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S1: Additional Experimental Details

3D cell culture

GFP-labeled MBA-MB-231 human breast carcinoma cells are purchased from
GenTarget Inc. and are maintained according to the manufacturer’s instruc-
tions. Briefly, growth media is prepared using Dulbeccos Modified Eagle Medium
(Gibco, US) supplemented with 10% fetal bovine serum (Gibco, US), 1% penicillin-
streptomyocin (Gibco, US), and 0.1 mM non-essential amino acid (NEAA 100x,
ThermoFisher, US). Collagen solutions are prepared by diluting rat-tail colla-
gen type I (Corning, US) with prepared growth medium, phosphate-buffered
saline (PBS, 10x), and sodium hydroxide (NaOH, 0.1M) to a concentration of
1.5 mg/mL or 3.0 mg/mL with pH 7.4. To embed the cells in 3D collagen ma-
trices, cells are suspended at very low density of approximately 650 cells/µL
in ice-cold neutralized collagen solution and added to a 35 mm collagen coated
glass bottom dish with a 7 mm microwell diameter (MatTek, US). The microwell
containing ice-cold cell-collagen solution is covered with a coverslip so that the
dish may be inverted during gelation to ensure dispersion of cells in 3D. The
dish is then incubated on either a warming plate set to 25◦C, or in a tissue cul-
ture incubator (37◦C, 5% CO2) for 30 minutes in order to solidify the matrix.
For fiber alignment, a small magnetic iron shaving (<200 µm) is first placed
onto the dish and then immersed in cell-collagen solution and placed onto the
warming plate. We then drag the particle through the solution by an external
magnet along a line for approximately 3 minutes while warming, and is then left
to solidify [1]. The coverslip is removed after gelation time and the cellularized
ECM is immersed with tissue culture medium and continuously incubated for
24 hours before imaging.

Immunofluorescence

Following a standard two-step immunofluorescence staining protocol (Ther-
moFisher), each sample is incubated at room temperature with 4% formaldehyde
solution in PBS for 15 minutes to fix the sample. After washing with PBS for an
additional 5 minutes, the sample is then incubated at room temperature for 15
minutes in a working concentration of 0.5% Triton X-100 in PBS, used as a per-
meabilization agent. We then further wash the sample with PBS for 5 minutes.
To prevent non-specific binding, a 3% bovine serum albumin blocking solution
in PBS is added and then incubated at room temperature for 60 minutes. We
then wash the sample with PBS for 5 minutes. F-actin antibody (Invitrogen) or
phalloidin dye (Invitrogen) is added and then incubated at room temperature
for 30 minutes. Finally, the sample is washed with PBS for 5 minutes and then
is imaged with a 40X objective.



Microscopy and image analysis

Continuous imaging is done with a Leica TCS SPE confocal microscope equipped
with a stage-top incubator (ibidi). Images are captured at a rate of 1 frame per
15 minutes. The raw images are gray scale with a resolution of 1024 x 1024
pixel2. The voxel size has been calibrated to equal 0.538 µm. A single x-y
plane is imaged every 10 µm in the z-dimension per experiment for up to 24
hours. Using custom Matlab scripts, cell images are maximum-projected onto
a x-y plane and tracked over time (see section S2). The projected images are
manually segmented, and screened to remove cells that are not entirely within
the viewing window.



S2: Geometric Characterization of Cell Images

Image processing

Following acquisition of fluorescent images, data regarding cell shape and po-
sition are obtained by processing and binarizing the time-lapse images using
custom NIH ImageJ and Matlab scripts. First, fluorescence images are back-
ground subtracted using a rolling ball radius of 50 pixels (26.88 µm) and then
log-transformed in order to make cell edges highly visible and so that less
fluorescent-intense cells are also quantified. A manual threshold is then ap-
plied for each image. After, cells are manually segmented for each z-stack if
applicable. Since consecutive z-stacks may have cell overlap, custom Matlab
scripts are then used to determine if the same cell is in multiple z-stacks. Af-
ter, we take a maximum projection (2D) of each cell. Geometrical measure-
ments are then taken on binary objects using Matlabs regionprops function,
including area, perimeter, major axis length, minor axis length, solidity, ec-
centricity, convex area, extent, equivalent diameter, convex perimeter, fiber
length (skeletonized max length), maximum inscribed radius, and maximum
bleb radius (maximum secondary circle). Additional measures of form factor
( Area
Perimeter2 ), aspect ratio (Majoraxislength

Minoraxislength ), Convexity ( Perimeter
ConvexPerimeter ), Curl

(Majoraxislength
fiberlength ), Perimeter Curl (Perimeterπ (1−

√
1− 4πformfactor)), Spheric-

ity ( 2∗MaxInscribedRadius
MajorAxisLength ), Inscribed Area (MajorAxisLength2∗π

MaxInscribedRadius ), and Bleb Ratio

( MaxBlebRadius
MaxInscribedRadius ) are subsequently calculated, totalling to 21 geometric mea-

sures. Collectively, this is shown schematically in figure S1.

MEASURE Quantity
Area 490.81 µm2

Major Axis Length 65.47 µm
Minor Axis Length 12.53 µm

Eccentricity 0.98

Convex Area 768.30 µm2

Equivalent Diameter 25.00 µm
Solidity 0.64
Extent 0.31

Perimeter 167.31 µm
Convex Perimeter 146.46 µm

Fiber Length 73.22 µm
Max Inscribed Radius 5.48 µm

Bleb Length 42.18 µm
Aspect Ratio 5.23
Form Factor 0.02

Convexity 1.14
Perimeter Curl 10.51 µm

Curl 0.89
Sphericity 0.17

Inscribed Area 2455.99 µm
Rel. Bleb Length 7.69

Threshold

Measure

Figure S1: Schematic of image processing and measures taken from bi-
nary using custom Matlab and Python scripts (scale-bar = 10 µm). This
figure is prepared with Mathlab R2020a (www.mathworks.com) and ImageJ
(https://imagej.net).



