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Supplementary Figures 

 
Supplementary Figure 1. Identification performance evaluation of DreamDIA on the 
MCB dataset with two-species library method. The spectral library built from DDA 
master samples was used as sample-specific library for analysis. (a) Identification 
performance on the S1-1 run of the MCB dataset. The numbers of mouse precursors 
identified at different FDRs were plotted. Each point stands for an Arabidopsis (false 
positive) precursor and its discriminant score as a cut-off value. The x-axis value stands 
for the estimated FDR, calculated as the number of Arabidopsis precursor with higher 
discriminant score than this cut-off value divided by the number of all the precursors 
with higher discriminant score than this cut-off value. The y-axis value stands for the 
number of mouse precursors with higher discriminant score than this cut-off value. (b) 
Identification performance on all 10 samples of the MCB dataset. The numbers of 
mouse precursors, peptides and proteins at 1% precursor FDR (the respective numbers 
indicated by the dashed line in (a)) were plotted. Each error bar stands for the mean and 
standard deviation of the results of n = 10 biologically independent runs. 
  



 
Supplementary Figure 2. RSM examples of the identified mouse precursors by 
DreamDIA while missed by DIA-NN in the S1-1 run of the MCB dataset. Library part, 
self part and ms1 part of the RSMs are plotted. The dashed lines indicate the elution 
profile ranges determined by the MS1 XICs. Elution-related sub-scores provided by 
OpenSWATH and discriminant scores provided by DIA-NN and DreamDIA are also 
listed. r, the basic resolution than can be specified by users according to the acquisition 
resolution. dds, deep discriminant score, which is calculated by the deep representation 
model in DreamDIA for each precursor in the spectral library to indicate its probability 
of belonging to a real peptide. 



 
Supplementary Figure 3. Benchmarking of identification performance of DreamDIA 
on the HeLa dataset (acquired on QExactive HF, Thermo Fisher Scientific) used in the 
DIA-NN paper. Different gradient lengths from 0.5h to 4h were tested. For each run, 
the sample-specific library was built by DIA-Umpire and equivalent Arabidopsis 
precursors were spiked into the library as false positive targets for FDR estimation. The 
numbers of human precursors identified at different FDRs were plotted. 
  



 

Supplementary Figure 4. Evaluation of deamidated peptide identification 
performance of DreamDIA. The S1-1 run of the MCB dataset was analyzed twice by 
DreamDIA and DIA-NN respectively, first using the library containing common 
deamidated peptides with mass shift of 0.9840 Da, and then using the library containing 
pseudo-deamidated peptides with mass shift of 1.0227 Da. The numbers of deamidated 
precursors identified at different FDRs estimated by the two-species library method 
were plotted. 
  



 
Supplementary Figure 5. Distributions of two MS1-related sub-scores provided by 
OpenSWATH, (a) MS1 xcorr shape score, (b) MS1 xcorr coelution score in all 10 runs 
of the MCB dataset. The blue violins indicate the intersection of precursors identified 
by all the four software tools at 1% proxy precursor FDR, and the orange violins 
indicate precursors identified exclusively by DreamDIA at 1% proxy precursor FDR. 
All the sub-scores were obtained from the reports of OpenSWATH without FDR control. 
  



 
Supplementary Figure 6. Average SHAP values of randomly picked 10000 RSMs 
(5402 target precursors and 4598 decoys) from the training set. Higher SHAP values 
indicate higher feature importance in the RSM. 
  



 
Supplementary Figure 7. Evaluation of the decoy generation methods. (a) Five decoy 
generation methods integrated in DreamDIA. For DreamDIA, OpenSWATH and 
Skyline, the shuffle algorithm is used as the default method, while DIA-NN used the 
mutate algorithm by default. (b) The influence of decoy generation methods to the 
precursor identification performance evaluated on the S1-1 run of the MCB dataset. All 
the decoy generation methods that are compatible for each software tool were tested. 
  



 

Supplementary Figure 8. Comparison of identification performance of various 
discriminative models on the MCB datasets. The numbers of mouse precursors at 1% 
precursor FDR by the two-species library method were plotted. Each error bar stands 
for the mean and standard deviation of the results of n = 10 biologically independent 
runs.  
  



Supplementary Figure 9. tSNE of the extracted 16-dimension deep representation 
features by DreamDIA from the S1-1 run of the MCB dataset. Each point stands for a 
candidate RSM of a precursor before the final discrimination. Only 5% of the extracted 
RSMs are displayed here for better visualization (mouse: 16887; Arabidopsis: 7927; 
decoy: 34018).  
  



