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Methods 
 
Super-resolution imaging 
Recombinant wild-type monomeric α-synuclein was a gift from the late Professor Sir Christopher Dobson. The synuclein 

was centrifuged at 270,000 g and 4°C in order to remove any fibrillar aggregates. The concentration of protein in the 

supernatant was determined using a bicinchoninic acid (BCA) assay (Thermo-Fisher Scientific) and then diluted in 1X 

Tris buffer (5.0 mM Tris, 1 mM EDTA, 10 mM MgCl2) , pH 7.5; 0.02 µm filtered, Anotop25, Whatman) to one of two starting 

concentrations (500 nM, and 1 µM) of monomeric α-synuclein . Each aliquot was then left to aggregate at 200 RPM and 

37°C following the addition of 0.1% NaN3) to prevent bacterial contamination. All aggregations were prepared in triplicate. 

One aliquot of 70 µM α-synuclein  was prepared in the same way and monitored under shaking conditions for fibril 

formation over 48 hours in order to verify the aggregation competency of the monomeric α-synuclein  in the stock solution, 

effectively acting as a positive quality control selected for its reliable kinetics1 . 

 

TIRF microscopy was utilized to perform AD PAINT as previously reported to generate super-resolution images of 

aggregates2. 

 

AD PAINT exploits the transient binding of an imaging strand — a single-stranded, 9 bp sequence of fluorophore-

conjugated CCAGATGTAT-CY3B DNA — to a single-stranded docking strand attached to an aptamer evolved to 

specifically bind aggregates of α-synuclein (GCCTGTGGTGTTGGGGCGGGTGCGTTATCTACATA)12,16. Glass 

microscope slides (0.13 mm thickness, round, 50 mm diameter) were first dusted via nitrogen stream before being cleaned 

with Argon plasma (PDC-002, Harrick Plasma) for 1 h. A multi-well chambered coverslip (CultureWell CWCS-50R-1.0, 50 

channels) was then attached to the surface in two layers after being cut in half. Tween-20 solution (1% in 0.02 µm filtered 

PBS, Anotop25, Whatman) was pipetted into each well and allowed to coat the surface for 1 h in order to passivate the 

glass-bottomed surface of the well and minimize non-specific binding of the aptamer and imaging strand to the surface. 

Following passivation, the Tween-20 solution was washed off and a solution containing the α-synuclein sample of interest 

was introduced into each well and allowed to coat the surface for 10 min. The sample solution was then replaced with an 

imaging solution containing 100 nM aptamer-docking strand, 1 nM of imaging strand, and 5 µM of the beta-sheet binding 

dye Thioflavin T (Sigma-Aldrich; 0.02 µm filtered, Anotop25, Whatman) is introduced into each well. Thioflavin T is a ß-

sheet binding dye commonly used to detect amyloid structures and was used here to confirm the presence of aggregates 

and fibrils prior to single-molecule image acquisition. The wells are then sealed with a second plasma-cleaned microscope 

slide. Given that the evanescent field generated through TIRF only penetrates approximately 100 nm into the sample, 

only the fluorescence from imaging strands bound to the aptamer-docking strand on the surface of the slide is captured 

by the camera. For each field of view, 4000 frames at 50 ms exposure were captured while exciting the CY3B imaging 

strand with the 561 nm laser followed by 100 frames at 50 ms exposure while exciting the Thioflavin T dye with the 405 

nm laser. Six fields of view were captured in succession for each imaged well using a custom script (MicroManager). 

 

Individual fluorescence events captured in each frame were localized and super-resolved using the PeakFit function of 

the GDSC (University of Sussex) Single Molecule Light Microscopy (SMLM) package in ImageJ utilizing a signal threshold 

of 30 and a precision of 10 nm. Oligomers and fibrils were identified utilizing the Density Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm in Python (sklearn v0.18.1, epsilon = 3 pixels, minimum point threshold of 

10), one of the most commonly used clustering algorithms currently employed for scientific applications3. Furthermore, 

dimensional analysis of each super-resolved cluster was carried out using a Python skeletonizing protocol allowing us to 

determine the length of each aggregate as previously described4. In brief, clusters of fluorescence events containing at 

least 10 events were grouped by proximity until no more neighboring clusters were detected beyond a radius of 3 pixels. 

The length and eccentricity measurements of each cluster are automatically generated following clustering. Code is 

available upon request. 



 

 

Atomic force microscopy (AFM) experiments 

A 45 µM monomeric (>95%) α-synuclein filtrated solutions in a 50 mM TRIS-buffer, NaCl 150 mM, and pH 5.5 and 7.5, 

were incubated at 37 °C in an sealed Eppendorf tube to avoid contamination and evaporation. The sample was shaken 

for 10 days. The experiments were repeated in triplicates. 

 

Atomic Force Microscopy was performed on positively functionalized mica substrates. We cleaved the mica surface and 

we incubated it for 1 minute with 10 µl of 0.5% (v/v) 3-aminopropyl-triethoxysilane (APTES, from SIGMA) in Milli-Q water. 

Then, the substrate was rinsed three times with 1 ml of Milli-Q water and dried by gentle stream of nitrogen gas. Finally, 

for each sample, an aliquot of 10 µl of the solution was deposited on the positively functionalized surface. The droplet 

was incubated for 10 minutes, then rinsed by 1 ml of Milli-Q water and dried by the gentle stream of nitrogen gas. The 

preparation was carried out at room temperature. AFM maps were realized by means of a NX10 (Park Systems) operating 

in non-contact mode and equipped with a silicon tip (PPP-NCHR, 5 Nm-1) with a nominal radius  <10 nm. Image flattening, 

analysis of cross-sectional dimensions and single aggregate tracing was performed by SPIP (Image metrology) software, 

while data were plotted by OriginPRO. 

