing, the simple nonlinear pixelPCA model came close to

this performance. This speaks to a model of human familiar

face perception whereby the goal of feedforward processing is

a view-invariant but holistic representation of the visual input.

Interestingly, the Triplet, ClassID, and ClassMulti built up to

this performance level (cf. Figures 3, 4, and 5). This suggests

that the latent space learned to reconstruct an entire image of

the input ((vi)AE) is approximated by the latent space learned

when performing multiple stimulus categorizations (recall that

ClassMulti learned all the categorical factors of the GMF),

whereas simpler cost functions (Triplet and ClassID) yielded

less informative latent spaces. Their discriminative goals can

be solved with shortcuts16 relying on a few isolated features,

which are not sufficient to generalize as humans do.76 This aligns

with previous findings that multi-task learning77–79 and genera-

tive models80 enhance robustness against adversarial attacks

and best predict behavior under severe testing.17 In relation to

faces as a broad category, future research could systematically

study the number and combinatorics of categorizations (e.g.,

identity, sex, age, ethnicity, facial expressions) and rendering

factors (e.g., illumination, pose, occlusions) that would be

required to enhance the latent spaces to match (or surpass)

the predictiveness of behavior of the latent space of the viAE,

also across varying levels of familiarity.81

Note that our specific viAE model remained imperfect in its

prediction of human behavior and functional similarity of fea-

tures. Its architecture did not incorporatemanywell-known char-

acteristics of the human visual hierarchy, including temporal,

recurrent9 processing (e.g., with multiple fixations82 due to

foveated and para-foveated image resolution),83 contralateral,

hemispherically split representations of the input, transfer of vi-

sual features across hemispheres,84 and integration in the

ventral pathway,85 among others. An algorithmic-implementa-

tion-level explanation of the functional features learned by the

viAE should be part of future research.

Constraints on the comparison of models with human
behavior
Our modeling explicitly fitted regressions of multivariate

features on unidimensional behavior.4 Our attempts to directly

(parameter-free) extract one-dimensional predictions of human
Patterns 2, 100348, October 8, 2021 11
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behavior from DNNs failed (Figure S4). Whereas models might

exist to solve this problem more efficiently,17,80 an obstacle re-

mains in that the human task is subjective: we do not expect

the behavior of a given participant to perfectly predict that of

another (see Figures S3 and S4, although representations tend

to converge across participants).26,86 Participants can have their

own internal representations of each target colleague,1,86 which

is impossible to predict without considering data from individual

participants. From that perspective, learning an abstracted

feature representation that still allows prediction of individual

behavior is an attractive compromise. We implemented such a

weighting, either directly as a linear combination of GMF features

and DNN activations, or as a linear combination of feature- or

activation-wise distances of stimuli to model representations of

the target identities. For the image-computable models, these

approaches did not lead to strong differences. Arbitrating be-

tween such computational accounts of human categorization

behavior thus remains a question for future research.87–89

The interpretability of DNNs is now an important research

topic. Sophisticated methods exist to visualize the stimulus

features that cause the activation of a network node, such as

deconvolution,90 class activation maps,91 activation maximiza-

tion,92–96 locally linear receptive fields,97 or layer-wise relevance

propagation.21,98,99 Thesemethods usually rely on the noise-free

accessibility of the activations, which is not possible with hu-

mans, making these methods unsuitable to compare humans

with their DNN models. This is a significant hindrance to devel-

oping a human-like artificial intelligence, which requires

resolving the challenge of designing experiments and analyses

that enable inferences about the hidden representations of

both humans and models.100,101

Conclusion
We have developed an example of how we can extend mecha-

nistic interpretations of DNN predictions of human responses,

in which we progress beyond surface predictions to a functional

equivalence of the features that affect behavior. We did so by

controlling complex stimulus features via an interpretable gener-

ative model. The limits of what we can predict about human

behavior may be defined by the limits of current computer vision

models. However, within these limits, the proportion that we can

meaningfully understand is defined by the ever increasing ca-

pacities of interpretable generative models of stimulus mate-

rial.102 Databases of natural images will only take us so far.

Hence, we believe that future research attention should be

distributed on the gamut between discriminative models to do

the tasks, and generative models of the stimulus to understand

what these models do.
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Generative model of 3D faces

The generative model of 3D faces decomposes the shape and texture

components of a database of 357 faces, captured with a 3D face-capture

system,103 to enable their controlled recombination. For this study, two varia-

tions of the database were created: one excluding the faces of two female

target colleagues and another excluding the faces of two male target

colleagues. Each of the two database subsets then consists of a [355 3

4,735 * 3] (N 3 vertices * XYZ) shape matrix S and 5 [355 3 800=2i *

600=2i * 3] (N 3 X=2band * Y=2band * RGB) texture matrices Ti for bands

i = 0, ., 4 of a Gaussian pyramid model.

For each of the two database subsets, the modeling is achieved in two

steps. In the first step, two separate general linear models are used to estimate

the linear parameters of a constant term as well as sex, age, ethnicity (coded

using two dummy variables), and their two- and three-way interactions. This is

done with a [3553 12] designmatrix X describing the predictor values, a [123

4,735 * 3] matrix AS describing the shape coefficients, and [12 3 800=2i *

600=2i * 3] matrices ATi describing the texture coefficients:

S = XAS +ES; (Equation 1)

Ti = XATi +ETi : (Equation 2)

Here, ES [3553 4,735 * 3] and ETi
[3553 800 * 600 * 3] are the model resid-

uals for shape and texture, respectively. AS and ATi are estimated using least-

squares linear regression.

In the second step, the residual components ES and ETi
are then isolated by

removing the linear effects of ethnicity, sex, and age as well as their interac-

tions from S and Ti :Next, singular value decomposition (SVD, usingMATLAB’s

economy-sized decomposition) is performed to orthogonally decompose the

shape and texture residuals:

USSSV
T
S = ES; (Equation 3)

UTi STi V
T
Ti
= ETi : (Equation 4)

The matrices US [4,735 * 33 355] andUTi [800=2
i * 600=2i * 33 355 for each

of i = 0, ., 4 spatial frequency bands] can thus be used to project randomly

sampled shape or texture identity vectors into vertex or pixel space,

respectively.

Any single face can then be considered as a linear combination of two parts:

a basic ‘‘prototype face’’ defined by its factors of sex, age, and ethnicity and a

specific individual variation on that prototype defined by its unique component

weights. Once we know these two parts of the individual face, e.g., by random

sampling, we are free to change one or the other, producing for example the

same individual at a variety of different ages. This can then be rendered to

an observable image with a desired viewing and lighting angle.

