ChemMedChem

Supporting Information

Evaluation of 4-(4-Fluorobenzyl)piperazin-1-yl]-Based Compounds as Competitive Tyrosinase Inhibitors Endowed with Antimelanogenic Effects

Salvatore Mirabile, Serena Vittorio, Maria Paola Germanò, Ilenia Adornato, Laura Ielo, Antonio Rapisarda, Rosaria Gitto, Francesca Pintus, Antonella Fais, and Laura De Luca*

Supporting Information:

Content:

Figure S1: Ramachandran plot of hTYR homology model	S2
Figure S2-S42: ¹ H-NMR and selected representative ¹³ C-NMR spectra	S3
Figure S43: Representation of AbTYR binding site	S24
Figure S44: Representation of hTYR binding site	S25
Figure S45: Sequence alignment of hTYR and (TYRP-1) mutant (T391V-R374S-Y362F)	S26
Figure S46: B16F10 melanoma cell viability after treatment with compounds 23, 25 and 26	S27
Table S1: CAS numbers and smiles for compounds 7-32	S28
Table S2: Selected physicochemical parameters and predicted drug-likeness properties	S29

¹H-NMR and selected representative ¹³C-NMR spectra

Figure S2: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-phenylethan-1-one (7)

Figure S3: ¹³C-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-phenylethan-1-one (7)

Figure S4: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-3-phenylpropan-1-one (8)

Figure S5: ¹³C-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-3-phenylpropan-1-one (8)

Figure S6: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2,2-diphenylethan-1-one (9)

Figure S7: ¹³C-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2,2-diphenylethan-1-one (9)

Figure S8: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(2-chlorophenyl)ethan-1-one (**10**)

Figure S9: ¹³C-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(2-chlorophenyl)ethan-1-one (**10**)

Figure S10: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(3-chlorophenyl)ethan-1-one (**11**)

Figure S11: ¹³C-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(3-chlorophenyl)ethan-1-one (**11**)

Figure S12: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(4-chlorophenyl)ethan-1-one (**12**)

Figure S13: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(2-bromophenyl)ethan-1-one (**13**)

Figure S14: ¹³C-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(2-bromophenyl)ethan-1-one (**13**)

Figure S15: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(3-bromophenyl)ethan-1-one (**14**)

Figure S16: ¹³C-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(3-bromophenyl)ethan-1-one (**14**)

Figure S17: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(4-bromophenyl)ethan-1-one (**15**)

Figure S18: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(2-nitrophenyl)ethan-1-one (**16**)

Figure S19: ¹³C-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(2-nitrophenyl)ethan-1-one (**16**)

Figure S20: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(3-nitrophenyl)ethan-1-one (**17**)

Figure S21: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(4-nitrophenyl)ethan-1-one (**18**)

Figure S22: ¹³C-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(4-nitrophenyl)ethan-1-one (**18**)

Figure S23: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(4-methoxyphenyl)ethan-1-one (**19**)

Figure S24: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(2-aminophenyl)ethan-1-one (**20**)

Figure S25:¹³C-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(2-aminophenyl)ethan-1-one (**20**)

Figure S26: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(3-aminophenyl)ethan-1-one (**21**)

Figure S27: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(4-aminophenyl)ethan-1-one (**22**)

Figure S28: ¹³C-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-2-(4-aminophenyl)ethan-1-one (**22**)

Figure S29: ¹H-NMR (CDCl₃) spectrum of [4-(4-Fluorobenzyl)piperazin-1-yl]-[3-fluoro-2-(trifluoromethyl)phenyl]methanone (**23**)

Figure S30: ¹³C-NMR (DMSO-d6) spectrum of [4-(4-Fluorobenzyl)piperazin-1-yl]-[3-fluoro-2-(trifluoromethyl)phenyl]methanone (**23**)

Figure S31: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-[4-fluoro-2-(trifluoromethyl)phenyl]methanone (**24**)

Figure S32: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-[5-fluoro-2-(trifluoromethyl)phenyl]methanone (**25**)

