Supporting Information for

Inorganic Lead-Free B-γ-CsSnI3 Perovskite Solar Cells Using Diverse

Electron-Transporting Materials: A Simulation Study

Shuo Lin^a, Baoping Zhang^b, Tie-Yu Lü^c, Jin-Cheng Zheng^{c,d,*}, Huaqing Pan^e, Huanting Chen^a, Chuanjin Lin^a, Xirong Li^a, Jinrong Zhou^a

^a College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, Fujian, People's Republic of China

^bDepartment of Electronic Engineering, Optoelectronics Engineering Research Center, College of Electronic Science and Technology

(National Model Microelectronics College), Xiamen University, Xiamen, 361005, China

^c Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China

^dDepartment of Physics, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia

^eDepartment of Mechanical Engineering, Shangrao Vocational and Technical College, Shangrao 334109, Jiangxi, People's Republic of China

*Corresponding author

E-mail address: jczheng@xmu.edu.cn (Jin-Cheng Zheng)

Table S1. Material parameters used in the simulation

Parameters	CsSnI ₃	TiO ₂	ZnO	SnO ₂	GaN	C60	РСВМ	Spiro-OMeTAD	PEDOT:PSS
Band gap $E_g(eV)$	1.3 [1]	3.2 [1]	3.3 [13]	3.5 [18]	3.4 [21]	1.7 [28]	2 [33]	3.06 [36]	1.55 [34]
Electron affinity χ (eV)	3.62 [1]	4.1 [7]	4 [13]	4.5 [18]	4.1 [22]	3.9 [29]	3.9 [33]	2.05 [36]	3.63 [34]
Dielectric constant ε	48.2 [2]	55 [8]	8.656 [14]	9 [18]	9.5 [23]	4.25 [28]	4 [33]	3 [37]	3 [40]
Electron/hole mobility	50/400 [3, 4]	0.006/0.006 [9]	100/25 [14]	100/25 [18]	Caughey-Thomas	1.6/1.6 [28]	0.01/0.01 [33]	2.00E-04/2.00E-4 [37]	9.00E-03/9.00E-3 [40]
$(\text{cm}^2/\text{V/s})$					approximation (doping				
					concentration dependent)				
					[24]				
Effective density of states in the	1.57E+19 [5]	1.00E+21 [9]	2.20E+18 [15]	2.20E+18 [18]	2.30E+18 [23]	1.44E+21 [30]	1.00E+21 [33]	1.00E+19 [38]	1.00E+19 [40]
conduction band N_C (cm ⁻³)									
Effective density of states in the valence band N_V (cm ⁻³)	1.47E+18 [5]	2.00E+20 [9]	1.80E+19 [15]	1.80E+19 [18]	4.60E+19 [23]	1.44E+21 [30]	2.00E+20 [33]	1.00E+19 [38]	1.00E+19 [40]
Minority lifetime	6.6 ns [3]	15 ms [10]	1 ns [16]	2.27 ns [19]	0.1 ns (for electrons) [25], 6.5 ns (for holes) [26]	1 μs [31]	1 μs [34]	0.1µs [38]	1 µs [34]
Surface recombination velocities (cm/s)	2000 [3]	12 [11]	13 [11]	265 [11]	50000 [27]	4600 (assumed to be the same as PCBM)	4600 [11]	3100 [11]	4900 [11]
Absorption coefficient (1/cm ⁻¹)	[6]	[12]	[17]	[20]	[21]	[32]	[35]	[39]	[41]
Initial donor concentration (cm ⁻³)	0	5E+19	1E+18	1E+18	1E+18	5E+17	5E+17	0	0
Optimal donor concentration (cm ⁻³)	0	1E+21	1E+18	1E+18	1E+18	5E+18	5E+18	0	0
Initial acceptor concentration (cm ⁻³)	5E+17 [3]	0	0	0	0	0	0	3E+17	1E+20
Initial thickness (nm)	variable	25	25	25	25	30	30	400	40
Optimal thickness (nm)	100~200								

Figure S1. Energy band alignment of all contact materials and CsSnI₃ adopted in this study

References

[1]Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486-489.

