Supplementary information Coordination Tailoring of Cu Single Sites on C₃N₄ Realizes Selective CO₂ Hydrogenation at Low Temperature

Tang Yang¹, Xinnan Mao^{2,3}, Ying Zhang¹, Xiaoping Wu³, Lu Wang^{2,*}, Mingyu Chu^{2,3}, Chih-Wen Pao⁴, Shize Yang⁵, Yong Xu^{3,*} and Xiaoqing Huang^{1,*}

¹State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

²Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-

Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.

³Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices,

Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy,

Guangdong University of Technology, Guangzhou, 510006, China.

⁴National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.

⁵Eyring Materials Center, Arizona State University, Tempe, Arizona, 85287, USA.

E-mail: lwang@suda.edu.cn, yongxu@gdut.edu.cn, hxq006@xmu.edu.cn

Supplementary Figure 1 | Physicochemical properties of various catalysts. (a) N_2 sorption isotherms and (b) pore size analysis of Cu–N₄ SAC, Cu–N₃ SAC and C₃N₄. Source data are provided as a Source Data file.

Supplementary Figure 2 | Characterizations of various samples. TEM images of (a) C_3N_4 and (b) Cu NPs/C₃N₄. Cu nanoparticles are labeled in (b).

Supplementary Figure 3 | Characterizations of SACs. EDX spectrum of (a) $Cu-N_4$ SAC and (b) $Cu-N_3$ SAC.

Supplementary Figure 4 | Thickness measurements of various catalysts. (a, c, e) AFM images and (b, d, f) height profiles of (a, b) Cu–N₄ SAC, (c, d) Cu–N₃ SAC and (e, f) C₃N₄. Source data are provided as a Source Data file.

Supplementary Figure 5 | Characterizations of various catalysts. XRD patterns of Cu–N₄ SAC, Cu–N₃ SAC and C₃N₄. Source data are provided as a Source Data file.

Supplementary Figure 6 | XRD pattern of Cu NPs/C₃N₄. "*" represents the characteristic peak of C₃N₄. Source data are provided as a Source Data file.

Supplementary Figure 7 | Characterizations of various catalysts. IR spectra of $Cu-N_4$ SAC, $Cu-N_3$ SAC and C_3N_4 . Source data are provided as a Source Data file.

Supplementary Figure 8 | XPS spectra of various catalysts. N 1s XPS spectra of Cu–N₄ SAC, Cu–N₃ SAC and C₃N₄. Source data are provided as a Source Data file.

Supplementary Figure 9 | Structural analysis of various catalysts. Cu LMM of spectra of Cu– N_4 SAC, Cu– N_3 SAC and C₃N₄. Source data are provided as a Source Data file. Source data are provided as a Source Data file.

Supplementary Fig. 10 | The mean chemical valences of Cu species in Cu–N₃ and Cu–N₄ SACs. The values are calculated based XANES spectra of catalysts and references of Cu foil, Cu₂O and CuO. Source data are provided as a Source Data file.

Supplementary Figure 11 | Catalytic performance of CO₂ hydrogenation over Cu NPs/C₃N₄. (a) CH₃OH productivities and (b) TOF values of Cu NPs/C₃N₄ at different temperatures. The reactor was pressurized with CO₂, H₂ and N₂ with a total pressure of 3.2 MPa (72:24:4 vol.%). All the data were collected for three times, and the error bars represent the standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 12 | Catalytic performance of CO₂ hydrogenation over Cu-ZnO/Al₂O₃. (a) CH₃OH productivities and (b) TOF values of Cu-ZnO/Al₂O₃ at different temperatures. The reactor was pressurized with CO₂, H₂ and N₂ with a total pressure of 3.2 MPa (72:24:4 vol.%). All the data were collected for three times, and the error bars represent the standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 13 | Catalytic performance of CO₂ hydrogenation over Cu–N₄ SAC. TOF values of CH₃OH for Cu–N₄ SAC in a temperature range of 70–150 °C. The reactor was pressurized with CO₂, H₂ and N₂ with a total pressure of 3.2 MPa (72:24:4 vol.%). All the data were collected for three times, and the error bars represent the standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 14 | Catalytic performance of CO₂ hydrogenation over Cu–N₃ SAC. TOF values of CO for Cu–N₃ SAC in a temperature range of 70–150 °C. The reactor was pressurized with CO₂, H₂ and N₂ with a total pressure of 3.2 MPa (72:24:4 vol.%). All the data were collected for three times, and the error bars represent the standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 15 | The reaction orders with respect to CO₂ and H₂ for Cu–N₄ SAC. Data were collected at 150 °C and a total pressure of 3.2 MPa with a fixed CO₂/H₂ ratio of 3. Source data are provided as a Source Data file.

