

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Initial Rollout and Real-World Effectiveness of mRNA COVID-19 Vaccines Among Healthcare Workers: Analysis from a Tertiary Healthcare System in the Greater Houston Metropolitan Area

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054332
Article Type:	Original research
Date Submitted by the Author:	09-Jun-2021
Complete List of Authors:	Vahidy, Farhaan S; Houston Methodist, Houston Methodist Academic Institute; Houston Methodist, Center for Outcomes Research Pan, Alan; Houston Methodist, Center for Outcomes Research Hagan, Kobina; Houston Methodist, Center for Outcomes Research Bako, Abdulaziz; Houston Methodist, Center for Outcomes Research Sostman, H Dirk; Houston Methodist, Houston Methodist Academic Institute; Weill Cornell Medicine Schwartz, Roberta; Houston Methodist, Houston Methodist Academic Institute Phillips, Robert; Houston Methodist, Houston Methodist Academic Institute; Houston Methodist, Center for Outcomes Research Boom, Marc; Houston Methodist, Houston Methodist Academic Institute; Weill Cornell Medicine
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, COVID-19

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Initial Rollout and Real-World Effectiveness of mRNA COVID-19 Vaccines Among Healthcare Workers: Analysis from a Tertiary Healthcare System in the Greater Houston Metropolitan Area

Farhaan S. Vahidy PhD MBBS MPH,^{1,2} Alan P. Pan MS,² Kobina Hagan MBChB MPH,² Abdulaziz T. Bako PhD MBBS MPH,² H. Dirk Sostman MD,^{1,3}

Roberta L. Schwartz PhD,¹ Robert A. Phillips MD PhD,^{1,2,3} Marc L. Boom MD^{1,3}

- 1. Houston Methodist Academic Institute, Houston Methodist, Houston TX
- 2. Center for Outcomes Research, Houston Methodist, Houston TX
- 3. Weill Cornell Medicine, New York NY

Corresponding Author

Farhaan S. Vahidy, PhD MBBS MPH FAHA Josie Roberts Building, Suite 4.123 7550 Greenbriar Drive Houston TX 77030 Phone: 346.356.1479 fvahidy@houstonmethodist.org

Running title: Real-World Effectiveness of COVID-19 Vaccines

Word count: 1,621

BMJ Open

ABSTRACT

Background: Despite the demonstrated efficacy of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in clinical trials, data on real world vaccine effectiveness (RWE) are fundamental to provide an empirical evidence of the role of vaccination in curtailing the coronavirus disease 2019 (COVID-19) pandemic. Healthcare Workers (HCWs) have been on the pandemic forefront and continue to provide care for hundreds of hospitalized and critically ill COVID-19 patients. We provide an account of RWE of COVID-19 vaccines among HCWs of a major healthcare system in Texas.

Methods: At the COVID-19 pandemic onset, we instituted a HCW testing and surveillance program wherein SARS-CoV-2 positive HCWs were offered short-term disability leave (STDL). We retrospectively analyzed de-identified summary data of SARS-CoV-2 infections and STDL utilization among HCWs across the healthcare system. Pre- and post-vaccination trends in SARS-CoV-2 positivity and STDL utilization rates were evaluated. The initial 12-week vaccination program period (December 15, 2020 to March 6, 2021) was defined as a rapid rollout phase.

Results: Updated for June 5, 2021, 98.2% (n = 27,291) of all employees had received a full or partial dose of one of the approved mRNA COVID-19 vaccines. The vaccination rate during the rapid rollout phase was approximately 3,700 doses / 7-days. The overall mean weekly SARS-CoV-2 positivity rates among HCWs were significantly lower following vaccine rollout (2.4%), compared to pre-vaccination period (11.8%, p < 0.001). An accompanying 69.8% decline in STDL utilization was also observed. During the

rapid rollout phase, SARS-CoV-2 positivity rate among HM HCWs declined by 84.3%, compared to a 54.7% decline in the Houston metropolitan area.

Conclusion: In light of the continued emergence of viral variants as well as vaccine hesitancy, robust HCW vaccination programs are important in sustaining a critical resource to provide safe and effective care for COVID-19 and non-COVID-19 patients across healthcare systems.

Strengths and limitations of this study

- The study describes the initial rollout of a COVID-19 vaccination program instituted across a large healthcare system in a major metropolitan area of the United States.
- Real-world effectiveness was evaluated with respect to reductions in SARS-CoV-2 infections and short-term disability leave utilization among healthcare workers.
- The study presents an account of an employee vaccination program that was successfully implemented while concurrently operating as a state-designated vaccine hub for the public; insights from our experience can help guide similar vaccination programs in other settings.
- Findings may be limited due to non-systematic implementation of the employee SARS-CoV-2 surveillance program.
- Further study of the established immunological protection against infection are needed to understand the population-wide and individual benefits of vaccination.

INTRODUCTION

Safe and rapid rollout of the United States (US) Food and Drug Administration (FDA) approved vaccines is a potentially transformational public health tool in the armamentarium against the coronavirus disease 2019 (COVID-19). Despite impressive efficacy data from Phase 3 clinical trials, there is a need to demonstrate real world effectiveness (RWE) of these vaccines for controlling the pandemic in a variety of settings, across heterogenous population groups. Healthcare workers (HCWs) have been on the forefront of the COVID-19 pandemic and continue to provide critical care to hundreds of COVID-19 patients across all US regions and globally. The pandemic has reestablished the importance of this valuable resource in being a critically important line of defense against human suffering in the face of a healthcare catastrophe. Most tiered vaccination approaches prioritized healthcare workers (HCWs) before expanding administration to those in higher-risk age groups and with underlying health conditions. This is important not only from a public health perspective but is also critical for continued operational viability of large and small healthcare systems, such that they can adequately provide treatment and prevention services to their communities.

We provide an account of COVID-19 vaccine rollout among HCWs of a tertiary healthcare system in Texas and demonstrate a signal of RWE by evaluating reduction in COVID-19 infections and utilization of short-term disability leave (STDL) among HCWs.

BMJ Open

METHODS

Study Design and Setting

Houston Methodist (HM) is an 8-hospital healthcare system in the greater Houston metropolitan area, which has been a major hub in the fight against the COVID-19 pandemic since March 2020 [1, 2]. At the onset of the pandemic, HM instituted an employee severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surveillance initiative coupled with an enhanced STDL program for employees testing positive [3]. The voluntary surveillance program encouraged all HCWs (symptomatic or asymptomatic) to utilize SARS-CoV-2 testing at frequent intervals across all HM testing sites. Additionally, HM established a vaccine prioritization committee in November 2020, which monitored vaccine safety and efficacy data, reviewed Centers for Disease Control and Prevention (CDC) guidelines, developed a prioritization scheme, and provided recommendations for safe and effective vaccine rollout. Following general CDC guidelines, first line HCWs were prioritized to receive COVID-19 vaccines. Based on a tiered approach, HM employees received electronic invitations to schedule vaccination across all HM locations. This study was not regarded as human subjects research by the Houston Methodist (HM) Institutional Review Board (IRB) since this study does not involve direct human participation and was therefore exempt from human subjects approval. This study was approved by the HM Institutional Review Board as a quality improvement project with waiver of informed consent.

Statistical Analysis

We assimilated de-identified summary data of SARS-CoV-2 infections and STDL utilization among HCWs across the period of the pandemic and defined the first 12-

week period (December 15, 2020 to March 6, 2021) as an initial rapid rollout period for COVID-19 vaccination among HCWs. Summary metrics are provided as frequencies and proportions. Tests for proportional comparisons and Chi-squared trends were used to assess pre- and post-vaccination (including the rapid rollout period) SARS-CoV-2 positivity rates and trends.

Patient and Public Involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

RESULTS

The COVID-19 vaccine rollout was simultaneously initiated at all HM locations on December 15, 2020. Updated for June 5, 2021, from among a total of 27,291 employees, 26,791 (98.2%) have received at least a single dose of either one of the two approved mRNA COVID-19 vaccines, whereas 26,723 (97.9%) have completed both doses. During the 12-week initial rapid rollout period (December 15, 2020 to March 6, 2021) the vaccination rate was 3,700 doses / 7-days.