Figure S33: ¹H-NMR (DMSO-d6) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-(3-chloro-2-nitro-phenyl)methanone (**26**)

Figure S34: ¹H-NMR (DMSO-d6) spectrum of [4-(4-Fluorobenzyl)piperazin-1-yl]-(4-chloro-2-nitro-phenyl)methanone (**27**)

Figure S35: ¹³C-NMR (DMSO-d6) spectrum of [4-(4-Fluorobenzyl)piperazin-1-yl]-(4-chloro-2-nitro-phenyl)methanone (**27**)

Figure S36: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-(5-chloro-2-nitro-phenyl)methanone (**28**)

Figure S37: ¹H-NMR (DMSO-d6) spectrum of [4-(4-Fluorobenzyl)piperazin-1-yl]-(2-chloro-6-nitro-phenyl)methanone (**29**)

Figure S38: ¹³C-NMR (DMSO-d6) spectrum of [4-(4-Fluorobenzyl)piperazin-1-yl]-(2-chloro-6-nitro-phenyl)methanone (**29**)

Figure S39: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-(3-methoxy-2-nitrophenyl)methanone (**30**)

Figure S40: ¹H-NMR (DMSO-d6) spectrum of [4-(4-Fluorobenzyl)piperazin-1-yl]-(4-methoxy-2-nitrophenyl)methanone (**31**)

Figure S41: ¹³C-NMR (DMSO-d6) spectrum of [4-(4-Fluorobenzyl)piperazin-1-yl]-(4-methoxy-2-nitrophenyl)methanone (**31**)

Figure S42: ¹H-NMR (CDCl₃) spectrum of 1-[4-(4-Fluorobenzyl)piperazin-1-yl]-(5-methoxy-2-nitrophenyl)methanone (**32**)

Figure S43. Representation of AbTYR binding site. A) AbTYR surface. The binding site defined for the docking calculation is lined by a black square. B) Close view of AbTYR binding site. The residues of the pocket are represented as wheat sticks.

Figure S44. Representation of hTYR binding site. A) hTYR surface. The binding site defined for the docking calculation is lined by a black square. B) Close view of hTYR binding site. The residues of the pocket are represented as lightblue sticks.

Target MLLAVLYCLLWSFQTSAGHEPRACVSSKNLMEKECCPPWSGDRSPCGQLSGRGSCQNILLSNAPLGPQFPFTGVDD	76
5m8q.1.A	62
Target RESWPSVFYNRTCQCSGNFMGFNCGNCKFGFWGPNCTERRLLVRRNIFDLSAPEKDKFFAYLTLAKHTISSDYVIPIGTY	156
5m8q.1.A REVWPLRFFNRTCHOMENCGOOLGGIGGGACTOVIVERKIDLSKEKNHFVRALMAKBTHELEVI	142
Target GOM KNGSTPMFNDINIYDLFVWMHYYVSMDALLGGS - EIWRDIDFAHEAPAFLPWHRLFLLRWEQEIQKLTGDENFTI	233
5m8q.1.A DILGF GNTP FIL YN FVWHYYSVKF LGVG ES SEVDFSHEFAFLWHR HLLR EKD OF LGFSFSL	222
Target PYWDWRDA-EKCDICTDEYMGGQHPTNPNLLSPASFFSSWQIVCSRLEEYNSHQSLCNGTPEGPLRRNPGNH-DKSRTPR	311
5m8q.1.APWN AT GKNVCDICDD COG DC C C C C C C C C C C C C C C C C C C	302
Target LPSSADVEFCLSLTQYESGSMDKAANFSFRNTLEGFASPLTGIADASQSSMHNALHIYMNGTMSQVQGSANDPIFLLHHA	391
5m8q.1.ALP CDVACLEVCLED TFFYSSISTSFRNTVEGF PTC-MCDPAVSS HN AH DINGTGQVHISPNDPIFVLHT	381
Target FVDSIFEQWLRRHRPLQEVMPEANAPIGHNRESYMVPFIPLYRNGDFFISS-KDLGYDYSYLQDSDPDSFQDYIKSYLEQ	470
5m8q.1.AFTDAVEDEWLRBYNALISTEPLENAPIGHNRGYMVPFWPENDEVQNTEDFV GPDNDGYTY	444
Target ASRIWSWLLGAAMVGAVLTALLAGLVSLLCRHKRKQLPEEKQPLLMEKEDYHSLYQSHL 5m8q.1.A	529

