Supporting Information

Materials & Methods

Bacterial strains and growth conditions. The bacterial strains and plasmids used in this study are listed in Table 1. *Escherichia coli* and *Pseudomonas aeruginosa* were routinely grown in Luria-Bertani (LB) broth at 37°C with shaking at 180 rpm or on LB agar plates. For plasmid selection or maintenance, 50 μg/ml diaminopimelic acid (DAP) or antibiotics were supplemented to the growth media at the following concentration: for *E. coli*, 100 µg/ml ampicillin (Amp), or 25 µg/ml Tetracycline (Tet); and for *P. aeruginosa*, 100 µg/ml Tetracycline or 300 μg/ml carbenicillin (CAR), when required. LPS profiles of *P. aeruginosa* strains were examined by the methods of Hitchcock and Brown (1) using cultures standardized based on the optical density at 600 nm OD_{600}).

Plasmid construction. The *pcrV* encoding E28-I294 of PcrV was amplified by PCR using the PcrV1/PcrV2 primer set as DNA fragments containing engineered *Eco*RI and *Bam*HI sites at their 5' and 3' ends, and the $hitA_T$ encoding D28-N355 of HitA were amplified from PA103 strain by PCR using HitA1/HitA2 primer sets as fragments containing engineered *Bam*HI and *HindIII* sites at their 5' and 3' ends, respectively. Then, PCR fragments encoding truncated PcrV or HitA coding sequences were cloned between *Eco*RI and *Hin*dIII sites of the pYA3494 via three-way ligation, generating the plasmid pSMV81, in which the *pcrV-hitA^T* is fused with *bla ss* (encoding β-lactamase N-terminal signal sequence) driven by strong P_{trc} promoter. To purify PcrV-HitA_T protein and HitA_T protein for immune analysis, the *pcrV-hitA_T* or *hitA_T* fused to a Cterminal 6×His was amplified from pSMV81 using PcrV3/PcrV4 primers or HitA3/HitA4 primers and cloned into the *Nco*I and *Hin*dIII sites of plasmid pYA3342 to form pSMV82 or pSMV84. To overexpression of the $pcrV$ -hitA_T fusion gene in PA103 strain, the P_{tr} -bla ss- $pcrV$ -

hitA^T DNA fragment cut from the pSMV81 plasmid was bluntly cloned into an *Escherichia*-*Pseudomonas* shuttle vector, pUCP20, to construct pSMV83 plasmid (Table 1 and Fig. 2A).

Western blot analysis. Protein samples were boiled for 5 min and then separated by SDS-PAGE. For western blotting, proteins separated by SDS-PAGE were transferred electrophoretically to nitrocellulose membranes. The membranes were blocked with 3% skim milk in 10 mM Tris-0.9% NaCl (pH 7.4) and incubated with corresponding primary antibodies: rabbit anti-ExoA (Sigma), rabbit anti-ExoU (from Dr. Alan R. Hauser), mouse anti-PcrV, and mouse anti-HitA $_T$ (lab preparation), and the rabbit polyclonal antibody specific for GroEL (Sigma, St. Louis, MO). Then, the secondary antibody was an alkaline phosphatase-conjugated goat anti-rabbit or mouse immunoglobulin G (IgG) (Sigma). Immunoreactive bands were detected by the addition of BCIP/NBT solution (VWR). The reaction was stopped after $2\neg 5$ min by washing with large volumes of deionized water.

Bacterial subcellular fractionation analysis. *P. aeruginosa* strains were grown in LB broth at 37°C for 16 h. The bacterial cells were collected by centrifugation (10,000 \times g) for 10 minutes. Periplasmic and cytoplasmic fractions were prepared by a lysozyme-osmotic shock method (2, 3). Equal volumes of periplasmic, cytoplasmic, and supernatant fractions and total lysate samples were analyzed using Western blotting.

Protein purification. *E. coli* TOP10 carrying pSMV82 (*pcrV-hitAT*-6xHis) was grown overnight at 37°C in LB broth. The procedures for protein synthesis and purification have been described in our previous study (4). To remove the remaining endotoxin, the purified PcrV-HitA_T (PH) protein was passed through Pierce™ High Capacity Endotoxin Removal Spin Columns (ThermoFisher Scientific).