The recent (November 1, 2020 to June 5, 2021) trends in SARS-CoV-2 positivity among HCWs are demonstrated in Figure 1. The mean SARS-CoV-2 weekly positivity rate prior to initiation of the HCW vaccination program (11.8%) was significantly higher compared to the positivity rate following vaccination initiation (2.4%, p < 0.001). The upward trend in SARS-CoV-2 positivity rate observed in the 45-day pre-vaccination period (November 1, 2020 to December 12, 2020) has significantly trended down during the post-vaccination phase (December 15, 2020 to June 5, 2021) (p_{trend} < 0.001).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Since the end of January 2021, the weekly SARS-CoV-2 infection rate among HCWs participating in surveillance testing has consistently remained below 3.1%. During the initial 12-week rapid rollout period, the proportional decline in HM HCW SARS-CoV-2 positivity rate was 84.3% (8.9% to 1.4%), as compared to a 54.7% decline (12.8% to 5.8%) observed in the greater Houston metropolitan area. [4].

As a part of the HCW surveillance program, 117 (0.4%) employees were reported to have tested positive more than 7 days after receiving the second dose of the vaccine, which includes both asymptomatic random surveillance of employees as well as symptomatic referrals from the employee health service. Among these positive cases, 66 (56.4%) were reported to be symptomatic.

Figure 2 represents the weekly frequency of STDL utilization among HCWs. We also report the temporal emergence of known SARS-CoV-2 mutations (D614G) [5] as well as detection of viral variants (Alpha B.1.1.7; Beta B.1.351; Gamma P.1 and P.2; B.1.429 and B.1.427) in the greater Houston area, based on sequencing data of patient specimens performed at HM [6]. Compared to the peak of STDL utilization during the initial weeks of vaccine rollout (January 3 to 9, 2021: 315 leaves), a 69.8% decline has been observed during the most recent reporting period (May 30 to June 5, 2021: 95 leaves), with utilization numbers approaching pre-pandemic levels.

DISCUSSION

Given the critical need to maintain an effective and safe healthcare workforce and to minimize inadvertent viral transmission in the healthcare setting, frontline HCWs were ubiquitously recognized as a priority group for vaccination. In addition to continued

care provided to COVID-19 and non-COVID-19 patients; large healthcare organizations have been called upon to organize and execute delivery of COVID-19 vaccines among its HCWs and across the community at large. HM is a state-designated vaccine hub and, as of June 5, 2021, has administered over 780 thousand vaccines to members of the community [7].

Vaccine supply and delivery during the initial nationwide rollout was beset with logistical challenges, and administration metrics lagged behind target levels. However, during the same time period we were able to achieve rapid rates of HCW vaccination with demonstrated vaccine RWE in terms of curtailing infection rates as well as reducing utilization of STDL for HCWs. Our vaccination planning started several months prior to vaccine delivery and required close coordination between a vaccine scientific committee, operational leadership, physician organization, and the system's infection control management. We instituted a seamless vaccination program among our HCWs while caring for large numbers of COVID-19 and non-COVID-19 patients and maintaining regular hospital operations. Our initial results with indices of HCW protection against SARS-CoV-2 infection and related disability indicate that the vaccines can be deployed in the real-world settings with high levels of effectiveness. Of note, we provide evidence of vaccine effectiveness amid the emergence of multiple variants of concern (VOC) in the greater Houston area starting in December 2020 [6].

Our results are limited to a narrative and descriptive account of the reduction in infection and STDL utilization across one healthcare system. Furthermore, we have not analyzed individual HCW characteristics (such as demographics, comorbidities and risk of occupational exposure) that may be associated with SARS-CoV-2 infection.

BMJ Open

Concurrent studies on the established immunological protection against infection are needed to fully understand the population-wide and individual benefits that vaccinations confer. The observed trends in SARS-CoV-2 positivity rate were based on diagnostic tests conducted as part of the employee surveillance program and were requested voluntarily and at the prerogative of the HCW. We did not distinguish results based on either the purpose of testing or whether HCWs experienced viral exposure and / or presented with symptoms. It is possible that the dynamics of program participation differed in the pre- and post-vaccination periods. Nonetheless, we observed testing participation to remain relatively consistent during the initial phase of the vaccination program, with the mean number of weekly tests performed post-vaccination rollout (December 20, 2020 to February 25, 2021: 2,621 tests) continuing at a rate comparable to that during the peak surveillance period prior to vaccination rollout (August 30, 2020 to December 12, 2020: 2,599 tests).

Hospitals are a microcosm of the communities they serve as well as a nexus in which there is a high rate of encounters between healthy and ill individuals. Despite determined efforts to vaccinate the broader population, the risk of SARS-CoV-2 infections and related COVID-19 hospitalizations has not been fully eliminated, especially due to the continued emergence of VOCs [8, 9] and relaxation of protective public health measures. Furthermore, although robust vaccine effectiveness (VE) has been reported [10, 11], the duration of VE is currently unknown; consequently, booster shots that confer additional protection against VOCs may be recommended and are currently undergoing testing [12].

In spite of varying challenges, vaccination rates in the US have continued at a progressive pace; at the time of this reporting, \geq 51.5% of individuals are at least partially immunized and \geq 41.9% are fully immunized [13]. Nonetheless, global vaccination rates are estimated at approximately only \geq 5% of the population [14]. As efforts to support international partners in their respective vaccination programs proceed, insights from the success of vaccine rollout in the US will provide a valuable model for reference. Furthermore, in the face of continued high rates of vaccine hesitancy [15] as well as the risk of a resurgence in cases globally, assimilating and reporting cumulative evidence of real-world vaccine effectiveness is paramount to build population-wide confidence in vaccination, hence rapidly achieving desirable levels of herd immunity against the current predominant strains of SARS-CoV-2.

ACKNOWLEDGMENTS:

We would like to acknowledge the efforts of the following Houston Methodist employees in successfully instituting the employee vaccination and surveillance programs: Ms. Jennifer Borders (System Director Wellness Services), Ms. Paula DesRoches (Director Employee Health and Occupational Medicine), Mr. Stephen Spielman (SVP & COO of Specialty Physician Group), Mr. Jeff Carr (VP Finance) and Dr. Dan Metzen (System Director of Pharmacy). All individuals are full time employees of Houston Methodist and were not financially compensated for this work. We additionally acknowledge all Houston Methodist employees and physicians for their services during the COVID-19 pandemic.

FUNDING: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

COMPETING INTEREST: None declared.

AUTHOR CONTRIBUTIONS:

FV was responsible for the study conception and design. Data acquisition and analysis were performed by AP. Interpretation of results and initial drafting of the manuscript were completed by FV and AP. All authors contributed to critical revision of the manuscript and approval of the final version for submission.

EXCLUSIVE LICENSE:

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author license), an exclusive license and/or a nonexclusive license for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY license shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in Journal of Epidemiology & Community Health and any other BMJ products and to exploit all rights, as set out in our license.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons license – details of these licenses and which Creative Commons license will apply to this Work are set out in our license referred to above.

2	
4 5	
6 7	
8 9	
10 11	
12 13	
14	
16	
17	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33	
35	
36 37	
38 39	
40 41	
42 43	
44 45	
46 47	
48 40	
50	
52	
53 54	
55 56	
57 58	
59 60	

REFERENCES

- Tittle S, Braxton C, Schwartz RL, et al. A Guide for Surgical and Procedural Recovery After the First Surge of Covid-19. NEJM Catalyst Innovations in Care Delivery Published Online First: 2 July 2020. doi:10.1056/cat.20.0287
- Vahidy FS, Drews AL, Masud FN, et al. Characteristics and Outcomes of COVID-19 Patients During Initial Peak and Resurgence in the Houston Metropolitan Area. JAMA 2020;324:998. doi:10.1001/jama.2020.15301
- Vahidy FS, Bernard DW, Boom ML, et al. Prevalence of SARS-CoV-2 Infection Among Asymptomatic Health Care Workers in the Greater Houston, Texas, Area. JAMA Netw Open 2020;3:e2016451. doi:10.1001/jamanetworkopen.2020.16451
- Texas Department of State Health Services. Texas COVID-19 Data. https://dshs.texas.gov/coronavirus/cases.aspx (accessed 8 Feb 2021)
- Centers for Disease Control and Prevention. SARS-CoV-2 Variants. COVID-19 Cases & Data. https://www.cdc.gov/coronavirus/2019-ncov/casesupdates/variant-surveillance/variant-info.html
- Long SW, Olsen RJ, Christensen PA, et al. Sequence Analysis of 20,453 SARS-CoV-2 Genomes from the Houston Metropolitan Area Identifies the Emergence and Widespread Distribution of Multiple Isolates of All Major Variants of Concern. Pathology 2021. doi:10.1101/2021.02.26.21252227
- 7. Houston Methodist. COVID-19 Vaccine Information.