Participants

Ratings of random faces

To obtain behavioral data from humans, we recruited seven male and seven

female white Caucasian participants aged 25.86 ± 2.26 years (mean ± SD).

Generalization testing

For a second validation experiment, 12 separate participants (7 white Cauca-

sian female and 1 East Asian females, 5 white Caucasian males aged 28.25 ±

4.11 years [mean ± SD]) were recruited.

In both experiments, all participants had been working at the Institute of

Neuroscience and Psychology at theUniversity of Glasgow for at least 6months

and were thus familiar with the target faces. All participants had normal or

corrected-to-normal vision, without a self-reported history or symptoms of syn-

esthesia, and/or any psychological, psychiatric, or neurological condition that

affects face processing (e.g., depression, autism spectrum disorder, or proso-

pagnosia). They gave written informed consent and received UK£6 per hour

for their participation. The University of Glasgow College of Science and Engi-

neering Ethics Committee provided ethical approval for both experiments.

Experiments

Ratings of random faces

Four sets of 10,800 random faces were generated, one for each of the four

target colleagues. Two sets of random faces were created using the GMF

mailto:Philippe.Schyns@glasgow.ac.uk
https://osf.io/7yx28/
https://github.com/cdaube/sharedFunctionalFeatures
https://github.com/cdaube/sharedFunctionalFeatures
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that was built with the database that excluded the two female target col-

leagues. The other two sets of random faces were created using the GMF built

with the database that excluded the two male target colleagues. The demo-

graphic variables were fixed (sex, age, and ethnicity) to those of the target col-

leagues. The resulting faces were rendered at frontal viewing and lighting an-

gles. For each participant and target colleague, the generated faces were

randomly gathered into 1,800 groups of 2 3 3 arrays, which were superim-

posed on a black background. In a given trial, these face arrays were shown

on a computer screen in a dimly lit room while the participant’s head was

placed on a chin rest at a 76 cm viewing distance from the image, such that

each face subtended an average of 9.5� 3 6.4� of visual angle. Participants

were instructed to choose the face of the array that most resembled that of

the target colleague by pressing the corresponding button on a keyboard.

The screen then changed to display the instruction to rank the chosen face

with respect to its similarity to the target colleague on a 6-point rating scale,

ranging from 1 (‘‘not similar’’) to 6 (‘‘highly similar’’).

These trials were split into four sets of 90 blocks of 20 trials each, resulting in

a total of 7,200 trials that all participants completed over several days.

Generalization testing

For each target colleague, 50 new 3D face stimuli were generated. These

comprised the combinations of two levels of diagnosticity at five levels of

amplification, which were each rendered in five different generalization condi-

tions. Each of these factors will be explained in the following.

In the original analysis,26 themass-univariate reconstructions from observed

human behavior (see ‘‘reverse correlation’’ below) had been referenced to re-

constructions from 1,000 permuted versions of the responses (using the same

amplification values). For each vertex, the Euclidean distance of the chance

reconstruction to the categorical average had been signed according to

whether it was located inside or outside of the categorical average and aver-

aged across permutations (‘‘chance distance’’). This was repeated using the

ground truth target colleague shape (‘‘ground truth distance’’) as well as the

human-reconstructed shape (‘‘human-reconstructed distance’’). If the abso-

lute difference of the chance distance and the ground truth distance was larger

than the absolute difference of the human-reconstructed distance and the

ground truth distance, the vertex was classified as ‘‘faithful.’’ This had resulted

in a 4,735 3 14 * 4 binary matrix which had then been decomposed into

matrices W [4,735 3 8] and H [83 56] (each column corresponding to a com-

bination of a participant and a target colleague) using non-negative matrix

factorization. Any of the eight component columns in W had been classified

as contributing to a group representation of the target colleagues if the median

of the loadings H across participants surpassed a threshold value of 0.1. The

‘‘diagnostic component’’ CD of each target colleague had then been defined

as the maximum value on that vertex across components considered to

load on the respective target colleague representation. After construction,

CD had then been normalized by its maximum value. Its ‘‘non-diagnostic’’

complement CN was then defined as CN = 1� CD. Taken together, the vec-

torsCD andCN could now be interpreted as reflecting to what degree each ver-

tex contributed to the faithful representation of each target colleague across

the group of participants.

These diagnostic and non-diagnostic components could then be used to

construct 3D faces containing varying levels of either diagnostic (FD) or non-

diagnostic (FN) shape information:

FD = G � CD � a+XAS ð1�CD �aÞ; (Equation 5)

FN = G � CN � a+XAS ð1�CN �aÞ: (Equation 6)

Here, G reflects the ground truth representation of the respective colleagues

recorded with the 3D camera array, a reflects an amplification value that

was set to one of five levels (0.33, 0.67, 1, 1.33, 1.67), and X describes the

sex, ethnicity, age, and interaction values that describe the respective

colleague such that XAS represents the categorical average (see ‘‘generative

model of 3D faces’’).

Each of these ten faces per target colleague were rendered at the viewing

angles �30�, 0�, and +30� as well as with their age factor set to 80 years

and a swapped sex factor.

The 12 validation participants completed three sessions (3 viewpoints, age,

and sex) in a random order, with one session per day. On a given trial, the
validators saw a central fixation cross for 1 s, followed by a face stimulus on

a black background for 500 ms. They were then asked to classify the seen

face as showing one of the four target colleagues (or their siblings or parents

in the age and sex conditions) or ‘‘other’’ if they could not identify the face

as accurately and quickly as possible. Between each trial, a fixation cross

was shown for a duration of 2 s. Each stimulus was shown five times in a ran-

domized order. In the viewpoint session, validators completed 15 blocks of 41

trials; in the age and sex sessions, validators completed 5 blocks of 44 trials.

This yielded accuracies of either 0, 0.2, 0.4, 0.6, 0.8, or 1 for each of the 10

stimuli per target colleague.

Networks

Training and testing of the networkswas performed in Python 3.6.8 using keras

2.2.4104 with a tensorflow 1.14.0 backend.105 All networks shared the same

training and testing sets and were constructed using the same encoder mod-

ule. All models were trained using three data augmentation methods (random

shifts in width and range by 5%aswell as random zoomswith a range of 10%).