OMV isolation and analysis. OMVs were isolated from *P. aeruginosa* strains as previously described with minor modifications (5). Briefly, the strains were grown at 37° C in 1L LB broth (Difco) overnight. The bacterial cultures were supplemented with EDTA (pH 8.0) at 100 mM and kept on ice for 1 h. Then, the bacterial cells were pelleted by centrifugation at $10,000 \times g$ at 4°C for 10 min. The culture supernatant was filtered using a 0.45 μm pore membrane (Millipore) to remove the residual bacterial cells and concentrated with a 100 kDa filter using a Vivaflow 200 system (Sartorius). The OMVs were harvested by ultracentrifugation (120,000 \times g) for 2 h at 4° C. The vesicle pellet was washed and resuspended in sterilized 0.1×PBS (pH 7.4), and the ultracentrifugation step was repeated. The final vesicle pellet was resuspended in sterilized $0.1 \times PBS$, filtered with a 0.22 µm pore membrane (Millipore), and stored at -80 \degree C for subsequent studies. The total protein in OMVs was quantified by Pierce™ BCA Protein Assay Kit (Thermo scientific) and the relative lipid contents of the OMVs were determined via an FM4-64 fluorescence dye-binding assay measured by a SpectraMax® iD3 Multi-Mode Microplate Reader (Molecular Devices) as described in the previous report (5).

Transmission electron microscopy (TEM). *P. aeruginosa* cultures were absorbed onto freshly glow-discharged Formvar/carbon-coated copper grids for 10 min. The grids were washed in ddH₂O and stained with 1% aqueous uranyl acetate (Ted Pella, Inc., CA) for 1 min. The excess liquid was gently wicked off, and the grids were allowed to air dry. The samples were viewed with a JEOL 1200EX transmission electron microscope (JEOL Peabody, MA) equipped with an AMT 8-megapixel digital camera (Advanced Microscopy Techniques, Woburn, MA). The OMVs isolated from *P. aeruginosa* and its derived mutant were analyzed by TEM as described in previous reports (5, 6).

Lipid A isolation and analysis by mass spectrometry

Isolation of lipid A species from *P. aeruginosa* OMVs was performed using previously described procedures (7) with minor modifications. Briefly, 40 ml cultures of *P. aeruginosa* were grown at 37^oC in LB broth with 180 rpm shaking until an OD_{600} of \sim 1.5 was reached. Bacteria were harvested by centrifugation, and washed with milliQ H_2O twice. Bacterial pellets were resuspended in single-phase Bligh-Dyer mixture: 5 ml chloroform, 10 ml methanol and 4 ml H_2O $(1 : 2 : 0.8 \text{ v/v/v})$. The resuspended mixture was vortexed vigorously, incubated at room temperature for 30 minutes to ensure cell lysis, and centrifuged at $2,000 \times g$ for 20 minutes. The pellet containing LPS and cell debris was collected and washed with a single-phase Bligh−Dyer mixture one time. Then, the pellet was re-suspended in 2 ml of 25 mM sodium acetate (pH 4.5) and incubated for 30 minutes in boiling water bath to remove the polysaccharide chain from LPS. The hydrolyzed sample was cooled down to room temperature and converted to a twophase Bligh-Dyer mixture by adding 2 ml chloroform and 2 ml methanol (chloroform: methanol: $H₂O$, \sim 2:2:1.8). The sample was mixed by vigorously vortexing and then centrifuged for 10 minutes at $2,000 \times g$. The lower phase (chloroform portion) containing lipid A was transferred into a clean Teflon centrifuge tube using a glass pipet and dried under a stream of nitrogen using a nitrogen dryer. The dried sample was stored at -20 °C for Mass spectrometry (MS) analysis. For lipid A isolation from OMVs, 2 ml OMVs isolated from 1 L bacteria culture were mixed with 6 ml chloroform: methanol (1:2, v/v) initially. The same procedures were used for lipid A extraction.