Tracking cell position

In order to track the real-space center of the cell, we use maximum inscribed
circle (MIC) of the cell image. Compared to imaging the nucleus directly, which
causes phototoxicity and is prone to multinucleate staining, MIC does not re-
quire additional probes. To further demonstrate the accuracy of MIC, we com-
pare short videos of dual labeled MDA-MB-231 cells where the GFP channel
labels the cytoplasm and RFP channel labels the cell nucleus (SYTO-64, Ther-
moFisher). We find that MIC agrees very well with direct nucleus staining when
determining the cell position, as shown in figure S2. For most of the frames,
the deviation is less than 10% of the cell long axis. The root mean squared
deviation is approximately 3 microns.
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Figure S2: Positional data acquisition: Position measurements of a cell deter-
mined by the nucleus centroid stained with SYTO-64 (red) and max-inscribed
circle center (green), and histogram of square deviations between the two posi-
tional measures. All scale-bars are 20 µm. This figure is prepared with Mathlab
R2020a (www.mathworks.com) and ImageJ (https://imagej.net).



S3: ECM Dimension Modulates Real Space and
Shape Space Dynamics

The morphodynamics of a cell display a strongly sub-diffusive characterization
in geometric shape-space. Shown in Table S1, we quantify the fits of mean square
displacement of measures and report the power over a ten hour lag period.

y ∼ xn
Measure n (3D) n (2D)
Area 0.6261 0.9812
Major Axis Length 0.5761 0.8781
Minor Axis Length 0.4338 0.4702
Eccentricity 0.3638 0.3234
Convex Area 0.5738 0.9230
Equivalent Diameter 0.5999 0.9246
Solidity 0.4493 0.5794
Extent 0.4965 0.5208
Perimeter 0.5635 0.8353
Convex Perimeter 0.6043 0.9636
Fiber Length 0.5981 0.8931
Maximum-Inscribed Radius 0.5059 0.6059
Bleb Length 0.5125 0.6510
Aspect Ratio 0.4240 0.6419
Form Factor 0.4642 0.5326
Convexity 0.2645 0.4477
Perimeter Curl 0.4790 0.5681
Curl 0.2515 0.2775
Sphericity 0.5533 0.5016
Inscribed Area 0.5139 0.8617
Relative Bleb Length 0.4667 0.6052
Real-Space Migration 1.2197 1.3881

Table S1: Power (n) of anomalous diffusion quantified by fitting the mean
square displacements of shape and position measures for cells embedded in a
1.5 mg/mL collagen matrix prepared at room temperature (3D) and cells plated
on top of similarly prepared collagen matrices (2D).



S4: Morphological Phenotype Analysis

Details of training, validation, and test sets

Training images were processed as previously described. There were 539 raw
examples in the training set made up of 120 actin-enriched leading edge, 91
filopodia, 186 bleb-based, and 141 lamellipodia examples. Importantly, we be-
gan with 101 examples of hemispherical blebbing and 85 examples of small
blebbing, but the two cases were difficult to distinguish geometrically and thus
combined into a single bleb-based migration state. To offset the class imbalance,
a stratified training strategy was used in all models. With a shear model, 6 im-
ages were generated per raw example, with a small shear constant uniformly
selected with a maximum of 0.4. Including some simulated examples of actin-
enriched leading edge type, this yields 3766 examples. The training set images
were acquired and classification determined by visual inspection only.

To evaluate performance, we employed the standard 10-fold cross validation
scheme [2,3]. In particular, the validation set was randomly selected from avail-
able annotated training images. This means 10% of the total 3766 images, or
377 images are reserved for validation and the remaining 90%, or 3389 images
were used for training per fold. In the ten-fold scheme, this process is repeated
10 times and an average of 92% accuracy is obtained. The high success rate
validates the feasibility of the model. Then to obtain the final model which
we will be using for experimental data analysis, all 3766 images were used for
training. To examine how the trained machine learning model can be applied
to real world problems, we evaluate the final performance with a dataset that
is not included in the original 3766 images. This dataset is called unseen data,
and the performance of the machine learning model (88% accuracy) is based on
the results with this unseen dataset. This unseen test set was prepared with 50
cell images per class. The training and test sets are available on Figshare [4].

Details of machine-learning and SVM

In order to classify cells into particular migration mechanisms, we used support-
vector machine (SVM) learning [5, 6]. As a maximal-margin classifier, SVM
was particularly attractive as the overlap between different phenotypes was un-
known. Also important is that cells can display multiple phenotypes at once
and thus a soft-margin classifier was vital. Lastly, given our small dimensional
space and small training-sets, SVM was an optimum choice for classification
purposes.

Labeled data were first acquired as described previously. Images were bi-
narized and then geometrical data was obtained on labeled cells for training.
We performed parameter grid search for RBF, linear, and polynomial kernel
models, with 10-fold cross validation to determine best performance. A grid
search determined that an RBF kernel with γ = 5.8−3 and C = 4818 yields an
average training, validation, and test set accuracy of 93.1%, 86.5%, and 85.5%,
respectively. However, the model generalization was improved with γ = 0.01



and C = 1000 (average training, validation, and test set accuracy of 92.9%,
89.8%, and 89.5%, respectively). A linear model also recorded strong perfor-
mance with C = 191.9 with average training, validation, and test set accuracy
of 90.7%, 89.4%, and 84.5%, respectively. Although easier to interpret, the lin-
ear model was found to not consistently match supervised classification. For
this reason, along with the slight increase in performance, we proceeded with
the RBF kernel SVM model. The final optimized SVM model used in this work
performs at 92.3%, 91.8%, and 88.0% on the train, validation, and held out test
sets discussed in the Random-Forest classifier.