https://www.houstonmethodist.org/coronavirus/vaccine-updates/ (accessed 7 Mar 2021)

8. Walensky RP, Walke HT, Fauci AS. SARS-CoV-2 Variants of Concern in the United States—Challenges and Opportunities. JAMA Published Online First: 17 February 2021. doi:10.1001/jama.2021.2294 Mascola JR, Graham BS, Fauci AS. SARS-CoV-2 Viral Variants—Tackling a Moving Target. JAMA Published Online First: 11 February 2021. doi:10.1001/jama.2021.2088 10. Pilishvili T, Fleming-Dutra KE, Farrar JL, et al. Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel — 33 U.S. Sites, January–March 2021. MMWR Morb Mortal Wkly Rep 2021;70:753–8. doi:10.15585/mmwr.mm7020e2 11. Vahidy FS, Pischel L, Tano ME, et al. Real World Effectiveness of COVID-19 mRNA Vaccines against Hospitalizations and Deaths in the United States. Infectious Diseases (except HIV/AIDS) 2021. doi:10.1101/2021.04.21.21255873 12. Rubin R. COVID-19 Vaccines vs Variants—Determining How Much Immunity Is Enough. JAMA 2021;325:1241. doi:10.1001/jama.2021.3370 13. Centers for Disease Control and Prevention. COVID-19 Vaccinations in the United States. COVID Data Tracker. https://covid.cdc.gov/covid-datatracker/#vaccinations (accessed 1 Jun 2021). 14. Mathieu E, Ritchie H, Ortiz-Ospina E, et al. A global database of COVID-19 vaccinations. Nat Hum Behav Published Online First: 10 May 2021. doi:10.1038/s41562-021-01122-8

1	
2	
4	15. University of Houston Hobby School of Public Affairs. Texas Policy & Politics
5	
6	2021: Texans and the COVID-19 Vaccine. https://uh.edu/hobby/tx2021/
7	
8	(accessed 3 Feb 2021)
9	
10 11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
28	
29 30	
30	
32	
33	
34	
35	
36	
3/	
30 30	
40	
41	
42	
43	
44	
45	
40 47	
48	
49	
50	
51	
52	
53	
54	
55 56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure Legends

Figure 1: SARS-CoV-2 Positivity Rates from the Houston Methodist (HM) Surveillance Employee Program Pre- and Post-COVID-19 Vaccine Initiation. Reference lines for the initial 12-week rapid rollout period for vaccination (December 15, 2020 to March 6,

2021) are shown.

Figure 2: Enhanced Short-Term Disability Leave Utilization by Houston Methodist (HM) Employees Across the COVID-19 Pandemic Timeline. Reference lines for the initial 12week rapid rollout period for vaccination (December 15, 2020 to March 6, 2021) are shown. Annotations depict relative emergence and detection of SARS-CoV-2 mutations and viral variants in greater Houston.

Figure 1. SARS-CoV-2 Positivity Rates from the Houston Methodist (HM) Surveillance Employee Program Pre- and Post-COVID-19 Vaccine Initiation. Reference lines for the initial 12-week rapid rollout period for vaccination (December 15, 2020 to March 6, 2021) are shown.

119x64mm (300 x 300 DPI)

Sep 20, 20 -

COVID-19 Pandemic Timeline (Weeks Of)

Figure 2. Enhanced Short-Term Disability Leave Utilization by Houston Methodist (HM) Employees Across the

COVID-19 Pandemic Timeline. Reference lines for the initial 12-week rapid rollout period for vaccination

(December 15, 2020 to March 6, 2021) are shown. Annotations depict relative emergence and detection of

SARS-CoV-2 mutations and viral variants in greater Houston.

110x75mm (300 x 300 DPI)

Oct 4, 20 -Oct 18, 20 -Nov 1, 20 -Nov 15, 20 -Nov 29, 20 Dec 13, 20 Dec 27, 20 Jan 10, 21 Feb 7, 21 Mar 7, 21

D614G mutatio

400

350

300

250

200

150

100

50

Feb 9, 20

Jan 26, 20 eb 23, 20 Mar 8, 20 Mar 22, 20 Apr 19, 20 May 3, 20 May 17, 20

HM - Short Term Disability

HM - Vaccines Administered

Jan 12, 20

Apr 5, 20

May 31, 20 Jun 14, 20 Jun 28, 20 Jul 12, 20 -Jul 26, 20 -Aug 9, 20 Aug 23, 20 -Sep 6, 20

Weekly Short Term Disability Utilization (HM Employees)

dominant strain

B.1.351 / B.1.429 / B.1.427

Dec-15-2020

B.1.1.7 / P.2

Υ<u>₽∓</u>

Jan 24, 21 Feb 21, 21 Aar 21, 21 Apr 4, 21

Mar-6-2021

nber of Vaccines Fully Administered (HM Employees)

ative Nu 5ŀ

-208

-15K

-10K

May 30, 21 -May 2, 21 May 16, 21

Apr 18, 21

	Item	D
T'41 1 - 1 - 44	<u>N0</u>	Kecommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or
		(b) Provide in the abstract an informative and balanced summary of what
		was done and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of
U		recruitment, exposure, follow-up, and data collection
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
-		participants
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,
		and effect modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods
measurement		of assessment (measurement). Describe comparability of assessment
		methods if there is more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If
		applicable, describe which groupings were chosen and why
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for
		confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling
		strategy
		(e) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers
I		potentially eligible, examined for eligibility, confirmed eligible, included
		in the study, completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,
r uniu		social) and information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of
		interest
Outcome data	15*	Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted
	10	estimates and their precision (eg. 95% confidence interval). Make clear

3
4
5
6
7
/
8
9
10
11
12
13
11
15
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
20
20
20
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
53
55
54 55
55
56
57
58
59

1 2

		(b) Report category boundaries when continuous variables were categorized	N/A
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions,7and sensitivity analyses7	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9
Limitations	19	Discuss limitations of the study, taking into account sources of potential	9-10
		bias or imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	9-10
		limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	8-11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is	12
		Dascu	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Impact of mRNA Vaccines in Curtailing SARS-CoV-2 Infection and Disability Leave Utilization Among Healthcare Workers During the COVID-19 Pandemic: Cross Sectional Analysis from a Tertiary Healthcare System in the Greater Houston Metropolitan Area

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054332.R1
Article Type:	Original research
Date Submitted by the Author:	13-Sep-2021
Complete List of Authors:	Vahidy, Farhaan S; Houston Methodist, Houston Methodist Academic Institute; Houston Methodist, Center for Outcomes Research Pan, Alan; Houston Methodist, Center for Outcomes Research Hagan, Kobina; Houston Methodist, Center for Outcomes Research Bako, Abdulaziz; Houston Methodist, Center for Outcomes Research Sostman, H Dirk; Houston Methodist, Houston Methodist Academic Institute; Weill Cornell Medicine Schwartz, Roberta; Houston Methodist, Houston Methodist Academic Institute Phillips, Robert; Houston Methodist, Houston Methodist Academic Institute; Houston Methodist, Center for Outcomes Research Boom, Marc; Houston Methodist, Houston Methodist Academic Institute; Weill Cornell Medicine
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Public health, Epidemiology, Global health, Health policy
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, COVID-19, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Infection control < INFECTIOUS DISEASES
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	1	Impact of mRNA Vaccines in Curtailing SARS-CoV-2 Infection and Disability
4 5	2	Leave Utilization Among Healthcare Workers During the COVID-19 Pandemic:
6	3	Cross Sectional Analysis from a Tertiary Healthcare System in the Greater
7	4	Houston Metropolitan Area
8	5	
9 10	6	Farhaan S. Vahidy PhD MBRS MPH ^{1,2,3} Alan P. Pan MS ² Kohina Hagan MBChB
11	U	
12	7	MPH, ² Abdulaziz T. Bako MBBS MPH PhD, ² H. Dirk Sostman MD, ^{1,3}
13	8	Roberta L. Schwartz PhD, ¹ Robert A. Phillips MD PhD, ^{1,2,3} Marc L. Boom MD ^{1,3}
14 15	٥	
16	10	1 Houston Methodist Academic Institute, Houston Methodist, Houston TX
17	10	2. Conter for Outcomes Research, Houston Methodist, Houston TX
18 10	11	2. Visil Carpel Medicine, New York NY
20	12	3. Well Cornell Medicine, New York NY
21	13	
22	14	
23 24	15	Corresponding Author
24 25	16	
26	17	Farhaan S. Vahidy, PhD MBBS MPH FAHA
27	18	Josie Roberts Building, Suite 4.123
28 29	19	7550 Greenbriar Drive
30	20	Houston TX 77030
31	21	Phone: 346.356.1479
32	22	fvahidy@houstonmethodist.org
33 34	23	
35 36	24	Running title: Effectiveness of COVID-19 Vaccines among Healthcare Workers
37 38	25	Word count: 2,271
39	20	
40	26	
41 42		
43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54		
55 56		
57		
58		
59		