Isolated lipid A species were dried under nitrogen and stored at -20°C until MS analysis. For MS analysis, the lipid A extract was re-suspended in 100 μ l chloroform-methanol (2:1, v/v), of which 10 μL was injected for each LC/MS analysis. NPLC-ESI/MS was performed as previously described (8, 9) using an Agilent 1200 Quaternary LC system (Santa Clara, CA) coupled to a high resolution TripleTOF5600 mass spectrometer (Sciex, Framingham, MA). An Ascentis[®] Si HPLC column (5 μ m, 25 cm \times 2.1 mm, Sigma-Aldrich) was used. Mobile phase A consisted of chloroform/methanol/aqueous ammonium hydroxide (800:195:5, v/v/v). Mobile phase B consisted of chloroform/methanol/water/ aqueous ammonium hydroxide (600:340:50:5, v/v/v/v.). Mobile phase C consisted of chloroform/methanol/water/aqueous ammonium hydroxide (450:450:95:5, $v/v/v/v$). The elution program was as follows: 100% mobile phase A was held isocratically for 2 min,then linearly increased to 100% mobile phase B for 14 min and held at 100% B for 11 min. The LC gradient was then changed to 100% mobile phase C for 3 min and held at 100% C for 3 min, and finally returned to 100% A over 0.5 min and held at 100% A for 5 min. Instrumental settings for negative ion ESI and MS/MS analysis of lipid species were as follows: ion spray voltage $(IS) = -4500 \text{ V}$; current gas $(CUR) = 20 \text{ psi}$ (pressure); gas-1 (GS1) = 20 psi; de-clustering potential (DP) = -55 V; and focusing potential (FP) = -150 V. The MS/MS analysis used nitrogen as the collision gas. Data acquisition and analysis were performed using the Analyst TF1.5 software (Sciex, Framingham, MA).

Measurement of antibody responses. An enzyme-linked immunosorbent assay (ELISA) was used to assay antibody titers against $PerV-HitA_T$ or PA whole cell lysates (PCL) in serum. Polystyrene 96-well flat-bottom microtiter plates were coated with 100 ng/well of purified PcrV-HitA $_T$ or PCL. Antigens suspended in sodium carbonate bicarbonate coating buffer (pH 9.6) were applied in a 100 μl volume in each well. The coated plates were incubated overnight at 4°C. The procedures for measuring the antibody titers were described in our previous report. The highest dilution of sera resulting in an OD_{405} value at least 2-fold higher than that obtained from the sham mouse serum was considered the antibody titer (10).

Inhibition of PA cytotoxic assay. Sera from immunized mice for inhibiting cytotoxicity of *P. aeruginosa* were assayed as described previously (11) with minor modifications. HeLa cells were seeded in 48 well plates (2.5*10⁴ cells/well). *P. aeruginosa* PA103 were grown to log phase and diluted to obtain the desired MOI (1:10). The serum was heat inactivated at 56° C for 30 min and incubated with the PA103 for 15 min at room temperature at a dilution of 1:500. HeLa cells were infected with the bacteria incubated with different sera or PBS as a control. The plates were incubated at 37° C, 5% CO₂ for 4 h, and the release of lactate dehydrogenase (LDH) in the supernatant of infected cells was determined using a CytoTox 96° Non-Radioactive Cytotoxicity Assay Kit (Promega). The percent cytotoxicity was calculated using the formula: (Experimental-ES-TS+M)/(T_{max} -TS); where Experimental is OD_{490} from the well being tested, ES is OD_{490} from bacteria only, TS is OD_{490} from untreated cells, M is OD_{490} from media and T_{max} is OD₄₉₀ from lysed cells (obtained by adding Lysis solution 45 min prior to end of incubation).

Reference

1. Hitchcock PJ, Brown TM. 1983. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269-77.

2. Witholt B, Boekhout M, Brock M, Kingma J, Heerikhuizen HV, Leij LD. 1976. An efficient and reproducible procedure for the formation of spheroplasts from variously grown *Escherichia coli*. Anal Biochem 74:160-70.

3. Kang HY, Srinivasan J, Curtiss R, 3rd. 2002. Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated *Salmonella enterica* serovar Typhimurium vaccine. Infect Immun 70:1739-49.

4. Sun W, Curtiss R, 3rd. 2012. Amino acid substitutions in LcrV at putative sites of interaction with Toll-like receptor 2 do not affect the virulence of Yersinia pestis. Microb Pathog 53:198-206.