[2]Kumar, M. H.; Dharani, S.; Leong, W. L., Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel M.; Mhaisalkar, S. G.; Mathews,

N. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122-7127.

[3]Wu, B.; Zhou, Y.; Xing, G; Xu, Q.; Garces, H. F.; Solanki, A.; Goh, T. W.; Padture, N. P.; Sum, T. C.. Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI₃ perovskite crystal for solar cells. Adv. Funct. Mater. **2017**, 27, 1604818.

[4]Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. CsSnI₃: semiconductor or metal? High electrical

conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579-8587.

[5]Shum, K.; Chen, Z.; Qureshi, J.; Yu, C.; Wang, J. J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J. T. Synthesis and characterization of CsSnI₃ thin films. Appl.

Phys. Lett. 2010, 96, 221903.

[6]Qiu, X.; Cao, B.; Yuan, S.; Chen, X.; Qiu, Z.; Jiang, Y.; Ye, Q.; Wang, H.; Zeng, H.; Liu, J.; Kanatzidis, M. G. From unstable CsSnI₃ to air-stable Cs₂SnI₆: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells **2017**, 159, 227-234.

[7]Jung, H. S.; Park, N. G. Perovskite solar cells: from materials to devices. Small 2015, 11, 10-25.

[8]van de Krol, R.; Goossens, A.; Schoonman, J. Mott-Schottky analysis of nanometer-scale thin-film anatase TiO₂. J. Electrochem. Soc. **1997**, 144, 1723-1727.
[9]Adhikari, K. R.; Gurung, S.; Bhattarai, B. K.; Soucase, B. M. Comparative study on MAPbI₃ based solar cells using different electron transporting materials. Phys. Status Solidi C **2016**, 13, 13-17.

[10] Mitroi, M. R.; Fara, L. Optimization of black dye-sensitized solar cells by numerical simulation. J. Renewable Sustainable Energy 2013, 5, 041818.

[11]Wang, J.; Fu, W.; Jariwala, S.; Sinha, I.; Jen, AK-Y.; Ginger, D. S. Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. **2019**, 4, 222-227.

[12]Naik, V. M.; Haddad, D.; Naik, R.; Benci, J.; Auner, G. W. Optical properties of anatase, rutile and amorphous phases of TiO₂ thin films grown at room temperature by RF magnetron sputtering. Mat. Res. Soc. Symp. Proc. **2003**, 755, DD11.12.1. Materials Research Society.

[13]Bansal, S.; Aryal, P. Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. IEEE 44th photovoltaic specialists conference **2017**. IEEE.

[14]Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Recent progress in processing and properties of ZnO. Superlattice Microst. 2003, 34, 3-32.

[15]Wanda, M. D.; Ouédraogo, S.; Tchoffo, F.; Zougmoré, F.; Ndjaka, J. M. B. Numerical investigations and analysis of Cu₂ZnSnS₄ based solar cells by SCAPS-1D. Int. J. photoenergy 2016, 2152018.

[16]Ali, A.; Hussain, B.; Ebong, A. Computer modeling of n-ZnO/p-Si single heterojunction bifacial solar cell. IEEE 43rd Photovoltaic Specialists Conference 2016. IEEE.[17]SCAPS-1D software data file.

[18]Cao, Y.; Zhu, X. Y.; Chen, H. B.; Wang, C. G.; Zhang, X. T.; Hou, B. D.; et al. Simulation and optimal design of antimony selenide thin film solar cells. Acta. Phys. Sin. 2018, 67, 247301.

[19]Lee, P. M.; Liao, C. H.; Lin, C. H., Liu, C. Y. Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions. Appl. Surf. Sci. 2018, 442, 398-402.
[20]Khan, A. F.; Mehmood, M.; Aslam, M.; Ashraf, M. Characteristics of electron beam evaporated nanocrystalline SnO₂ thin films annealed in air. Appl. Surf. Sci. 2010, 256, 2252-2258.

[21]Muth, J. F.; Lee, J. H.; Shmagin, I. K.; Kolbas, R. M.; Casey, H. C.; Jr.; Keller, B. P.; Mishra, U. K.; DenBaars, S. P. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. **1997**, 71, 2572-2524.

