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Fig. S1 Linkage disequilibrium (LD) decay patterns of Asian butternuts (Juglans mandshurica, Juglans ailantifolia and Juglans cathayensis). 

Fig. S2 Schematic of demographic model analyzed using fastsimcoal2 based on 23,750 SNPs of Asian butternuts. The numbers in square brackets indicate the 95% CI 

of divergence time and effective population size. The grey and olive rectangles represent the most recent common ancestors of Asian butternuts and J. mandshurica 

and J. ailantifolia, respectively.    

Fig. S3 Environmental variables used in the gradient forest modeling. *Top-ranked, uncorrelated environment variables (Pearson's |r| <0 .8) and accuracy important 

≥0.004.   

Fig. S4 StarBEAST2 analysis of Asian butternuts based on 100 single-copy nuclear genes. Posterior probabilities are labeled on each node (red number) and the 

numbers in square brackets are the 95% HPD of divergence time in Ma.  

Fig. S5 Histograms of the STRUCTURE assignment test for 80 individuals of Asian butternuts based on the SNPs of genes interacting with chloroplast (a), mitochondria 

(b) and dual (both mitochondrial and chloroplast) (c). 

Fig. S6 Maximum likelihood tree of 300 genes with nucleo-cytoplasmic interaction of Asian butternuts. Bootstrap support values are labeled on each node.   

Table S1 Details of sample locations and descriptive statistics of genome sequencing for 80 individuals of Asian butternuts. 



Table S2 Environmental variables were ordered by ranked importance. 

Table S3 Information of the 300 genes with nucleo-cytoplasmic interaction in Table S3.txt (see separate file). The first three columns are the gene ID, category and 

CyMIRA targeting of Arabidopsis thaliana and the remaining columns are the gene ID, gene length, SNP number, mean FST, maximum FST, minimum FST of J. 

mandshurica. 

Notes 1 Methods for extracting single copy nuclear genes in PhyloNet analysis. 

Notes 2 Python script for conducting McDonald-Kreitman tests (see separate file). 

Note 3 Methods for environmental variables identification. 

    
 
  



 
  

Fig. S1 Linkage disequilibrium (LD) decay patterns of Asian butternuts (J. mandshurica, J. ailantifolia and 

J. cathayensis). 



 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S2 Schematic of demographic model analyzed using fastsimcoal2 based on 23,750 SNPs of Asian butternuts. The numbers 

in square brackets indicate the 95% CI of divergence time and effective population size. The grey and olive rectangles represent 

the most recent common ancestors of Asian butternuts and J. mandshurica and J. ailantifolia, respectively. 



 
  

Fig. S3 Environmental variables used in the gradient forest modeling. *Top-ranked, uncorrelated environment 

variables (Pearson's |r| <0 .8) and accuracy important ≥0.004. 



 

Fig. S4 StarBEAST2 analysis of Asian butternuts based on 100 single-copy nuclear genes. Posterior probabilities are 

labeled on each node (red number) and the numbers in square brackets are the 95% HPD of divergence time in Ma. 



 

  

Fig. S5 Histograms of the STRUCTURE assignment test for 80 individuals of Asian butternuts based on the SNPs of genes interacting with 

chloroplast (a), mitochondria (b) and dual (both mitochondrial and chloroplast) (c).  
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Fig. S6 Maximum likelihood tree of 300 genes with nucleo-cytoplasmic interaction of Asian butternuts. Bootstrap support values are 

labeled on each node.   



Table S1. Details of sample locations and descriptive statistics of genome sequencing for 80 individuals of Asian butternuts.  

