
Supplementary information
1 Alignment scores
Notice that there are discrepancies between the parasail alignments below and the structures reported
by NUPACK in Figure 3a and Figure 3b.

Score 130 - Yield 1.0:

GAATACTGTCAGTGAGAGGATCTGCC
||||||||||||||||||||||||||
GAATACTGTCAGTGAGAGGATCTGCC

Score 77 - Yield 0.12:

TTGTCATACGCTGTAAGAG
|||||||.|||||||||.|
TTGTCATCCGCTGTAAGCG

Score 31 - Yield 0.20:74

----C-TGCGGCGCCGTTTGCATGCTCTCG75

| ..||||||| ||| |76

AGAGCAAACGGCGCC----GCA-G------77

78

Score 86 - Yield 0.82:79

AAATCAGGTA---TGCGGTAAG80

|||||||||| |||||||||81

AAATCAGGTACGTTGCGGTAAG82

83

2 Hyperparameters for LDA, QDA, RF and NN
The hyperparameter optimisation for the baseline machine learning algorithms is performed using
sklearn [33], more specifically with the GridSearchCV class configured to use our validation split (possi-
ble using PredefinedSplit). The monitored metric is the Matthews Correlation Coefficient, as advised
in [28], [29]. The chosen search space is inspired by the default hyperparameter settings and is meant
to provide reasonable coverage, keeping in mind a trade-off between exhaustiveness and time.

LDA
For LDA, the number of hyperparameters is small. We use a parameter grid with two entries:

{solver: [lsqr, eigen], shrinkage: [auto, *np.linspace(0.0, 1.0, num=11)]},
{solver: [svd]}

The found (and used) hyperparameters are: solver: eigen, shrinkage: 0.

Random forests
For random forests, the search space included:

{n_estimators: [30, 100, 200], max_depth: [None, 10, 30, 100],
max_features = [None, auto, sqrt], min_samples_split = [2, 5],
min_samples_leaf = [1, 2, 4], bootstrap = [True, False]}

The returned hyperparameters were bootstrap: True, max_depth: 10, max_features: sqrt
min_samples_leaf: 1, min_samples_split: 2, n_estimators: 100. However, training with default
parameters resulted in better performance on the test set. Thus, the reported results make use of the
default hyperparameters.

Neural networks
In the case of neural networks we tuned hyperparameters using Optuna [34], an open-source optimisa-
tion framework that includes state-of-the-art algorithms. In particular, Optuna also includes a pruning
capability to stop training unpromising trials. The hyperparameters included in the search are: the
number of hidden dense layers n_layers ∈ {1, 2, 3, 4, 5}, a single dropout value to be applied after every

2 D. Buterez

hidden layer dropout ∈ [0.2, 0.5], the number of neurons per hidden layer n_units ∈ {4, 5, ..., 128},
the batch size batch ∈ {32, 64, 128, 256, 512} and the learning rate lr ∈ [0.0001, 0.1] (log domain). The
neural optimisation algorithm is Adam [35].

Optuna was run with the HyperbandPruner for 50 trials with the goal of minimising the validation
loss (binary cross-entropy as it is a classification task). The returned (and used) best hyperparame-
ters were: n_layers: 4, dropout: 0.3296, n_units_l0: 117, n_units_l1: 18, n_units_l2: 7,
n_units_l3: 19, batch: 1024, lr: 0.0002 (rounded to 4 decimal places).

3 Classification metrics for LDA, QDA, RF and NN
The following table provides the basis for our discussion on the classification performance of the baseline
ML models.

Supplementary Table 1: Precision, recall and F1 corresponding to Figure 4c.

LDA QDA RF NN

Metric Low High Low High Low High Low High

Precision 0.996 0.881 0.975 0.901 0.966 0.927 0.971 0.914

Recall 0.827 0.998 0.860 0.983 0.901 0.975 0.881 0.980

F1 0.904 0.936 0.914 0.940 0.932 0.950 0.924 0.946

4 Classification metrics for CNN, RNN and RoBERTa
Similarly to the above, we report the classification metrics for the deep learning models after applying
the 0.2 threshold on the predicted yields (binarisation).

