- 1 Supporting information
- 2 Development of purification process for dual-function recombinant human heavy-chain ferritin
- 3 by the investigation of genetic modification impact on conformation
- 4
- 5 Shuang Yin¹,
- 6 Bingyang Zhang¹,
- 7 Jianying Lin²
- 8 Yongdong Liu³,
- 9 Zhiguo Su³,
- 10 Jingxiu Bi¹.
- 11 1. School of Chemical Engineering & Advanced Materials, Faculty of Engineering, Computer and
- 12 Mathematical Sciences, University of Adelaide, Adelaide, Australia
- 13 2. College of Biomedical Engineering, Taiyuan University of Technology
- 14 3. State Key Laboratory of Biochemistry Engineering, Institute of Process Engineering, Chinese
- 15 Academy of Sciences, Beijing, China
- 16
- 17 Correspondence: A/Prof Jingxiu Bi (jingxiu.bi@adelaide.edu.au). School of Chemical Engineering
- 18 &Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, University of
- 19 Adelaide, North terrace, SA5005, Adelaide, Australia.
- 20

- 1 Figure S1. 12 % reducing SDS-PAGE images of expression results of HFn and two modified
- 2 HFns.

3

4 A, expression results of HFn-PAS and HFn-PAS-RGDK, lane 1: bacterial for HFn-PAS-RGDK before 5 IPTG induction; lane 2: bacterial for HFn-PAS-RGDK after IPTG induction; lane 3: supernatant of 6 bacterial lysate; lane 4: sediment of bacterial lysate; M:protein marker, lane 5: bacterial for HFn-PAS 7 before IPTG induction; lane 6: bacterial for HFn-PAS after IPTG induction; lane 7: supernatant of 8 bacterial lysate; lane 8: sediment of bacterial lysate. M: protein marker. B, expression result of HFn, 9 lane 1: bacterial before IPTG induction; lane 2: bacterial after IPTG induction; lane 3: supernatant of 10 bacterial lysate; lane 4: sediment of bacterial lysate. M: protein marker. Red arrows indicate target 11 protein bands.

Figure S2. Q FF chromatograms of HFn and modified HFns.

A, pH 7 HFn chromatogram. B, pH 8 HFn chromatogram. C, pH 9 HFn chromatogram. D, pH 7 HFnPAS chromatogram. E, pH 8 HFn-PAS chromatogram. F, pH 9 HFn-PAS chromatogram G, pH 7 HFnPAS-RGDK chromatogram. H, pH 8 HFn-PAS-RGDK chromatogram. I, pH 9 HFn-PAS-RGDK
chromatogram.

Figure S3. 12 % reducing SDS-PAGE images of Q FF chromatography

A, 12 % reducing SDS-PAGE results of HFn by Q FF chromatography. B, 12 % reducing SDS-PAGE
results of HFn-PAS by Q FF chromatography. C, 12 % reducing SDS-PAGE results of HFn-PASRGDK by Q FF chromatography. Lane 1: heat-acid precipitation supernatant; lane 2: pH 7 flow through
peak; lane 3: pH 7 eluted peak 1; lane 4: pH 8 flow through peak; lane 5: pH 8 eluted peak 1; lane 6:
pH 9 flow through peak; lane 7: pH 9 eluted peak 1; lane 8: pH 9 eluted peak 2. Red arrows indicate
target protein bands.

- ...

13 Figure S4. 12 % reducing SDS-PAGE images of HIC

A, 12 % reducing SDS-PAGE results of peaks from HFn HIC. B, 12 % reducing SDS-PAGE results of
 peaks from HFn-PAS-RGDK HIC. C, 12 % reducing SDS-PAGE results of peaks from HFn-PAS butyl
 FF HIC. Lane 1: heat-acid precipitation supernatant; lane 2: Loading sample for HIC; lane 3: flow

through peak of butyl FF; lane 4: eluted peak of butyl FF; lane 5: flow through peak of octyl FF; laneeluted peak of octyl FF. Red arrows indicate target protein bands.