[22]Martı, A.; Tablero, C.; Antolin, E.; Luque, A.; Campion, R. P.; Novikov, S. V.; Campion, R. P.; Novikov, S. V.; Foxon, C. T. Sol. Energy Mater. Sol. Cells 2009, 93, 641-644.

[23]Lin, S.; Zeng S. W.; Cai X. M.; Zhang J. Y.; Wu S. X.; Sun L.; Zhang, B. P. Simulation of doping levels and deep levels in InGaN-based single-junction solar cell. J. Mater. Sci. 2012, 47, 4595-4603.

[24]Mnatsakanov, T. T.; Levinshtein, M. E.; Pomortseva, L. I.; Yurkov, S. N.; Simin, G. S., Khan, M. A. Carrier mobility model for GaN. Solid-State Electron. 2003, 47, 111–115.

[25]Bandic, Z. Z.; Bridger, P. M.; Piquette, E. C.; McGill, T. C. Electron diffusion length and lifetime in p-type GaN. Appl. Phys. Lett. 1998, 73, 3276-3278.

[26]Bandic, Z. Z.; Bridger, P. M.; Piquette, E. C.; McGill, T. C. Minority carrier diffusion length and lifetime in GaN. Appl. Phys. Lett. 1998, 72, 3166-3168.

[27] Aleksiejunas, R.; Sudzius, M.; Malinauskas, T.; Vaitkus, J.; Jarasiunas, K.; Sakai, S. Appl. Phys. Lett. 2003, 83, 1157-1159.

[28]Golubev, T.; Liu, D.; Lunt, R.; Duxbury, P. Understanding the impact of C₆₀ at the interface of perovskite solar cells via drift-diffusion modeling. AIP Adv. **2019**, 9, 035026.

[29]Liang, P. W.; Chueh, C. C.; Williams, S. T.; Jen, A. K. -Y. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv. Energy Mater. **2015**, *5*, 1402321.

[30]Dixit, H.; Punetha, D.; Pandey, S. K. Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 2019, 179, 969-976.

[31]Burlingame, Q.; Tong, X.; Hankett, J.; Slootsky, M.; Chen, Z.; Forrest, S. R. Photochemical origins of burn-in degradation in small molecular weight organic photovoltaic cells. Energy Environ. Sci. 2015, 8, 1005-1010.

[32]Monestier, F.; Simon, J. J.; Torchio, P.; Escoubas, L.; Ratier, B.; Hojeij, W.; Lucas, B.; Moliton, A.; Cathelinaud, M.; Defranoux, C.; Flory, F. Optical modeling of organic solar cells based on CuPc and C60. Appl. Optics **2008**, 47, C251-6.

[33]Zhao, P.; Liu, Z.; Lin, Z.; Chen, D.; Su, J.; Zhang, C.; Zhang, J.; Chang, J.; Hao, Y. Device simulation of inverted CH₃NH₃PbI_{3-x}Cl_x perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol. Energy **2018**, 169, 11-18.

[34]Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L; Mohite, A. D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science **2015**, 347, 522.

[35]Pospisil, J.; Schmiedova, V.; Zmeskal, O.; Cerny, J. Study of optical and electrical properties of organic thin films for photovoltaic applications. Mater. Sci. **2015**, 21, 333-338.

[36]Hossain, M. I.; Alharbi, F. H.; Tabet, N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 2015, 120, 370-380.
[37]Minemoto, T.; Murata, M. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 2014, 116, 054505.

[38]An, Y.; Shang, A.; Cao, G.; Wu, S.; Ma, D.; Li, X. Perovskite Solar Cells: Optoelectronic Simulation and Optimization. Sol. RRL 2018, 2, 1800126.

[39]Filipič, M.; Löper, P.; Niesen, B.; Wolf, S. D.; Krč, J.; Ballif, C.; Topič, M. Opt. Express 2015, 23, A263-78.

[40]Olyaeefar, B.; Ahmadi-Kandjani, S.; Asgari, A. Classical modelling of grain size and boundary effects in polycrystalline perovskite solar cells. Sol. Energy Mater. Sol.

Cells **2018**, 180, 76-82.

[41]http://www.ampsmodeling.org/materials/PEDOT_absorption_coefficients.htm. Accessed Sep 2010.