Supplementary Table 2: Precision, recall and F1 corresponding to Figure 4d.

RNN CNN CNNLite RoBERTa

Metric Low High Low High Low High Low High

Precision 0.984 0.960 0.989 0.941 0.990 0.931 0.985 0.898

Recall 0.948 0.988 0.920 0.992 0.906 0.993 0.855 0.990

F1 0.965 0.974 0.953 0.966 0.946 0.961 0.915 0.942

Scaling up DNA digital data storage by efficiently predicting DNA hybridisation using deep learning 3

5 Hyperparameters for CNN, RNN and RoBERTa

As the three architectures have innate differences, our approach to designing each model is different.

CNN

For our CNN model, we follow a top-down approach based on the properties of our inputs (pairs of
DNA sequences represented as grids). At a high level, the network layers can be grouped in convo-
lutional blocks, where each block has a convolutional layer, an activation (ReLU) layer and a batch
normalisation layer (in this order), with dropout layers interspersed according to Supplementary Ta-
ble 3. The model is trained with the Adam optimiser and a learning rate of 0.0001, a batch size of 256
(maximum that would fit in 8GB of GPU memory) with the Minimum Squared Error (MSE) loss and
early stopping set to a patience of 3 epochs and no maximum number of epochs.

We also performed hyperparameters search for the CNN architecture. The search space was defined
by: number and size of filters conv2d_size ∈ {9, 10, 11, 12, 13}, conv1d_size1 ∈ {7, 8, 9, 10, 11},
conv1d_size2, conv1d_size3 ∈ {3, 4, 5, 6, 7}, conv1d_size4 ∈ {1, 2, 3}, conv2d_filter,
conv1d_filter1, conv1d_filter2 ∈ {256, ..., 768}, conv1d_filter3 ∈ {128, ..., 384},
conv1d_filter4 ∈ {32, ..., 128}, the batch size batch_size ∈ {256, 512, 1024, 2048, 4096, 8096} and the
learning rate lr ∈ [0.0001, 0.1] (log domain). Dropout can be applied after each convolutional layer,
with a choice of probability in [0, 0.5] and after the linear layers with probability in [0.1, 0.5]. The choice
of size for the linear layers is based on the value selected for conv1d_filter4. The values found by the
hyperparameter search are available in the repository. However, they were not used as the classification
performance on the test set using the reported hyperparameters was slightly worse than the architecture
described in Supplementary Table 3.

Supplementary Table 3: Overview of the CNN architecture.

Layer In channels Out channels Filter or dropout

2D Convolution 2 512 4× 9

Dropout * * 0.2

1D Convolution 512 512 9

1D Convolution 512 128 3

Dropout * * 0.2

1D Convolution 128 128 3

1D Convolution 128 64 1

Fully connected 384 256 *

Fully connected 256 128 *

Dropout * * 0.2

Fully connected 128 1 *

4 D. Buterez

Supplementary Table 4: Overview of the CNNLite architecture.

Layer In channels Out channels Filter or dropout

2D Convolution 2 256 4× 9

Dropout * * 0.2

1D Convolution 256 128 9

1D Convolution 128 64 3

Fully connected 512 256 *

Dropout * * 0.2

Fully connected 256 1 *

RNN

The RNN architecture includes an embedding layer, a configurable multi-layer bi-directional LSTM
block, a dropout layer and the fully-connected regression layer (in this order). The parameters of the
LSTM-based model are not as intuitive as their CNN counterpart and we address this issue by per-
forming hyperparameter optimisation using Optuna. The search space includes: the embedding dimen-
sion emb_dim ∈ {16, 32, 64}, the number of LSTM layers n_layers ∈ {1, 2, 3, 4}, the LSTM dropout
lstm_dropout ∈ [0.1, 0.5], the number of features in the hidden state hidden ∈ {32, 64, 100}, the
dropout preceding the regression layer lin_dropout ∈ [0.1, 0.5], the batch size batch ∈ {64, 128, 256}
and the learning rate lr ∈ [0.0001, 0.1] (log domain). As before, the model is trained with the MSE loss
and early stopping set to a patience of 3 epochs and no maximum number of epochs.

