Supporting Information

Copper-Promoted Conjugate Addition of Carboxylic Acids to Ethenesulfonyl Fluoride (ESF) for Constructing Aliphatic Sulfonyl Fluorides

Xu Zhang^{†a}, Yu-Mei Huang^{†a}, Hua-Li Qin^{*a}, Zhang Baoguo^{*b}, K. P. Rakesh^a and Haolin Tang^{*a}

^aSchool of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory

of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

^bLab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Scienc es, No. 99 Haike Road, Pudong, Shanghai 201210, China.

Fax: + 86 27 87749300

E-mail: qinhuali@whut.edu.cn; zhangbg@sari.ac.cn; thln@whut.edu.cn.

[†]These authors contributed equally to this work

1. Screening the Optimized Reaction Conditions.

Table S1 Screening the [Cu] Catalyst^a

CO ₂ H	H + SO ₂ F [C	Cu] (2.0 eq.)	°O [∕] SO₂F 2a
Entry	Catalyst	Conversion (1a, %)	Yield (2a , %) ^b
1 ^c	Cu(OAc) ₂	90	17
2	Cu(OAc) ₂	93	32
3	CuBr ₂	99	١
4	CuF_2	99	33
5	Cu(OTf) ₂	41	\
6	$Cu(acac)_2$	36	\
7	Cu(CF ₃ CO) ₂	98	27
8	CuSO ₄	98	46
9	CuO	99	74
10	Cu ₂ O	/	\

^aReaction condition: Benzoic acid (**1a**, 0.1 mmol), ESF (2.0 eq., 0.2 mmol), [Cu] catalyst (2.0 eq.), undried CH₃CN (2 mL) were added in a sealed tube (20 mL) under argon atmosphere and the reaction mixture was stirred at 80 °C for 20 h. ^bThe yields were determined by HPLC using **2a** as the external standard ($t_{\rm R} = 7.5$ min, $\lambda_{\rm max} = 229.9$ nm, water / acetonitrile = 50 : 50 (v / v)). ^c In the air.

co	² ^H + ∕∕SO ₂ F <u>CuO (2</u> Ar, So	2.0 eq.)	O ^{∕∕} SO ₂ F
1a		2	2a
Entry	Solvent (2 mL)	Conversion (1a, %)	Yield (2a, %) ^b
1	CH ₃ CN	97	76
2^{c}	anhydrous CH ₃ CN	83	20
3	anhydrous CH ₃ CN	98	89
4	Toluene	13	N.D.
5	DMF	2	N.D.
6	1,4-dioxane	1	N.D.
7	DMA	39	34
8	DMSO	\	N.D.
9	Trifluorotoluene	3	N.D.
10	DCE	2	N.D.
11	Acetone	5	N.D.
12	THF	\	N.D.

Table S2 Screening of the Solvent ^a

^aReaction condition: Benzoic acid (**1a**, 0.1 mmol), ESF (2.0 eq., 0.2 mmol), CuO (2.0 eq., 16 mg), solvent (2 mL) were added in a sealed tube (20 mL) under argon atmosphere and the reaction mixture was stirred at 80 °C for 20 h. ^bThe yields were determined by HPLC using **2a** as the external standard ($t_R = 7.5 \text{ min}$, $\lambda_{max} = 229.9 \text{ nm}$, water / acetonitrile = 50 : 50 (v / v)). ^cIn the air.

N.D. means not detected.

Table S3 Screening of CuO Loading ^a

	_CO ₂ H +	CuO Ar, MeCN	SO ₂ F
Ta		Conversion (1a, %)	Viold (2 0 0/)h
Entry	CuO (X equiv.)	Conversion (1a, %)	1 leiu (2 a , %) [°]
1	2.0	96	87
2	1.5	97	76
3	1.0	99	91
4	0.5	97	74
5	0.2	97	65
6	\	0	trace

^aReaction condition: Benzoic acid (**1a**, 0.1 mmol), ESF (2.0 eq., 0.2 mmol), CuO, anhydrous CH₃CN (2 mL) were added in a sealed tube (20 mL) under argon atmosphere and the reaction mixture was stirred at 80 °C for 20 h. ^bThe yields were determined by HPLC using **2a** as the external standard ($t_{\rm R} = 7.5 \text{ min}$, $\lambda_{\rm max} = 229.9$ nm, water / acetonitrile = 50 : 50 (v / v)).