Training and testing sets

The networks were trained on observable images generated by the GMF. We

created 500 random identity residuals and combined them with the four com-

binations of two sexes (male and female) and two types of ethnicity (Western

Caucasian and East Asian). To these, we added the four target colleagues, re-

sulting in a total of 2,004 identities. We rendered these at three different ages

(25, 45, and 65 years), seven different kinds of emotion (happy, surprise, fear,

disgust, anger, sadness, neutral), and three different horizontal and vertical

viewing and lighting angles (�30�, 0�, and 30�), resulting in 3,408,804 images

at a resolution of 224 3 224 RGB pixels. The four colleagues were rendered

with two versions of the GMF built on face database subsets that excluded

the two target colleagues of the same sex. Fifty percent of the 2,000 random

identities were rendered with one of these two GMFs. This dataset had first

been generated for experiments not including the data from the human exper-

iment. The version of the GMF that had been used to generate the stimuli for

the human experiment had slight differences (rescaling of the data from the

face database and different range of random coefficients). To allow for effort-

less generalization to the slightly different statistics of the stimuli that had been

generated for the human experiment, we rendered all 3,408,804 images twice,

once with each of the two versions, effectively resulting in a further data

augmentation. For the purpose of training, development, and testing, the data-

set of 6,817,608 images was split into a training set containing 80% of the im-

ages, and into a development and test set each containing 10% of the images.

Encoder module

We used a ResNet architecture to encode the pixel space images into a low-

dimensional feature space.31 The 224 3 224 RGB images were first padded

with three rows and columns of zeros, then convolved with 64 7 3 7 filters

with a stride of 2, batch normalized, subjected to a rectifying linear unit

(ReLU) nonlinearity, max-pooled in groups of 3 3 3, and propagated through

four blocks with skip connections, across which an increasing number of

3 3 3 filters was used (64, 128, 256, and 512), with a default stride of 1 in

the first block and a stride of 2 in the remaining three blocks. In each skip block,

the input was first convolved with the corresponding filters and default stride,

then batch normalized and subjected to a ReLU function, then convolved with

filters corresponding to the current block, however with a stride of 1, batch

normalized and then added to a branch of the input that was only convolved

with a 1 3 1 filter with default stride and batch normalized. The resulting acti-

vation was again subjected to an ReLU nonlinearity. After four of these blocks,

an average pooling on groups of 7 3 7 was applied.

Triplet

We used SymTriplet loss,106,107 a version of the triplet loss function (‘‘Face-

Net’’).32 To do so, we connected the encoder module to a dense mapping

from the encoder output to a layer of 64 neurons.We then fed triplets of images

to this encoder, consisting of an ‘‘anchor,’’ a ‘‘positive,’’ and a ‘‘negative,’’

where the anchor and positive were random images constrained to be of the

same identity while the negative was an image constrained to be of a different

identity. The loss function then relates these three images in the 64-dimen-

sional embedding space such that large Euclidean distances between anchor

and positive, and short distances between anchor and negative, are penalized,

as are short distances between positive and negative images. When training

the parameters of this network, this yields a function that places samples of
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the same identity close to each other in the embedding space. The triplet loss

network was trained with stochastic gradient descent with an initial learning

rate of 10�3 until no more improvements were observed, and fine-tuned with

a learning rate of 10�5 until no more improvements were observed.

ClassID

Here, we connected the encoder module to a flattening operation and per-

formed a dense mapping to 2,004 identity classes. We performed a softmax

activation and applied a cross-entropy loss to train this classifier.33 We trained

the ClassID network with a cyclical learning rate108 that cycled between a

learning rate of 10�6 and 0.3.

ClassMulti

This network was the same as the ClassID network; however, it classified not

only the 2,004 identity classes but also all other factors of variation that were

part of the generation: the 500 identity residuals, the two sexes, the two ethnic-

ities, the three ages, and the seven emotional expressions, as well as the three

vertical and horizontal viewing and lightning angles. For each of these extra

classification tasks, a separate dense mapping from the shared flattened

encoder output was added to the architecture.33 We trained the ClassMulti

network with a cyclical learning rate108 that cycled between a learning rate

of 10�6 and 0.3.

Autoencoder

For this architecture, we connected the encoder module to two branches,

each consisting of a convolution with 512 1 3 1 filters and a global average

pooling operation. This was then connected to a decoder module, which up-

sampled the 512-D vector back into the original 2243 224 RGB image space.

To do so, we used an existing decoder (‘‘Darknet’’ decoder).109 In brief, this

decoder upsamples the spatial dimension gradually from a size of 1–7 and

then in five steps that each double the spatial resolution to reach the resolution

of the final image. Between these upsampling steps, the sample is fed through

sets of blocks of convolution, batch normalization, and ReLU with the number

of filters alternating between 1,024 and 512 in the first set of five blocks, be-

tween 256 and 512 in the second set of five blocks, between 256 and 128 in

the third set of three blocks, between 128 and 64 in the fourth set of three

blocks, staying at 64 in the fifth set of one block, and alternating between 32

and 64 in the last set of two blocks. The filter size in all of these blocks alter-

nated between 3 3 3 and 1 3 1. Finally, the 224 3 224 3 64 tensor was

convolved with three filters of size 1 3 1 and passed through a tanh

nonlinearity.

The loss function used to optimize the parameters of this network is the

classic reconstruction loss of an AE, operationalized as the MAE of the input

image and the reconstruction in pixel space. We trained the AE using the

Adam optimizer110 with an initial learning rate of 10�3 until no further improve-

ments were observed.

View-invariant autoencoder

This network shared its architecture and training regime with the AE; however,

we changed the input-output pairing during training. Instead of optimizing the

parameters to reconstruct the unchanged input, the goal of the viAE was to

reconstruct a frontalized view, independent of the pose of the input, while

keeping all other factors of variation constant. This resulted in a more view-

invariant representation in the bottleneck layer compared with the AE.35

Variational autoencoder

For this architecture,111 we connected the encoder module to two branches,

each consisting of a convolution with 512 1 3 1 filters and a global average

pooling operation. These were fed into a sampling layer as mean and variance

inputs, transforming an input into a sample from a 512-D Gaussian with spec-

ified mean and diagonal covariance matrix.

This sample was then fed into the same decoder module as described for

the AE and viAE above.

The loss function used to optimize the parameters of this network is the sum

of two parts: The first is the reconstruction loss of a classic autoencoder, for

which we used the MAE between the reconstruction and the original image.