60

BMJ Open

1 2		
3 4	27	ABSTRACT
5 6	28	Objectives: We provide an account of Real World Effectiveness (RWE) of COVID-19
/ 8 9	29	vaccines among Healthcare workers (HCWs) at a tertiary healthcare system and report
10 11	30	trends in SARS-CoV-2 infections and subsequent utilization of COVID-19 specific short-
12 13	31	term disability leave (STDL).
14 15	32	Design: Cross sectional study
16 17 18	33	Setting and Participants: Summary data on 27,291 employees at a tertiary healthcare
19 20	34	system in the greater Houston metropolitan area between December 15, 2020 and June
21 22	35	5, 2021. The initial 12-week vaccination program period (December 15, 2020 to March
23 24 25	36	6, 2021) was defined as a rapid rollout phase.
26 27	37	Main Outcomes and Measures: At the pandemic onset, HCW testing and surveillance
28 29	38	was conducted wherein SARS-CoV-2 positive HCWs were offered STDL. De-identified
30 31 22	39	summary data of SARS-CoV-2 infections and STDL utilization among HCWs were
32 33 34	40	analyzed. Pre- and post-vaccination trends in SARS-CoV-2 positivity and STDL
35 36	41	utilization rates were evaluated.
37 38	42	Results: Updated for June 5, 2021, 98.2% (n = 26,791) of employees received a full or
39 40 41	43	partial dose of one of the approved mRNA COVID-19 vaccines. The vaccination rate
42 43	44	during the rapid rollout phase was approximately 3,700 doses / 7-days. The overall
44 45	45	mean weekly SARS-CoV-2 positivity rates among HCWs were significantly lower
46 47 48	46	following vaccine rollout (2.4%), compared to pre-vaccination period (11.8%, p < 0.001).
49 50	47	An accompanying 69.8% decline in STDL utilization was also observed (315 to 95
51 52	48	weekly leaves). During the rapid rollout phase, SARS-CoV-2 positivity rate among HM
53 54		
55 56 57		
58		2

2

2		
3 4	49	HCWs declined by 84.3% (8.9% to 1.4% positivity rate), compared to a 54.7% (12.8% to
5 6	50	5.8% positivity rate) decline in the Houston metropolitan area.
7 8	51	Conclusion: Despite limited generalizability of regional hospital-based studies –
9 10 11	52	wherein factors such as the emergence of viral variants and population-level vaccine
12 13	53	penetrance may differ – accounts of robust HCW vaccination programs provide
14 15	54	important guidance for sustaining a critical resource to provide safe and effective care
16 17	55	for COVID-19 and non-COVID-19 patients across healthcare systems.
18 19 20	56	
20 21 22		
22		
24 25		
26 27		
28		
29 30		
31 32		
33		
34 35		
36 27		
37 38		
39 40		
40 41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54		
55 56		
57		
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 4	57	Strengths and limitations of this study
5 6	58	We report data on utilization of COVID-19 specific short-term disability leave
7 8 0	59	(STDL) which was implemented as part of an employee testing and surveillance
9 10 11	60	program.
12 13	61	A vaccine advisory committee (VAC) was established which reviewed available
14 15	62	data and guidance in order to develop a risk-based tiered approach for rapid
16 17 18	63	vaccine rollout.
19 20	64	The generalizability of our findings are limited to the setting of our healthcare
21 22	65	system; nonetheless, such accounts are important to guide planning and
23 24 25	66	assessment of future vaccine administration programs.
25 26 27	67	
28 29		
30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56		
57 58		4
59		

68 INTRODUCTION

Safe and rapid rollout of the United States (US) Food and Drug Administration (FDA) approved vaccines is a potentially transformational public health tool in the armamentarium against the coronavirus disease 2019 (COVID-19). Despite impressive efficacy data from Phase 3 clinical trials, there is a need to demonstrate real world effectiveness (RWE) of these vaccines for controlling the pandemic in a variety of settings, across heterogenous population groups. Healthcare workers (HCWs) have been on the forefront of the COVID-19 pandemic and continue to provide critical care to hundreds of COVID-19 patients across all US regions and globally. The pandemic has reestablished the importance of this valuable resource in being a critically important line of defense against human suffering in the face of a healthcare catastrophe. Most tiered vaccination approaches prioritized HCWs before expanding administration to those in higher-risk age groups and with underlying health conditions. This is important not only from a public health perspective but is also critical for continued operational viability of large and small healthcare systems, such that they can adequately provide treatment and prevention services to their communities.

In the state of Texas, vaccine eligibility initially included frontline workers (Phase 1A) and individuals aged 65 years or older as well as those with underlying health conditions (Phase 1B) [1]. We provide an account of COVID-19 vaccine rollout among HCWs of a tertiary healthcare system in Texas. At the time of vaccination program initiation, the healthcare system was in the midst of a surge in COVID-19 cases and maintaining a viable HCW workforce was critical [1, 2]. Across the system, a program of COVID-19 specific short-term disability leave (STDL) among HCWs had been initiated

98

99

100

101

1 2 **BMJ** Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
19	
∠∪ 21	
∠ ו 22	
22 23	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 12	
43 11	
45 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

and tracking its utilization not only served as an important indicator of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among HCWs, but also
provided a valuable metric to assess impact of vaccination towards maintaining a
healthy HCW workforce. In this report, we demonstrate a signal of RWE of COVID-19
vaccines by evaluating reduction in SARS-CoV-2 infections and subsequent utilization
of STDL among HCWs.

METHODS Study Design and Setting Houston Methodist

102 Houston Methodist (HM) is an 8-hospital healthcare system in the greater Houston metropolitan area, which has been a major hub in the fight against the COVID-103 19 pandemic since March 2020 [3, 4]. At the onset of the pandemic, HM instituted an 104 105 employee SARS-CoV-2 surveillance initiative coupled with an enhanced COVID-19 106 specific STDL program for employees testing positive [5]. Surveillance testing occurred 107 pre- and post-vaccine rollout and was based on polymerase chain reaction (PCR) tests for presence of SARS-CoV-2 RNA in nasopharyngeal specimens. The voluntary 108 109 surveillance program encouraged all HCWs (symptomatic or asymptomatic) to utilize 110 SARS-CoV-2 testing at frequent intervals across all HM testing sites. Testing results were typically available in employee health portals within 24 to 48 hours. Upon the 111 112 detection of a positive test, employees were required to take STDL and were contacted 113 by supervisors for additional follow-up. Additionally, HM established a system-wide

1

60

Page 8 of 24

2			
2 3 4	114	vaccine advisory committee (VAC) in October 2020 to review safety and efficacy data	
5 6	115	submitted by vaccine producers to the FDA for consideration of Emergency Use	
7 8	116	Authorization (EUA). The overarching agenda for the VAC was to independently review	v
9 10 11	117	any available data or guidance before offering vaccines to employees. The VAC	
12 13	118	subsequently evaluated preliminary data and guidance being provided by the Advisory	
14 15	119	Committee on Immunization Practices (ACIP) of the Centers for Disease Control and	
16 17 19	120	Prevention (CDC) and developed a risk-based tiered approach for vaccine	
19 20	121	administration among the employees. Patient-facing HCWs directly involved in the care	Э
21 22	122	of COVID-19 patients were prioritized within the initial weeks after vaccination began o	n
23 24 25	123	December 15, 2020; all other employees were encouraged to wait until vaccine supply	
25 26 27	124	for non-frontline HCWs was available to make an appointment. HM employees receive	d
28 29	125	electronic invitations to schedule vaccination across all HM locations and were offered	а
30 31	126	mRNA vaccine (BNT162b2 or mRNA-1273) being administered on the day of the	
32 33 34	127	appointment. During the early stages of vaccine rollout, various incentives for	
35 36	128	vaccination were provided and subsequently vaccination was mandated on June 7,	
37 38	129	2021. Our analyses represent the pre-mandate time period. This study was not	
39 40	130	regarded as human subjects research by the Houston Methodist Institutional Review	
41 42 43	131	Board (IRB) since this study does not involve direct human participation and was	
44 45	132	therefore exempt from human subject research approval. This study was approved by	
46 47	133	the HM Institutional Review Board as a quality improvement project with waiver of	
48 49 50	134	informed consent.	
50 51 52	135	Statistical Analysis	
53 54			
55 56			
57 58 59			7