 
Supplementary Figure 10. Quantification performance evaluation with LFQbench 
HYE110 dataset. In this dataset, peptides from three species (human, yeast and E.coli) 
were mixed for sample preparation to obtain two groups of samples containing known 
peptide concentration ratios (Ahuman:Bhuman = 1:1, Ayeast:Byeast = 10:1 and AE.coli:BE.coli = 
1:10, three parallel injections for each group), which are indicated by the colored dashed 
lines. Peptides (the first row) and proteins (the second row) identified at 1% precursor 
FDR reported by the software tools themselves were retained, and the calculated ratios 
were plotted. Boxplot elements: center line, median; boxes, interquartile range; 
whiskers, percentiles 1-99; points, outliers. 
  



 
Supplementary Figure 11. Quantification performance evaluation with LFQbench 
HYE124 dataset. In this dataset, peptides from three species (human, yeast and E.coli) 
were mixed for sample preparation to obtain two groups of samples containing known 
peptide concentration ratios (Ahuman:Bhuman = 1:1, Ayeast:Byeast = 2:1 and AE.coli:BE.coli = 
1:4, three parallel injections for each group), which are indicated by the colored dashed 
lines. Peptides (the first row) and proteins (the second row) identified at 1% FDR 
reported by the software tools themselves were retained, and the calculated ratios were 
plotted. Boxplot elements: center line, median; boxes, interquartile range; whiskers, 
percentiles 1-99; points, outliers. 
  



 
Supplementary Figure 12. Evaluation of the quantification performance of DreamDIA 
on the LFQbench HYE110 dataset when more fragment ions are included for 
computation. The global accuracy metric provided by LFQbench software suite reflects 
the median deviation of calculated log-ratios to the expected values. The absolute value 
of the global accuracy is displayed here for more intuitive comparison. More results are 
shown in Supplementary Table S3. Boxplot elements: center line, median; boxes, 
interquartile range; whiskers, percentiles 1-99; points, outliers. 
  



 
Supplementary Figure 13. Evaluation of the quantification performance of DreamDIA 
on the LFQbench HYE124 dataset when more fragment ions are included for 
computation. The global accuracy metric provided by LFQbench reflects the median 
deviation of calculated log-ratios to the expected values. The absolute value of the 
global accuracy is displayed here for more intuitive comparison. Boxplot elements: 
center line, median; boxes, interquartile range; whiskers, percentiles 1-99; points, 
outliers. 
  



 
Supplementary Figure 14. Benchmarking of DreamDIA with Avant-garde on the 
LFQbench HYE110 dataset. (a) Number of peptides identified, and valid peptide 
quantification ratios reported by LFQbench. Peptides at 1% FDR reported by the 
software tools themselves were retained, and the calculated ratios of (b) DreamDIA, (c) 
Skyline and (d) Avant-garde were plotted. Boxplot elements: center line, median; boxes, 
interquartile range; whiskers, 1.5x interquartile range; points, outliers. 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 15. Computational efficiency evaluation of DreamDIA. The 
S1-1 run of the MCB dataset with the two-species library containing 158, 226 
precursors in total was processed by OpenSWATH, DIA-NN and DreamDIA. All 
software tools were run on Ubuntu 16.04 with 32 CPU cores and 256 GB memory 
(without setting memory limitations in the benchmarked software tools). The data were 
processed twice by DreamDIA with different numbers of acquisition cycles specified 
for each precursor to analyze, and the time consumptions were both compared. 
  



Supplementary Tables 

Supplementary Table 1. Identification performance evaluation of DreamDIA when 
different hyper-parameters are used for the deep representation models. We considered 
48 combinations of different numbers of neurons for the layers in the neural network. 
For each hyperparameter combination, the model was built and trained on the same 
training set with best epoch selected when the validation loss stopped decreasing after 
at least 10 epochs. Then each model was used by DreamDIA to analyze the S1-1 run of 
the MCB dataset with the two-species library, and the number of mouse precursors 
identified at 1% proxy FDR was compared. 
 
N neurons LSTM1 N neurons LSTM2 N neurons FC1 N identified at 1% FDR 

128 64 32 62676 

128 128 16 62598 

128 64 4 62565 

128 128 64 62539 

128 128 32 62512 

128 16 4 62500 

64 64 64 62485 

128 8 8 62470 

128 64 16 62448 

64 32 4 62448 

128 64 8 62443 

128 32 8 62443 

64 64 4 62437 

128 128 128 62427 

128 32 32 62427 

64 32 32 62422 

128 4 4 62399 

128 32 16 62382 

64 16 4 62379 

128 8 4 62376 

64 16 8 62374 

128 128 8 62372 

64 8 8 62368 

64 32 8 62353 

64 64 8 62344 

64 64 32 62331 

32 16 16 62331 

128 16 16 62326 

32 16 4 62318 

128 128 4 62318 



128 64 64 62314 

128 32 4 62309 

128 16 8 62299 

64 16 16 62282 

64 32 16 62242 

64 8 4 62242 

32 32 4 62231 

32 32 8 62219 

64 64 16 62200 

32 8 4 62185 

32 16 8 62180 

32 32 32 62141 

16 16 4 62104 

16 16 8 62094 

32 32 16 62080 

32 8 8 62070 

8 8 4 61969 

8 4 4 61622 

 
  



