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CONSIDERATIONS IN EXPOSOME STUDY DESIGN 

Study design. The first consideration in the design of a top-down or functional exposomic 

study is to understand the health endpoint under investigation. While the environment can 

exert a role in nearly all disease processes, the extent of the effect is disease-specific.1 Most 

diseases have been categorized in the absence of sufficient exposure-related data, thus 

exposomics may also contribute to improved phenotyping. While all diseases have 

environmental contributors, diseases with few established links to the genome may be the 

most promising candidates for an exposome study, as are diseases occurring in tissues at the 

interface of exposure (e.g., lungs for respiratory disease,2-4 skin for dermal disorders,5-7 gut 

for gastrointestinal disorders8-10).  

Most commonly, genetic studies of disease tend to use family-based designs (i.e., 

enrollment predicated on an affected proband) or unrelated case-controls, where individuals 

are enrolled after disease diagnosis and matched to healthy controls. These cross-sectional 

study designs can provide important insight into genetic causes of disease progression and 

treatment as DNA sequence is static; however, samples collected at study enrollment may not 

capture past exposure (e.g., early life environmental exposures that contribute to future 

disease risk11). Furthermore, such designs may be subject to reverse causation due to disease-

related changes in behavior and biology limiting the causal interpretation of results. 

Prospective longitudinal studies that collect exposure samples before disease onset, 

and ideally in the perinatal period and at several times throughout the life course, have 

inherent advantages over other study designs that collect exposure sample after enrolling 

individuals who already have the disease of interest. Large precision medicine studies and 

other cohorts, such as All of Us in the United States (https://allofus.nih.gov), The 

Environmental Influences on Child Health Outcomes (ECHO) study in the United States 

(https://www.nih.gov/research-training/environmental-influences-child-health-outcomes-

echo-program),12 the Trans-Omics for Precision Medicine (TOPMed) program 

(https://www.nhlbiwgs.org), and the European Prospective Investigation of Cancer (EPIC) 

(https://epic.iarc.fr), provide key opportunities for studying how the exposome contributes to 

disease risk before diagnosis. Other designs include case studies, cohort studies, case-control 

studies, nested case-control studies, and cross-sectional studies. While there is a risk of 

reverse causation in case-control study designs, these may provide the only realistic option 

for rare diseases. In large and well-resourced cohort studies, the prospective nested case-

control study design becomes feasible. A notable exception to the need for prospective 
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longitudinal exposure data is when exposure can be accurately evaluated retrospectively, for 

example for external exposures using air pollution and satellite records, or when the exposure 

is stable over time and simple to retrieve in an unbiased fashion from public databases (e.g., 

built environment13). Innovative new assays may also provide a retrospective record of 

exposure, such as through the tooth exposome.14, 15  

It is not currently feasible to acquire data on all possible exposures in a given study. It 

is therefore natural to narrow the focus in exposome studies (e.g., small molecules in 

biofluids or in air pollution). Given limited resources, gathering high-quality information on 

biological responses or health outcomes (both negative and positive) is of equal importance 

in exploratory studies and may enable deeper understanding of mechanisms of disease 

progression following exposure. Individual meta-data, patient demographics, electronic 

medical records, and public databases should all be utilized for this purpose with due 

consideration to ethics and general data protection regulations.  

Population sample size. An inherent challenge of exposomics is that exposome studies will 

need to be larger than studies in which only a single chemical is tested. Alternatively, smaller 

studies might be combined into statistical evaluations; however, this will require 

standardization of the exposure and health measurements. The study size is typically 

predetermined by the need to achieve a particular statistical power for a targeted effect size 

using estimates of the dose response slope; however, it is unclear as to what effect sizes can 

be expected in exposome studies, particularly if the effects are not confined to one particular 

disease or one particular exposure. Identifying appropriate levels of power for exposome 

studies is further complicated due to the large number of detected signals and need to correct 

for multiple testing, correlation among co-exposures, measurement error among exposome 

features, and variable detection rates based on age, location and other covariates.16 One 

strategy is to leverage previous exposome studies, which are often underpowered but can 

provide an estimate on data correlation structure and effect examples. For example, Jung et al 

leveraged an exposome-wide association study (ExWAS) framework that combined 

measurement of 128 endocrine disrupting compounds with a population size of 473 men to 

investigate environmental impacts on semen quality parameters.17 After correcting for 

multiple testing, none of the exposures reached significance and post-hoc statistical analysis 

suggested a mean sample size of 2,696 participants was required to achieve power >0.8. This 

number is significantly higher than published studies to date and highlights the importance of 

evaluating power both prior to and after statistical analysis when interpreting results. 
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However, this study did not consider mixture effects or latent structures within the data, 

which are key to understanding relationships between the exposome and adverse outcomes. 