The second part is the Kullback-Leibler divergence measured between the

multivariate normal distribution characterized by the mean and variance vec-

tors passed into the sampling layer and the prior, a centered, uncorrelated,

and isotropic multivariate normal distribution. The second part can be seen

as a regularization that effectively leads to a continuous latent space. As it

has been reported that weighing the second part of the loss function stronger

than the first part can improve the disentanglement of the resulting latent
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space (‘‘beta-VAE’’),112 we also repeated the training with several values of

the regularization parameter beta. However, this did not substantially change

the latent space that we obtained.

We also trained two additional identity classifiers that used the frozen

weights of the (beta = 1)-VAE. The first directly connected the VAE encoder

to a dense linear mapping to 2,004 identity classes. The second first passed

through two blocks of fully connected layers of 512 neurons that were batch

normalized and passed through an ReLU nonlinearity before the dense linear

mapping to identity. In both cases, a softmax activation function was applied

and the resulting networks were trained with a cross-entropy loss function. All

models shared the training regime of the AE and viAE models as

described above.

Forward models

Wewere interested in comparing the degree to which various sets or ‘‘spaces’’

of predictors describing the rated stimuli were linearly relatable to the human

behavioral responses. To do so in a way that minimizes the quantification of

just overfitting, we linearly regressed the ratings on a range of different de-

scriptors extracted from the random faces presented on each trial in a

cross-validation framework.

The predictor spaces we used for this (each consisting of multiple predictor

channels) were the texture and shape components of the single trials, as

provided by the GMF, as well as the activations of the networks on their

‘‘embedding layers,’’ as obtained from forward passes of the stimuli through

the networks. Specifically, we used the 512-dimensional, pre-decision layers

of the classifiers (ClassID and ClassMulti), the 64-dimensional final layer of

the triplet loss network, and the 512-dimensional bottleneck layer of the AE,

viAE, and VAE. We then also propagated images of the four target colleagues

as recorded with the 3D capture system, fit by the GMF, and rendered with

frontal viewing and lighting angles through the four networks, and computed

the Euclidean distances on the embedding layers between the random faces

of each trial and these ground truth images. We extended this by computing

the channel-wise distances of each feature space and using them as an input

to the regression described below to obtained weighted Euclidean distances.

Additionally, we extracted the pre-softmax activity (‘‘logits’’) of the decision

neurons trained to provide the logits for the four target colleagues in the final

layer of the classifier networks (ClassID and ClassMulti, as well as the linear

and nonlinear VAE classifiers). Since we were interested in assessing to

what degree the GMF shape and texture features and various embedding layer

activations provided the same or different information about the behavioral re-

sponses, we also considered models with joint predictor spaces consisting of

the two subspaces of shape features and AE, viAE, or VAE activations as well

as the three subspaces of shape features, texture features, and AE, viAE, or

VAE activations. Lastly, to assess the extent to which a simple linear PCA

could extract useful predictors from the images, we performed an SVD on

the nonzero channels, a subset of the training images used for the DNNs. Per-

forming SVD on the entire set of training images used for the DNNswould have

been computationally infeasible. The subset we used consisted of 18,000 RGB

images of all 2,000 identities rendered at nine different viewing angles, limiting

emotion expression to the neutral condition and lighting angles to frontal an-

gles. The first 512 dimensions could account for 99.5976% of variance in

the training set. We projected the experimental stimuli onto these for further

analyses.

We performed the regression separately for each participant and target

colleague in a nested cross-validation procedure.37 This allowed us to contin-

uously tune the amount of L2 regularization necessary to account for corre-

lated predictor channels and avoid excessive overfitting using Bayesian adap-

tive direct search (BADS),113 a black-box optimization tool (see Daube et al.41

for a comparable approach). Specifically, we divided the 1,800 trials per partic-

ipant into folds of 200 consecutive trials each and, in each of nine outer folds,

assigned one of the resulting blocks to the testing set and eight to the devel-

opment set. Then, within each of the nine outer folds, we performed eight inner

folds, where one of the eight blocks of the development set was assigned to be

the validation set and seven were assigned to the training set. In each of the

eight inner folds, we fitted an L2 regularized linear regression (‘‘ridge regres-

sion’’) using the closed form solution

B = ðX0X +RÞ�1 X0y; (Equation 7)
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where B denotes the weights, y denotes the n3 1 vector of corresponding hu-

man responses, R describes a regularization matrix, and X denotes the matrix

of trials n 3 predictors M, where

M =
Xo

s= 1
ms; (Equation 8)

such that o denotes the number of combined predictor subspaces andms de-

scribes the number of predictor channels in the sth subspace. In the cases

where the features were combinations of multiple feature subspaces, i.e.,

where o>1, we used a dedicated amount of L2 regularization for each sub-

space. This avoids using a common regularization term for all subspaces,

which can result in solutions that compromise the need for high and low reg-

ularization in different subspaces, which fails to optimally extract the predictive

power of the joint space. The regularization matrix R can then be described as

R = diag
�
l11 ; :::; lm1

; l12 ; :::; lm2
; :::; l1o ; :::; lmo

�
; (Equation 9)

where lcsdescribes the amount of L2 regularization for channel c of predictor

subspace s, which is constant for all c in one s. For each predictor subspace,

lcs thus was one hyperparameter that we initialized at a value of 217 and opti-

mized in BADS with a maximum of 200 iterations, where the search space was

constrained within the interval [2�30, 230]. The objective function that this opti-

mization maximized was Kendall’s tau, as measured between predicted and

observed responses of the inner fold validation set. We used the median of

the optimal lcsacross all inner folds and retrained a model on the entire devel-

opment set to then evaluate it on the unseen outer fold.

This yielded sets of 200 predicted responses for each test set of the nine

outer folds. We evaluated them using two information theoretic measures:

MI and redundancy, both computed using binning with three equipopulated

bins.114We computed bivariateMI withMiller-Madow bias correction between

the predictions of each forward model and the observed human responses.

We also computed redundancy, using a recent implementation of partial infor-

mation decomposition (PID), Iccs.
29 When there are two source variables and

one target variable, PID aims to disentangle the amount of information the

two sources share about the target (redundancy), the amount of information

each source has on its own (unique information), and the amount of information

that is only available when considering both sources. In our case, we were

interested in quantifying how much information the predictions derived from

DNN-based forward models shared with the predictions derived from GMF

shape features about observed human behavior. To assess whether the

amount of MI and redundancy exceeded chance level, we repeated the nested

cross-validation procedure 100 times for each combination of participant and

target colleague, each time shuffling the trials. From these surrogate data, we

estimated null distributions of MI and redundancy and defined a noise

threshold within each participant and target colleague condition as the 95th

percentile of MI and redundancy measured in these surrogate data. We

counted the number of test folds of all participants and colleagues that ex-

ceeded this noise threshold and report this as a fraction relative to all data

points.