Figure S45: Sequence alignment of hTYR (target) and (TYRP-1) mutant (T391V-R374S-Y362F) 5m8q.

Figure S46: B16F10 melanoma cell viability after treatment with compounds **23**, **25** and **26**. The mean value and standard deviation were calculated from triplicate experiments.

COMPOUND	CAS Number	SMILES				
7.	423743-29-7	Fc1ccc(CN2CCN(C(Cc3ccccc3)=O)CC2)cc1				
8.	439848-20-1	Fc1ccc(CN2CCN(CC2)C(=O)CCc3ccccc3)cc1				
9.	423739-67-7	Fc1ccc(CN2CCN(CC2)C(=O)C(c3ccccc3)c4ccccc4)cc1				
10.	1387739-82-3	Fc1ccc(CN2CCN(CC2)C(=O)Cc3ccccc3Cl)cc1				
11.	-	Fc1ccc(CN2CCN(CC2)C(=O)Cc3cccc(Cl)c3)cc1				
12.	1329294-83-8	Fc1ccc(CN2CCN(CC2)C(=O)Cc3ccc(Cl)cc3)cc1				
13.	1988172-38-8	Fc1ccc(CN2CCN(CC2)C(=O)Cc3ccccc3Br)cc1				
14.	1985981-75-6	Fc1ccc(CN2CCN(CC2)C(=O)Cc3cccc(Br)c3)cc1				
15.	1146917-07-8	Fc1ccc(CN2CCN(CC2)C(=O)Cc3ccc(Br)cc3)cc1				
16.	-	[O-][N+](=O)c1ccccc1CC(=O)N2CCN(Cc3ccc(F)cc3)CC2				
17.	-	[O-][N+](=O)c1cccc(CC(=O)N2CCN(Cc3ccc(F)cc3)CC2)c1				
18.	-	[O-][N+](=O)c1ccc(CC(=O)N2CCN(Cc3ccc(F)cc3)CC2)cc1				
19.	1796840-99-7	COc1ccc(CC(=O)N2CCN(Cc3ccc(F)cc3)CC2)cc1				
20.	-	Nc1ccccc1CC(=O)N2CCN(Cc3ccc(F)cc3)CC2				
21.	-	Nc1cccc(CC(=O)N2CCN(Cc3ccc(F)cc3)CC2)c1				
22.	-	Nc1ccc(CC(=O)N2CCN(Cc3ccc(F)cc3)CC2)cc1				
23.	-	Fc1ccc(CN2CCN(CC2)C(=O)c3cccc(F)c3C(F)(F)F)cc1				
24.	-	Fc1ccc(CN2CCN(CC2)C(=O)c3ccc(F)cc3C(F)(F)F)cc1				
25.	-	Fc1ccc(CN2CCN(CC2)C(=O)c3cc(F)ccc3C(F)(F)F)cc1				
26.	-	[O-][N+](=O)c1c(Cl)cccc1C(=O)N2CCN(Cc3ccc(F)cc3)CC2				
27.	2344352-87-8	[O-][N+](=O)c1cc(Cl)ccc1C(=O)N2CCN(Cc3ccc(F)cc3)CC2				
28.	-	[O-][N+](=O)c1ccc(Cl)cc1C(=O)N2CCN(Cc3ccc(F)cc3)CC2				
29.	-	[O-][N+](=O)c1cccc(Cl)c1C(=O)N2CCN(Cc3ccc(F)cc3)CC2				
30.	-	COc1cccc(C(=O)N2CCN(Cc3ccc(F)cc3)CC2)c1[N+](=O)[O-]				
31.	-	COc1ccc(C(=O)N2CCN(Cc3ccc(F)cc3)CC2)c(c1)[N+](=O)[O-]				
32.	2345032-69-9	COc1ccc(c(c1)C(=O)N2CCN(Cc3ccc(F)cc3)CC2)[N+](=O)[O-]				