Protein	Conditions	50 °C pH	50 °C pH	50 °C pH	60 °C pH	60 °C pH
		4.0	4.5	5.0	4.5	5.0
HFn	Purity (%)	64.77	55.77	47.87	65.50	58.92
	Recovery yield (%)	88.70	91.58	93.82	99.69	99.22
HFn-PAS	Purity (%)	27.31	41.43	50.77	15.02	45.01
	Recovery yield (%)	4.98	13.14	68.41	2.26	8.56
HFn-PAS-	Purity (%)	40.85	43.98	50.41	9.50	41.10
RGDK	Recovery yield (%)	0.32	12.55	61.45	0.88	9.19

1	Table S1.	Purity and	recovery	yield (s	step) in	heat-acid	precipitation
---	-----------	------------	----------	----------	----------	-----------	---------------

3 Recovery yield (step) calculation example:

4 After 5 min heating at 60 °C pH 4.5, HFn recovery yield (step) was:

Recovery yield (step) (%) = the amount HFn in heat-acid supernatant/ the amount of HFn in sample before heat-acid precipitation = (purity of HFn in heat-acid supernatant × total protein amount of heat-acid supernatant)/(purity of HFn in bacterial lysate (supernatant) × total protein amount of sample before heat-acid precipitation = $(65.503 \text{ \%} \times 0.5 \text{ mL} \times 2.058)$ mg/mL)/(33.806 % × 0.5 mL × 4.000 mg/mL) = 99.69 %

Protein	Q FF Peak	pH 7	pH 7	pH 8	pH 8	pH 9	pH 9	pH 9
		FT	P1	FT	P1	FT	P1	P2
HFn	Purity (%)	94.27	85.69	95.56	95.08	97.98	18.00	67.73
	Recovery yield (%)	82.12	16.34	80.07	18.47	91.68	0.14	2.01
	Nucleic acid removal (%)	/	/	/	/	46.00	/	/
HFn-	Purity (%)	70.96	50.45	70.95	44.95	80.13	16.41	42.06
PAS	Recovery yield (%)	81.40	17.17	68.93	21.33	79.06	1.59	13.83
	Nucleic acid removal (%)	/	/	/	/	65.17	/	/
HFn-	Purity (%)	69.92	51.72	75.60	49.40	83.96	32.75	45.96
PAS-	Recovery yield (%)	63.47	23.17	69.17	22.21	70.25	2.67	13.55
RGDK	Nucleic acid removal (%)	/	/	/	/	46.81	/	/

1 Table S2. Purity, recovery yield (step) and nucleic acid removal of peaks in Q FF IEC

10 mg protein loaded in each run. FT: flow through peak. /: no measurement

Protein	Chromatography peak	Butyl FF	Butyl FF	Octyl FF	Octyl FF
		FT	P1	FT	P1
HFn	Purity (%)	96.09	95.24	98.02	95.94
	Recovery yield (%)	3.18	93.87	7.13	75.65
	Nucleic acid removal (%)	/	99.93	/	99.95
HFn-PAS	Purity (%)	83.48	82.32	/	/
	Recovery yield (%)	5.05	93.46	/	/
	Nucleic acid removal (%)	/	99.81	/	/
HFn-PAS-	Purity (%)	80.78	83.74	83.75	82.83
RGDK	Recovery yield (%)	3.68	94.54	8.79	76.66
	Nucleic acid removal (%)	/	99.81	/	99.78

Table S3. Purity, recovery yield (step) and nucleic acid removal of peaks in HIC

10 mg protein loaded in each run. FT: flow through peak. /: no measurement.

3 4 Purity of FT peak is not as highly accurate as eluted peak purity because of the much lighter bands in gel.

Table S4. IC₅₀ values of all groups against MCF7

IC ₅₀ (µg/mL)
0.20±0.03
1.31±0.22
0.98 ± 0.14
0.59±0.05