Supplemental Material for

Global patterns and climatic controls of dust-associated microbial communities

Yongjian Chen^{1*}, Matthew J. Gebert^{2,3}, Seth A. Faith⁴, Robert R. Dunn⁵, Noah Fierer^{2,3}, Albert Barberán¹

¹Department of Environmental Science, University of Arizona, Tucson, AZ 85721, USA ²Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA

³Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA

⁴Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA ⁵Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695 USA

*Corresponding author:

Yongjian Chen (chenyj@email.arizona.edu)

This PDF file includes:

Figures S1 to S6

Table S1 and S2

10. Longitude 3 3.4 Longitude

56 Longitude

Figure S1. Geographic distribution of dust samples within each country. A total of 467 dust samples were collected from 33 countries. Most of the dust samples are collected from window sills (150 samples), door trims (46 samples), walls (35 samples), and fences (30 samples). Square symbols denote samples having both bacterial and fungal data, circle symbols denote samples having only bacterial data, and triangle

symbols denote samples having only fungal data. A zoomed view of the geographic distribution of dust samples is shown if it is unclear in the country map. Boxplots show the pairwise geographic distances between dust samples, data points are jittered to enhance clarity.

Figure S2. Phylotype accumulation curves.

Number of sequences

Number of sequences

Figure S3. Rarefaction curves.

Α

Figure S4. Continental occupancy pattern of phylotypes. The proportions of phylotypes detected in one, two, three, four, five, and six continents are shown.

Figure S5. Occupancy-abundance relationship. The relationship between occupancy (proportion of samples) and relative abundance at the phylotype (A and B) and genus levels (C and D).

Figure S6. Dominant microbial lineages at the genus level. The top 10 most dominant bacterial genera (A) and fungal genera (B) are shown.

Table S1 Results of variation partitioning

	Bacteria	Fungi
Unique effect of environmental factors	9.90%	10.94%
Unique effect of geographic distance	1.34%	2.92%
Joint effect of environmental factors and geographic distance	2.97%	2.21%

Table S2 Climatic and soil variables in this study.

Category	Variable	Database			
	Mean annual temperature				
	Mean diurnal range				
	Isothermality				
	Temperature seasonality				
	Max temperature of the warmest month				
	Min temperature of the coldest month				
	Temperature annual range				
	Mean temperature of the wettest				
	guarter				
Climate	Nean temperature of the driest quarter				
	Mean temperature of the warmest				
	quarter	WorldClim			
	Mean temperature of the coldest guarter				
	Temperature of the sampling month				
	Mean annual precipitation				
	Precipitation of the wettest month				
	Precipitation of the driest month				
	Precipitation seasonality				
	Precipitation of the wettest quarter				
	Precipitation of the driest quarter				
	Precipitation of the warmest quarter				
	Precipitation of the coldest quarter				
	Precipitation of the sampling month				
Soil	Bulk density				
	Base saturation	Harmonized World Soil			
	Organic carbon	Database			
	nH				

Variables in bold were retained after multicollinearity examination (variance inflation factor < 5).