Current evidence suggests it is the joint effect of multiple, low-level exposures driving 

disease risk rather than a small number of independent exposures.18 Comparison of linear-

regression and other statistical analysis approaches for variable selection demonstrate that 

ExWAS based upon individual linear regression with correction for multiple testing 

evidences the poorest performance when compared to other strategies due to the complex 

correlation structure of exposome data.19, 20 Reported exposome-based studies to date vary 

widely in size, which is at least partly related to study aim; however, large population sizes 

are critical due to the widespread variability in exposure patterns across a population that can 

be influenced by many different factors.  

The Japan Environment and Children's Study (JECS) recruited approximately 

100,000 birth-pairs and 50,000 fathers, with multiple priority outcomes including 

reproduction/pregnancy complications, congenital anomalies, neuropsychiatric disorders, 

immune system disorders, and metabolic/endocrine system disorders.21 The human early-life 

exposome (HELIX) project included 1301 birth-pairs from six European birth cohorts and 

plans to study the role of exposome on childhood obesity, cardiometabolic risk, blood 

pressure abnormalities, neurodevelopment problems, and respiratory diseases (asthma, 

wheeze, lung function).22 Conversely, a longitudinal exposome study recruited only 15 

individuals who were followed for up to two years.23 However, this study eventually obtained 

70 billion readouts and showed in great detail the tremendous dynamics and diversity of the 

exposome. Controlled human exposure studies are also of modest size, but given intra-

individual control (greatly reducing confounding), significant changes in outcome can be 

fairly attributed to the variable exposure. For example, using proteomics, such a study was 

able to profile the difference in airway protein response to different combinations of 

inhalants, supporting ‘omics as a way to distinguish between exposure combinations and, in 

particular, showing that adding diesel exhaust to allergen altered host defense.24, 25 Thus, 

sample size in exposome studies accordingly depends on the study design, desired endpoint, 

rate of the disease occurrence (in prospective studies) and available resources. 

Windows of susceptibility. The timing of sample collection is important and can depend on 

the health outcomes of interest. Windows of susceptibility are the life periods in which an 

organism may be most sensitive to exposures. If an exposure occurs in such a window, the 

disease may progress quickly or may appear decades later.26-28 Without prior knowledge, 
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longitudinal sampling is essential to ensure having samples to measure exposure during 

periods of heightened susceptibility. To truly sequence the exposome, defined as throughout 

the entire life-course, sampling should technically begin early in a pregnancy, or even prior to 

conception. In fact, a general hypothesis grounded in epidemiological evidence is that health 

and disease is largely dependent on exposure early in life, including during fetal stages (i.e., 

DOHaD Hypothesis29). Because exposure windows likely deviate by age and health 

outcomes, defining the “average” exposome by age and disease status will be key measures 

for understanding how the human exposome contributes to disease risk; concepts being 

examined by the ECHO program as well as recent EU projects (e.g., https://longitools.org/). 

Replication and validation. Top-down and bottom-up exposome studies in human 

populations will be hypothesis generating, and should eventually lead to more sophisticated 

and larger functional exposomic study designs where associations between exposure and 

effect are hypothesis tested. Establishing causal links will require a cautious approach, as 

false positives are likely even after stringent quality control, data pre-processing, and data 

analysis. While false positive rates will be high in any omics study, false negatives can also 

arise from either low sensitivity of the analytical methods or unexpectedly low exposure rates 

in the study population. For this reason, all resources cannot be placed into a single human 

exposome study, such studies must be replicated and the results reproduced for validation, 

including in longitudinal and mechanistic studies in subcohorts of the same populations. 

Validation needs to be performed in an independent sample set, demonstrating that the 

findings are replicable beyond the initial study population.30 A particular challenge of 

validating an exposome study is that exposures will vary across populations, rendering it 

necessary to have precise information on the exposures in order to establish the exposure-

disease relationship. Some associations can be tested for biological plausibility using 

controlled laboratory experiments, for example by combining chemical exposures with other 

environmental stresses and monitoring pathophysiology using in vitro or in vivo models.31 

However, this approach will require the study to be designed appropriately with similar 

exposure levels administered during the appropriate window(s) of susceptibility. Hence, 

epidemiologic data may need to precede such studies in order to inform dose, dose 

combinations and timing of exposure.  