Population Sample Location Latitude   Longitude Depth Coverage CpDNA 

haplotype 

J. ailantifolia JA-Amori Japan 40.82 140.82 37.80 94.85% JA_1 

JA-GQG24 Japan 36.26 139.01 31.54 94.76% JA_2 

JA-Japanl9 Japan 36.31 138.98 35.44 94.83% JA_2 

JA-MGW Japan 35.10 136.55 35.54 94.23% JA_2 

JA-Urawa Japan 35.51 139.39 49.30 96.17% JA_2 

JA-Niigata Japan 37.90 139.02 33.88 95.15% JA_2 

JA-QM1 Japan 35.79 139.24 28.63 94.64% JA_2 

JA-QM2 Japan 35.79 139.24 33.24 94.73% JA_2 

JA-QM4 Japan 35.79 139.24 31.88 94.91% JA_2 

JA-MZ11 Japan 42.58 141.33 13.22 94.16% JA_2 

JA-MZ12 Japan 42.58 141.33 31.59 95.06% JA_2 

JA-MZ21 Japan 42.58 141.33 29.37 94.76% JA_2 

JA-XT1 Japan 38.27 141.03 36.55 95.07% JA_2 

JA-XT2 Japan 38.27 141.03 30.97 94.71% JA_2 

JA-XT3 Japan 38.27 141.03 32.27 94.97% JA_2 

JA-GQG1 Japan 36.26 139.07 34.31 94.84% JA_1 

JA-XZY7 Japan 42.86 141.32 38.76 95.12% JA_2 



 JA-ZBS Japan 36.22 140.10 37.97 95.15% JA_2 

JA-ADM1 Japan 35.67 139.01 33.61 94.98% JA_2 

Jai-KurC Japan 37.90 139.07 41.69 94.77% JA_2 

J. mandshurica JM-DB22 Daban Liaoning 41.89 121.77 39.71 95.08% JM_1 

JM-MZS1b Maoershan Heilongjiang 45.4 127.65 26.62 94.89% JM_1 

JM-MZS2 Maoershan Heilongjiang 45.4 127.65 43.70 95.24% JM_1 

JM-NA16 Ningan Jilin 44.35 129.53 32.66 95.02% JM_2 

JM-JA26 Jian Jilin 41.18 126.23 35.58 95.14% JM_1 

JM-SP03 Siping Jilin 43.17 124.35 31.59 95.31% JM_1 

JM-HL Hulin Heilongjiang 45.86 133.00 43.89 95.40% JM_1 

JM-HL28 Hulin Heilongjiang 45.86 133.00 35.80 95.24% JM_1 

JM-ZH15 Zhuanghe Liaoning 39.70 122.97 43.45 94.88% JM_1 

JM-AT12 Antu Jilin 43.11 128.90 22.70 93.58% JM_1 

JM-ED18 Erdao Jilin 42.49 128.24 26.62 94.94% JM_1 

JM-DD14 Dandong Liaoning 40.30 124.16 47.36 95.21% JM_1 

JM-DD16b Dandong Liaoning 40.30 124.16 31.52 94.80% JM_1 

JM-FS18 Fushun Liaoning 41.96 124.25 27.33 95.03% JM_1 

JM-TL21 Tieli Heilongjiang 47.98 128.08 20.70 94.59% JM_1 

JM-AS4 Anshan Liaoning 41.02 123.2 30.81 94.89% JM_1 

JM-Seo7 Korea 37.45 127.08 37.45 95.04% JM_3 



JM-JLW13 Korea 37.43 128.56 24.15 94.93% JM_2 

JM-JLW14 Korea 37.43 128.56 33.42 95.25% JM_2 

JM-XYS5 Korea 38.17 128.49 42.44 95.43% JM_2 

J. cathayensis JC-DZ38 Dongzhai Henan 30.9 114.27 29.19 94.75% JC_6 

JC-ZYS15 Ziyunshan Hunan 26.69 111.1 26.69 94.55% JC_2 

JC-FNS26 Funiushan Henan 33.32 111.50 31.62 94.84% JC_11 

JC-FNS8 Funiushan Henan 33.32 111.50 32.63 94.65% JC_11 

JC-HPS46 Haopingsi Shaanxi 34.07 107.70 27.36 94.60% JC_10 

JC-WYS5 Wuyishan Jiangxi 27.72 117.71 35.88 94.62% JC_4 

JC-JFS18 Jiefushan Hunan 27.25 111.72 27.15 94.38% JC_1 

JC-LQ4 Longquan Zhejiang 27.87 119.15 27.50 93.90% JC_5 

JC-TM8 Tianmushan Zhejiang 30.36 119.45 29.04 94.55% JC_7 

JC-SNJ9 Shennongjia Hubei 31.40 109.93 24.99 94.53% JC_9 

JC-TS5 Tianshui Gansu 34.31 106.12 30.89 94.76% JC_10 

JC-ZY1 Zunyi Guizhou 28.22 107.16 36.99 94.65% JC_13 

JC-TW219 Taiwan 24.39 121.35 34.59 94.48% JC_3 

JC-TW29 Taiwan 24.39 121.35 34.55 94.23% JC_3 

JC-ZJJ26 Zhangjiajie Hunan 29.08 110.29 42.78 94.35% JC_8 