The returned (and used) RNN hyperparameters are emb_dim: 32, lstm_dropout: 0.2412
n_layers: 3, hidden: 64, lin_dropout: 0.2166, batch: 128, lr: 0.006 (rounded to 4 decimal
places).

RoBERTa

Transformer models require substantially more computing power to train end-to-end (including both
the pre-training and the fine-tuning stages). As such, it is not feasible to perform hyperparameter opti-
misation for RoBERTa. However, we base our configuration on known RoBERTa architectures such as
roberta-base and on the intuition that modelling DNA sequence hybridisation is an easier task than
natural language processing.

As described in the main text, the Transformer model is first pre-trained on a Masked Language Model
(MLM) task after the inputs have been tokenised with RobertaTokenizerFast (the provided tokenisa-
tion class). The pre-training phase uses the following hyperparameters: vocabulary size vocab_size =
5000, dimension of the encoder and pooler layers hidden_size = 256, number of encoder hidden
layers num_hidden_layers = 6, number of attention heads for each attention layer of the encoder
num_attention_heads = 8, dimensionality of the intermediate layer intermediate_size = 1024,
the maximum sequence length that the model might ever use max_position_embeddings = 128,
vocabulary setting type_vocab_size = 1, dropout probability for all fully connected layers in the
embeddings hidden_dropout_prob = 0.3 (also in the encoder and pooler), dropout ratio of atten-
tion probabilities attention_probs_dropout_prob = 0.3, Masked Language Model masking prob-
ability mlm_probability = 0.15, number of warm-up steps warmup_steps = 500, number of per-
device batch size per_device_train_batch_size = 256 and the total number of pre-training epochs

Scaling up DNA digital data storage by efficiently predicting DNA hybridisation using deep learning 5

num_train_epochs = 6.

The other parameters are left to the default values. Our higher than default dropout values are used
to help combat potential overfitting in the case where the MLM training task is too easy on our se-
quences. We find that around 4-6 epochs are enough for the model to converge on the pre-training phase.

For the fine-tuning phase, we load the entire pre-trained RoBERTa model with trainable weights and
append a dropout layer with probability 0.1 and a dense layer for regression of the same size as the
encoder layers (256). The input preprocessing employs the pair encoding capabilities of the tokeniser
(initially designed for sentence pair tasks) and is very similar to the RNN encoding with special char-
acters from Figure 4b. The resulting network is trained with the MSE loss, AdamW optimiser with a
learning rate of 0.00002 and weight decay set to 0.01, with early stopping set to a patience of 3 epochs
and no maximum number of epochs.

6 Background on Transformers
The term Transformer usually translates to a multi-layer architecture built from composable, structurally-
identical Transformer blocks, the fundamental units. The input to such a block is a d-dimensional vector,
the additive composition of the input embedding vector itself with a separately-computed positional em-
bedding vector. An important characteristic of the Transformer block is the self-attention mechanism,
which computes an N ×N attention matrix, with N the sequence length. This procedure allows tokens
to attend to other, possibly distant tokens which are deemed relevant (i.e., high attention scores). Hav-
ing k-head attention corresponds to k independent and concurrent attention computations that can be
concatenated or summed. As noted in [21], Transformer blocks can be employed for different purposes.
The three classic cases are encoder-only, decoder-only and encoder-decoder, where each comes with spe-
cific implementation decisions and design choices. Naturally, the above computation is quadratic, and
many recent variations have been proposed to combat this lack of efficiency [21].

The original pre-training procedure includes two training objectives: Masked Language Model (MLM)
and Next Sentence Prediction (NSP). MLM randomly replaces a per cent of input tokens with a spe-
cial mask token and learns to predict the missing character. NSP is a classification problem where the
objective is to predict if two sentences follow each other in the input text.

A possible extension is the Vision Transformer [36], a Transformer architecture designed to work on
images, offering competitive performance with deep CNNs while requiring less resources. We do not
investigate Vision Transformers in this work as the inference times will likely lag behind our relatively
shallow CNNs, while the regression performance is also unlikely to be stellar considering our results
with the sequence-based Transformer.