Biological sampling. Blood plasma or serum are the most common matrices in human 

studies of organic contaminant exposures; however, whole blood (or the red blood cell 

fraction) offers the possibility for the measurement of metals, trace elements, and methyl 
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mercury, etc.32-34 Interestingly, some per- and polyfluoroalkyl substances (PFASs) have also 

been found to partition preferentially in the red blood cell fraction.35 The red blood cell 

fraction is also optimal for protein adductomics, because the lack of a nucleus in red blood 

cells means that covalent reactions leave a lasting imprint (i.e., no de novo protein synthesis 

occurs). Hemoglobin adducts for a list of reactive chemicals have been summarized 36 and 

proposed as unbiased measures of total exposure to reactive electrophiles.37, 38 Thus, for a 

comprehensive exposome study, whole blood, or separated fractions of plasma/serum and 

blood cells should be considered. These same samples can often be used for diagnosis of 

disease or biological effects, for example plasma and serum are commonly used for 

metabolomics, proteomics, and transcriptomics, while the epigenome can be evaluated in 

leukocytes.  

Another useful matrix is urine, which is a more easily accessible and less invasive to 

collect than blood, and moreover can be collected by the participant outside of the clinic. In 

addition, urine is clearly a useful matrix for studies of renal disease. Other potential matrices 

that can answer specific questions include feces, teeth, hair, saliva, tears, skin and even 

earwax. Tissue samples, such as placenta or biopsies may, depending on the research 

question, be a useful matrix. There are advantages to analyzing a matrix for both bottom-up 

and top-down approaches that is most closely related to the disease. For example, in 

respiratory disease, the analysis of lung fluid, breath condensate, or sputum is preferred given 

that these matrices are closest to the target organ of the disease.2-4 Saliva may be of value 

when studying oral health, and fecal samples may help in assessing the causes of gut-related 

symptoms8-10. These matrices can be more challenging and expensive to obtain, process, 

normalize and store than more common fluids such as blood and urine; however, obtaining 

multiple matrices from the same individual may increase understanding of the internal 

exposome. 

 

WORKING WITH EXPOSOME DATA 

Analyzing, interpreting, and reporting exposomic data. Understanding the link between 

the exposome and health outcomes is a challenge, and currently there are only a few 

approaches applied in large scale exposome studies.39 The most commonly used method is 

the exposome-wide association study, which is an exposure-by-exposure method and consists 

of a covariate-by-covariate estimation of the exposure outcome association through 
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independent linear regression models. While it is useful for hypothesis generation, this 

approach does not implicitly consider correlations between exposures and tends to give a 

high rate of false positives when insufficiently corrected for multiple comparisons.20 A recent 

R package called rexposome is designed for the analysis of exposome data and offers a set of 

functions to incorporate exposome data into the R framework Biocondcutor. Borrowing from 

other omics, for mechanistic inference, we may employ data-driven network methods such as 

weighted correlation network analysis40 and Gaussian graphical models.41, 42 If a widely-

accepted exposome database can be established, knowledge-driven approaches such as 

pathway enrichment analysis43 may also be applied. When prediction of health outcomes is 

the goal, approaches including penalized regression methods (e.g., elastic net44), partial least 

squares discriminant analysis and its variations,45 and conditional Gaussian Bayesian 

networks46 may be considered. Exposomic data could be integrated with other omics data 

using causal mediation approaches,47 Mendelian randomization,48 joint effect hypothesis 

testing,49 and similarity network fusion,50 etc., if existing evidence alludes to possible 

mediation/interaction.  

An explicit agreement on data acquisition strategies may facilitate or optimize data 

analysis strategies. However, it is not realistic to expect the academic community to coalesce 

around a given method, and bioinformatic methods continue to advance remarkably such that 

data captured in even unanticipated ways can be meaningfully and effectively synthesized 

and distilled by evolving informatic techniques, including machine learning and artificial 

intelligence (AI). Therefore, for some studies it will remain necessary to customize analytical 

approaches while for others this presumed need may prove less restrictive. Even if the 

promise of new analytics, including AI, is widely achieved, a detailed reporting of method 

parameters in both quality control and data analysis will likely be necessary. Accordingly, 

investigators should report the history of data processing used to obtain the final results, 

including detailed software parameter settings, in addition to making the raw data accessible. 