By closely examining the misclassified held out test data sets, we notice
that the most errors come from binarization process which fail to preserve the
geometric features of small protrusions. Therefore the performance of the SVM
classifier can be further optimized by improving imaging quality, as well as more
sophisticated binarization algorithms.



Errors introduced by 2D projections of 3D cell

In order to quantify classification errors made by our SVM algorithm as a re-
sult of using geometries of 2D maximum projections of cells, we have taken
high resolution confocal stacks of two sample cells, one clearly a filopodia mor-
phology, and another clearly a blebbing cell. Using the confocal stacks, we
construct deconvoluted 3D volumetric cell renderings. We numerically rotate
the 3D volumetric rendered cell images at 325 uniformly spaced spherical angles
(3D orientations). For each orientation, we take 2D maximum projection, and
examine the classification of the projected image. For the filopodial cell, we find
that the orientation introduces no more than an 8.33% classification error rate,
where all the errors are made as highly elongated filopodia become oriented
parallel to the viewing angle. Figure S3 shows some of the 2D projections along
with visual representations of the classification error.
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Figure S3: 2-D maximum projection images from four random orientations
of cells. (A) Random views of filopodial cell and pie chart showing percentage
of SVM classification over all projection angles of the same cell. (B) Ran-
dom views of blebbing type cell and pie chart showing all SVM classifications
of the cell were bleb-based, regardless of projection angle. Maximum projec-
tions were taken every 15 degree rotations both in θ and φ directions. Color
represents the morphological phenotype (Actin-enriched leading edge: yellow,
Filopodia: magenta, Blebbing: green, Lamellipodia: blue). Cells were imaged
at 0.5 µm steps. Scale bars: 20 µm. This figure is prepared with Mathlab
R2020a (www.mathworks.com) and ImageJ (https://imagej.net).

Comparisons with Random-Forest classifier

To compare performance to other multi-classification models, we have trained a
Random-Forest classifier, tuning hyperparameters of depth, number of estima-
tors, and features by grid search [7]. The optimized model uses 1200 estimators,
with a maximum depth of 180 splits, and uses no feature subset selection, yield-
ing a bagged ensemble of regression trees. We perform 10-fold cross validation
on the SVM training data, utilizing class weighting to account for the class im-
balance during training. We also include our 200 image held out test set for
evaluation. The mean accuracy score was 83.3 7.6%, with average recall scores
of 100 and 74.5% on train and held out test sets. SVM and Random-Forest clas-
sifiers generally agree very well in terms of predictions, although SVM performs
notably better on the held-out test set. The Random-Forest classifier disagrees



with the SVM classifier on 294/3766 training examples (7.8%), and 34/200 test
set examples (17.0%).

Feature importance

In order to interpret the features used by the SVM and random-forest classifiers
in their classifications, we have examined the overall feature importance. Figure
S4A shows the top two positive and negative features of each class used by
the linear kernel model of SVM. Figure S4B shows the relative importance of
features used by the random-forest classifier.

BB LAFPAE

W
ei

gh
t

10

0

-10

Rel. Importance 0.10.0

A B

Figure S4: Top-2 linear kernel SVM class features and ordered relative impor-
tance of features in random-forest algorithm. (A) Top-2 positive and negative
features used in SVM classifier from each migration phenotype (AE: Actin-
Enriched Leading Edge. FP: Filopodia. BB: Blebbing-Based. LA: Lamellipo-
dia). (B) Relative importance of features used to determine classification in
random forest classifier. Feature acronyms on the y-axis are described in or-
der top to bottom: maximum inscribed radius, minor axis length, convex area,
convexity, aspect ratio, eccentricity, area, perimeter, equivalent diameter, con-
vex perimeter, curl, sphericity, extent, form factor, solidity, relative bleb length,
major axis length, fiber length, inscribed area, bleb length, and perimeter curl.
This figure is prepared with Mathlab R2020a (www.mathworks.com).

Details of parametric t-SNE embedding algorithm

To visualize high-dimensional morphological trajectories in three-dimensional
space, a t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm is
prepared for dimensionality reduction utilizing the geometric characterization of
cells without requiring labels [8]. Since the t-SNE algorithm is a non-parametric
model, it utilizes all available data to separate data clusters and cannot classify
new data points without retraining which often leads to different cluster shapes.
We required that the non-linear algorithm could embed new data points or en-
tire trajectories into a consistent 3D space so that different experiments could be



tracked similarly. To this end, a parametric t-SNE model is prepared which does
not require re-training for new data and thus forms a consistent manifold. To
make the parametric t-SNE, we train a neural network on 15,000 data points to
learn a mapping by minimizing the Kullback-Leibler (KL) divergence between
the Gaussian distance metric in the 21-dimensional geometric space and the
Students-t distributed distance metric in the output 3-dimensional space. We
use the same architecture as [9], which is a dense neural network with layers: 21
→ 500→ 500→ 2000→ 3 where 21 is the input dimensionality of our geometric
features and 3 is the output dimensionality representing the t-SNE embedded
shape-space. In summary, the model is made up of three fully connected layers
with subsequent ReLU activation after each layer, and an additional final fully
connected layer calculating the three t-SNE components for each points. Func-
tionally, the training of a non-parametric t-SNE and a parametric t-SNE is very
similar. However, because the parametric model learns weights in the dense
layers to perform the mapping from high to low dimensions, new input data
can be transformed to the same embedded space. This model uses an Adam
optimizer set to minimize the Kullback-Leibler divergence loss, and is trained
with 800 iterations with a batch size of 256 examples and the tunable perplexity
parameter set to 30.0. We then use the parametric t-SNE model to transform
the high-dimensional trajectories of new cells into the three-dimensional space.