7 Clustering with MMseqs2
A small sample of the 39,432,713 output pairs is reproduced in Supplementary Table 5. Notice that for
each ID in the first column, there are multiple sequences which are deemed similar by MMSeqs2. For
example, the sequence denoted by ID seq43840 has 8 other similar sequences associated with it. This
is however just a subset of all the sequences found to be similar with seq43840 and reproduced here for
illustration purposes.

8 Experimental platform
The various experiments in this study are performed on a number of different platforms to accommo-
date their unique requirements. Hyperparameter optimisation, general non-GPU (Graphics Processing

6 D. Buterez

Supplementary Table 5: Small sample of the MMseqs2 output.

ID 1 ID 2 Sequence 1 Sequence 2

seq43840 seq49789 GCGCCACCGCGTATATTAGG AAGCTTAATACACGCGGTGC

seq43840 seq81414 GCGCCACCGCGTATATTAGG ATACGCGGTGGATGCGTAGC

seq43840 seq92992 GCGCCACCGCGTATATTAGG CATACGCGGCGGCGTCATAA

seq43840 seq11505 GCGCCACCGCGTATATTAGG GTTCTAATCTACGCGGAGTC

seq43840 seq82545 GCGCCACCGCGTATATTAGG GCACTTCATATATGCGGTGG

seq43840 seq19444 GCGCCACCGCGTATATTAGG ATACGCCGTGGCGGCCGGCA

seq43840 seq15232 GCGCCACCGCGTATATTAGG ATAATACGCGGTGAGTATAA

seq43840 seq25057 GCGCCACCGCGTATATTAGG TTCTAATATACGACCTGACA

seq43968 seq59355 AAATAGCCTTTACTATGTCC CTCGCAGTAAAGGCACCACC

...

Unit) intensive tasks and training of the simpler neural models (feed-forward neural networks) were
performed on a portable computer equipped with a Core i9-8950HK processor, 32GB of DDR4 RAM,
a PCI Express 3.0 solid-state drive (SSD) and an NVIDIA RTX 2070 external GPU connected through
Thunderbolt 3, with 8GB VRAM.

RoBERTa pre-training was performed on the Google Cloud Platform with 8 TPUv3 (third genera-
tion) cores and fine-tuned on a system equipped with 8 vCPUs, 61GB RAM, an SSD and an NVIDIA
Tesla V100 with 16GB VRAM. Some compute-intensive tasks such as NUPACK or MMseqs2 were either
run on our portable platform or an Azure virtual machine (VM) with 64 vCPUs and a premium SSD,
as indicated in the main text. Due to the different configurations, we do not report training times.

Experiments involving the measurement of time were performed on three platforms. NUPACK code,
which runs only on the Central Processing Unit (CPU) was timed on an Azure VM equipped with the
hardware described above. The rest of the timing experiments were performed, by design, on consumer
hardware. The two chosen consumer platforms are (1) a computer equipped with an AMD Ryzen 5950X
CPU, 32GB of DDR4 RAM, a PCI Express 4.0 SSD and an NVIDIA RTX 3090 GPU with 24GB of
VRAM and (2) Google Colaboratory with 8 TPUv2 cores (second generation).

9 Software

All code is written in the Python programming language and has been confirmed as working under re-
visions 3.8.5 and 3.8.6. The required machine learning libraries include scikit-learn 0.24, PyTorch 1.7.1
and PyTorch Lightning 1.1.4, which were the latest versions available as of January 2021. The main
development operating system on the portable platform and the RTX 3090 GPU platform is Windows
10 Insider Preview Build 21286 (available on the Dev Channel), while the other platforms use various
recent distributions of Linux.

NUPACK, parasail and MMseqs2 computations were performed on the same portable computing plat-
form as above, using their respective most recent versions as of May 2019. This translates to NUPACK

Scaling up DNA digital data storage by efficiently predicting DNA hybridisation using deep learning 7

version 3.2.2 and parasail versions 2.4.1 and 2.4.2. Our original CNN implementation (not presented in
this paper) employed the most up-to-date TensorFlow 1 and Keras versions as of May 2019.