5. Wang X, Singh AK, Zhang X, Sun W. 2020. Induction of protective anti-plague immune responses by self-adjuvanting bionanoparticles derived from engineered *Yersinia pestis*. Infect Immun 88:e00081-20.

6. Eddy JL, Gielda LM, Caulfield AJ, Rangel SM, Lathem WW. 2014. Production of Outer Membrane Vesicles by the Plague Pathogen *Yersinia pestis*. Plos One 9.

7. Hankins JV, Madsen JA, Needham BD, Brodbelt JS, Trent MS. 2013. The outer membrane of Gram-negative bacteria: lipid A isolation and characterization. Methods Mol Biol 966:239-258.

8. Tan BK, Bogdanov M, Zhao JS, Dowhan W, Raetz CRH, Guan ZQ. 2012. Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proceedings of the National Academy of Sciences of the United States of America 109:16504 - 16509.

9. Joyce LR, Guan Z, Palmer KL. 2019. Phosphatidylcholine Biosynthesis in Mitis Group Streptococci via Host Metabolite Scavenging. J Bacteriol 201.

10. Singh AK, Curtiss R, 3rd, Sun W. 2019. A recombinant attenuated *Yersinia pseudotuberculosis vaccine delivering a Y. pestis YopE_{Nt138}-LcrV fusion elicits broad protection* in mice against plague and yersiniosis. Infect Immun doi:10.1128/IAI.00296-19.

11. Das S, Howlader DR, Zheng Q, Ratnakaram SSK, Whittier SK, Lu T, Keith JD, Picking WD, Birket SE, Picking WL. 2020. Development of a Broadly Protective, Self-Adjuvanting Subunit Vaccine to Prevent Infections by *Pseudomonas aeruginosa*. Front Immunol 11:583008.

Primer name	Sequence $a(5)$ to 3')
$exoT$ -UF	cgggagetetatecategggtteteegeeeegg
$exoT$ -UR	tggcaacgccggggtcccgggagggggcaggcggcgtcctgacggga
$exoT-DF$	tcccgtcaggacgcgccgcctgcccctcccgggaccccggcgttgcca
$exoT\text{-}DR$	cggtctagatgactgcgtctcgttcg
$exoA$ -UF	cgggagctcgacagctcggcgtagaccagc
$exoA$ -UR	acccatcacaggagccatcgcggtggtgattccctcggcgatc
$exoA-DF$	gatcgccgagggaatcaccaccgcgatggctcctgtgatgggt
$exoA-DR$	cggtctagagcgacgctcgacaatgctct
lasA-UF	cgggagetegteggeggettettegggeege
$lasA$ -UR	ttcgatgaccaggagctacccgtcggcgcggggcccggctcca
$lasA-DF$	tggagccgggccccgcgccgacgggtagctcctggtcatcgaa
lasA-DR	cggtctagaagccggacgaggacgacggtta
$lasB-UF$	cgggagctcgatgttccacggggtgttcca
$lasB-UR$	tgctggccggggccaccgagcttacttgttcagttctcctggttttttc
$lasB-DF$	gaaaaaaccaggagaactgaacaagtaagctcggtggccccggccagca
$lasB-DR$	cggtctagaggtcgtgtgctggggatcgaa
<i>wbjA-UF</i>	cgggagetegetgetaetteaeceatagetageg
$wbjA-UR$	
$wbjA-DF$	tcctggccggccttgtagcgcagtctggaagggggttctcgatagaaag
$wbjA-DR$	cggtctagacccaccataacaccatatgcggtca

Table S1. Primers used in the present study.

- pchA-UF cgggagctccacctgttcgtctccgcccatc
-
-
- pchA-UR ggccgcagggggtcttcgtttgcggcaccccgtgtctggcgc