Table S4 Screening of ESF Loading ^a

la la	CO₂H + ∕∕SO₂F	CuO (1.0 eq.) Ar, MeCN	SO ₂ F
Entry	ESF (equiv.)	Conversion (1a, %)	Yield (2a, %) ^b
1	4.0	90	73
2	2.0	96	88
3	1.5	84	70
4	1.2	83	69
5	1.0	75	57

^aReaction condition: Benzoic acid (**1a**, 0.1 mmol), ESF (2.0 eq., 0.2 mmol), CuO (1.0 eq., 8 mg), anhydrous CH₃CN (2 mL) were added in a sealed tube (20 mL) under argon atmosphere and the reaction mixture was stirred at 80 °C for 20 h. ^bThe yields were determined by HPLC using **2a** as the external standard ($t_R = 7.5 \text{ min}$, $\lambda_{max} = 229.9 \text{ nm}$, water / acetonitrile = 50 : 50 (v / v)).

Table S5 Screening of Temperature ^a

CO ₂ H	+ SO ₂ F C	uO (1.0 eq.) eCN, Ar, T	∽SO₂F
Entry	T (°C)	Conversion (1a, %)	Yield (2a, %) ^b
1	25	90	4
2	40	93	5
3	50	91	11
4	60	90	51
5	70	95	80
6	80	96	91
7	90	94	87
8	100	94	85
9	110	90	76

^aReaction condition: Benzoic acid (**1a**, 0.1 mmol), ESF (2.0 eq., 0.2 mmol), CuO (1.0 eq., 8 mg), anhydrous CH₃CN (2 mL) were added in a sealed tube (20 mL) under argon atmosphere and the reaction mixture was stirred at corresponding temperature for 20 h. ^bThe yields were determined by HPLC using **2a** as the external standard ($t_R = 7.5 \text{ min}, \lambda_{max} = 229.9 \text{ nm}, \text{water / acetonitrile} = 50 : 50 (v / v)).$

Table S6 Screening of Reaction Time^a

CO ₂ 1a	₂H + ∕∕SO₂F –	CuO (1.0 eq.) Ar, MeCN, t	SO ₂ F
Entry	Time (h)	Conversion (1a, %)	Yield (2a , %) ^b
1	5	20	N.D.
2	8	33	17
3	15	81	73
4	18	94	84
5	20	95	90
6	24	96	88
7	36	94	85
8	48	90	89

^aReaction condition: Benzoic acid (**1a**, 0.1 mmol), ESF (2.0 eq., 0.2 mmol), CuO (1.0 eq., 8 mg), anhydrous CH₃CN (2 mL) were added in a sealed tube (20 mL) under argon atmosphere and the reaction mixture was stirred at 80 °C for corresponding reaction time. ^bThe yields were determined by HPLC using **2a** as the external standard ($t_R = 7.5 \text{ min}, \lambda_{max} = 229.9 \text{ nm}, \text{water / acetonitrile} = 50 : 50 (v / v)$).

O O O O O O O O O O O O O O O O O O O					
Entry	Catalyst (X eq.)	Solvent	Conversion (1u, %)	Yield $(2u, \%)^b$	
1	CuO (1.0)	MeCN	80	56	
2	CuO (1.0)	DMA	0	0	
3	CuF ₂ (1.0)	MeCN	19	11	
4 ^c	CuO (1.0)	MeCN	34	23	
5	CuSO ₄ (1.0)	MeCN	0	0	
6	CuO (1.5)	MeCN	39	34	
$7^{\rm d}$	CuO (1.0)	MeCN	12	10	
8 ^e	CuO (1.0)	DMA	4	2	