JC-DJY15 Dujiangyan Sichuan 30.96 103.38 38.86 94.57% JC_15 

JC-EMS19 Ermeishan Sichuan 29.58 103.36 28.17 94.73% JC_16 



JC-Hlo32 Huanglong Sichuan 32.69 104.06 39.39 94.73% JC_10 

JC-SM11 Shimian Sichuan 29.21 102.38 37.16 94.86% JC_14 

JC-MWZ9 Mawuzhai Shanxi 35.78 113.27 34.35 94.79% JC_11 

JC-XF2 Xianfeng Hubei 29.40 109.11 43.17 94.67% JC_12 

Admixed individuals AD-CF2 Chifeng Neimenggu 43.28 117.42 28.51 94.93% JM_1 

 AD-CF13 Chifeng Neimenggu 43.28 117.42 39.55 94.92% JM_1 

 AD-DLS Donglingshan Beijing 39.97 115.42 29.55 93.03% JM_1 

 AD-DLH23 Daluhua Liaoning 41.51 121.62 42.32 95.21% JM_1 

 AD-DLH28 Daluhua Liaoning 41.51 121.62 29.22 95.10% JM_1 

 AD-SFL6 Shifoling Hebei 39.97 115.35 28.39 95.02% JM_1 

 AD-SFL Shifoling Hebei 39.97 115.35 32.13 94.78% JM_1 

 AD-TL6 Tuoliang Shanxi 38.73 113.80 32.59 92.32% JC_11 

 AD-TL29 Tuoliang Shanxi 38.73 113.80 35.48 94.70% JC_11 

 AD-YJP14 Yangjiaping Hebei 39.97 115.39 34.38 94.83% JM_1 

 AD-YJP2 Yangjiaping Hebei 39.97 115.39 35.61 94.87% JM_1 

 AD-ZM27 Zhangmo Hebei 37.35 114.17 39.10 94.75% JC_11 

 AD-ZM30 Zhangmo Hebei 37.35 114.17 33.27 94.82% JC_11 

 AD-ZM7 Zhangmo Hebei 37.36 114.22 27.54 94.85% JC_11 

 AD-BSS Baishishan Hebei 39.37 114.69 28.97 91.99% JC_11 

 AD-BSS1 Baishishan Hebei 39.37 114.69 27.51 94.91% JC_11 



 

 

 

 

 
  

 AD- WLG30 Wulonggou Hebei 39.49 114.93 32.69 95.02% JC_11 

 AD-WLG26 Wulonggou Hebei 39.49 114.93 21.59 95.03% JM_1 

 AD-WLS4 Wulingshan Hebei 40.96 117.93 28.00 95.12% JM_1 

 AD-WLS14 Wulingshan Hebei 40.96 117.93 34.18 95.13% JM_1 



 
 
 
 
 
 
Table S2. Environmental variables used in our study. 

Category Code Description 
Annual TD Temperature difference between MWMT and MCMT, or continentality (°C) 

Annual EXT Extreme maximum temperature over 30 years 

Seasonal CMD_MAM Hargreaves climatic moisture deficit in March, April and May 

Seasonal PPT_SON Precipitation in September, October and November 

Seasonal Eref_JJA Hargreaves reference evaporation in June, July and August 

Seasonal CMD_SON Hargreaves climatic moisture deficit in September, October and November 

Annual AHM Annual heat: moisture index ((MAT+10)/(MAP/1000)) 

Annual PAS Precipitation as snow (mm) between August in previous year and July in current year 

Seasonal PPT_DJF Precipitation in December, January and February 

Annual MAP Mean annual precipitation (mm) 

Seasonal PPT_MAM Precipitation in March, April and May 

Annual CMD Hargreaves climatic moisture deficit 

Seasonal PPT_JJA Precipitation in June, July and August 

Seasonal CMD_JJA Hargreaves climatic moisture deficit in June, July and August 

Seasonal Tmin_JJA Minimum temperature in June, July and August 

Seasonal PAS_MAM Precipitation as snow (mm) between August in previous year and July in current year 

Seasonal DD5_JJA Degree-days above 5°C in June, July and August 



Annual MWMT Mean warmest month temperature (°C) 

Annual MCMT Mean coldest month temperature (°C) 