To then assess whether different predictor spaces gave rise to different

levels of MI and redundancy in the presence of high between-subject variance,

we employed Bayesian linear models as implemented in the brms package,38

which provides a user-friendly interface for R115 to such models using Stan.116

Specifically, we had performances (MI and redundancy) for each of the nine

outer folds b for each combination of target colleague j, participant i, and all

predictor spaces f1 to fq. The factor of interest were the predictor spaces f.

We used Hamiltonian Monte-Carlo sampling with four chains of 4,000 itera-

tions each, 1,000 of whichwere used for their warm-up. The priors for standard

deviation parameters were not changed from their default values, i.e., half-Stu-

dent-t distributions with three degrees of freedom, while we used weakly infor-

mative normal priors with a mean of 0 and a variance of 10 for the effects of

individual predictor spaces. Specifically, we modeled the log-transformed

and thus roughly normal distributed MI and redundancy as performances k

with the following model:

kn � N
�
mn; s

2
�
; (Equation 10)

s � jtð3; 0; 10Þj;
mn � bi:f ½n� + bi:b½n� + bi:j½n� + bf1 ½n� + ::: + bfq ½n�;

�
bi:f ; bi:b; bi:j

� � N
�
0; s2

bint

�
;

s2
bint

� jtð3; 0;10Þj;

�
bf1

; :::; bfq

�
� Nð0; 10Þ:

To compare the resulting posterior distributions of the parameters of inter-

est, we evaluated the corresponding hypotheses using the brms package—

bfa � bfb >0 for all possible pairwise combinations of predictor spaces—and

obtained the proportion of samples of the posterior distributions of differences

that were in favor of the corresponding hypotheses.

As well as the predictions, the forward models also produced weights that

linearly related predictors to predicted responses. We were interested in

examining these weights to learn how individual shape features were used in

the forward models. For the forward models, predicting responses from shape

features was directly possible: the weights BS mapped GMF shape features to

responses and could thus be interpreted as the ‘‘shape receptive field.’’ How-

ever, to be able to compare these weights on the vertex level, we used a differ-

ently scaled version of the shape features. This was obtained bymultiplying the

4,735 * 3D Z-scored 3D vertex level shape features with the pseudoinverse of

the matrix of left-singular vectors US from the SVD performed on the identity

residuals of the 3D vertex features of the face database (see ‘‘generativemodel

of 3D faces’’). This 355-dimensional representation of the shape features per-

formed virtually identically to the unscaled version in the forwardmodeling. For

visualization, we could then project theweightsBS from the 355DPCA compo-

nent space into the 4,735 * 3D vertex space, where the absolute values could

be coded in RGB space. This resulted in a map that indicated how the random

faces at each vertex affected the response predictions in the three spatial

dimensions.

The weight maps BN that form the forward models that relate DNN activa-

tions to responses were less simple to study in this shape space, since they

mapped the less interpretable network activations, not GMF shape features,

to behavioral responses. To interpret these models in vertex space, we re-pre-

dicted (‘‘simulated’’) the response predictions by derived from DNN features

with the GMF shape features to obtain re-predictions bby as well as weights

BSN
. We reasoned that response predictions of the ideal DNN model should

be perfectly predictable by the shape features and that the corresponding

simulated shape weights BSN
should be identical to the original shape weights

BS in this case.We thus correlated the simulated response predictionswith the

DNN response predictions, as well as the simulated shape weights with the

original shape weights for each test fold in each participant for each target

colleague condition.

Decoding shape information from embedding layers

To understand what shape information is available on the embedding layers of

the networks, independently of human behavior, we trained linear models that

decoded GMF shape PCA components from embedding layer activations in

response to images of faces. We used a cross-validation framework on the

full set of stimuli, consisting of 43,200 RGB images and their corresponding

GMF shape PCA components, using a random set of 80% of the images for

training, a further 10% for tuning, and the remaining 10% for testing. Specif-

ically, we trained mass-multivariate L2 regularized regressions, separately

predicting each GMF shape component from all neurons of the DNN embed-

ding layers. Similar to the approach taken for the forwardmodels, we tuned the

L2 regularization using BADS to maximize the prediction performance on the

tuning set. We then projected all predicted GMF shape PCA components

into vertex space and, at each vertex, assessed the Euclidean distance be-

tween the original GMF shape model and the predictions from the DNN

embedding layers.

Reverse correlation

To reconstruct internal templates of the target colleagues’ faces under the

GMF, we performed a mass-univariate linear mapping from the observed

behavior of the human participants to each GMF shape and texture feature.
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We repeated this with the choice behavior and rating behavior predicted by the

forward models to compare these forward models, human observed behavior,

and the ground truth shape information of the target colleagues as captured by

our 3D camera array.

We performed the linear regressions of variation in the shape vertices and

texture pixels of the random stimuli on the ratings of the images chosen by

the human participants and their forward models based on GMF features, as

well as DNN and PCA activations. This was done separately for each vertex

and spatial dimension, as well as for each pixel and RGB dimension. In princi-

ple, this is equivalent to inverting the weights of the forwardmodel.117,118 How-

ever, to match the procedure in Zhan et al.,26 we re-estimated these parame-

ters per vertex and pixel using the MATLAB function ‘‘robustfit.’’

Each of the v = 1; :::; 4735 � 3 shape vertex positions swas thusmodeled as

sv = b0v +b1v � r; (Equation 11)

and each of the p= 1; :::; 800 � 600 � 3 texture pixel RGB values t was

modeled as

tp = b0p +b1p � r: (Equation 12)

Here, r are the vectors of observed or predicted responses, b0 is an intercept

term, and b1 is a slope term.

In the original experiment, new faces were then generated bymultiplying the

slopes obtained from the regressions with different ‘‘amplification values.’’ The

resulting faces had then been presented to the participants to titrate the

‘‘amplification’’ of the weights that would result in the highest perceptual sim-

ilarity of the reconstructed face for each participant. An amplification of 0 here

corresponds to the shape or texture feature being reconstructed as a function

of the intercept term only. This corresponds to the shape or texture feature re-

sulting from the average of the faces chosen from the array of six faces in the

first stage of each trial.