As seen in Fig. 2C of the manuscript, 15,000 randomly selected cell ge-
ometries were used as a training set for our parametric t-SNE model. Since the
data is made up of a diverse group of cell geometries, t-SNE forms a continu-
ous spectrum of cell shape which we call embedded ”shape-space”. However,
once the data points are colorized using independent classification from SVM,
it is obvious that the embedding is consistent with the SVM classification. Fur-
ther, we use this same embedded shape-space to embed new data points and
trajectories, as seen in Fig. S6.

To visualize the SVM boundaries of our training set, we also performed
t-SNE on our SVM training set. Figure S5 shows cluster formation after 300
iterations with a perplexity factor of 30. Blebbing-based (green) and filopodial
(magenta) morphologies show a clear separation in the t-SNE manifold both in
2-D and 3-D projections, with the space between them filled by actin-enriched
leading edge (yellow) and lamellipodial migration which display some overlap
but a separation in the 2-D projection.
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Figure S5: A 2-D projection from z-axis (left) and 3-D projection (right) of
t-distributed stochastic neighborhood embedding of SVM training set. This
figure is prepared with Mathlab R2020a (www.mathworks.com).

S5: Manipulating Rho/Rock Signaling by Phar-
macological Treatments

t-SNE trajectories of pharmacological treatments

To demonstrate the effects of the Rho-ROCK pathway on cellular morphology,
we chemically induce activation and inhibition of pathway proteins. Y27632, a
specific inhibitor of Rho-associated protein kinases as well as ROCK-II activ-
ity [10–12], was purchased from Sigma-Aldrich and diluted to a working concen-
tration at 3 µg/mL [10 µM] (0.1% v/v DMSO) in serum-free growth medium.
Similarly, Rho activator II (CN03), known to robustly increase the level of GTP
bound RhoA [13,14], was purchased from Cytoskeleton and diluted to a working
concentration at 2 µg/mL (0.1% v/v DMSO) in serum-free growth medium.

Samples are prepared by suspending GFP-labeled MDA-MB-231 cells at low
density in ice-cold neutralized collagen solution to approximately 650 cells/µL,
following the same preparation and neutralization procedure described in S1.
Ice-cold cell-collagen solution was then plated on a 35 mm collagen coated glass
bottom dish with a 7 mm microwell diameter (MatTek, US). The microwell con-
taining ice-cold cell-collagen solution is covered with a coverslip so that the dish
may be inverted during gelation to ensure dispersion of cells in 3D. The dish is
then incubated in a tissue culture incubator (37◦C, 5% CO2) for 30 minutes in
order to solidify the matrix. The coverslip is removed after gelation time and the
cellularized ECM is then immersed with serum-free culture medium and contin-
uously incubated for 20 hours before imaging. Culture media is replaced with
serum-free prepared growth media containing HEPES (0.1% v/v DMSO) with
or without chemical dilution for experimental or control condition, respectively,
and then imaged with confocal microscopy for 24 hours.

Figure S6 shows additional trajectories of cells that responded to chemical
treatment. Cells treated with ROCK-inhibitor Y27632 show characteristic pro-
duction of protrusions and/or sustained pre-existing protrusions. In Fig. S6A,



this is shown by most trajectories moving toward filopodial migration (ma-
genta) or toward actin-enriched leading edge migration (yellow). Conversely,
cells treated with CN03 exhibit morphologies characteristic of cell contraction.
Notably, cells do not produce protrusions following treatment and typically re-
tract protrusions post-treatment. Visually, this is seen in Fig. S6B as a notable
slide toward the blebbing migration mode (green) or toward lamellipodial cell-
spreading (blue). For comparison, Fig. S6C shows trajectories of cells without
chemical treatment as control conditions. These cells exhibit all types of migra-
tion modes, with switching being non-uniform.
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Figure S6: Additional t-SNE time projections (solid) of (A) ROCK-inhibiting
Y27632, (B) Rho-activating CN03 drug treated cells, and (C) control con-
dition non-treated cells. This figure is prepared with Mathlab R2020a
(www.mathworks.com).



We have further quantified the trajectories of drug treated and control cells
in the t-SNE space. In particular, we calculate the ratio between net displace-
ment and contour length in the t-SNE space for cells with and without drug
treatments. A lower value of the ratio indicates the cell makes many detours
(fluctuations in direction). As shown in Fig. S7, the ratio for CN03-treated
cells is about 50% lower compared with the cells treated with Y27632. This is
consistent with the observation made in the main text that cells treated with
CN03 manifest strongly fluctuating and diverging trajectories.

*

Figure S7: (A) Sample trajectories in the t-SNE space as represented as con-
tour length versus net displacement. (B) The ratio of net displacement (∆d)
and contour length (∆s) calculated when contour length first reaches 1200. The
bars and error bars show means and standard deviations of around 10 sample
trajectories for each condition. *: p < 0.05 with t-test. This figure is prepared
with Mathlab R2020a (www.mathworks.com).