For example, in HRMS-based exposomics, the MS raw data should be deposited in 

repositories along with experimental metadata (e.g., GNPS MassIVE, Metabolomics 

Workbench, Metabolights) and if there is any programming applied, the source code should 

be deposited in code sharing platforms like GitHub (https://github.com/). In addition, more 

detailed experimental methods could be readily shared using open access tools such as 

Jupyter notebooks (https://jupyter.org).  
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A particular weak link in analyzing exposomics data is in meta-analysis, which has 

been used extensively for data from targeted studies51, 52 but not from untargeted studies. 

There is need to increase the crosstalk between the different stakeholders from 

epidemiologists to laboratory scientists. By strengthening the communication among the 

diverse scientists working in the exposome space, we can begin to develop the tools and 

approaches necessary to perform the large-scale data analysis required of true exposomics. In 

particular, advances in predictive analytics and inferential statistics will be required to 

integrate the multiple data modalities needed to understand the exposome and apply it within 

a precision public health context,53, 54 which will necessitate the advent of additional 

exposome ontologies.55  
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Figure S1. Program and speaker list for the Gunma University Initiative for Advanced 
Research (GIAR) exposome workshop. 
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Large Conference room, 1st floor 
@ Institute for Molecular and Cellular Regulation,                              
⏕యㄪ⠇◊✲ᡤ1㝵኱఍㆟ᐊ 

WELCOME ADDRESS 
10:00 䡚 10:05         Kenji Kubota (GIAR Chairperson) 
 
10:05 䡚 10:50        “Non-targeted LC-MS metabolite profiling in discovery of biomarkers for dietary exposure”  
                       Kati Hanhineva (University of Eastern Finland, Kuopio; Chalmers University of Technology
            Gothenburg) 
10:50 䡚 11:35        “High-resolution metabolomics: advanced blood chemistry for  
                  measuring the human exposome”             
              Douglas Walker (Department of Environmental Medicine and Public Health,  
                              Icahn School of Medicine at Mount Sinai) 
11:35 䡚 12:05        “Application of MS-DIAL 4.0 for the exposome: characterizing diverse  
                  lipid classes originating from plants, algae, mammals, and microbiota”             
              Hiroshi Tsugawa (RIKEN Center for Sustainable Resource Science and  
             Center for Integrative Medical Sciences) 
12:05 䡚 12:15        “Introduction to the Japan Environment and Children‘s Study (JECS):  
                  a resource for life course exposure assessment”             
              Tomohiko Isobe (JECS Programme Office, National Institute for Environmental Studies) 
 
12:15 䡚 13:15          LUNCH BREAK 
13:15 䡚 14:00        “Nontarget mass spectrometry methods for studies of the exposome”                      
                  Jonathan Martin (Department of Environmental Science and Analytical Chemistry,  
              Stockholm University) 
14:00 䡚 14:45        “Maternal pregnancy and offspring metabolomes in the study of childhood respiratory health” 
                     Mengna Huang (Channing Division of Network Medicine, Brigham and Women‘s Hospital 
            and Harvard Medical School) 
14:45 䡚 15:30        “Mixed omics of controlled human exposures to common inhalants: what, how, when & why?” 
                     Christopher Carlsten (Respiratory Medicine, Director Air Pollution Exposure Laboratory,  
                    University British Columbia) 
15:30 䡚 16:00         COFFEE BREAK 
16:00 䡚 16:45        “Leveraging mass spectrometry data to understand maternal and fetal exposome in pregnancy 
                  and Implications for health” 
                   Tracey Woodruff (Program on Reproductive Health and the Environment,  
              School of Medicine, University of California San Francisco) 
16:45 䡚 17:30        “Exposomics and precision medicine” 
                                     Robert Wright (Department of Environmental Medicine and Public Health,  
             Icahn School of Medicine at Mount Sinai) 
CLOSING REMARKS  
17:30 䡚 17:35          Craig E. Wheelock (GIAR International Open Laboratory-Karolinska Institutet)                                                                                                                                                      
                               
                     Contact to GIAR support office, Japan 䛚ၥྜ䛫ඛ䠖ᮍ᮶ඛ➃◊✲ᨭ᥼ಀ                                                                                                                                                                 
                                 E- mail: kk-kensui4@jimu.gunma-u.ac.jp  Phone: +81 (0)27- 220-8028 
  