We repeated this for the forward models by storing the shape and texture

components and by rendering observable images of faces corresponding to

amplification values ranging from 0 to 50 (the same range used to titrate the

human reconstructions) in steps of 0.5. We then computed forwardmodel pre-

dictions fromGMF shape and texture features, and propagated the observable

images through encoding models based on DNNs. This resulted in responses

of all systems across the range of amplification values. We chose the peak of

each curve and reconstructed the internal templates corresponding to the

shape and texture components at these peaks.

We rendered the corresponding internal templates as intuitively visualizable

faces.We also considered the explicit descriptions in vertex space to compare

templates from humans and templates from forward models among each

other, and with the ground truth face shape from the target colleagues. To

evaluate the ‘‘humanness’’ of the forward models, we computed the Euclidean

distances and correlations from the internal templates of the forward models

with the internal templates of the humans. To also evaluate the ‘‘veridicality,’’

we computed the Euclidean distances and correlations from the ground truth

target colleagues with the internal templates from the forward models and the

human participants.

This resulted in Euclidean distances and correlations for each target

colleague condition j and human participant i (observed and predicted by

different predictor spaces f ). We then log-transformed the Euclidean distances

and Fisher z-transformed the correlations to obtain evaluation measures e and

modeled them with Bayesian hierarchical models similar to the ones used to

model the prediction performances of the forward models:

en � N
�
mn; s

2
�
; (Equation 13)

s � jtð3; 0; 10Þj;

mn � bi:f ½n� + bi:j½n� + bf1 ½n� + ::: + bfq ½n�;

�
bi:f ; bi:j

� � N
�
0; s2

bint

�
;

s2
bint

� jtð3; 0; 10Þj;
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�
bf1

; :::; bfq

�
� Nð0; 10Þ:

To compare the resulting posterior distributions of the parameters of inter-

est, we evaluated the corresponding hypotheses using the brms package—

bfa � bfb >0 for all possible pairwise combinations of predictor spaces—and

obtained the proportion of samples of the posterior distributions of differences

that were in favor of the corresponding hypotheses. Prior to visualization, we

back-transformed the posterior distributions of the log Euclidean distances

with an exponential and the posterior distributions of correlations with the in-

verse Fisher z-transformation.
Generalization testing

The models of human behavior had been trained and tested under the same

conditions. To also test how they would perform under data from a different

distribution, we re-used data from a validation experiment originally conduct-

ed by Zhan and colleagues26 .

We propagated the 50 stimulus images per target colleague (combinations of

two levels of diagnosticity at five levels of amplification, which were each

rendered in five different generalization conditions, see ‘‘experiments—general-

ization testing’’) through each of themodel systemsunder consideration and ex-

tracted the rating predictions for each of the 14 participants of the first experi-

ment for each of the four colleagues from each of the four correspondingly

fitted forward models. Next, we normalized the predictions to values between

0 and 1 within target colleagues to eliminate possible biases from participants

rating the random stimuli of the first experiment higher for one target colleague

than for others.We thenused themaximumpredicted ratingacrossall target col-

leagues for a given stimulus as the choice of the respective system. The predic-

tions for each of the 14 participants of the first experiment were compared with

the behavior of each of the 12 additional participants of the second experiment.

Since all systems were deterministic, the resulting accuracy values for the

systems were thus binary (this was different for the human responses, since

each stimulus had been shown to the validators five times; see ‘‘experi-

ments—generalization testing’’).

We analyzed the data by first computing the absolute difference of human

and model accuracies and then subjecting the resulting absolute errors to a

Bayesian linear model. Since the model accuracies could only take one of

six different values (from 0 to 1 in steps of 0.2), we used an ordinal model.

To do so, we used a cumulative model assuming a normally distributed latent

variable as implemented in brms.119 Concretely, wemodeled the probability of

amodel accuracy a of model type f predicting behavior in task g of participant i

for target colleague j and validated by validator k to fall into category t given the

linear predictor h as:

Prða = tjhÞ = Fðtt �hÞ � Fðtt�1 �hÞ; (Equation 14)

where F is a cumulative distribution function, tt is one of T = 5 different thresh-

olds that partition the standard Gaussian continuous latent variable ~a into T + 1

categories, and h describes ~a corresponding to the following model:

tt � tð3; 0; 10Þ; (Equation 15)

~an � Nðmn; 1Þ;

mn � bf :g½n� + bi:j:k½n�;

�
bf :g; bi:j:k

� � N
�
0; s2

bint

�
;

s2
bint

� jtð3; 0; 10Þj;

�
bf1

; :::; bfq

�
� Nð0; 10Þ:

To compare the resulting posterior distributions of the parameters of inter-

est, we evaluated the corresponding hypotheses using the brms package

(bfa :gx
� bfb :gx

>0 for all possible pairwise combinations of model types within

each task), and obtained the proportion of samples of the posterior distribu-

tions of differences that were in favor of the corresponding hypotheses.



ll
OPEN ACCESSArticle
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100348.

ACKNOWLEDGMENTS

This work has been funded by the Wellcome Trust grant (Senior Investigator

Award, UK; 107802) and the Multidisciplinary University Research Initiative/

Engineering and Physical Sciences Research Council grant (USA, UK;

172046-01) awarded to P.G.S. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS

C.D., J.Z., O.G.B.G., and P.G.S. designed the research; C.D. and T.X. devel-

oped the DNN models; O.G.B.G. and P.G.S. developed the GMF; R.A.A.I.

developed the implementation of PID; J.Z. recorded the data; C.D. analyzed

the data; C.D. and P.G.S. drafted the manuscript; C.D., J.Z., A.W., R.A.A.I.,

and P.G.S. revised the manuscript; P.G.S., O.G.B.G., and R.A.A.I. supervised

the project; P.G.S. acquired the financial support for the project leading to this

publication.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 14, 2020

Revised: November 30, 2020

Accepted: August 20, 2021

Published: September 10, 2021

REFERENCES

1. Schyns, P.G., Goldstone, R.L., and Thibaut, J.-P. (1998). The develop-

ment of features in object concepts. Behav. Brain Sci. 21, 1–17.

2. DiCarlo, J.J., and Cox, D.D. (2007). Untangling invariant object recogni-

tion. Trends Cogn. Sci. 11, 333–341.

3. Nestor, A., Lee, A.C.H., Plaut, D.C., and Behrmann, M. (2020). The face of

image reconstruction: progress, pitfalls, prospects. Trends Cogn. Sci.

24, 747–759.

4. Naselaris, T., Kay, K.N., Nishimoto, S., and Gallant, J.L. (2011). Encoding

and decoding in fMRI. NeuroImage 56, 400–410.