Cell culture and maintenance for ROCK activity and RhoA
activation assays

MDA-MB-231 cells are cultured to 90% confluency (treatment and control) in
100 mm dishes for treatment. CN03-treated and control cells are first serum-
starved for 24 hours, while Y27632-treated and control cells are kept in 10%
FBS culture medium prior to treatment. Control condition dishes are then
immersed in their respective culture medium conditions with 0.1% DMSO v/v.
CN03-treated cells are immersed in serum-free culture media at 2 µg/mL CN03
with 0.1% DMSO v/v. CN03-treated and control cells are kept in a tissue culture
incubator (37◦C, 5% CO2) for 4 hours. Y27632-treated cells are immersed in
10% FBS culture medium with 10 µM Y27632 and 0.1% DMSO v/v and kept in a
tissue culture incubator for 12 hours. Thereafter, the media is aspirated from the
dishes, and cells are washed with ice-cold PBS twice. 1 ml of cell lysis buffer with
protease inhibitors and PMSF is added to the cells and the dishes are kept on
ice for 20 minutes, following which the cells are transferred to a microcentrifuge
tube. These cell lysates are then cleared by centrifugation at 14,000 g for 10-15
minutes at 4◦C. Control and treatment lysates are then appropriately diluted
to equalize protein concentration as measured by NanoDrop.



RhoA activation assay

The examination of RhoA levels is performed using a RhoA Activation Assay Kit
(Cytoskeleton, Inc., Denver, CO, USA, Cat no. BK036). For RhoA pulldown,
Rhotekin RBD Agarose beads are added to all the samples and incubated at 4◦C
for 1 hour with gentle agitation. After incubation, the beads are centrifuged,
and the supernatant is removed. These beads are then washed thrice before
resuspension in sample buffer for a subsequent immunoblotting procedure.

Quantitative assay for Rho kinase activity

Measurement of Rho kinase (ROCK) activity is performed using a ROCK Activ-
ity Immunoblot kit (Cell Biolabs, Inc., San Diego, CA, USA, Cat no. STA-415)
according to the manufacturer’s instructions. Briefly, cells resuspended in lysis
buffer with protease inhibitors and PMSF are centrifuged at 14,000 g for 10
minutes at 4◦C. For both, control and treatment samples, kinase reaction is
initiated by the addition of a kinase/ATP/substrate solution, followed by gentle
agitation at 30◦C for 60 minutes. This reaction was quenched by the addition
of sample buffer, after which samples are run on an SDS-PAGE gel for western
blotting.

SDS-PAGE and immunoblotting

Prepared samples are separated by SDS-PAGE using a 4−20% Mini-PROTEAN
TGX Precast Protein Gels (Bio-Rad Laboratories, Inc, USA) and transferred
onto a Nitrocellulose membrane (Thermo Fisher Scientific, Inc., Cat no. 88018).
The nitrocellulose membranes with proteins transferred over are blocked with
5% non-fat dry milk for 1 h at room temperature. The primary antibodies are
then dissolved in 5% non-fat dry milk at 1:1000 concentration and used to detect
the target protein in the blots. For the RhoA activation blot, the RhoA primary
antibody was replaced with Anti-Mouse RhoA (LSBio, Cat. # C355184). The
blots remain incubated at room temperature for 2 hours. These blots are then
washed with TBST thrice for 5 minutes. Next, the blots are incubated with Goat
anti-Mouse secondary antibodies at 1:2000 concentration for 1 hour at room
temperature. The blots are developed using the Radiance Chemiluminescent
substrate (Azure Biosystems, California, USA) and are visualized on an Azure
Western blot molecular imaging system (Azure Biosystems, California, USA).

F-Actin structures respond to Rho/ROCK modulation

To visualize changes in stress fiber formation due to pharmological treatments,
cells are plated on a 35 mm collagen coated glass bottom dish with a 7 mm
microwell diameter (MatTek, US) at very low cell density. The dish is then in-
cubated in a tissue culture incubator (37◦C, 5% CO2) in growth media with 10%
FBS until cells reach approximately 30% confluence. Cells are then adminis-
tered with pharmological treatment as follows: ROCK-Inhibitor Y27632-treated
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Figure S8: (A) RhoA activity immunoblot results. In lane 1 (Lysate), cellular
control lysate is loaded into the gel lane representing total RhoA present. In
lanes 2 and 5 (MM), a molecular marker is loaded. Lanes 3 (Control) and
4 (CN03) are loaded with non-treated and CN03-treated cell lysates following
RhoA pulldown assay, respectively. Red arrows indicate RhoA band, illustrating
activated RhoA from CN03-treatment in lane 4 in comparison to lane 3. (B)
ROCK activity immunoblot results. Lanes 1 (Control) and 2 (Y27632) are
loaded with non-treated and Y27632-treated cell lysates following kinase assay,
respectively. Lane 3 (+) is loaded with purified ROCK-II used as a positive
control. (C) Cropped RhoA activity immunoblot result to highlight RhoA band
location. (D) Cropped ROCK activity immunoblot result. Lane 4 (MM) is
loaded with a molecular marker, which is automatically overlaid by software
from Azure imaging system. Less intense bands seen in lane 2 as compared to
lane 1 indicate inhibition of ROCK by Y27632.

cells are immersed in growth media with 10% FBS at 10 µM Y27632 (0.1%
v/v DMSO). Y27632-control comparison cells are immersed in growth media
with 10% FBS (0.1% v/v DMSO). Rho-activated CN03 cells are first washed
once with PBS and then serum-starved in serum-free growth media for an ad-
ditional 24 hours. CN03-treated cells are then immersed in 2 µg/mL CN03
(0.1% v/v DMSO) in serum-free growth medium for 4 hours. CN03-control
comparison cells are also first washed once with PBS and then serum-starved
for 24 hours, before finally being immersed in new serum-free growth media
(0.1% v/v DMSO) for four hours. Cells are then fixed, permeabilized, blocked,
stained, and imaged following the procedure described in S1 using phalloidin
(ThermoFisher).
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Figure S9: F-Actin staining following fixation after pharmaceutical treatment
of cells for four hours. (A) CN03-control serum-starved cells (0.1% DMSO v/v)
show a minimal level of stress fibers following serum starvation. (B) Upon
treatment with Rho-activator CN03 (2 µg/mL, 0.1% DMSO v/v), cells present
with an increase of active stress fibers. (C) Y27632-control cells cultured in 10%
FBS (0.1% DMSO v/v) display a high degree of stress fibers which are rapidly
eliminated following (D) treatment with ROCK-inhibitor Y27632 (10 µM, 0.1%
DMSO v/v). Scale-bars = 50 µm.