1 2		
2 3 4	136	We assimilated de-identified summary data of SARS-CoV-2 infections and STDL
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	137	utilization among HCWs across the period of the pandemic and defined the first 12-
	138	week period (December 15, 2020 to March 6, 2021) as an initial rapid rollout period for
	139	COVID-19 vaccination among HCWs. Summary metrics are provided as frequencies
	140	and proportions. Tests for proportional comparisons and Chi-squared trends were used
	141	to assess pre- and post-vaccination (including the rapid rollout period) SARS-CoV-2
	142	positivity rates and trends. Reporting of vaccine efficacy was limited to descriptive
	143	accounts of the number and proportion of breakthrough infections as assessed through
	144	the employee surveillance program.
	145	Patient and Public Involvement
	146	Patients or the public were not involved in the design, or conduct, or reporting, or
	147	dissemination plans of our research.
	148	
	149	RESULTS
	150	The COVID-19 vaccine rollout was simultaneously initiated at all HM locations on
37 38 30	151	December 15, 2020. Updated for June 5, 2021, from among a total of 27,291
40 41	152	employees, 26,791 (98.2%) had received at least a single dose of either one of the two
42 43	153	approved mRNA COVID-19 vaccines, whereas 26,723 (97.9%) had completed both
44 45	154	doses. During the 12-week initial rapid rollout period (December 15, 2020 to March 6,
40 47 48	155	2021) the vaccination rate was 3,700 doses / 7-days.
49 50	156	The recent (November 1, 2020 to June 5, 2021) trends in SARS-CoV-2 positivity
51 52 53 54 55	157	among HCWs are demonstrated in Figure 1. The mean SARS-CoV-2 weekly positivity
	158	rate prior to initiation of the HCW vaccination program (11.8%) was significantly higher
56 57		
58 59		Ear poor rovious only, http://hmiopop.hmi.com/cita/ahout/cuidalines.yhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
2 3 4	159	compared to the positivity rate following vaccination initiation (2.4%, $p < 0.001$). The
5 6	160	upward trend in SARS-CoV-2 positivity rate observed in the 45-day pre-vaccination
7 8	161	period (November 1, 2020 to December 12, 2020) has significantly trended down during
9 10 11	162	the post-vaccination phase (December 15, 2020 to June 5, 2021) (p _{trend} < 0.001).
12 13	163	Since the end of January 2021, the weekly SARS-CoV-2 infection rate among
14 15	164	HCWs participating in surveillance testing has consistently remained below 3.1%.
16 17 18	165	During the initial 12-week rapid rollout period, the proportional decline in HM HCW
19 20	166	SARS-CoV-2 positivity rate was 84.3% (8.9% to 1.4%), as compared to a 54.7% decline
21 22	167	(12.8% to 5.8%) observed in the greater Houston metropolitan area [1].
23 24 25	168	As a part of the HCW surveillance program, 117 (0.4%) employees were
25 26 27	169	reported to have tested positive more than 7 days after receiving the second dose of the
28 29	170	vaccine, which includes both asymptomatic random surveillance of employees as well
30 31 22	171	as symptomatic referrals from the employee health service. Among these positive
32 33 34	172	cases, 66 (56.4%) were reported to be symptomatic.
35 36	173	Figure 2 represents the weekly frequency of STDL utilization among HCWs. We
37 38	174	also report the approximate temporal emergence of known SARS-CoV-2 mutations
39 40 41	175	(D614G) [6] as well as detection of viral variants (Alpha B.1.1.7; Beta B.1.351; Gamma
42 43	176	P.1 and P.2; B.1.429 and B.1.427) in the greater Houston area, based on sequencing
44 45	177	data of patient specimens performed at HM [7]. Compared to the peak of STDL
46 47 48	178	utilization during the initial weeks of vaccine rollout (January 3 to 9, 2021: 315 leaves), a
49 50	179	69.8% decline has been observed during the most recent reporting period (May 30 to
51 52	180	June 5, 2021: 95 leaves), with utilization numbers approaching pre-pandemic levels.
53 54 55	181	
55 56 57		
58		9
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3 4	1
5 6	1
7 8	1
9 10 11	1
12 13	1
14 15	1
16 17	1
18 19 20	1
20 21 22	1
23 24	1
25 26	1
27 28 20	1
29 30 31	1
32 33	1
34 35	1
36 37	1
38 39 40	T
40 41 42	1
43 44	1
45 46	2
47 48	2
49 50	2
51 52 53	2
54 55	2
56 57	
58 59	
()()	

182 **DISCUSSION**

Given the critical need to maintain an effective and safe healthcare workforce .83 and to minimize inadvertent viral transmission in the healthcare setting, frontline HCWs .84 were ubiquitously recognized as a priority group for vaccination. In addition to continued .85 care provided to COVID-19 and non-COVID-19 patients; large healthcare organizations .86 .87 have been called upon to organize and execute delivery of COVID-19 vaccines among its HCWs and across the community at large. HM is a state-designated vaccine hub .88 .89 and, as of June 5, 2021, has administered over 780 thousand vaccines to members of .90 the community [8].

Vaccine supply and delivery during the initial nationwide rollout was beset with .91 .92 logistical challenges, and administration metrics lagged behind target levels. However, during the same time period we were able to achieve rapid rates of HCW vaccination .93 with demonstrated vaccine RWE in terms of curtailing infection rates as well as reducing .94 .95 utilization of STDL for HCWs. Our vaccination planning started several months prior to vaccine delivery and required close coordination between a vaccine scientific .96 committee, operational leadership, physician organization, and the system's infection .97 .98 control management. We instituted a seamless vaccination program among our HCWs while caring for large numbers of COVID-19 and non-COVID-19 patients and .99 200 maintaining regular hospital operations. Furthermore, hospital leadership maintained a 201 consistent and transparent line of communication with the workforce. This included weekly communication of the latest scientific and policy updates, reminders on public 202 203 health guidance, and encouragement of individual vaccination. Our initial results with 204 indices of HCW protection against SARS-CoV-2 infection and related disability indicate
Page 12 of 24

that the vaccines can be deployed in the real-world settings with high levels of
effectiveness. Of note, we provide evidence of vaccine effectiveness amid the
emergence of multiple variants of concern (VOC) in the greater Houston area starting in
December 2020 [7].

Interpretation of our findings should take into account the contextual differences between our healthcare system setting and the general Houston public. During the 12week rapid rollout period (December 15, 2020 to March 6, 2021), vaccines were made available to all HM employees. At the same time, vaccine administration throughout the greater Houston metropolitan area followed recommendations set by the state of Texas and was only available to frontline workers (Phase 1A) and individuals aged 65 years and older or with co-existing conditions (Phase 1B) [1]. Vaccine administration for individuals aged 50 years and older in the general public was not initiated until Phase 1C (March 15, 2021). Given this, it is possible that the phased differences in vaccine eligibility and administration contributed to the observed differences in SARS-CoV-2 positivity rate between the HM workforce and the general Houston population.

Furthermore, it is important to note circumstances influencing the implementation of protective public health measures. Throughout the duration of the pandemic, our hospital system has consistently followed public health recommendations. Personal protective equipment (PPE) for frontline workers was always made available; masks and social distancing guidelines were followed, even in non-clinical settings. Patients were required to wear masks and the allowance of visitors was restricted, depending on the severity of case surges at the time. Conversely, although a statewide mask mandate Page 13 of 24

1

BMJ Open

2	
3 4	22
5 6	22
7 8	22
9 10	23
11 12	23
13 14	20
15 16	23
17 18	23
19 20	23
21 22	23
23 24 25	23
25 26 27	23
28 29	23
30 31	23
32 33	24
34 35	24
36 37	24
38 39	24
40 41	24
42 43	24
44 45	24
40 47 48	24
40 49 50	24
50 51 52	24
53 54	24
55 56	
57	
58 59	

60

7 was in effect for a duration of the pandemic (July 2020 – March 2021), adherence to 8 these public health measures may have not been consistently enforced.

9 Our results are limited to a narrative and descriptive account of the reduction in infection and STDL utilization across one healthcare system. Furthermore, we have not 0 analyzed individual HCW characteristics (such as demographics, comorbidities and risk 1 2 of occupational exposure) that may be associated with SARS-CoV-2 infection.