Supplementary Table 2. LFQbench test results on the HYE110 dataset. The global 
accuracy metric provided by LFQbench software suite reflects the median deviation of 
calculated log-ratios to the expected value. The absolute value of the global accuracy 
was used for comparison. 
 

 human 

peptide 

global 

accuracy 

human 

protein 

global 

accuracy 

yeast 

peptide 

global 

accuracy 

yeast 

protein 

global 

accuracy 

E.coli 

peptide 

global 

accuracy 

E.coli 

protein 

global 

accuracy 

DreamDIA 0 0 0.0505 0.1269 0.1007 0.0079 

OpenSWATH 0 0 0.7268 0.5604 0.7429 0.6205 

DIA-NN 0 0 0.2623 0.1256 0.3132 0.2124 

 
  



Supplementary Table 3. LFQbench test results on the HYE124 dataset. The global 
accuracy metric provided by LFQbench software suite reflects the median deviation of 
calculated log-ratios to the expected value. The absolute value of the global accuracy 
was used for comparison. 
 

 human 

peptide 

global 

accuracy 

human 

protein 

global 

accuracy 

yeast 

peptide 

global 

accuracy 

yeast 

protein 

global 

accuracy 

E.coli 

peptide 

global 

accuracy 

E.coli 

protein 

global 

accuracy 

DreamDIA 0 0 0.0009 0.0038 0.1950 0.1343 

OpenSWATH 0 0 0.2315 0.1590 0.5198 0.3954 

DIA-NN 0 0 0.0100 0.0030 0.3073 0.2557 

  



Supplementary Table 4. LFQbench test results of DreaDIA on the HYE110 dataset 
with different fragment ions for quantification. The global accuracy metric provided by 
LFQbench software suite reflects the median deviation of calculated log-ratios to the 
expected value. The absolute value of the global accuracy was used for comparison. 
 

fragments for 

quantification 

human 

peptide 

global 

accuracy 

human 

protein 

global 

accuracy 

yeast 

peptide 

global 

accuracy 

yeast 

protein 

global 

accuracy 

E.coli 

peptide 

global 

accuracy 

E.coli 

protein 

global 

accuracy 

library 0 0 0.0505 0.1269 0.1007 0.0079 

library + top 3 

self 

0 0 0.0892 0.1372 0.0548 0.0280 

library + top 6 

self 

0 0 0.0438 0.0965 0.0840 0.0099 

library + top 9 

self 

0 0 0.0123 0.0845 0.1313 0.0289 

library + top 

12 self 

0 0 0.0154 0.0808 0.1293 0.0383 

library + top 

15 self 

0 0 0.0079 0.0685 0.1404 0.0588 

 

  



Supplementary Table 5. Datasets used in this work. 

 
Dataset N runs used Equipment Year Dataset ID application 

L929 mouse dataset 3 TripleTOF 

5600 

2020 PXD021390 Training 

HEK293 dataset 3 Orbitrap 

Fusion Lumos 

2020 PXD015098 Training 

BiolDS-OT dataset 4 Q Exactive 

HF-X 

2020 PXD016647 Training 

Mouse cerebellum 

dataset 

10 Orbitrap 

Fusion Lumos 

2020 PXD011691 Testing 

LFQbench 64var 

TTOF6600 dataset 

12 TripleTOF 

6600 

2018 PXD002952 Testing 

HeLa dataset 4 Q Exactive HF 2017 PXD005573 Testing 

  



Supplementary Notes 

1.Identification of more deamidated peptides with DreamDIA 

The identification of post-translational modification (PTM) peptides is both crucial and challenging 

for peptide-centric scoring (PCS) softwares. The MS2 spectra originated from related peptides 

including the non-modified peptide, or modified peptides with the same sequence and the same 

modifications at different amino acid sites, or peptides with the same sequence and isobaric 

modifications can be highly similar [1]. Among all the known PTMs, deamidation is one of the most 

difficult modifications for PCS sotware tools to accurately identify due to its extremely small mass 

shift of 0.9840 Da. Herein, we compared the ability of DreamDIA to identify deamidated peptides 

with that of DIA-NN using the pseudo-modification method proposed by the authors of DIA-NN. 