S6: ECM Characterization

Confocal reflection intensity autocorrelation function

In order to quantify the density fluctuations of collagen ECM, we compute the
autocorrelation functions of confocal reflection images of collagen gels. Reflec-
tion images are first background subtracted using a rolling ball with radius of
50 pixels (26.88 µm). Images are then log-transformed to make fibers highly
quantifiable. Images are then mean subtracted, and the autocorrelation is cal-
culated. Following, the autocorrelation is normalized and then smoothed using
interpolation. The results are shown in figure S10. The spatial uniformity indi-
cates an appropriate distribution of randomly oriented gel fibers. Additionally,
these show that the decay in the autocorrelation is slower for higher density
gels, an indication of the fiber quantity, and much faster for higher temperature
gel, caused by the shorter fiber lengths and smaller pores [15]. The anisotropy
of decay in the final graph indicates the direction of alignment.
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Figure S10: Autocorrelations shown for 25◦C 1.5 mg/mL Randomly oriented
gel (upper left), 25◦C 3.0 mg/mL Randomly oriented gel (upper right), 37◦C
1.5 mg/mL Randomly oriented gel (lower left), and 25◦C 1.5 mg/mL Aligned
oriented gel (lower right). The magnitude of the aligned gel differs so that the
anisotropy can be clearly observed in comparison to the room temperature gel.
This figure is prepared with Mathlab R2020a (www.mathworks.com).

ECM fiber network coherency

In order to determine the degree of local and global alignment of collagen fibers,
we take the pre-processed confocal reflection images and use OrientationJ with
9-14 circular ROIs per image packed without overlap, with ROI sizes ranging
from 145 to 450 pixel diameter. At least 3 images (one per experiment) were used
to quantify coherency. Empirically, larger ROIs are reliable to quantify global
alignment, while smaller ROIs were better used for local alignment measures.
ROIs smaller than 145 pixels are not used, as it was noticed the coherency
measured by OrientationJ can be highly biased for large fibers such as in 25◦C
gels (145 pixels [78 µm] is approximately twice the average fiber length [≈ 41
µm] in a 25◦C gel). The results are shown in figure S11 and follows previous
literature [16].
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Figure S11: Bar and whisker plot of coherency measurements taken using
custom Matlab scripts utilizing OrientationJ plug-in for ImageJ (NIH). Mea-
surements of back-reflection collagen images using circular ROIs ranging from
145 to 450 pixel (80 - 240 µm) diameter for differing ECM architectures. RT: 1.5
mg/mL 25◦C gel, 3.0 mg/mL: 3.0 mg/mL 25◦C gel, 37◦C: 1.5 mg/mL 37◦C gel,
Aligned: 1.5 mg/mL 25◦C gel prepared using the alignment protocol. Whiskers
extend to 1.5 times the inter-quartile range. Utilizing a multiple comparison
test with the Bonferroni method, all groups are significantly different from each
other (RT vs. 3.0 mg/mL: p < 0.05. All other comparisons: p < 0.01.) This
figure is prepared with Mathlab R2020a (www.mathworks.com).

Rheology

Strain sweep rheology measurements are performed on varying density gels and
varying gelation temperature with a AR-G2 rheometer (TA instruments) at
a 1 Hz frequency in a parallel plate geometry. A standard peltier plate (TA
instruments) allows gels to be formed at 25◦C and 37◦C. Young’s modulus is
shown in table S2. As shown, storage moduli in the linear regime for gels
with 1.5, and 3.0 mg/mL collagen prepared at 25◦C are about 325 and 830 Pa,
respectively. Similarly, for gels with 1.5, and 3.0 mg/mL collagen prepared at
37◦C are about 170 and 425 Pa, respectively.

Linear Regime G’
Collagen Density Temperature G’

1.5 mg/mL 25◦C 325 Pa
1.5 mg/mL 37◦C 171 Pa
3.0 mg/mL 25◦C 832 Pa
3.0 mg/mL 37◦C 427 Pa

Table S2: The linear storage modulus of collagen fiber networks using AR-G2
Rheometer (TA Instruments) in a parallel plate geometry at a 1 Hz frequency.



S7: Additional Details of Morphological Pheno-
type Dynamics

Dwell time definition

The dwell time of state i is determined by using

Di→i =
1

1− ri→i
.

where ri→i is the transition rate from state i back to itself, and Di→i is the
corresponding dwell time. We find that this definition of dwell time maximizes
the usefulness of data and is more robust to experimental shortfalls that affect
the naive method of simply counting the number of frames a cell remains in the
same phenotype for.

Details of transition rate calculations

Assuming the probability distribution of cell morphological phenotypes follow
a Boltzmann distribution, then the probability Pi is given by

Pi =
1

1 +
∑N
j 6=i

ri→j

rj→i

where N is the number of states, ri→j is the transition rate from state i to
state j, and conversely rj→i is the transition rate from state j to state i. The
transition matrix is thus calculated as probability per unit time, and hence each
row in the transition matrix will sum to 1

N∑
j

ri→j = 1.

The transition rate ri→j is defined as the probability of transition from state i
to state j per unit time, given by

ri→j =

∑Ni→j

m
1

dtmi→j∑C
k

∑Ni→k

m
1

dtmi→k

where dtmi→j is the transition time of the mth observation from class i to class
j, C is the number of classes, and Ni→j is the number of observed transitions
from class i to class j. The transition time dtmi→j is the number of frames until a
cell goes from a state with classification probability above threshold (>60%) to
another state that exceeds the threshold, and therefore has a lower bound of 1 if
the transition is immediate and increases as the cell passes through intermedi-
ate states. Using this method, we find that the transition rates and dwell times
are stable, regardless of the length of trajectories in computational experiments.