Seasonal Tave_JJA Mean temperature in June, July and August 

Annual Eref Hargreaves reference evaporation 

Seasonal Tmax_JJA Maximum temperature in June, July and August 

Seasonal Tmax_DJF Maximum temperature in December, January and February 

Seasonal Eref_MAM Hargreaves reference evaporation in March, April and May 

Seasonal DD_0_DJF Degree-days below 0°C in December, January and February 

Seasonal Tmax_MAM Maximum temperature in March, April and May 

Annual EMT Extreme minimum temperature over 30 years 

Seasonal Tmin_DJF Minimum temperature in December, January and February 

Seasonal NFFD_MAM The number of frost-free days in March, April and May 

Seasonal Tave_DJF Mean temperature in December, January and February 

Seasonal DD5_SON Degree-days above 5°C in September, October and November 

Seasonal Tmin_SON Minimum temperature in September, October and November 

Annual DD_0 Degree-days below 0°C 

Annual DD5 Degree-days above 5°C 

Seasonal DD5_MAM Degree-days above 5°C in March, April and May 

Seasonal NFFD_SON The number of frost-free days in September, October and November 

Seasonal Eref_SON Hargreaves reference evaporation in September, October and November 

Annual NFFD The number of frost-free days 

Seasonal Tmin_MAM Minimum temperature in March, April and May 

Seasonal Tmax_SON Maximum temperature in September, October and November 

Seasonal DD_0_MAM Degree-days below 0°C in March, April and May 

Seasonal Tave_SON Mean temperature in September, October and November 



 
 
 

Seasonal Tave_MAM Mean temperature in March, April and May 

Seasonal DD_0_SON Degree-days below 0°C in September, October and November 

Annual MAT Mean annual temperature (°C) 

Seasonal PAS_JJA Precipitation as snow (mm) between August in previous year and July in current year  

Seasonal DD5_DJF Degree-days above 5°C in December, January and February 

Seasonal CMD_DJF Hargreaves climatic moisture deficit in December, January and February 

Seasonal Eref_DJF Hargreaves reference evaporation in December, January and February 



Notes 1. Orthologous single copy nuclear genes extraction.   
First, we mapped short reads of 30 individuals of Asian butternuts and an outgroup 

(J. olanchana) to J. mandshurica reference genome using the BWA-MEM algorithm in 
BWA v. 0.7.12. The consensus sequence was called using the SAMTOOLS v.1.3 suite 
utilizing the samtools mpileup, bcftools and vcfutils.pl (varFilter) pipeline. To ensure a 
consensus sequence of high confidence, we set the software parameters -C to 50, -q to 
20, -Q to 20, and removed the insertion and deletion as well as variation within 3bp 
around them. Minimum read depth (-d) and maximum read depth (-D) were set to 10 
and 60 and marked the sites lower than 10× and higher than 60× as missing data “N”. 
Consensus genomes were built based on the above SNPs for each individual (Nielsen 
et al., 2011). CDS were extracted from the consensus genome, based on the annotation 
and orthologous analysis by Zhang et al. (2019).  

Next, we used OrthoFinder v0.4.0 (Emms & Kelly, 2015) and ProteinOrtho v6.0.23 
(Lechner et al., 2014) to distinguish orthologous single-copy genes of seven reference 
genome, and obtained 4,006 and 3,312 genes, respectively. A total of 1,645 genes were 
remained in the two datasets. The genes whose length are between 300 bp to 1,000 bp 
and more than 50 kb far apart and less than 50% of missing match were remained. 
Finally, we obtained 1,622 genes for butternuts. Protein sequences of each gene were 
aligned by MAFFT v. 7.273 (Katoh et al., 2002) , and corresponding codons were 
assigned into codon alignments by PAL2NAL v. 14 (Suyama et al., 2006).  
 
Notes 2. Python script (Caculate_mktest.py) for conducting McDonald-Kreitman tests 
(see separate file). 
 
Notes 3. Environmental variables identification for Gradient forest (GF) analyses. 
For each sampling location, we used a high-resolution climate database, climateAP 
(Wang et al., 2017) to choose 49 variables with known impacts on plant survival and 
development, including 14 annual and 35 seasonal environmental variables (Table S2) 
(Jia et al., 2020). We performed GF analyses to identify the environmental variables 
that best explained the distribution of genetic diversity using the R package Gradient 
forest (Ellis et al., 2012). To be sure the SNPs are independent, we kept only one SNP 
per 20 kb for GF analyses. We used 1,000 regression trees per SNP to fit GF model 
while keeping all the parameters set at default values. After evaluating the accuracy 
importance and Pearson pairwise correlations among these variables, 11 variables with 
absolute value of Pearson correlation coefficient (r) ≤0.8 and accuracy important 
≥0.004 were retained for the following analysis (Fig. S3). The 11 selected climate 
variables were used to calculate environmental distances by first scaling and centering 
the variables to account for differences in magnitude, then calculating pairwise 
Euclidean differences between sites. 
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