pchA-DF gcgccagacacggggtgccgcaaacgaagaccccctgcggcc

phzM-UR tggccttcgagatctttcagggatcggaactctcaacggttggc

*phzM-*DF gccaaccgttgagagttccgatccctgaaagatctcgaaggcca

alg-UR catcttcatggtcgggtaccggtaggatgttttctctgcgaggg

*alg-*DF ccctcgcagagaaaacatcctaccggtacccgaccatgaagatg

pchA-DR cggtctagaaactaatcgccatgaatgaaaa

*phzM-*UF cgggagctcgctgccggaggacgtggagaac

phzM-DR cggtctagaaaggcaataggagtttcatccag

*alg-*UF cgggagctcgacgtgctgctcaacctggcttcc

*alg-*DR cggtctagacgccctggtcgggatagtcgta

rhlAB-UF cgggagctcctgcctgggcaagagcacctac

rhlAB-DR cggtctagaggcgatttccccggaactcttg

pvdA-UF cgggagctctggaacgcctgctcgccgctca

*pvdA-*DR cggtctagatgtcttcatcgagggttccagtta

plcH-UF cgggagctcttgacttccggtgggtaggtttcg

*rhlAB-*UR tatctgttatgccagcaccgtttcacacctcccaaaaatttt

*rhlAB-*DF aaaatttttgggaggtgtgaaacggtgctggcataacagata

*pvdA-*UR gccaatccagaggaactggaatcggcgccacgccgccacgc

*plcH-*UR accacccgggaaataaaacgagcgaggagtccatcgcatga

plcH-DF tcatgcgatggactcctcgctcgttttatttcccgggtggt

pvdA-DF gcgtggcggcgtggcgccgattccagttcctctggattggc

- *plcH-*DR cggtctagaggagtagtggccgatgatccct
- *htrB2-*UF cgggagctcgcgcaccggagtcttcaccacctt
- *htrB2-*UR cgcgtccggaatgcccgtccggacggttccgacgacgatca
- *htrB2-*DF tgatcgtcgtcggaaccgtccggacgggcattccggacgcg
- *htrB2-*DR cggtctagatcgccgaagtactcgcggttga
- *phoA-*UF cgggagctcctgtgcaaattgttgcgcacat
- phoA-UR cctttttcgttctggtccgagacgcatttccctatgttgag
- *phoA-*DF ctcaacatagggaaatgcgtctcggaccagaacgaaaaagg
- *phoA-*DR cggtctagagcgccctgcaacgactgctgtt
- PcrV1 cgggaattcgaacaggaagaactgctg
- PcrV2 cggggatccggatccaatggcactcagaatatca
- HitA1 cggggatccggtggcggcggtagcg
- HitA2 cggaagcttttaatggtgatgatgatg
- PcrV3 cggccatggttgaacaggaagaactgctg
- HitA3 cggaagcttttaagtgatgatgatgatgatgtggtgatgatgatg

a, Underlining indicates restriction endonuclease recognition sequences.

Supplementary Figure Legends

Fig. S1. Analysis of LPS in *P. aeruginosa* **and its OMVs. (A)** LPS profile of wild-type (WT) *P. aeruginosa* PA103 and its derived mutants (PA-m6, PA-m13 and PA-m14, see Table 1) with the *wbjA* mutation. Samples were separated on 12% SDS-PAGE gel and stained by silver nitrate (1). Loading of the samples was adjusted to give approximately equal staining of the lipid A-core bands at the bottom of the gel. (B) Lipid A profiles of OMVs isolated from WT PA103 and PAm14 mutant strains by MALDI-TOF analysis. Strains were grown in LB broth at 37°C overnight, and OMVs were isolated as described in the SI Materials and Methods. (C) Structures of hepta- and hexa-acylated lipid A species in OMVs from WT *P. aeruginosa* PA103 and PAm14 mutant with the *lpxL1*(*htrB1*) deletion. LpxL1 (Htrb1) catalyzes the addition of a secondary laurate acyl chain to lipid A. Various modifications shift the peak by the indicated m/z values. The hydroxyl (+ OH) was added to the 2 position R-3-hydroxylaurate chain or the 3 position laurate chain.

Fig. S2. Transmission electron microscopy (TEM)**.** (B) Comparison of morphological alterations between wild-type (WT) *P. aeruginosa* PA103 and PA-m14 mutant by TEM. Bars, 1 µm. (C) TEM image of OMVs purified from WT PA103 and PA-m14 strains. The samples were prepared by conventional staining with 1% aqueous uranyl acetate as described in the SI Materials and Methods. Bars, 500 nm. The results are representative of three repeated experiments.