Following SVM classification, phenotype dynamics can be properly drawn
from data. Importantly, where maximum decisions by the SVM classifier do not
exceed 60%, the classification is thus determined to an intermediate between two
states. The intermediate state can be a chimera of two states, with most occur-
rences being as a cell transitions between morphological phenotypes. Because
this state is not considered to be unique, we calculate the transition rate from
state i that passes through N intermediate states prior to state j as 1/Nframes.
We find by simulation that this method can most-accurately recover transition
rates in comparison to methods using soft-max or ignoring intermediate states.



Probability flux

To investigate broken detailed balance in morphological phenotype space, we
report probability flux calculations shown in figure S12. The probability flux
from state i to state j is given by

∆φi→j =
Ni→j∑

k

∑
lNk→l

where Ni→j is the number of transitions from state i to state j, and both
summations in the denominator are over all available states. The probability
flux φi→j and the transition rate ri→j are related by φi→j = Piri→j , where Pi
is the probability of a cell being at state i. The net probability flux between
states i and j is given by ∆φi→j −∆φj→i. We find that the net flux between
states are all less than 0.003 probability difference per hour for cells in any ECM
condition we tested. To reveal if any small difference in probability flux may be
significant, we also report the probability flux percent difference between states
i and j is given by

∆φi→j −∆φj→i
∆φi→j + ∆φj→i

We find that the maximum net probability flux percent difference for cells in
any ECM condition evaluated is less than 9%.

A B

C D
prob / hr

0.0030
AE FP BB LA

E F

G H
% difference  

9.00
AE FP BB LA

Figure S12: (A-D) Net probability flux calculations under varying ECM con-
ditions. (E-H) Percent difference of net probability flux under varying ECM
conditions. (A, E) collagen ECM prepared at room temperature (RT) and [col]
= 1.5 mg/mL. (B, F) collagen ECM prepared at RT and [col] = 3.0 mg/mL. (C,
G) collagen ECM prepared at 37 ◦C and [col] = 1.5 mg/mL. (D, H) collagen
ECM prepared at RT and [col] = 1.5 mg/mL with flow-aligned collagen fibers.
This figure is prepared with Mathlab R2020a (www.mathworks.com).



S8: Motility Analysis of Morphological Pheno-
types
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Figure S13: (A) Velocity autocorrelation and (B) Direction change given by
cos(θ) between consecutive velocity vectors for cell migration as cells switch
phenotypes. AM: Amoeboid, ME: Mesenchymal, IM: Intermediate. This figure
is prepared with Mathlab R2020a (www.mathworks.com).

In order to determine the migrational persistence of migration modes, we report
first the velocity autocorrelation observed for cells in collagen ECM prepared
at room temperature and [col] = 1.5 mg/mL. We find that the autocorrelation
quickly decays to zero in a single time step (15 minutes) shown in figure S13(A).
We additionally checked the cos(θ) distribution between consecutive steps and
find that the concurrent steps seem to be taken randomly in direction, as given
by the U-shaped distribution of figure S13(B).
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Figure S14: (A) Gaussian fitting (red) of experimentally measured (blue) step
size (displacement in one frame, or 30 minutes) distributions in the persistent
direction (bin width = 1 µm) for various migration mode transitions. (B)
Fit (red) of experimentally measured binned (blue) step size magnitude dis-
tributions using log-normal distribution. This figure is prepared with Mathlab
R2020a (www.mathworks.com).

To evaluate the motility of various migration mode transitions, steps sizes
(frame-to-frame displacements) are separated into components parallel and per-



pendicular to the direction of the previous step. Figure S14A shows the binned
step size distribution in the persistent direction fit with a Gaussian distribu-
tion. It can be seen that these fits miss a significant portion of large steps.
Rather, we find more suitable fits are obtained by fitting the magnitude of the
step sizes, which follow a log-normal distribution as shown in figure S14B. The
parameters from fits shown in figure S14B are subject to bin-size, and therefore
we instead report parameters obtained by fitting the empirical cumulative dis-
tribution (CDF) of step size magnitude with a log-normal CDF, shown in figure
S15.
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Figure S15: Empirical cumulative distribution of experimentally measured
step size magnitudes (blue) and log-normal function fits (red) for dwell and
transitions between amoeboid (AM), mesenchymal (ME), and intermediate (IM)
modes. This figure is prepared with Mathlab R2020a (www.mathworks.com).
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Figure S16: Motility characteristics depend on the morphological phenotype
transitions. The bar plots show the means and variances by fitting cell step
magnitudes with a log-normal distribution. Threshold: the morphological phe-
notypes are determined as in the main text. Cells with classification scores less
than 60% are considered in the intermediate state. Softmax: the intermediate
state is reclassified as AM or ME state based on the most likely phenotype.
Error bars show the 95% confidence interval of fitted parameters. This figure is
prepared with Mathlab R2020a (www.mathworks.com).

Because intermediate states account for a sizable portion of the data (ap-
proximately 10%), we seek to further evaluate its impacts in the motility char-
acteristics. As an alternative approach, we eliminate the intermediate state by
classifying cells according to their highest probability scores. This reduces the
number of coarse-grained phenotypes from three (AM, ME and intermediate)
to two (AM and ME). Using this approach, we reanalyze the motility charac-
teristics and find there are little changes in the fitted means and variances of
the steps. Therefore neither the intermediate states, nor the precise value of
classification threshold (currently 60%) contribute significantly to the results
presented in Fig. 5.