Language: ENGLISH ౑⏝ゝㄒ䠖ⱥㄒ 



Page 11 of 15 

References 

1. Rappaport, S. M., Genetic Factors Are Not the Major Causes of Chronic Diseases. 
PLoS One 2016, 11, (4), e0154387. 

2. Burbank, A. J.; Sood, A. K.; Kesic, M. J.; Peden, D. B.; Hernandez, M. L., 
Environmental determinants of allergy and asthma in early life. J Allergy Clin 
Immunol 2017, 140, (1), 1-12. 

3. Wheelock, C. E.; Rappaport, S. M., The role of gene-environment interactions in lung 
disease: the urgent need for the exposome. Eur Respir J 2020, 55, (2). 

4. Guillien, A.; Cadiou, S.; Slama, R.; Siroux, V., The Exposome Approach to Decipher 
the Role of Multiple Environmental and Lifestyle Determinants in Asthma. Int J 
Environ Res Public Health 2021, 18, (3). 

5. Celebi Sozener, Z.; Cevhertas, L.; Nadeau, K.; Akdis, M.; Akdis, C. A., 
Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol 2020, 
145, (6), 1517-1528. 

6. Cecchi, L.; D'Amato, G.; Annesi-Maesano, I., External exposome and allergic 
respiratory and skin diseases. J Allergy Clin Immunol 2018, 141, (3), 846-857. 

7. Appenzeller, B. M. R.; Chadeau-Hyam, M.; Aguilar, L., Skin exposome science in 
practice : current evidence on hair biomonitoring and future perspectives. J Eur Acad 
Dermatol Venereol 2020, 34 Suppl 4, 26-30. 

8. Sbihi, H.; Boutin, R. C.; Cutler, C.; Suen, M.; Finlay, B. B.; Turvey, S. E., Thinking 
bigger: How early-life environmental exposures shape the gut microbiome and 
influence the development of asthma and allergic disease. Allergy 2019, 74, (11), 
2103-2115. 

9. Sinisalu, L.; Sen, P.; Salihovic, S.; Virtanen, S. M.; Hyoty, H.; Ilonen, J.; Toppari, J.; 
Veijola, R.; Oresic, M.; Knip, M.; Hyotylainen, T., Early-life exposure to 
perfluorinated alkyl substances modulates lipid metabolism in progression to celiac 
disease. Environ Res 2020, 188, 109864. 

10. Pimentel, M.; Lembo, A., Microbiome and Its Role in Irritable Bowel Syndrome. Dig 
Dis Sci 2020, 65, (3), 829-839. 

11. Heindel, J. J.; Vandenberg, L. N., Developmental origins of health and disease: a 
paradigm for understanding disease cause and prevention. Curr Opin Pediatr 2015, 
27, (2), 248-53. 

12. Volk, H. E.; Perera, F.; Braun, J. M.; Kingsley, S. L.; Gray, K.; Buckley, J.; 
Clougherty, J. E.; Croen, L. A.; Eskenazi, B.; Herting, M.; Just, A. C.; Kloog, I.; 
Margolis, A.; McClure, L. A.; Miller, R.; Levine, S.; Wright, R.; Environmental 
influences on Child Health, O., Prenatal air pollution exposure and 
neurodevelopment: A review and blueprint for a harmonized approach within ECHO. 
Environ Res 2020, 110320. 

13. Dai, D.; Prussin, A. J., 2nd; Marr, L. C.; Vikesland, P. J.; Edwards, M. A.; Pruden, A., 
Factors Shaping the Human Exposome in the Built Environment: Opportunities for 
Engineering Control. Environ Sci Technol 2017, 51, (14), 7759-7774. 

14. Andra, S. S.; Austin, C.; Arora, M., The tooth exposome in children's health research. 
Curr Opin Pediatr 2016, 28, (2), 221-7. 



Page 12 of 15 

15. Arora, M.; Austin, C., Teeth as a biomarker of past chemical exposure. Curr Opin 
Pediatr 2013, 25, (2), 261-7. 

16. Patel, C. J., Analytic Complexity and Challenges in Identifying Mixtures of 
Exposures Associated with Phenotypes in the Exposome Era. Curr Epidemiol Rep 
2017, 4, (1), 22-30. 