Table S1: CAS numbers and smiles for compounds 7-32

TPSA* TPSA** iLogP* PAINS* MW (g/mol)* miLogP** Water solubility* Lipinski* Ghose* entry 7 312.38 23.55 23.55 3.21 2.92 Soluble Yes Yes 0 alert 0 violation 326.41 23.55 23.55 3.54 3.44 Soluble Yes 8 Yes 0 alert 0 violation 9 388.48 23.55 23.55 3.79 4.31 Moderately soluble Yes Yes 0 alert 0 violation 23.55 23.55 3.44 Soluble Yes 0 alert 10 346.83 3.55 Yes 0 violation 11 346.83 23.55 23.55 3.55 3.58 Soluble Yes Yes 0 alert 0 violation 12 3.52 346.83 23.55 23.55 3.60 Soluble Yes Yes 0 alert 0 violation 13 23.55 23.55 Soluble 0 alert 391.28 3.51 3.68 Yes Yes 0 violation 391.28 23.55 23.55 3.64 3.71 Soluble Yes 14 Yes 0 alert 0 violation 15 23.55 391.28 23.55 3.63 3.73 Soluble Yes Yes 0 alert 0 violation 69.37 69.37 2.83 16 357.38 2.83 Soluble Yes 0 alert Yes 0 violation 17 357.38 69.37 2.95 Soluble Yes 69.37 2.86 Yes 0 alert 0 violation 18 357.38 69.37 69.37 2.92 2.88 Soluble Yes Yes 0 alert 0 violation 19 342.41 32.78 32.78 3.46 0 alert 2.98 Soluble Yes Yes 0 violation 327.40 49.57 49.57 2.92 Soluble Yes 0 alert 20 2.36 Yes 0 violation 49.57 1.97 21 327.40 49.57 2.88 Soluble Yes Yes 0 alert 0 violation 22 327.40 49.57 49.57 2.78 2.00 Soluble Yes Yes 1 alert: 0 violation anil_no_alk 23 384.34 23.55 23.55 3.27 3.32 Soluble Yes Yes 0 alert 1 violation: MLogP>4.15 24 384.34 23.55 23.55 3.36 3.35 Soluble Yes 0 alert Yes 1 violation: MLogP>4.15 25 384.34 23.55 23.55 3.34 3.35 Soluble Yes Yes 0 alert 1 violation: MLogP>4.15

Table S2. Selected physicochemical parameters, lipophilicity, solubility and drug-likeness for compound **7-32** predicted by SwissADME(http://swissadme.ch/), and Molinspiration tools(https://molinspiration.com).

26	377.80	69.37	69.37	2.84	2.90	Moderately soluble	Yes	Yes	0 alert
							0 violation		
27	377.80	69.37	69.37	2.89	2.92	Moderately soluble	Yes	Yes	0 alert
							0 violation		
28	377.80	69.37	69.37	2.89	2.92	Moderately soluble	Yes	Yes	0 alert
							0 violation		
29	377.80	69.37	69.37	2.76	2.90	Moderately soluble	Yes	Yes	0 alert
							0 violation		
30	373.38	78.60	78.61	2.66	2.28	Soluble	Yes	Yes	0 alert
							0 violation		
31	373.38	78.60	78.61	2.65	2.30	Soluble	Yes	Yes	0 alert
							0 violation		
32	373.38	78.60	78.61	2.72	2.30	Soluble	Yes	Yes	0 alert
							0 violation		

*SwissADME Water solubility: Soluble= Log S (Ali) values between -4 and -2; Moderately soluble= Log S (Ali) values between -6 and -4.

**Molinspiration