10 Measuring inference time
The timing code for GPUs is based on the following snippet:

start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)

with torch.no_grad():
start.record()
trainer.test(model, test_dataloader)
end.record()
torch.cuda.synchronize()
elapsed_time = start.elapsed_time(end)

The code can be trivially extended to perform multiple repetitions of the same code block in order to
report the average execution time and standard deviation.

Omitting the non-timing code, the timing code structure for TPUs is as follows:

class Module(pl.LightningModule):
def __init__(self, ...):

super(Module, self).__init__()
self.forward_flag = 0

def forward(self, x):
if not self.forward_flag:

self.forward_flag = 1
self.start = time.time()

x = ...

def on_test_epoch_end(self):
end = time.time()
elapsed_time = end - self.start

This introduced probe effect will alter the execution time, but we assume the impact is negligible. Im-
portantly, the above code is run on all of the 8 available TPU cores, meaning that each core reports its
own time. As the cores operate concurrently, we take the mean of the 8 elapsed times and assign the
result to the corresponding trial.

It is also important to note that raw GPU performance roughly doubles with each generation, a trend
also observed by Tensor Processing Units. Thus, the deep learning models we have developed will con-
tinue to improve in terms of inference time without any additional effort. A further optimisation would
be the use of 16-bit precision. For a minor accuracy penalty, 16-bit implementations can both reduce
video memory usage and improve execution times by several factors in the range of ×1− 5.

Furthermore, at the time of writing, the latest NVIDIA GPU architecture, Ampere, is still not fully
exploited under CUDA Toolkit 11.0, the official version supported by PyTorch 1.7.1. For this reason,
we compiled from source a nightly version of PyTorch 1.8.0 with CUDA 11.1 and this setup was used
for all GPU timing experiments. However, it is likely that further optimisations will be possible on the
Ampere architecture.

8 D. Buterez

11 Detailed performance metrics on other temperatures
Supplementary Table 6 presents the MSE, MCC and AUROC for the five evaluated temperatures and
Supplementary Table 7 lists per-class precision, recall and F1 scores.

Supplementary Table 6: Summary of the evaluation metrics for the deep learning models at the
selected temperatures.

Model Metric 37.0C 42.0C 47.0C 52.0C 62.0C

RNN

MSE 808.126 655.260 433.125 190.772 333.637

MCC 0.862 0.872 0.888 0.916 0.833

AUROC 0.946 0.949 0.954 0.963 0.911

CNN

MSE 719.616 576.134 374.768 170.865 398.881

MCC 0.884 0.893 0.908 0.929 0.811

AUROC 0.955 0.958 0.962 0.967 0.899

CNNLite

MSE 712.598 574.295 381.676 188.943 418.637

MCC 0.893 0.901 0.914 0.929 0.801

AUROC 0.958 0.961 0.964 0.966 0.892

RoBERTa

MSE 546.058 452.876 336.600 249.726 674.329

MCC 0.925 0.930 0.930 0.914 0.762

AUROC 0.971 0.971 0.968 0.954 0.870

Scaling up DNA digital data storage by efficiently predicting DNA hybridisation using deep learning 9

Supplementary Table 7: Precision, recall and F1 scores for the Low and High classes resulting from
the deep learning models at the selected temperatures.