^aReaction condition: Furan-2-carboxylic acid (**1u**, 0.1 mmol), ESF (2.0 eq., 0.2 mmol), [Cu] catalyst, anhydrous solvent (2 mL) were added in a sealed tube (20 mL) under argon atmosphere and the reaction mixture was stirred at 80 °C for 20 h. ^bThe yields were determined by HPLC using **2u** as the external standard ($t_R = 4.9 \text{ min}$, $\lambda_{max} = 254.7 \text{ nm}$, water / acetonitrile = 50 : 50 (v / v)). ^cReacted for 24 h. ^dESF 1.2 eq., 0.12 mmol, ^eReacted at 100 °C.

$ \begin{array}{c} $					
Entry	Additive	(mol%)	Conversion (1u, %)	Yield (2u , %) ^b	
1	А	10	80	66	
2	В	10	84	76	
3	С	10	84	53	
4	В	15	87	77	
5	В	5	89	78	
6	В	2	85	65	
7	В	0	79	57	

^aReaction condition: Furan-2-carboxylic acid (**1u**, 0.1 mmol), ESF (2.0 eq., 0.2 mmol), CuO (1.0 eq., 8 mg), additive (mol%), anhydrous CH₃CN (2 mL) were added in a sealed tube (20 mL) under argon atmosphere and the reaction mixture was stirred at 80 °C for 20 h. ^b The yields were determined by HPLC using **2u** as the external standard ($t_R = 4.9$ min, $\lambda_{max} = 254.7$ nm, water / acetonitrile = 50 : 50 (v / v)). **A**= [RuCl₂(p-cymene)]₂, **B**= Ru(bpy)₃(PF₆)₂, **C**= Ru(bpy)₃Cl₂.

2. Deuterated experiment

The starting material deuterated benzoic acid (d-1a) was synthesized according to the previous literature report.^[1]

(carboxy-d)benzene (*d*-1a). Off-white soild, ¹H NMR (500 MHz, CDCl₃) δ 11.47 (br s, 0.48 H), 8.14 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 6.9 Hz, 1H), 7.49 (t, J = 7.2 Hz, 2H).

2-(fluorosulfonyl)ethyl-2-d benzoate (*d*-2a). Procedure A was followed, petroleum ether / ethyl acetate = 10 : 1 (v / v) as eluent for column chromatography. Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 7.9 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 4.81 (t, *J* = 5.1 Hz, 2H), 3.85 (q, *J* = 4.9 Hz, 1.4 H). ¹⁹F NMR (471 MHz, CDCl₃) δ 59.05 (s), 59.01 (s).

The starting material benzoic acid with deuteration rate of 52% (d-1a) was carried out in control experiment, which observed the deuteration rate of 30% in isolated product (d-2a). Subsequent results were also verified by ¹H-NMR and ¹⁹F-NMR. The deuterated experiment also proved this type reaction was oxa-Michael addition.

[1] C.; Empel, T. V.; Nguyen, Rene M. Koenigs, Tropylium-Catalyzed O-H insertion reactions of diazoalkanes with carboxylic acids, *Org. Lett.* **2021**, *23*, 548.

3. NMR spectra

Figure S1. The ¹H NMR spectrum of 2a

Figure S2. The ¹³C NMR spectrum of 2a

2a, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S3. The ¹⁹F NMR spectrum of 2a

Figure S4. The ¹H NMR spectrum of 2b

Figure S5. The ¹³C NMR spectrum of **2b**

2b, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S6. The ¹⁹F NMR spectrum of **2b**

2c, ¹H NMR, 500 MHz, CDCl₃

Figure S7. The ¹H NMR spectrum of 2c

2c, ¹³C NMR, 126 MHz, CDCl₃

Figure S8. The ¹³C NMR spectrum of 2c

2c, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S9. The ¹⁹F NMR spectrum of 2c