Supplementary Figure 16 | Characterizations of the spent Cu–N₄ SAC. (a) AC–TEM image (b) XRD pattern of the spent Cu–N₄ SAC was collected after 5 consecutive cycles at 150 °C. "*" represents the characteristic peak of C_3N_4 . Source data are provided as a Source Data file.

Supplementary Figure 17 | Characterizations of the spent Cu–N₄ SAC. EXAFS spectra were collected at Cu *K*-edge. Source data are provided as a Source Data file.

Supplementary Figure 18 | Photograph of in-situ infrared spectrometer. Note that the temperature and pressure can be regulated during test.

Supplementary Figure 19 | In situ DRIFTS spectra of SACs for CO₂ hydrogenation. In situ DRIFTS spectra of (a) Cu–N₄ and (b) Cu–N₃ SACs. The collected DRIFT spectra after exposing samples to the mixture of H₂, CO₂ and N₂ (72:24:4 vol.%) at 3 MPa and 150 °C. Source data are provided as a Source Data file.

Supplementary Figure 20 | In situ XRD pattern of Cu–N₄ SAC. The experiment conducted at the mixture of H₂, CO₂ and N₂ (72:24:4 vol.%) at 0.03 MPa and with different temperature. Source data are provided as a Source Data file.

Supplementary Figure 21 | *In situ* DRIFTS spectra of SACs for CO₂ hydrogenation. *In situ* DRIFTS spectra of (a) Cu–N₄ and (b) Cu–N₃ SACs. The collected DRIFT spectra after exposing samples to the mixture of H₂, CO₂ and N₂ (72:24:4 vol.%) at atmospheric pressure and 150 °C. Source data are provided as a Source Data file.

Supplementary Figure 22 | Cu 2p XPS spectra of catalysts with different ratio of Cu²⁺:Cu⁺. The variations of Cu²⁺:Cu⁺ ratios were achieved by treating Cu–N₃ SAC at 500 °C in H₂ for different times (15 min for Cu²⁺/Cu⁺ = 1:1 and 30 min for Cu²⁺/Cu⁺ = 1:2). Source data are provided as a Source Data file.

Supplementary Figure 23 | CO₂ hydrogenation performance over Cu-based SACs with different $Cu^{2+}:Cu^+$ ratios. The reactor was pressurized with CO₂, H₂ and N₂ with a total pressure of 3.2 MPa (72:24:4 vol.%). All the data were collected for three times, and the error bars represent the standard deviation. Source data are provided as a Source Data file.

Supplementary Figure 24 | Atomic configuration of Cu–N₄ SAC. Cu single atom locates at the hole site of C_3N_4 . Yellow: Cu atom, blue: N atoms, and grey: C atoms.

Supplementary Figure 25 | Atomic configuration of Cu–N₃ SAC. Cu atom replaces one of C atoms in C_3N_4 . Yellow: Cu atom, blue: N atoms, and grey: C atoms.

Supplementary Figure 26 | The DFT total energies of (a) $Cu-N_4$ and (b) $Cu-N_3$ structures vs. total simulation time at 450 K. The inset shows the structures at 2ps, 5 ps and 8 ps.

Supplementary Figure 27 | Bader charge analysis for (a) Cu–N₄ and (b) Cu–N₃ SACs. Yellow: Cu atom, blue: N atoms, and grey: C atoms.

Supplementary Figure 28 | Simulated XANES spectra based on the selected models for DFT calculations. The structures of $Cu-N_4$ and $Cu-N_3$ are given in Supplementary Figures 24 and 25, respectively. Source data are provided as a Source Data file.

Entry	Catalyst	Cu wt.% ^a
1	Cu–N4	12.1
2	Cu–N ₃	10.8
3	Cu NPs/C ₃ N ₄	12.2

Supplementary Table 1 | Physicochemical properties of various catalysts.

^a: The compositions were determined by ICP-AES measurement.