CNNLite

Metric 37.0C 42.0C 47.0C 52.0C 62.0C

Precision 0.872 0.998 0.885 0.996 0.908 0.992 0.947 0.979 0.999 0.817

Recall 0.996 0.921 0.993 0.929 0.987 0.942 0.967 0.965 0.785 0.999

F1 0.930 0.958 0.936 0.961 0.946 0.966 0.957 0.972 0.879 0.899

CNN

Metric 37.0C 42.0C 47.0C 52.0C 62.0C

Precision 0.860 0.999 0.873 0.997 0.897 0.995 0.940 0.984 0.999 0.826

Recall 0.998 0.912 0.996 0.920 0.991 0.934 0.975 0.960 0.798 0.999

F1 0.924 0.953 0.931 0.957 0.942 0.963 0.957 0.971 0.887 0.905

RNN

Metric 37.0C 42.0C 47.0C 52.0C 62.0C

Precision 0.835 0.999 0.848 0.998 0.872 0.996 0.918 0.988 0.999 0.844

Recall 0.998 0.893 0.997 0.901 0.993 0.915 0.982 0.944 0.822 1.000

F1 0.909 0.943 0.917 0.947 0.929 0.954 0.949 0.965 0.902 0.915

RoBERTa

Metric 37.0C 42.0C 47.0C 52.0C 62.0C

Precision 0.915 0.995 0.926 0.992 0.942 0.983 0.962 0.957 0.996 0.788

Recall 0.991 0.950 0.986 0.956 0.971 0.965 0.932 0.976 0.743 0.997

F1 0.951 0.972 0.955 0.974 0.956 0.974 0.947 0.967 0.851 0.881

10 D. Buterez

12 Ablation study

To study the effectiveness of the different extracted features, we perform an ablation study examining
the classification performance of various configurations of interest. The results are presented in Supple-
mentary Table 8, Supplementary Table 9, Supplementary Table 10, Supplementary Table 11. There are
less entries for NN due to extended training time.

Supplementary Table 8: Ablation study summary for LDA.

Aln. GC S.C. P.C. S. MFE MCC AUROC

0.840 0.906

0.846 0.909

0.846 0.909

0.846 0.909

0.850 0.912

0.850 0.912

0.850 0.912

0.851 0.912

0.000 0.500

0.000 0.500

0.000 0.500

0.033 0.502

Supplementary Table 9: Ablation study summary for QDA.

Aln. GC S.C. P.C. S. MFE MCC AUROC

0.845 0.910

0.853 0.916

0.852 0.918

0.852 0.918

0.858 0.920

0.859 0.922

0.859 0.922

0.859 0.922

0.023 0.504

0.023 0.504

0.003 0.501

0.096 0.548

Scaling up DNA digital data storage by efficiently predicting DNA hybridisation using deep learning 11

The table headers refer to the concepts introduced in Designing a diverse hybridisation dataset (Aln.,
Alignment, GC, GC content, S.C., Single Concentration, P.C. Pair Concentration, S. MFE, Single MFE,
MCC, Matthews Correlation Coefficient, AUROC, Area Under the Receiver Operating Characteristics).

Supplementary Table 10: Ablation study summary for RF.

Aln. GC S.C. P.C. S. MFE MCC AUROC

0.848 0.913

0.884 0.937

0.875 0.934

0.875 0.933

0.884 0.938

0.879 0.935

0.880 0.936

0.879 0.935

0.141 0.547

0.151 0.553

0.190 0.565

0.559 0.780

Supplementary Table 11: Ablation study summary for NN.

Aln. GC S.C. P.C. S. MFE MCC AUROC

0.867 0.931

0.872 0.932

0.873 0.930

It is clear that alignment scores alone are a good predictor of hybridisation yield. A modest, but visible
increase in classification performance is further provided by the quick-to-compute GC content. Depend-
ing on the machine learning model, the benefit of adding thermodynamic information is more or less
subtle. In Supplementary Table 8, Supplementary Table 9, Supplementary Table 10, Supplementary
Table 11 the best scores are highlighted in bold: first by MCC; in case of equality also by AUROC; in
case of equality of AUROC the most complete model (most features) is highlighted. For LDA, QDA
and NN the best performing models use all features. For RF, the Aln-GC model has nearly identical
performance to the Aln-GC-MFE model.

However, the differences are statistically significant: for LDA, between the complete model and the
Aln-GC variant (P = .034, permutation test with 5000 iterations, thus significant at the 95% confidence
interval); for QDA, between the complete model and the Aln-GC variant (P < .001, permutation test
with 5000 iterations, thus significant at the 99% confidence interval); for RF, between the Aln-GC-MFE

12 D. Buterez

model and the Aln-GC variant (P < .001, permutation test with 5000 iterations, thus significant at the
99% confidence interval) and for NN between the complete model and the Aln-GC variant (P < .001,
permutation test with 5000 iterations, thus significant at the 99% confidence interval). The null hy-
pothesis that the two groups come from the same distribution is rejected in all cases at the mentioned
confidence interval. This two-sided permutation test is provided by the permutation_test function of
the mlxtend [37] Python library. The statistical difference in otherwise close scores can be explained by
trade-offs made by the model: some models might favour reducing false positives over false negatives
and vice-versa.