2d, ¹H NMR, 500 MHz, CDCl₃

Figure S10. The ¹H NMR spectrum of 2d

2d, ¹³C NMR, 126 MHz, CDCl₃

Figure S11. The ¹³C NMR spectrum of 2d

2d, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S12. The ¹⁹F NMR spectrum of 2d

2e, ¹H NMR, 500 MHz, CDCl₃

Figure S13. The ¹H NMR spectrum of 2e

2e, ¹³C NMR, 126 MHz, CDCl₃

Figure S14. The ¹³C NMR spectrum of 2e

2e, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S15. The ¹⁹F NMR spectrum of 2e

2f, ¹H NMR, 500 MHz, CDCl₃

Figure S16. The ¹H NMR spectrum of 2f

2f, ¹³C NMR, 126 MHz, CDCl₃

Figure S17. The ¹³C NMR spectrum of 2f

2f, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S18. The ¹⁹F NMR spectrum of 2f

2g, ¹H NMR, 500 MHz, CDCl₃

Figure S19. The ¹H NMR spectrum of 2g

2g, ¹³C NMR, 126 MHz, CDCl₃

Figure S20. The ¹³C NMR spectrum of 2g

2g, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S21. The ¹⁹F NMR spectrum of 2g

2h, ¹H NMR, 500 MHz, CDCl₃

Figure S22. The ¹H NMR spectrum of **2h**

2h, ¹³C NMR, 126 MHz, CDCl₃

Figure S23. The ¹³C NMR spectrum of 2h

Figure S24. The ¹⁹F NMR spectrum of 2h

2i, ¹H NMR, 500 MHz, CDCl₃

Figure S25. The ¹H NMR spectrum of 2i

2i, ¹³C NMR, 126 MHz, CDCl₃

Figure S26. The ¹³C NMR spectrum of 2i
2i, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S27. The ¹⁹F NMR spectrum of 2i

2j, ¹H NMR, 500 MHz, CDCl₃

Figure S28. The ¹H NMR spectrum of 2j

Figure S29. The ¹³C NMR spectrum of 2j

Figure S30. The ¹⁹F NMR spectrum of 2j

2k, ¹H NMR, 500 MHz, CDCl₃

Figure S31. The ¹H NMR spectrum of 2k

2k, ¹³C NMR, 126 MHz, CDCl₃

Figure S32. The 13 C NMR spectrum of 2k

2k, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S33. The ¹⁹F NMR spectrum of 2k

Figure S34. The ¹H NMR spectrum of 2l

2l, ¹³C NMR, 126 MHz, CDCl₃

Figure S35. The ¹³C NMR spectrum of 2l

2l, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S36. The ¹⁹F NMR spectrum of 2l

2m, ¹H NMR, 500 MHz, CDCl₃

Figure S37. The ¹H NMR spectrum of 2m

2m, 13 C NMR, 126 MHz, CDCl₃

Figure S38. The ¹³C NMR spectrum of **2m**

2m, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S39. The ¹⁹F NMR spectrum of **2m**

2n, ¹H NMR, 500 MHz, CDCl₃

Figure S40. The ¹H NMR spectrum of 2n

2n, ¹³C NMR, 126 MHz, CDCl₃

Figure S41. The ¹³C NMR spectrum of 2n

2n, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S42. The ¹⁹F NMR spectrum of **2n**

20, ¹H NMR, 500 MHz, CDCl₃

Figure S43. The ¹H NMR spectrum of 20

20, ¹³C NMR, 126 MHz, CDCl₃

Figure S44. The ¹³C NMR spectrum of 20

20, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S45. The ¹⁹F NMR spectrum of 20

2p, ¹H NMR, 500 MHz, CDCl₃

Figure S46. The ¹H NMR spectrum of **2p**

2p, ¹³C NMR, 126 MHz, CDCl₃

Figure S47. The ¹³C NMR spectrum of **2p**

2p, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S48. The ¹⁹F NMR spectrum of **2p**