17. Chung, M. K.; Buck Louis, G. M.; Kannan, K.; Patel, C. J., Exposome-wide 
association study of semen quality: Systematic discovery of endocrine disrupting 
chemical biomarkers in fertility require large sample sizes. Environ Int 2019, 125, 
505-514. 

18. Tanner, E. M.; Bornehag, C. G.; Gennings, C., Repeated holdout validation for 
weighted quantile sum regression. MethodsX 2019, 6, 2855-2860. 

19. Barrera-Gomez, J.; Agier, L.; Portengen, L.; Chadeau-Hyam, M.; Giorgis-Allemand, 
L.; Siroux, V.; Robinson, O.; Vlaanderen, J.; Gonzalez, J. R.; Nieuwenhuijsen, M.; 
Vineis, P.; Vrijheid, M.; Vermeulen, R.; Slama, R.; Basagana, X., A systematic 
comparison of statistical methods to detect interactions in exposome-health 
associations. Environ Health 2017, 16, (1), 74. 

20. Agier, L.; Portengen, L.; Chadeau-Hyam, M.; Basagana, X.; Giorgis-Allemand, L.; 
Siroux, V.; Robinson, O.; Vlaanderen, J.; Gonzalez, J. R.; Nieuwenhuijsen, M. J.; 
Vineis, P.; Vrijheid, M.; Slama, R.; Vermeulen, R., A Systematic Comparison of 
Linear Regression-Based Statistical Methods to Assess Exposome-Health 
Associations. Environ Health Perspect 2016, 124, (12), 1848-1856. 

21. Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; 
Yamagata, Z.; Kayama, F.; Kishi, R.; Ohya, Y.; Saito, H.; Sago, H.; Okuyama, M.; 
Ogata, T.; Yokoya, S.; Koresawa, Y.; Shibata, Y.; Nakayama, S.; Michikawa, T.; 
Takeuchi, A., et al., Rationale and study design of the Japan environment and 
children's study (JECS). BMC Public Health 2014, 14, 25. 

22. Vrijheid, M.; Slama, R.; Robinson, O.; Chatzi, L.; Coen, M.; van den Hazel, P.; 
Thomsen, C.; Wright, J.; Athersuch, T. J.; Avellana, N.; Basagana, X.; Brochot, C.; 
Bucchini, L.; Bustamante, M.; Carracedo, A.; Casas, M.; Estivill, X.; Fairley, L.; van 
Gent, D.; Gonzalez, J. R., et al., The human early-life exposome (HELIX): project 
rationale and design. Environ Health Perspect 2014, 122, (6), 535-44. 

23. Jiang, C.; Wang, X.; Li, X.; Inlora, J.; Wang, T.; Liu, Q.; Snyder, M., Dynamic 
Human Environmental Exposome Revealed by Longitudinal Personal Monitoring. 
Cell 2018, 175, (1), 277-291 e31. 

24. Piyadasa, H.; Hemshekhar, M.; Carlsten, C.; Mookherjee, N., Inhaled Diesel Exhaust 
Decreases the Antimicrobial Peptides alpha-Defensin and S100A7 in Human 
Bronchial Secretions. Am J Respir Crit Care Med 2018, 197, (10), 1358-1361. 

25. Mookherjee, N.; Piyadasa, H.; Ryu, M. H.; Rider, C. F.; Ezzati, P.; Spicer, V.; 
Carlsten, C., Inhaled diesel exhaust alters the allergen-induced bronchial secretome in 
humans. Eur Respir J 2018, 51, (1). 

26. Xu, K.; An, N.; Huang, H.; Duan, L.; Ma, J.; Ding, J.; He, T.; Zhu, J.; Li, Z.; Cheng, 
X.; Zhou, G.; Ba, Y., Fluoride exposure and intelligence in school-age children: 
evidence from different windows of exposure susceptibility. BMC Public Health 
2020, 20, (1), 1657. 



Page 13 of 15 

27. Bose, S.; Ross, K. R.; Rosa, M. J.; Chiu, Y. M.; Just, A.; Kloog, I.; Wilson, A.; 
Thompson, J.; Svensson, K.; Rojo, M. M. T.; Schnaas, L.; Osorio-Valencia, E.; Oken, 
E.; Wright, R. O.; Wright, R. J., Prenatal particulate air pollution exposure and sleep 
disruption in preschoolers: Windows of susceptibility. Environ Int 2019, 124, 329-
335. 