Concurrent studies on the established immunological protection against infection are 3 4 needed to fully understand the population-wide and individual benefits that vaccinations 5 confer. The observed trends in SARS-CoV-2 positivity rate were based on diagnostic 6 tests conducted as part of the employee surveillance program and were requested 7 voluntarily and at the prerogative of the HCW. We did not distinguish results based on 8 either the purpose of testing or whether HCWs experienced viral exposure and / or presented with symptoms. It is possible that the dynamics of program participation 9 0 differed in the pre- and post-vaccination periods. Nonetheless, we observed testing participation to remain relatively consistent during the initial phase of the vaccination 1 program, with the mean number of weekly tests performed post-vaccination rollout 2 3 (December 20, 2020 to February 25, 2021: 2,621 tests) continuing at a rate comparable 4 to that during the peak surveillance period prior to vaccination rollout (August 30, 2020) 5 to December 12, 2020: 2,599 tests). Finally, although our data demonstrate a high 6 degree of correlation between vaccination and reduction in infection and STDL utilization, the potential influence of protective effect offered by lower community spread 7 8 of the virus or differences in behavioral patterns between health system employees and 9 the general community cannot be ruled out.

Page 14 of 24

BMJ Open

2		
- 3 4	250	Hospitals are a microcosm of the communities they serve as well as a nexus in
5 6	251	which there is a high rate of encounters between healthy and ill individuals. Despite
7 8 0	252	determined efforts to vaccinate the broader population, the risk of SARS-CoV-2
9 10 11	253	infections and related COVID-19 hospitalizations has not been fully eliminated,
12 13	254	especially due to the continued emergence of VOCs [9, 10] and relaxation of protective
14 15	255	public health measures. Furthermore, although robust vaccine effectiveness (VE) has
16 17 18	256	been reported [11], the duration of VE is currently unknown; consequently, booster
19 20	257	shots that confer additional protection against VOCs may be recommended and are
21 22	258	currently undergoing testing [12].
23 24 25	259	In spite of varying challenges, vaccination rates in the US have continued at a
25 26 27	260	progressive pace; at the time of this reporting, ≥ 62.9% of individuals are at least
28 29	261	partially immunized and \geq 53.6% are fully immunized [13]. Nonetheless, global
30 31	262	vaccination rates are estimated at approximately only \geq 41.5% of the population [14]. As
32 33 34	263	efforts to support international partners in their respective vaccination programs
35 36	264	proceed, insights from the success of vaccine rollout in the US will provide a valuable
37 38	265	model for reference. Furthermore, in the face of continued high rates of vaccine
39 40 41	266	hesitancy [15] as well as the risk of a resurgence in cases globally, assimilating and
42 43	267	reporting cumulative evidence of real-world vaccine effectiveness is paramount to build
44 45	268	population-wide confidence in vaccination, hence rapidly achieving desirable levels of
46 47	269	herd immunity against the current predominant strains of SARS-CoV-2.
48 49 50	270	
51 52	271	
53 54		
55 56 57		
58 59		13
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	272	ACKNOWLEDGMENTS:	
5 6	273	We would like to acknowledge the efforts of the following Houston Methodist employe	es
7 8 9	274	in successfully instituting the employee vaccination and surveillance programs: Ms.	
10 11	275	Jennifer Borders (System Director Wellness Services), Ms. Paula DesRoches (Direct	lor
12 13	276	Employee Health and Occupational Medicine), Mr. Stephen Spielman (SVP & COO c	of
14 15	277	Specialty Physician Group), Mr. Jeff Carr (VP Finance) and Dr. Dan Metzen (System	
16 17 18	278	Director of Pharmacy). All individuals are full time employees of Houston Methodist a	nd
19 20	279	were not financially compensated for this work. We additionally acknowledge all	
21 22	280	Houston Methodist employees and physicians for their services during the COVID-19)
23 24 25	281	pandemic.	
25 26 27	282		
28 29	283	FUNDING: This research received no specific grant from any funding agency in the	
30 31	284	public, commercial or not-for-profit sectors.	
32 33 34	285		
35 36	286	COMPETING INTEREST: None declared.	
37 38	287		
39 40 41	288	DATA AVAILABILITY STATEMENT: Data cannot be shared publicly because of	
41 42 43	289	hospital employee confidentiality concerns. Reasonable requests by researchers who	C
44 45	290	meet the criteria for access to confidential data can be made to the corresponding	
46 47	291	author (fvahidy@houstonmethodist.org).	
48 49 50	292		
51 52	293	RESEARCH ETHICS APPROVAL STATEMENT: This study was not regarded as	
53 54	294	human subjects research by the Houston Methodist (HM) Institutional Review Board	
55 56			
57 58 59			14
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

CKNOWLEDGMENTS:

274	in successfully instituting the employee vaccination and surveillance programs: Ms.
275	Jennifer Borders (System Director Wellness Services), Ms. Paula DesRoches (Director
276	Employee Health and Occupational Medicine), Mr. Stephen Spielman (SVP & COO of
277	Specialty Physician Group), Mr. Jeff Carr (VP Finance) and Dr. Dan Metzen (System
278	Director of Pharmacy). All individuals are full time employees of Houston Methodist and
279	were not financially compensated for this work. We additionally acknowledge all
280	Houston Methodist employees and physicians for their services during the COVID-19
281	pandemic.
282	
283	FUNDING: This research received no specific grant from any funding agency in the
284	public, commercial or not-for-profit sectors.
285	
286	COMPETING INTEREST: None declared.
287	
288	DATA AVAILABILITY STATEMENT: Data cannot be shared publicly because of
289	hospital employee confidentiality concerns. Reasonable requests by researchers who
290	meet the criteria for access to confidential data can be made to the corresponding
291	author (fvahidy@houstonmethodist.org).
292	
293	RESEARCH ETHICS APPROVAL STATEMENT: This study was not regarded as
294	human subjects research by the Houston Methodist (HM) Institutional Review Board

295 (IRB) since this study does not involve direct human participation and was therefore

exempt from human subjects approval. This study was approved by the HM Institutional

BMJ Open

297 Review Board as a quality improvement project with waiver of informed consent.

299 AUTHOR CONTRIBUTIONS:

FV was responsible for the study conception and design. Data acquisition and analysis
were performed by AP. Interpretation of results and initial drafting of the manuscript
were completed by FV and AP. FV, AP, KH, AB, DS, RS, RP, and MB contributed to
critical revision of the manuscript and approved the final version for submission.

EXCLUSIVE LICENSE:

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author license), an exclusive license and/or a non-exclusive license for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY license shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in Journal of Epidemiology & Community Health and any other BMJ products and to exploit all rights, as set out in our license.

316 316

The Submitting Author accepts and understands that any supply made under these

terms is made by BMJ to the Submitting Author unless you are acting as an employee

on behalf of your employer or a postgraduate student of an affiliated institution which is

1	
2 3 4	317
5 6	318
7 8 9	319
) 10 11	320
12 13	321
14 15 16	322
10 17 18	323
19 20	324
21 22 22	325
23 24 25	326
26 27	
28 29 20	
30 31 32	
33 34	
35 36	
37 38 30	
39 40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53 54	
54 55 56	
57 58	

59

paying any applicable article publishing charge ("APC") for Open Access articles. Where
the Submitting Author wishes to make the Work available on an Open Access basis
(and intends to pay the relevant APC), the terms of reuse of such Open Access shall be
governed by a Creative Commons license – details of these licenses and which
Creative Commons license will apply to this Work are set out in our license referred to
above.