Catalyst	Path	Ν	R (Å)	σ^2 (Å ²)	ΔE ₀ (eV)	R factor
Cu–N ₃ SAC	Cu–N	3.1 ± 0.2	1.870	0.0068 ± 0.0006	0.642±4.273	0.008
Cu–N4 SAC	Cu–N	3.7 ± 0.4	1.896	0.0075 ± 0.0017	2.1 ± 1.3	0.008

Supplementary Table 2 | EXAFS fitting of fresh SACs.

Catalyst	T (°C)	TOF (h ⁻¹)	Selectivity	Ref.
Cu-N ₄ SAC	150	262.5	$S_{\mathrm{CH3OH}}=95.5\%$	This work
Cu-N ₃ SAC	150	156.3	$S_{CO} = 94.3\%$	This work
Cu/Mo ₂ C	135	1.7	$S_{CH3OH}=93\%$	J. Catal. 2016, 343, 147
Pt/Co ₃ O ₄	140		$S_{C2^+OH} = 82.5\%$	Angew. Chem. Int. Ed. 2016, 55, 737
Rh ₇₅ W ₂₅	150	592	$S_{\rm CH3OH}=97\%$	Nano Lett. 2017, 17, 788
Pt ₄ Co NWs/C	210	1418		Small 2017, 13, 1604311
$Pt(3)/MoO_x(30)/TiO_2$	150		$S_{CH3OH}=94.3\%$	ACS Catal. 2019, 9, 8187
Pt ₁ @MIL	150	117	$S_{CH3OH}=90.3\%$	Nat. Commun. 2019, 10, 1885
UiO-67-Pt	170-190		$S_{CH3OH} = 42\%$	J. Am. Chem. Soc. 2020, 142, 17105
FL-MoS2	180		$S_{CH3OH} = 94.3\%$	Nat. Catal. 2021, 4, 242

Supplementary Table 3 | Comparison between Cu-C₃N₄ SACs and other reported catalysts for CO₂ hydrogenation

Species	Edft	EZPE	TS	Correction	G
H ₂ O	-14.220	0.568	0.881	0.000	-14.532
H_2	-6.771	0.269	0.617	0.000	-7.119
CO_2	-22.957	0.307	1.002	0.111	-23.541
CO	-14.776	0.132	0.912	-0.343	-15.900
CH ₃ OH	-30.226	1.354	1.127	0.000	-29.998

Supplementary Table 4 | Free energy corrections (T = 423 K, p = 101325 Pa) for gas-phase species (in eV).

Supplementary Table 5 | Analysis of reaction enthalpies (in eV) of gas-phase thermochemical reactions. ΔH_{ref} values were taken from NIST, ΔH_{unc} values were calculated from PBE functional, ΔH_{cor} values were the correction values for reaction enthalpies.

Stoichiometry	ΔH_{ref}	ΔH_{unc}	Error _{unc}	Correction	ΔH_{cor}	Error _{cor}
$CO_2 + H_2 \rightarrow CO + H_2O$	0.427	0.861	-0.434	-0.454	0.407	0.019
$CO_2 + 4H_2 \rightarrow 2H_2O + CH_4$	-1.707	-1.649	-0.058	-0.111	-1.759	0.052
$3H_2 + CO \rightarrow H_2O + CH_4$	-2.134	-2.510	0.376	0.343	-2.167	0.033
$\mathrm{CO}_2 + \mathrm{H}_2 \rightarrow \mathrm{HCOOH}$	0.152	0.075	0.077	0.000	0.075	0.077
$\mathrm{CO} + \mathrm{H_2O} \rightarrow \mathrm{HCOOH}$	-0.274	-0.786	0.511	0.454	-0.332	0.058
$CO_2 + 3H_2 \rightarrow H_2O + CH_3OH$	-0.511	-0.513	0.002	-0.111	-0.624	0.113
$2H_2 + CO \rightarrow CH_3OH$	-0.938	-1.374	0.437	0.343	-1.031	0.094
$CO_2 + 3H_2 \rightarrow 2H_2O + 1/2C_2H_4$	-0.662	-0.572	-0.091	-0.111	-0.682	0.020
$2H_2 + CO \rightarrow H_2O + 1/2C_2H_4$	-1.089	-1.433	0.344	0.343	-1.090	0.001
$CO_2+7/2H_2 \rightarrow 2H_2O+1/2C_2H_6$	-1.369	-1.318	-0.051	-0.111	-1.428	0.059
$5/2H_2 + CO \rightarrow H_2O + 1/2C_2H_6$	-1.796	-2.179	0.383	0.343	-1.836	0.040