Fig. S3. Protective efficacy against *P. aeruginosa* **by subcutaneous infection and antibody opsonophagocytic killing capacity.** BALB/c mice (n=10) were immunized with PBS/Alhydrogel, 10µg of PH/Alhydrogel, 10µg of PH/dmLT, 50µg of OMV-NA or 50µg of OMV-PH by i.m. injection and boosted on 21 days after the initial immunization. Mouse weight was monitored and recorded for 6 weeks; (A) Anti-PH total IgG titers at days 14, 28, and 42 in 10µg of PH/Alhydrogel- or 10µg of PH/dmLT- immunized mice. On 42 days after initial immunization, mice were challenged with 6.5×10^6 CFUs of wild-type PA103 (~30 LD₅₀) by i.n. administration, and animal survival was recorded for 15 days. (B) On 42 days after initial immunization, mice were challenged with 7.4×10^7 CFUs of wild-type PA103 (10 LD₅₀) by subcutaneous administration, and animal survival was recorded for 15 days. Statistical significance was analyzed by Log-rank (Mantel-Cox) test; (C) Comparative analysis of opsonophagocytic killing activity against *P. aeruginosa* PAO1 using anti-sera from different immunized mice. Data were shown as the mean \pm SD; (D) Comparative analysis of opsonophagocytic killing activity against a clinic *P. aeruginosa* isolate, AMC-PA10 using antisera from different immunized mice. Data were shown as the mean \pm SD. The statistical significance among groups were analyzed by two-way multivariant ANOVA with a Tukey post hoc test.

Fig. S4. Analysis of antigen-specific lung CD8⁺ T-cell responses in immunized mice. BALB/c mice $(n = 4)$ were immunized with PBS, 10ug of PH plus adjuvant, 50ug of OMV-NA or 50µg of OMV-PH by i.m. administration. On day 42 after the initial immunization, lymphocytes from the lungs were aseptically isolated from mice and stimulated in vitro with 20 μ g/ml purified recombinant PcrV-HitA_T fusion protein for 48 h to detect specific CD8⁺ T cells producing IFN-γ, TNF-α, and IL-17A. PBS-immunized mice lung cells were considered as controls. (A) Representative flow cytometry profiles of CD8+ T cells producing IFN- γ , TNF- α ,

and IL-17A in the lungs of different immunized mice. (B) Quantification of $CD8^+$ IFN- $\gamma^{\scriptscriptstyle +}$ -, $CD8^+$ TNF- α^+ -, and CD8⁺ IL-17A⁺-positive cell numbers in the lungs of mice. Each symbol represents a data point obtained from an individual mouse, with a mean \pm SD. The experiments were performed twice, and data were combined for analysis. The statistical significance among the groups were analyzed by two-way multivariant ANOVA with a Tukey post hoc test: ns, no significance; *, *p*< 0.05; **, *p*< 0.01; ***, *p*< 0.001; ****, *p*< 0.0001. Abbreviations: interferon (INF)-γ; tumor necrosis factor (TNF)- α .

Fig. S5. Analysis of antigen-specific spleen CD8⁺ T-cell responses in immunized mice. BALB/c mice $(n = 5)$ were immunized with PBS, 10μ g of PH plus adjuvant, 50μ g of OMV-NA or 50µg of OMV-PH by i.m. administration. On day 42 after the initial immunization, lymphocytes from the spleen were aseptically isolated from mice and stimulated in vitro with 20 μ g/ml purified recombinant PcrV-HitA_T fusion protein for 48 h to detect specific CD8⁺ T cells producing IFN-γ, TNF-α, and IL-17A. PBS-immunized mice spleen cells were considered as controls. (C) Representative flow cytometry profiles of CD8+ T cells producing IFN- γ , TNF- α , and IL-17A in the spleens of different immunized mice. (D) Quantification of CD8+ IFN- γ^+ -, $CD8+TNF-\alpha^+$, and $CD8+IL-17A^+$ -positive cell numbers in the spleens of mice. Each symbol represents a data point obtained from an individual mouse, with a mean \pm SD. The experiments were performed twice, and data were combined for analysis. The statistical significance among the groups were analyzed by two-way multivariant ANOVA with a Tukey post hoc test: ns, no significance; *, *p*< 0.05; **, *p*< 0.01; ***, *p*< 0.001; ****, *p*< 0.0001.