More specifically, the test data were analyzed twice by each software tool, using the library 

containing common deamidated peptides with mass shift of 0.9840 Da for the first time, and of 

1.0227 Da for the second time. The difference between these two mass shifts is exactly two-fold of 

the mass difference between 13C isotope (1.0034 Da) and the deamidation modification mass shift 

(0.9840 Da). The PCS software should identify more deamidated peptides in the first analysis and 

fewer in the second analysis. With FDR calculated by the two-species method, DreamDIA identified 

nearly 1.5-fold more deamidated peptides compared with DIA-NN in the first analysis, and slightly 

fewer deamidated peptides in the second analysis (Supplementary Figure 4). 

2. Auxiliary scores in DreamDIA 

In addition to the deep representation features output from the deep representation model, we 

included several auxiliary scores for candidate peak groups of each precursor in DreamDIA, as 

listed below. 

 

(1) Difference between the real RT and the RT recorded in the library. 

(2) Square of the difference between the real RT and the RT recorded in the library. 

(3) Cosine similarity of the real intensities and library intensities of all the fragments. 

(4) Mean and standard deviation of the three scores above of all the candidate peak groups for each 

precursor. 

(5) Length of the peptide sequence. 

(6) Charge of the precursor. 

(7) m/z of the precursor. 

3. Skyline step-by-step settings 

We analyzed the MCB dataset by Skyline [2] for the performance benchmarking of DreamDIA. We 

followed most of the settings provided by LFQbench [3], and the detailed procedures were shown 

below. 

 



(1) Open Skyline. 

(2) Blank Document. 

(3) Settings -> Transition Settings: 

 Full-Scan: 

  Acquisition method: DIA; 

  Product mass analyzer: Orbitrap; 

  Isolation scheme: input the isolation window settings manually; 

  Resolving power: At: 60,000. 400 m/z; 

  Retention time filtering: Use only scans within 10; 

 Instrument: 

  Min m/z: 50 m/z;  

     Max m/z: 2000 m/z;  

  Method match tolerance m/z: 0.01 m/z; 

 Library: 

  Ion match tolerance: 0.5 m/z;  

  If a library spectrum is available, pick its most intense ions: checked; 

  Pick: 6 product ions 

  From filtered ion charges and types; 

 Filter: 

  Precursor charges: 2, 3, 4, 5; 

  Ion charges: 1, 2; 

  Ion types: y, b; 

  Product ion selection:  

   From “ion 3”; 

   To “last ion - 1”; 

   Special ions: 

    N-terminal to Proline: checked; 

  Use DIA precursor window for exclusion: checked; 

  Auto-select all matching transitions: checked; 

(4) Settings -> Peptide Settings: 

 Modifications: 

  Structural modifications: 

   Gln -> pyro-Glu (N-term Q): “Variable” checked; 

   Pyro-carbamidomethyl (N-term C): “Variable” checked; 

   Oxidation (M): “Variable” checked; 

   Glu -> pyro-Glu (N-term E): “Variable” checked; 

   Carbamyl (N-term) without H: “Variable” checked; 

   Carbamidomethyl (C): “Variable” unchecked; 

  Max varable mods: 3; 

  Max neural losses: 1; 

  Isotope label type: heavy; 

  Isotope modifications: 

   Label: 13C(6)15N(2) (C-term K) checked; 

   Label: 13C(6)15N(4) (C-term R) checked; 



  Internal standard type: light; 

 Filter: 

  Min length: 7; 

  Max length: 36; 

  Exclude N-terminal AAs: 36; 

  Auto-select all matching peptides: checked; 

 Prediction: 

Use measured retention times when present: checked; 

Time window: 2min; 

(5) File -> Import -> transition List.  

Skip the warning window; 

Skip the iRT calculator building window; 

Create library; 

(6) Settings -> Peptide Settings: 

 Prediction: 

Retention time predictor: CiRT (iRT-C18); 

  Add the library; 

 Maximum transitions per peptide: 6. 

(7) Refine -> Add Decoys. 

 Decoy generation method: Reverse Sequence; 

(8) Settings -> Integrate All. 

(9) Save the document.  

(10) File -> Import -> Results -> Add single-injection replicates in files -> OK. 

(11) Refine -> Reintegrate: 

 Peak scoring model: Add; 

  Choose model: mProphet; 

  Use decoys: checked; 

  Check all of the available feature scores; 

  Train; 

  OK; 

 Integrate all peaks; 

 Overwrite manual integration: checked; 

 OK; 

(12) File -> Export -> Report. 

 The report template (SWATHbenchmark_long.skr) provided by LFQbench [3] was used. 

(13) Options that are not mentioned above were ignored and their default settings were used. 
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