In our study, to reduce the imaging phototoxicity, and to account for the
high resolution single cell images that vary their shapes, we uniformly apply
the same MIC calculation to all cells, regardless of the cell shape. We also
conduct additional analysis to examine the relation between MIC cell center
and cell shape. For instance, we find the step size normalized by cell aspect
ratio have similar distributions when tracked via MIC or cell nucleus (NUC for
short) (figure S17A). Since aspect ratio is one of the most significant features
that distinguish AM and ME cells, we conclude that MIC and NUC tracking
yield consistent relations between cell motility and cell geometry.

We also confirm the conclusion that ME cells are more motile than AM
cells when tracking cell nucleus or by tracking center of mass (CENT for short)
(figure S17B-D). These results are consistent with our findings in the main text
(Fig. 5).
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Figure S17: (A) The histogram of step sizes normalized by cell aspect ratio.
MIC: tracking cells using maximum included circle, NUC: tracking using cen-
ter of cell nuclues. Kolmogorov-Smirnov test shows these two distributions are
statistically the same. (B,C,D) Step sizes of MDA-MB-231 cells tracked using
(B) center of mass of cell nuclei stained with SYTO-64, (C) center of mass of
cell body, and (D) center of maximum inscribed circle. Step sizes are measured
between concurrent frames (15 minutes) during live-tracking of individual cells
during 3D migration in [col] = 1.5 mg/mL collagen I matrix. Shown are step
sizes between dwelling events of amoeboid (AM) and mesenchymal (ME) clas-
sified cells. Transparent bars are histograms of step sizes (bin-width is 0.2 µm
(B-C), and one pixel or 0.656 µm for C). Solid lines are the probability density
fits of the log normal distribution with parameters determined by fitting the
log normal cumulative distribution function. The Johnson Transform of the log
normal mean and standard deviation parameters returns the mean step size of
AM and ME as determined by tracking (B) nucleus center of mass as 0.75 µm
and 1.24 µm, respectively, and variances of 0.37 µm2 and 0.99 µm2, respectively;
by tracking (C) cell center of mass as 0.70 µm and 1.20 µm, respectively, and
variances of 0.33 µm2 and 0.10 µm2, respectively; and by tracking (D) center of
maximum inscribed circle as 0.98 µm and 1.77 µm, respectively, and variances
of 1.05 µm2 and 2.48 µm2, respectively. Note that the MIC tracking is limited
to pixel resolution, which contributes to the relatively larger uncertainties in
fitting a small data set. Step sizes are determined over NAM = 587 frames and
NME = 205 frames while tracking 26 cells for an average trajectory length of
10.4 hours.



S9: Interface Calculations
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Figure S18: Frequency of cell locations away from interface (at 0). Negative is
in 37◦C gel, Positive indicates 25◦C gel). This figure is prepared with Mathlab
R2020a (www.mathworks.com).

Experiment details

Interface experiment was done in triplet. Briefly, the outer gel was first made
by gelling cells in collagen solution (1.5 mg/mL neutralized) at 25◦C for 20
minutes on the DIGME stage [17]. After, the needle was gently removed and
a new ice-cold collagen solution (1.5 mg/mL neutralized) containing cells was
then dripped into the hole, gently swirled, and then placed into the incubator
at 37◦C for 15 minutes. After, collagen gels were immersed in 3 mL of growth
medium and continuously incubated for 24 hours before imaging. Imaging was
taken near the interface, imaging bright-field, fluorescence (green), and back-
reflection confocal images. Using the back-reflection images, the interface was
manually traced out through the z-stack. The distance to the interface from cell
centroids in corresponding z-stacks were then measured away from the closest
marked interface point using Matlab bwdist. The frequency vs distance is shown
in figure S18, indicating a large number of cells were images close to the interface.



Details of interface analysis

Migration mode transitions were first determined by using continuous trajecto-
ries accounting properly for intermediate state classification, and then distances
away from the interface were determined by the initial state location. A 1-D
Gaussian kernel was used to acquire continuous local spatial probability densi-
ties of transitions (per hour), centered every 5.376 µm (10x the distance-to-pixel
ratio) with a standard deviation of 26.88 µm. This yields the probability den-
sity (per hour) of observing a transition P (i → j, x) at a location x, as used
in the main text. To mitigate the bias from non-uniform cell density, we then
divide the prior probability by the spatial probability of observing a cell within
the spatial window centered at x, M(x). M(x) is calculated using the same
Gaussian kernel.



S10: Actin Cytoskeleton Structures of Different
Morphological Phenotypes
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Figure S19: Actin immunostaining of MDA-MB-231 cells embedded in 3D col-
lagen type I gel. Different morphological phenotypes exhibit structural features
consistent with the corresponding migration modes. A,B: Filopodial cells. C,
G: Blebbing cells. D, H: Lamellipodial cells. E, F: Actin-enriched leading edge
cells.

To further demonstrate the biological significance of the machine-classified mor-
phological phenotypes, we have examined the characteristic structures of actin
cytoskeletons of different cell types. Figure S19 shows the immunofluorescent
images of two typical cells per each morphological phenotype. It can be seen
that filopodial cells (FP type, figure S19 A-B) have highly polarized F-actin
bundles extending the long axis of the cell body. Blebbing cells (BB type, fig-
ure S19 C and G) show spherical blebs of various curvatures at cell membrane
without actin polarization. Lamellipodial cells (LP type, figure S19 D and H)
exhibit smooth actin-rich arcing at leading edges of overall elongated cell bodies.
Finally, actin-enriched leading edge cells (AE type, figure S19 E and F) display
sharp, actin-rich protrusions from the cell surface without actin polarization
in the cell body. These features are consistent with previously reported actin
cytoskeleton structures of different migration modes [18–21].
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