28. Wang, Q.; Benmarhnia, T.; Zhang, H.; Knibbs, L. D.; Sheridan, P.; Li, C.; Bao, J.; 
Ren, M.; Wang, S.; He, Y.; Zhang, Y.; Zhao, Q.; Huang, C., Identifying windows of 
susceptibility for maternal exposure to ambient air pollution and preterm birth. 
Environ Int 2018, 121, (Pt 1), 317-324. 

29. Gillman, M. W., Developmental origins of health and disease. N Engl J Med 2005, 
353, (17), 1848-50. 

30. Igl, B. W.; Konig, I. R.; Ziegler, A., What do we mean by 'replication' and 'validation' 
in genome-wide association studies? Hum Hered 2009, 67, (1), 66-8. 

31. Antonini, J. M.; Kodali, V.; Shoeb, M.; Kashon, M.; Roach, K. A.; Boyce, G.; 
Meighan, T.; Stone, S.; McKinney, W.; Boots, T.; Roberts, J. R.; Zeidler-Erdely, P. 
C.; Erdely, A., Effect of a High-Fat Diet and Occupational Exposure in Different Rat 
Strains on Lung and Systemic Responses: Examination of the Exposome in an Animal 
Model. Toxicol Sci 2020, 174, (1), 100-111. 

32. Wiseman, C. L. S.; Parnia, A.; Chakravartty, D.; Archbold, J.; Copes, R.; Cole, D., 
Total, methyl and inorganic mercury concentrations in blood and environmental 
exposure sources in newcomer women in Toronto, Canada. Environ Res 2019, 169, 
261-271. 

33. Wojciak-Kosior, M.; Szwerc, W.; Strzemski, M.; Wichlacz, Z.; Sawicki, J.; Kocjan, 
R.; Latalski, M.; Sowa, I., Optimization of high-resolution continuum source graphite 
furnace atomic absorption spectrometry for direct analysis of selected trace elements 
in whole blood samples. Talanta 2017, 165, 351-356. 

34. Gil, F.; Hernandez, A. F.; Marquez, C.; Femia, P.; Olmedo, P.; Lopez-Guarnido, O.; 
Pla, A., Biomonitorization of cadmium, chromium, manganese, nickel and lead in 
whole blood, urine, axillary hair and saliva in an occupationally exposed population. 
Sci Total Environ 2011, 409, (6), 1172-80. 

35. Jin, H.; Zhang, Y.; Jiang, W.; Zhu, L.; Martin, J. W., Isomer-Specific Distribution of 
Perfluoroalkyl Substances in Blood. Environ Sci Technol 2016, 50, (14), 7808-15. 

36. Rubino, F. M.; Pitton, M.; Di Fabio, D.; Colombi, A., Toward an "omic" 
physiopathology of reactive chemicals: thirty years of mass spectrometric study of the 
protein adducts with endogenous and xenobiotic compounds. Mass Spectrom Rev 
2009, 28, (5), 725-84. 

37. Golime, R.; Chandra, B.; Palit, M.; Dubey, D. K., Adductomics: a promising tool for 
the verification of chemical warfare agents' exposures in biological samples. Arch 
Toxicol 2019, 93, (6), 1473-1484. 

38. Shibata, T.; Uchida, K., Protein adductomics: A comprehensive analysis of protein 
modifications by electrophiles. Free Radic Biol Med 2019, 144, 218-222. 

39. Santos, S.; Maitre, L.; Warembourg, C.; Agier, L.; Richiardi, L.; Basagana, X.; 
Vrijheid, M., Applying the exposome concept in birth cohort research: a review of 
statistical approaches. Eur J Epidemiol 2020, 35, (3), 193-204. 



Page 14 of 15 

40. Langfelder, P.; Horvath, S., WGCNA: an R package for weighted correlation network 
analysis. BMC Bioinform 2008, 9, 559. 

41. Krumsiek, J.; Suhre, K.; Illig, T.; Adamski, J.; Theis, F. J., Gaussian graphical 
modeling reconstructs pathway reactions from high-throughput metabolomics data. 
Bmc Syst Biol 2011, 5, 21. 

42. Krumsiek, J.; Suhre, K.; Evans, A. M.; Mitchell, M. W.; Mohney, R. P.; Milburn, M. 
V.; Wagele, B.; Romisch-Margl, W.; Illig, T.; Adamski, J.; Gieger, C.; Theis, F. J.; 
Kastenmuller, G., Mining the unknown: a systems approach to metabolite 
identification combining genetic and metabolic information. PLoS Genet 2012, 8, 
(10), e1003005. 