 

Calculation of fibril length distributions  
The time evolution of the aggregate length distribution was obtained by numerical integration of the master equation, 

using a fourth order Runge-Kutta algorithm. The master equation is a set of infinitely many differential equations, given 

by: 

 

𝑑𝑑𝑑𝑑(𝑡𝑡, 𝑗𝑗)
𝑑𝑑𝑡𝑡 = 2𝑘𝑘+𝑚𝑚(𝑡𝑡)�𝑑𝑑(𝑡𝑡, 𝑗𝑗 − 1) − 𝑑𝑑(𝑡𝑡, 𝑗𝑗)� + 2 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜�𝑑𝑑(𝑡𝑡, 𝑗𝑗 + 1) − 𝑑𝑑(𝑡𝑡, 𝑗𝑗)� − 𝑘𝑘−(𝑗𝑗 − 1)𝑑𝑑(𝑡𝑡, 𝑗𝑗) + 2 𝑘𝑘− �  𝑑𝑑(𝑡𝑡, 𝑖𝑖)
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for j>nmin and 

𝑑𝑑𝑑𝑑(𝑡𝑡, 𝑗𝑗)
𝑑𝑑𝑡𝑡 = −2𝑘𝑘+𝑚𝑚(𝑡𝑡)�𝑑𝑑(𝑡𝑡, 𝑗𝑗)� + 2 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜�𝑑𝑑(𝑡𝑡, 𝑗𝑗 + 1) − 𝑑𝑑(𝑡𝑡, 𝑗𝑗)� − 𝑘𝑘−(𝑗𝑗 − 1)𝑑𝑑(𝑡𝑡, 𝑗𝑗) + 2 𝑘𝑘− �  𝑑𝑑(𝑡𝑡, 𝑖𝑖)

∞
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+ 𝑘𝑘𝑛𝑛𝑚𝑚(𝑡𝑡)𝑛𝑛𝑐𝑐 

 

for j>nmin.where f(t,j) is the concentration of species of size j at time t, m(t) is the monomer concentration at time t, k+, koff, 

k- and kn are the rate constants of elongation, depolymerization, fragmentation and primary nucleation respectively, nc is 

the reaction order of primary nucleation and nmin is the minimum stable fibril size, which is also the size of fibril produced 

by primary nucleation. Note that in previous descriptions5 the minimum stable fibril size and the reaction order of primary 

nucleation were the same parameter, nc. To allow for more flexibility we here introduce two separate parameters for the 

reaction order of primary nucleation and the minimum stable fibril size. In order to be able to integrate this infinite set of 

equations numerically, we chose a maximum fibril size jmax = 2000, governed by the equation: 

 
𝑑𝑑𝑑𝑑(𝑡𝑡, 𝑗𝑗)
𝑑𝑑𝑡𝑡 = 2𝑘𝑘+𝑚𝑚0�𝑑𝑑(𝑡𝑡, 𝑗𝑗 − 1)� − 2 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜�𝑑𝑑(𝑡𝑡, 𝑗𝑗)� − 𝑘𝑘−(𝑗𝑗 − 1)𝑑𝑑(𝑡𝑡, 𝑗𝑗) 

 

To minimize any effects due to this finite maximum size, we monitored the f(t,jmax), ensuring that only a negligibly small 

concentration of fibrils of the maximum length was present.  

 

Approximate analytical expressions for average size and replication rate 
As detailed in Cohen et al5, the moment equations describing the time evolution of fibril number P(t) and fibril mass M(t) 

are given by: 

  



𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑘𝑘−(𝑀𝑀(𝑡𝑡) − (2𝑛𝑛𝑐𝑐 − 1)𝑑𝑑(𝑡𝑡)) + 𝑘𝑘𝑛𝑛𝑚𝑚(𝑡𝑡)𝑛𝑛𝑐𝑐   

𝑑𝑑𝑀𝑀(𝑡𝑡)
𝑑𝑑𝑡𝑡 = �2𝑘𝑘+𝑚𝑚(𝑡𝑡) − 𝑘𝑘−𝑛𝑛𝑐𝑐(𝑛𝑛𝑐𝑐 − 1)�𝑑𝑑(𝑡𝑡) 

 

where the parameters are as defined above. Linearizing these equations approximating the monomer concentration as 

constant, m(t) ~ m0, which is a valid approximation for early times, produces a system of first order ordinary differential 

equations, which, for unseeded initial condition, can be solved to give: 

 

𝑀𝑀(𝑡𝑡) =
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𝑘𝑘−(2𝑛𝑛𝑐𝑐 − 1)
2𝜅𝜅 𝑆𝑆𝑖𝑖𝑛𝑛ℎ(𝜅𝜅𝑡𝑡)� − 1� 

 

where κ is the replication rate when the critical size is negligible. The approximate replication rate when the critical size is 

taken into account, �̅�𝜅, can be identified by considering the exponential growth part as �̅�𝜅 = 𝜅𝜅 − 𝑘𝑘𝑜𝑜𝑛𝑛𝑐𝑐. Similarly, an 

approximate steady state average length, which is given by 𝜇𝜇 = 𝑀𝑀(𝑡𝑡)
𝑃𝑃(𝑡𝑡), can be obtained as �̅�𝜇 = 𝜇𝜇 + 𝑛𝑛𝑐𝑐. Clearly the 

approximation for �̅�𝜅  breaks down when the critical size nc becomes too large, as the replication rate must be a positive 

number. For less extreme values of nc these general but approximate expressions agree well with the values obtained 

from numerical integration with specific parameters. 
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