5. Yamins, D.L.K., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., and

DiCarlo, J.J. (2014). Performance-optimized hierarchical models predict

neural responses in higher visual cortex. Proc. Natl. Acad. Sci. U S A 111,

8619–8624.

6. Eickenberg, M., Gramfort, A., Varoquaux, G., and Thirion, B. (2017).

Seeing it all: convolutional network layers map the function of the human

visual system. NeuroImage 152, 184–194.

7. Kell, A.J.E., Yamins, D.L.K., Shook, E.N., Norman-Haignere, S.V., and

McDermott, J.H. (2018). A task-optimized neural network replicates hu-

man auditory behavior, predicts brain responses, and reveals a cortical

processing hierarchy. Neuron 98, 1–15.

8. Kubilius, J., Schrimpf, M., Kar, K., Rajalingham, R., Hong, H., Majaj, N.J.,

et al. (2019). Brain-like object recognition with high-performing shallow

recurrent ANNs. ArXiv, 1909.06161.
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Figure S1: Demonstration of GMF variations used for training set of DNNs (related to Figure 2).
A Six different example identities. B First identity from A rendered in three different ages. C – E Same
as in B, but rendered with different sex and ethnicity. F First identity from A rendered with 6 additional
expressions. G First identity from A rendered with different viewing angles. H First identity from A
rendered with different lighting angles.



Figure S2: Distribution of rating responses in the human reverse correlation experiment (related
to Figure 3).
1 codes for low similarity, 6 codes for highest similarity of stimulus to familiar target identity. Each data
point represents the combination of one participant and one target familiar identity.



Figure S3: Accuracy of forward models in predicting choice behavior (related to Figure 3).
A Choice accuracy. On each trial, humans were presented with an array of 6 different random faces.
They were asked to choose the one that most resembled the respective target colleague prior to re-
porting the perceived similarity on a 6-point rating scale. On each trial, the forward models “chose” the
face of the array of 6 that had the highest rating among all faces of the array. The panel shows how
well each model’s choices matched the choices of the human participants. Pairwise matches of human
participants with each other are displayed for reference. See figure S4 for explanation of the model
shorthands. B Comparisons of the posterior distributions of the main effects for all forward models from
Bayesian linear modeling of the raw performances. For each pair in the matrices, the color gradient
reflects the fraction of samples of the system color coded on the y-axis that is larger than the system
color coded on the x-axis. See x-axis labels for color legend.



Figure S4: Bivariate evaluations of a larger set of encoding models (related to Figure 3).
A Mutual Information (MI) of observed behavior and test-set predictions from GMF features and var-
ious functions of DNN activations as well as human participants predicting other human participants
(pairwise comparisons). Models include variational autoencoders (“VAE”,1), VAEs with regularization
(“β-VAE”,2), euclidean distances of representations of the ground truth colleagues and the respective
trials (“δ”), weighted euclidean distances (“δ-lincomb”), pre-softmax decision neuron activity (“logits”) of
the respective colleagues of ClassID and ClassMulti networks (“dn”) as well as of ID classifiers trained
on top of frozen VAE encoder networks (linear, “VAEldn”, and with 2 rectified fully connected layers of
512 neurons (“VAEnldn”). B Comparisons of the posterior distributions of the main effects for all systems
from Bayesian linear modeling of the raw performances. For each pair in the matrices, the color gradient
reflects the fraction of samples of the forward model color coded on the y-axis that is larger than the
forward model color coded on the x-axis. See x-axis labels for color legend.



Figure S5: Bivariate evaluations of a larger set of encoding models (related to Figure 3).
A Kendall’s τ of observed behavior and test-set predictions from GMF features and DNN activations as
well as human participants predicting other human participants (pairwise comparisons). Except for the
different metric, the analysis of this figure is identical to figure S4. See figure S4 for explanation of the
model shorthands. B Comparisons of the posterior distributions of the main effects for all systems from
Bayesian linear modeling of the raw performances. For each pair in the matrices, the color gradient
reflects the fraction of samples of the forward model color coded on the y-axis that is larger than the
forward model color coded on the x-axis. See x-axis labels for color legend.



Figure S6: Accuracy of forward models in predicting choice behavior consensus across partici-
pants (related to Figure 3).
A Choice accuracy. Instead of predicting the behavior of individual human participants as in figure S3,
here, for each panel of 6 faces per trial, the option chosen by the highest number of participants was used
to represent the consensus across participants. See figure S4 for explanation of the model shorthands.
B Comparisons of the posterior distributions of the main effects for all systems from Bayesian linear
modeling of the raw performances. For each pair in the matrices, the color gradient reflects the fraction
of samples of the forward model color coded on the y-axis that is larger than the forward model color
coded on the x-axis. See x-axis labels for color legend.



Figure S7: Bivariate evaluations of a larger set of encoding models on ratings averaged across
participants (related to Figure 3).
A Mutual Information of averaged behavior and test-set predictions from GMF features and DNN ac-
tivations as well as human participants predicting other human participants. Except for the different
predictee, the analysis of this figure is identical to figure S4. See figure S4 for explanation of the
model shorthands. B Comparisons of the posterior distributions of the main effects for all systems
from Bayesian linear modeling of the raw performances. For each pair in the matrices, the color gradient
reflects the fraction of samples of the forward model color coded on the y-axis that is larger than the
forward model color coded on the x-axis. See x-axis labels for color legend.



Figure S8: Redundancy with shape of a larger set of encoding models (related to Figure 3).
A Redundant information about human behavior that is shared between model predictions and GMF
shape feature predictions. See figure S4 for explanation of the model shorthands. B Comparisons of
the posterior distributions of the main effects for all systems from Bayesian linear modeling of the raw
redundancies. For each pair in the matrices, the color gradient reflects the fraction of samples of the
forward model color coded on the y-axis that is larger than the forward model color coded on the x-axis.
See x-axis labels for color legend.



Figure S9: Amplification tuning responses of additional encoding models (related to Figure 4).
A Amplification tuning responses of euclidean distances (“δ”) of templates amplified at different levels
and ground truth representations of the target colleagues. Solid lines denote the pooled median across
participants and target colleagues, shaded regions denote 95% (frequentist) confidence intervals boot-
strapped using 10, 000 samples. B Same as in A, but showing amplification tuning responses of linearly
weighted euclidean distances instead (“δ-lincomb”). C Same as in A, but showing amplification tuning
responses of pre-softmax decision neuron activities (“logits”) of respective target colleagues instead
(“dn”).