3 4	327	REFE	RENCES
5 6 7	328	1.	Texas Department of State Health Services. Texas COVID-19 Data.
/ 8 9	329		https://dshs.texas.gov/coronavirus/cases.aspx (accessed 8 Feb 2021)
10 11	330	2.	Texas Medical Center. Coronavirus (COVID-19) Updates.
12 13	331		https://www.tmc.edu/coronavirus-updates/ (accessed 8 Feb 2021).
14 15	332	3.	Tittle S, Braxton C, Schwartz RL, et al. A Guide for Surgical and Procedural
16 17 18	333		Recovery After the First Surge of Covid-19. NEJM Catalyst Innovations in Care
19 20	334		Delivery Published Online First: 2 July 2020. doi:10.1056/cat.20.0287
21 22	335	4.	Vahidy FS, Drews AL, Masud FN, et al. Characteristics and Outcomes of COVID-
23 24 25	336		19 Patients During Initial Peak and Resurgence in the Houston Metropolitan
26 27	337		Area. JAMA 2020;324:998. doi:10.1001/jama.2020.15301
28 29	338	5.	Vahidy FS, Bernard DW, Boom ML, et al. Prevalence of SARS-CoV-2 Infection
30 31 32	339		Among Asymptomatic Health Care Workers in the Greater Houston, Texas, Area.
33 34	340		JAMA Netw Open 2020;3:e2016451. doi:10.1001/jamanetworkopen.2020.16451
35 36	341	6.	Long SW, Olsen RJ, Christensen PA, et al. Molecular Architecture of Early
37 38	342		Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major
39 40 41	343		Metropolitan Area. mBio 2020;11. doi:10.1128/mBio.02707-20
42 43	344	7.	Long SW, Olsen RJ, Christensen PA, et al. Sequence Analysis of 20,453 Severe
44 45	345		Acute Respiratory Syndrome Coronavirus 2 Genomes from the Houston
46 47 48	346		Metropolitan Area Identifies the Emergence and Widespread Distribution of
40 49 50	347		Multiple Isolates of All Major Variants of Concern. The American Journal of
51 52	348		Pathology 2021;191:983–92. doi:10.1016/j.ajpath.2021.03.004
53 54			
55 56 57			
58 59			17

1 2			
3 4	349	8. Houston Methodist. COVID-19 Vaccine Information.	
5 6	350	https://www.houstonmethodist.org/coronavirus/vaccine-updates/ (accessed 7	
7 8	351	Mar 2021)	
9 10 11	352	9. Walensky RP, Walke HT, Fauci AS. SARS-CoV-2 Variants of Concern in the	
12 13	353	United States—Challenges and Opportunities. JAMA Published Online First: 1	7
14 15	354	February 2021. doi:10.1001/jama.2021.2294	
16 17	355	10. Mascola JR, Graham BS, Fauci AS. SARS-CoV-2 Viral Variants—Tackling a	
18 19 20	356	Moving Target. JAMA Published Online First: 11 February 2021.	
21 22	357	doi:10.1001/jama.2021.2088	
23 24	358	11. Pilishvili T, Fleming-Dutra KE, Farrar JL, et al. Interim Estimates of Vaccine	
25 26 27	359	Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among	
27 28 29	360	Health Care Personnel — 33 U.S. Sites, January–March 2021. MMWR Morb	
30 31	361	Mortal Wkly Rep 2021;70:753–8. doi:10.15585/mmwr.mm7020e2	
32 33	362	12. Rubin R. COVID-19 Vaccines vs Variants-Determining How Much Immunity Is	s
35 36	363	Enough. JAMA 2021;325:1241. doi:10.1001/jama.2021.3370	
37 38	364	13. Centers for Disease Control and Prevention. COVID-19 Vaccinations in the	
39 40	365	United States. COVID Data Tracker. https://covid.cdc.gov/covid-data-	
41 42 43	366	tracker/#vaccinations (accessed 1 Jun 2021).	
44 45	367	14. Mathieu E, Ritchie H, Ortiz-Ospina E, et al. A global database of COVID-19	
46 47	368	vaccinations. Nat Hum Behav Published Online First: 10 May 2021.	
48 49 50	369	doi:10.1038/s41562-021-01122-8	
50 51 52			
53 54			
55 56 57			
57 58 59			18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2 3	370	15 University of Houston Hobby School of Public Affairs Texas Policy & Politics
4 5	271	2021: Toyona and the COVID 10 Vaccine, https://uh.adu/babbu/ty2021/
6 7	371	2021. Texans and the COVID-19 Vaccine. https://un.edu/hobby/tx2021/
8 9	372	(accessed 3 Feb 2021)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 52 62 72 8 29 30 132 33 435 36 37 839 40 41 42 43 44 54 64 7 84 9 50 55 56 57 58	372 373 374	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
~ ~ ~		

1 2		
2 3 4	375	Figure Legends
5 6	376	
7 8	377	Figure 1: SARS-CoV-2 Positivity Rates from the Houston Methodist (HM) Surveillance
9 10 11	378	Employee Program Pre- and Post-COVID-19 Vaccine Initiation. Reference lines for the
12 13	379	initial 12-week rapid rollout period for vaccination (December 15, 2020 to March 6,
14 15	380	2021) are shown.
16 17 18	381	
19 20	382	
21 22	383	Figure 2: Enhanced Short-Term Disability Leave Utilization by Houston Methodist (HM)
23 24 25	384	Employees Across the COVID-19 Pandemic Timeline. Reference lines for the initial 12-
25 26 27	385	week rapid rollout period for vaccination (December 15, 2020 to March 6, 2021) are
28 29	386	shown. Annotations depict relative emergence and detection of SARS-CoV-2 mutations
30 31 22	387	and viral variants in greater Houston.
33 34	388	
35	389 390	
36 37	391	
38 39		
40		
41 42		
43		
44 45		
46		
47		
48		
49 50		
51		
52		
53		
54		
55		
50 57		
58		20
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 1. SARS-CoV-2 Positivity Rates from the Houston Methodist (HM) Surveillance Employee Program Pre- and Post-COVID-19 Vaccine Initiation. Reference lines for the initial 12-week rapid rollout period for vaccination (December 15, 2020 to March 6, 2021) are shown.

119x64mm (300 x 300 DPI)

Figure 2: Enhanced Short-Term Disability Leave Utilization by Houston Methodist (HM) Employees Across the COVID-19 Pandemic Timeline. Reference lines for the initial 12-week rapid rollout period for vaccination (December 15, 2020 to March 6, 2021) are shown. Annotations depict relative emergence and detection of SARS-CoV-2 mutations and viral variants in greater Houston.

353x239mm (96 x 96 DPI)

1
2
3
4
5
5
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
20
27 20
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
52
54
55
50 57
5/
58
59

STROBE Statement—Checklist of items that should be included in reports of cross-se	ctional studies
T/	

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2-3
		was done and what was found	
Ter dana Jan adda ar			
	2		.
Background/rationale	2	Explain the scientific background and rationale for the investigation	5-6
		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5-6
Methods			1
Study design	4	Present key elements of study design early in the paper	6-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6-7
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6-7
		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-8
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-8
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	6-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7-8
Quantum (C) annotes		applicable describe which groupings were chosen and why	, 0
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7-8
Statistical methods	12	confounding	/ 0
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data ware addressed	7.8
		(d) If applicable, describe analytical methods taking account of sampling	7-0
		(a) It applicable, describe analytical methods taking account of sampling	7-0
		() Describe and consistent and have	NT/A
		(<u>e</u>) Describe any sensitivity analyses	IN/A
Results			1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8-9
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	8-9
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	N/A
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8-9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	8-9
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	

		(b) Report category boundaries when continuous variables were categorized	N/A
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8-9
Discussion			
Key results	18	Summarise key results with reference to study objectives	10-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10-12
Generalisability	21	Discuss the generalisability (external validity) of the study results	10-13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Impact of mRNA Vaccines in Curtailing SARS-CoV-2 Infection and Disability Leave Utilization Among Healthcare Workers During the COVID-19 Pandemic: Cross Sectional Analysis from a Tertiary Healthcare System in the Greater Houston Metropolitan Area