43. Subramanian, A.; Tamayo, P.; Mootha, V. K.; Mukherjee, S.; Ebert, B. L.; Gillette, 
M. A.; Paulovich, A.; Pomeroy, S. L.; Golub, T. R.; Lander, E. S.; Mesirov, J. P., 
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A 2005, 102, (43), 15545-50. 

44. Zou, H.; Hastie, T., Regularization and variable selection via the elastic net. J R Stat 
Soc Series B Stat Methodol 2005, 67, (2), 301-320. 

45. Le Cao, K. A.; Boitard, S.; Besse, P., Sparse PLS discriminant analysis: biologically 
relevant feature selection and graphical displays for multiclass problems. BMC 
Bioinform 2011, 12, 253. 

46. McGeachie, M. J.; Chang, H. H.; Weiss, S. T., CGBayesNets: conditional Gaussian 
Bayesian network learning and inference with mixed discrete and continuous data. 
PLoS Comput Biol 2014, 10, (6), e1003676. 

47. VanderWeele, T. J.; Vansteelandt, S., Mediation Analysis with Multiple Mediators. 
Epidemiol Methods 2014, 2, (1), 95-115. 

48. Davey Smith, G.; Hemani, G., Mendelian randomization: genetic anchors for causal 
inference in epidemiological studies. Hum Mol Genet 2014, 23, (R1), R89-98. 

49. Chu, S. H.; Huang, Y. T., Integrated genomic analysis of biological gene sets with 
applications in lung cancer prognosis. BMC Bioinform 2017, 18, (1), 336. 

50. Wang, B.; Mezlini, A. M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, 
B.; Goldenberg, A., Similarity network fusion for aggregating data types on a 
genomic scale. Nat Methods 2014, 11, (3), 333-7. 

51. Robinson, O.; Tamayo, I.; de Castro, M.; Valentin, A.; Giorgis-Allemand, L.; 
Hjertager Krog, N.; Marit Aasvang, G.; Ambros, A.; Ballester, F.; Bird, P.; Chatzi, L.; 
Cirach, M.; Dedele, A.; Donaire-Gonzalez, D.; Grazuleviciene, R.; Iakovidis, M.; 
Ibarluzea, J.; Kampouri, M.; Lepeule, J.; Maitre, L., et al., The Urban Exposome 
during Pregnancy and Its Socioeconomic Determinants. Environ Health Perspect 
2018, 126, (7), 077005. 

52. Fiolet, T.; Mahamat-Saleh, Y.; Frenoy, P.; Kvaskoff, M.; Romana Mancini, F., 
Background exposure to polychlorinated biphenyls and all-cause, cancer-specific, and 
cardiovascular-specific mortality: A systematic review and meta-analysis. Environ Int 
2021, 154, 106663. 

 

 



Page 15 of 15 

53. Manrai, A. K.; Cui, Y.; Bushel, P. R.; Hall, M.; Karakitsios, S.; Mattingly, C. J.; 
Ritchie, M.; Schmitt, C.; Sarigiannis, D. A.; Thomas, D. C.; Wishart, D.; Balshaw, D. 
M.; Patel, C. J., Informatics and Data Analytics to Support Exposome-Based 
Discovery for Public Health. Annu Rev Public Health 2017, 38, 279-294. 

54. Pearson, T. A.; Califf, R. M.; Roper, R.; Engelgau, M. M.; Khoury, M. J.; Alcantara, 
C.; Blakely, C.; Boyce, C. A.; Brown, M.; Croxton, T. L.; Fenton, K.; Green Parker, 
M. C.; Hamilton, A.; Helmchen, L.; Hsu, L. L.; Kent, D. M.; Kind, A.; Kravitz, J.; 
Papanicolaou, G. J.; Prosperi, M., et al., Precision Health Analytics With Predictive 
Analytics and Implementation Research: JACC State-of-the-Art Review.  J Am Coll 
Cardiol 2020, 76, (3), 306-320. 

55. Zhang, H.; Hu, H.; Diller, M.; Hogan, W. R.; Prosperi, M.; Guo, Y.; Bian, J., 
Semantic standards of external exposome data. Environ Res 2021, 197, 111185. 

 