Figure S10: Evaluation of the mean absolute error between reverse-correlated faces of humans
and reverse-correlated faces of models for a larger set of encoding models (related to Figure 4).
A Mean absolute error (MAE, computed as the euclidean distances in 3D space averaged across ver-
tices) of reverse correlated templates of the models and those of humans. See figure S4 for explanation
of the model shorthands. B Comparisons of the posterior distributions of the main effects for all systems
from Bayesian linear modeling of the raw performances. For each pair in the matrices, the color gradient
reflects the fraction of samples of the forward model color coded on the y-axis that is larger than the
forward model color coded on the x-axis. See x-axis labels for color legend.



Figure S11: Evaluation of the Pearson correlation between reverse-correlated faces of humans
and reverse-correlated faces of models for a larger set of encoding models (related to Figure 4).
A Pearson correlation (computed with vectors of 3D vertices projected on a single inward-outward di-
mension) of reverse correlated templates of the models and those of humans. See figure S4 for expla-
nation of the model shorthands. B Comparisons of the posterior distributions of the main effects for all
systems from Bayesian linear modeling of the raw performances. For each pair in the matrices, the color
gradient reflects the fraction of samples of the forward model color coded on the y-axis that is larger than
the forward model color coded on the x-axis. See x-axis labels for color legend.



Figure S12: Evaluation of the mean absolute Error between reverse-correlated faces of humans
and models and the ground truth face shapes for a larger set of encoding models (related to
Figure 4).
A Mean absolute error (MAE, computed as the euclidean distances in 3D space averaged across ver-
tices) of reverse correlated templates of the models and ground truth 3D shape of the target colleagues
as captured with a 3D camera array. See figure S4 for explanation of the model shorthands. B Compar-
isons of the posterior distributions of the main effects for all systems from Bayesian linear modeling of
the raw performances. For each pair in the matrices, the color gradient reflects the fraction of samples
of the forward model color coded on the y-axis that is larger than the forward model color coded on the
x-axis. See x-axis labels for color legend.
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Figure S13: Evaluation of the Pearson correlation between reverse-correlated faces of humans
and models and the ground truth face shapes for a larger set of encoding models (related to
Figure 4).
A Pearson correlation (computed with vectors of 3D vertices projected on a single inward-outward di-
mension) of reverse correlated templates of the models and those of humans. See figure S4 for expla-
nation of the model shorthands. B Comparisons of the posterior distributions of the main effects for all
systems from Bayesian linear modeling of the raw performances. For each pair in the matrices, the color
gradient reflects the fraction of samples of the forward model color coded on the y-axis that is larger than
the forward model color coded on the x-axis. See x-axis labels for color legend.



Figure S14: Renderings of reverse-correlated templates of the three remaining colleagues of
exemplary participant (related to Figure 4).
Comparison of rendered faces for one exemplary target colleague. Top left panel in each block of two
rows shows ground truth face of one target colleague as captured with a 3D camera array. Following
panels show reconstructions of the face features from human observed and predicted behavior for one
typical participant (i.e. closest to the pooled group medians shown in Figure 4D).



Figure S15: Generalization testing of a larger set of encoding models (related to Figure 5).
A Generalization testing for VAE models with various degrees of regularization. None yield a factoriza-
tion of the latent spaces that disentangles viewing angle from other factors. Top row shows difference of
choice accuracy between the diagnostic and non-diagnostic conditions. Positive values denote a higher
accuracy when diagnostic features were amplified. Bottom row shows posterior distributions of main
effects of feature spaces when modeling absolute error vs humans with Bayesian linear model. Grey
bandings denote density estimates of thresholds separating the five different error values possible (hu-
man accuracies are averaged across five ratings of the same item). B – D show the same as in A, but
for different forward models. See figure S4 for explanation of the model shorthands.



Figure S16: Comparison of posterior distributions for larger set of forward models in -30° viewing
angle generalization (related to Figure 5).
Comparison of the posterior distributions of the leftmost column in figure S15. For each pair in the
matrices, the color gradient reflects the fraction of samples of the feature space color coded on the y-
axis that is larger than the predictor space color coded on the x-axis. See figure S4 for explanation of
the model shorthands.



Figure S17: Comparison of posterior distributions for larger set of forward models in 0° viewing
angle generalization (related to Figure 5).
Comparison of the posterior distributions of the second column in figure S15. For each pair in the
matrices, the color gradient reflects the fraction of samples of the feature space color coded on the y-
axis that is larger than the predictor space color coded on the x-axis. See figure S4 for explanation of
the model shorthands.



Figure S18: Comparison of posterior distributions for larger set of forward models in +30° view-
ing angle generalization (related to Figure 5).
Comparison of the posterior distributions of the middle column in figure S15. For each pair in the
matrices, the color gradient reflects the fraction of samples of the feature space color coded on the y-
axis that is larger than the predictor space color coded on the x-axis. See figure S4 for explanation of
the model shorthands.



Figure S19: Comparison of posterior distributions for larger set of forward models in 80 years
generalization (related to Figure 5).
Comparison of the posterior distributions of the fourth column in figure S15. For each pair in the matrices,
the color gradient reflects the fraction of samples of the feature space color coded on the y-axis that is
larger than the predictor space color coded on the x-axis. See figure S4 for explanation of the model
shorthands.



Figure S20: Comparison of posterior distributions for larger set of forward models in opposite
sex generalization (related to Figure 5).
Comparison of the posterior distributions of the rightmost column in figure S15. For each pair in the
matrices, the color gradient reflects the fraction of samples of the feature space color coded on the y-
axis that is larger than the predictor space color coded on the x-axis. See figure S4 for explanation of
the model shorthands.



Figure S21: Ranking of extended set of models (related to Figures 3, 5, 6).
We integrated the results of the models in all comparisons except for the re-prediction analysis reported
in Figure 4 (which is only applicable to linear combination forward models). Redundancy of the shape
model with itself is not computable and was thus manually set to the best possible score. Scores in
veridicality of reverse correlation were defined as the absolute difference to the veridicality achieved by
humans. Scores in generalization testing (absolute error to human behavior) were additionally penalized
for a low delta in accuracy of diagnostic and non-diagnostic stimuli. Performances of models (maxima a
posteriori of Bayesian linear models) were normalized within comparisons to range from 0 (worst con-
sidered model) to 1 (best considered model). Scores were summed across comparisons and divided by
the number of comparisons for the overall score. See figure S4 for explanation of the model shorthands.
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