2q, ¹H NMR, 500 MHz, CDCl₃

Figure S49. The ¹H NMR spectrum of 2q

2q, ¹³C NMR, 126 MHz, CDCl₃

Figure S50. The 13 C NMR spectrum of 2q

2q, ¹⁹F NMR, 471 MHz, CDCl₃

2r, ¹H NMR, 500 MHz, CDCl₃

Figure S52. The ¹H NMR spectrum of 2r

2r, ¹³C NMR, 126 MHz, CDCl₃

Figure S53. The ¹³C NMR spectrum of **2r**

2r, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S54. The ¹⁹F NMR spectrum of **2r**

2s, ¹H NMR, 500 MHz, CDCl₃

Figure S55. The ¹H NMR spectrum of 2s

2s, ¹³C NMR, 126 MHz, CDCl₃

Figure S56. The ¹³C NMR spectrum of 2s

2s, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S57. The ¹⁹F NMR spectrum of 2s

2t, ¹H NMR, 500 MHz, CDCl₃

Figure S58. The ¹H NMR spectrum of 2t

2t, ¹³C NMR, 126 MHz, CDCl₃

Figure S59. The ¹³C NMR spectrum of 2t

2t, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S60. The ¹⁹F NMR spectrum of 2t

2u, ¹H NMR, 500 MHz, CDCl₃

Figure S61. The ¹H NMR spectrum of 2u

2u, ¹³C NMR, 126 MHz, CDCl₃

Figure S62. The 13 C NMR spectrum of 2u
2u, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S63. The ¹⁹F NMR spectrum of **2u**

2v, ¹H NMR, 500 MHz, CDCl₃

Figure S64. The ¹H NMR spectrum of 2v

2v, ¹³C NMR, 126 MHz, CDCl₃

Figure S65. The 13 C NMR spectrum of 2v

2v, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S66. The 19 F NMR spectrum of 2v

2w, ¹H NMR, 500 MHz, CDCl₃

Figure S67. The ¹H NMR spectrum of 2w

2w, ¹³C NMR, 126 MHz, CDCl₃

Figure S68. The 13 C NMR spectrum of 2w

2w, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S69. The ¹⁹F NMR spectrum of 2w

2x, ¹H NMR, 500 MHz, CDCl₃

Figure S70. The ¹H NMR spectrum of 2x

2x, ¹³C NMR, 126 MHz, CDCl₃

Figure S71. The 13 C NMR spectrum of 2x

2x, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S72. The ¹⁹F NMR spectrum of 2x

2y, ¹H NMR, 500 MHz, CDCl₃

Figure S73. The ¹H NMR spectrum of 2y

2y, ¹³C NMR, 126 MHz, CDCl₃

Figure S74. The 13 C NMR spectrum of 2y

2y, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S75. The 19 F NMR spectrum of 2y

2z, ¹H NMR, 500 MHz, CDCl₃

Figure S76. The ¹H NMR spectrum of 2z

2z, ¹³C NMR, 126 MHz, CDCl₃

Figure S77. The ¹⁹C NMR spectrum of 2z

Figure S78. The 19 F NMR spectrum of 2z

2aa, ¹H NMR, 500 MHz, CDCl₃

Figure S79. The ¹H NMR spectrum of 2aa

2aa, ¹³C NMR, 126 MHz, CDCl₃

Figure S80. The ¹³C NMR spectrum of 2aa

2aa, ¹⁹F NMR, 471 MHz, CDCl₃

Figure S81. The ¹⁹F NMR spectrum of 2aa

n

Figure S82. The ¹H NMR spectrum of 2ab

2ab, ¹³C NMR, 126 MHz, CDCl₃

Figure S83. The ¹³C NMR spectrum of 2ab

Figure S84. The ¹⁹F NMR spectrum of 2ab

d-1a, ¹H NMR, 500 MHz, CDCl₃

Figure S85. The ¹H NMR spectrum of d-1a

d-2a, ¹H NMR, 500 MHz, CDCl₃

Figure S86. The ¹H NMR spectrum of *d*-2a

Figure S87. The ¹⁹F NMR spectrum of d-2a