13 Inference times for different dataset sizes

The inference time on second generation TPUs was measured using the methodology described in Sup-
plementary Information 10, for subsets of size: 250,000, 500,000, 1,000,000, 2,000,000 and 2,556,976 (full
dataset). These datasets can be entirely loaded in memory, hence a PyTorch TensorDataset (without
shuffling) was used to hold the data, initially loaded with NumPy [38]. We further measured inference
time on a dataset of size 5,113,952 (double the full dataset length), by concatenating two TensorDataset
objects holding the 2.5 million data points using PyTorch’s ConcatDataset. The batch size was set to
8,192 as it enables better scalability on the larger datasets.

Supplementary Figure 1 illustrates the measured inference time as well as the extrapolated values
based on two reference points: 500,000 and 1,000,000, called "500K projection" and respectively "1M
projection", for the three most efficient algorithms: RNN, CNN and CNNLite.

All evaluated models see a spike in inference time for the 1 million dataset, however this trend im-
proves for the RNN, whose times for the > 1 million datasets stay below the 1M projected line (only
×1.84 increase from 2.5M to 5M). The CNN and CNNLite follow the 1M projected line closely until
around 2.5M in dataset size. Afterwards, the difference compared to the 1M projected line increases;
however the actual measured time increases by a factor of about ×2.27 for CNNLite and ×2.30 for the
CNN when transitioning from the 2.5M dataset to the 5M dataset. Thus, both the CNN and CNNLite
models are close the the ideal ×2 increase in inference time as the dataset size doubles; in addition, the
times are better than the RNN, which scales better than linearly relative to its own performance.

0 1M 2M 3M 4M 5M
0

20

40

60

80

100

120

0 1M 2M 3M 4M 5M

0

10

20

30

40

50

60

70

80

0 1M 2M 3M 4M 5M

0

10

20

30

40

50

60

70

Measured time 500K projection 1M projection

RNN CNN CNN Lite

Dataset size

Ex
ec

ut
io

n
tim

e
(s

)

Supplementary Figure 1: Scatter plots of the inference times for the three most efficient models: RNN,
CNN and CNNLite as the dataset size increases, together with projections based on the times for the

500K and 1M datasets. The batch size is set to 8,192. In the graphs, M is used for million(s).

Scaling up DNA digital data storage by efficiently predicting DNA hybridisation using deep learning 13

14 Similarity between yields at different temperatures
An intuition for the similarity between the ground truth yields as computed by NUPACK at different
temperatures can be attained by pairwise scoring the values using a criterion such as mean absolute
error (MAE) or mean squared error (MSE). For this comparison, all yields are in the range [0, 1]. Sup-
plementary Figure 2 captures these metrics and indicates that the yields at 62°C are the most different,
even when compared to their closest neighbour (57°C). On the other hand, yields in the range 37°C to
52 °C are relatively close to each other (in all cases MAE lower than 0.1, MSE lower than 0.04).

The choice of 57°C for training and evaluation is motivated by being close to the standard melting
and/or annealing temperatures of PCR primers (more details in the main text) and not being too far
away from the behaviours at 62°C and < 57°C as illustrated in Supplementary Figure 2.

62 57 52 47 42 37

37

42

47

52

57

62

0.05

0.1

0.15

0.2

Pairwise MAE between the 6 temperatures

Temperature (C)

Te
m

pe
ra

tu
re

 (
C
)

62 57 52 47 42 37

37

42

47

52

57

62

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pairwise MSE between the 6 temperatures

Temperature (C)

Te
m

pe
ra

tu
re

 (
C
)

Supplementary Figure 2: The ground truth yields at the six different temperatures are compared in a
pairwise manner to assess their relatedness, using the MAE and MSE as the scoring functions.