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054332.R2
Article Type:	Original research
Date Submitted by the Author:	04-Oct-2021
Complete List of Authors:	Vahidy, Farhaan S; Houston Methodist, Houston Methodist Academic Institute; Houston Methodist, Center for Outcomes Research Pan, Alan; Houston Methodist, Center for Outcomes Research Hagan, Kobina; Houston Methodist, Center for Outcomes Research Bako, Abdulaziz; Houston Methodist, Center for Outcomes Research Sostman, H Dirk; Houston Methodist, Houston Methodist Academic Institute; Weill Cornell Medicine Schwartz, Roberta; Houston Methodist, Houston Methodist Academic Institute Phillips, Robert; Houston Methodist, Houston Methodist Academic Institute; Houston Methodist, Center for Outcomes Research Boom, Marc; Houston Methodist, Houston Methodist Academic Institute; Weill Cornell Medicine
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Public health, Epidemiology, Global health, Health policy
Keywords:	Public health < INFECTIOUS DISEASES, Epidemiology < INFECTIOUS DISEASES, COVID-19, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Infection control < INFECTIOUS DISEASES
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3	1	Impact of mRNA Vaccines in Curtailing SARS-CoV-2 Infection and Disability
4 5	2	Leave Utilization Among Healthcare Workers During the COVID-19 Pandemic:
6	3	Cross Sectional Analysis from a Tertiary Healthcare System in the Greater
7	4	Houston Metropolitan Area
8	5	
9 10	6	Farhaan S. Vahidy PhD MBRS MPH ^{1,2,3} Alan P. Pan MS ² Kohina Hagan MBChB
11	U	
12	7	MPH, ² Abdulaziz T. Bako MBBS MPH PhD, ² H. Dirk Sostman MD, ^{1,3}
13	8	Roberta L. Schwartz PhD, ¹ Robert A. Phillips MD PhD, ^{1,2,3} Marc L. Boom MD ^{1,3}
14 15	٥	
16	10	1 Houston Methodist Academic Institute, Houston Methodist, Houston TX
17	10	2. Conter for Outcomes Research, Houston Methodist, Houston TX
18 10	11	2. Visil Carpel Medicine, New York NY
20	12	3. Well Cornell Medicine, New York NY
21	13	
22	14	
23 24	15	Corresponding Author
24 25	16	
26	17	Farhaan S. Vahidy, PhD MBBS MPH FAHA
27	18	Josie Roberts Building, Suite 4.123
28 29	19	7550 Greenbriar Drive
30	20	Houston TX 77030
31	21	Phone: 346.356.1479
32	22	fvahidy@houstonmethodist.org
33 34	23	
35 36	24	Running title: Effectiveness of COVID-19 Vaccines among Healthcare Workers
37 38	25	Word count: 2,271
39	20	
40	26	
41 42		
43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54		
55 56		
57		
58		
59		

60

BMJ Open

1 2		
3 4	27	ABSTRACT
5 6	28	Objectives: We provide an account of Real World Effectiveness (RWE) of COVID-19
/ 8 9	29	vaccines among Healthcare workers (HCWs) at a tertiary healthcare system and report
10 11	30	trends in SARS-CoV-2 infections and subsequent utilization of COVID-19 specific short-
12 13	31	term disability leave (STDL).
14 15	32	Design: Cross sectional study
16 17 18	33	Setting and Participants: Summary data on 27,291 employees at a tertiary healthcare
19 20	34	system in the greater Houston metropolitan area between December 15, 2020 and June
21 22	35	5, 2021. The initial 12-week vaccination program period (December 15, 2020 to March
23 24 25	36	6, 2021) was defined as a rapid rollout phase.
26 27	37	Main Outcomes and Measures: At the pandemic onset, HCW testing and surveillance
28 29	38	was conducted wherein SARS-CoV-2 positive HCWs were offered STDL. De-identified
30 31 22	39	summary data of SARS-CoV-2 infections and STDL utilization among HCWs were
32 33 34	40	analyzed. Pre- and post-vaccination trends in SARS-CoV-2 positivity and STDL
35 36	41	utilization rates were evaluated.
37 38	42	Results: Updated for June 5, 2021, 98.2% (n = 26,791) of employees received a full or
39 40 41	43	partial dose of one of the approved mRNA COVID-19 vaccines. The vaccination rate
42 43	44	during the rapid rollout phase was approximately 3,700 doses / 7-days. The overall
44 45	45	mean weekly SARS-CoV-2 positivity rates among HCWs were significantly lower
46 47 48	46	following vaccine rollout (2.4%), compared to pre-vaccination period (11.8%, p < 0.001).
49 50	47	An accompanying 69.8% decline in STDL utilization was also observed (315 to 95
51 52	48	weekly leaves). During the rapid rollout phase, SARS-CoV-2 positivity rate among HM
53 54		
55 56 57		
58		2

2

2		
3 4	49	HCWs declined by 84.3% (8.9% to 1.4% positivity rate), compared to a 54.7% (12.8% to
5 6	50	5.8% positivity rate) decline in the Houston metropolitan area.
7 8	51	Conclusion: Despite limited generalizability of regional hospital-based studies –
9 10 11	52	wherein factors such as the emergence of viral variants and population-level vaccine
12 13	53	penetrance may differ – accounts of robust HCW vaccination programs provide
14 15	54	important guidance for sustaining a critical resource to provide safe and effective care
16 17	55	for COVID-19 and non-COVID-19 patients across healthcare systems.
18 19 20	56	
20 21 22		
22		
24 25		
26 27		
28		
29 30		
31 32		
33		
34 35		
36 27		
37 38		
39 40		
40 41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54		
55 56		
57		
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3 4	57	Strengths and limitations of this study
5 6	58	We tracked COVID-19 specific short-term disability leave utilization over time
/ 8 9	59	among employees of a large tertiary healthcare system in Houston, Texas which
10 11	60	instituted early mandates for COVID-19 vaccination.
12 13	61	We additionally evaluated data from an employee SARS-CoV-2 surveillance
14 15 16	62	program with information on COVID-19 vaccination, and symptomatic and
17 18	63	breakthrough infections.
19 20	64	The generalizability of our findings are limited to the setting of our healthcare
21 22 23	65	system.
23 24 25	66	 Surveillance for SARS-CoV-2 positivity among employees was highly
26 27	67	encouraged and testing was readily available across several locations, however
28 29 30	68	surveillance program was voluntary.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	69	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

70 INTRODUCTION

Safe and rapid rollout of the United States (US) Food and Drug Administration (FDA) approved vaccines is a potentially transformational public health tool in the armamentarium against the coronavirus disease 2019 (COVID-19). Despite impressive efficacy data from Phase 3 clinical trials, there is a need to demonstrate real world effectiveness (RWE) of these vaccines for controlling the pandemic in a variety of settings, across heterogenous population groups. Healthcare workers (HCWs) have been on the forefront of the COVID-19 pandemic and continue to provide critical care to hundreds of COVID-19 patients across all US regions and globally. The pandemic has reestablished the importance of this valuable resource in being a critically important line of defense against human suffering in the face of a healthcare catastrophe. Most tiered vaccination approaches prioritized HCWs before expanding administration to those in higher-risk age groups and with underlying health conditions. This is important not only from a public health perspective but is also critical for continued operational viability of large and small healthcare systems, such that they can adequately provide treatment and prevention services to their communities.

In the state of Texas, vaccine eligibility initially included frontline workers (Phase 1A) and individuals aged 65 years or older as well as those with underlying health conditions (Phase 1B) [1]. We provide an account of COVID-19 vaccine rollout among HCWs of a tertiary healthcare system in Texas. At the time of vaccination program initiation, the healthcare system was in the midst of a surge in COVID-19 cases and maintaining a viable HCW workforce was critical [1, 2]. Across the system, a program of COVID-19 specific short-term disability leave (STDL) among HCWs had been initiated

BMJ Open

2	
3	
4	
5	
6	
6	
7	
8	
0	
9	
10	
11	
11	
12	
13	
11	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
20	
29	
30	
31	
21	
32	
33	
34	
25	
35	
36	
37	
20	
38	
39	
⊿∩	
40	
41	
42	
Δ٦	
44	
45	
<u>16</u>	
-10	
47	
48	
40	
77	
50	
51	
50	
52	
53	
54	
55	
55	
56	
57	
50	
20	
50	

60

93 and tracking its utilization not only served as an important indicator of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among HCWs, but also 94 95 provided a valuable metric to assess impact of vaccination towards maintaining a healthy HCW workforce. In this report, we demonstrate a signal of RWE of COVID-19 96 97 vaccines by evaluating reduction in SARS-CoV-2 infections and subsequent utilization 98 of STDL among HCWs.

100

99

101

- - 102 METHODS
- joroee 103 Study Design and Setting

Houston Methodist (HM) is an 8-hospital healthcare system in the greater 104 Houston metropolitan area, which has been a major hub in the fight against the COVID-105 19 pandemic since March 2020 [3, 4]. At the onset of the pandemic, HM instituted an 106 107 employee SARS-CoV-2 surveillance initiative coupled with an enhanced COVID-19 108 specific STDL program for employees testing positive [5]. Surveillance testing occurred 109 pre- and post-vaccine rollout and was based on polymerase chain reaction (PCR) tests for presence of SARS-CoV-2 RNA in nasopharyngeal specimens. The voluntary 110 111 surveillance program encouraged all HCWs (symptomatic or asymptomatic) to utilize 112 SARS-CoV-2 testing at frequent intervals across all HM testing sites. Testing results were typically available in employee health portals within 24 to 48 hours. Upon the 113 114 detection of a positive test, employees were required to take STDL and were contacted 115 by supervisors for additional follow-up. Additionally, HM established a system-wide

Page 8 of 24

vaccine advisory committee (VAC) in October 2020 to review safety and efficacy data submitted by vaccine producers to the FDA for consideration of Emergency Use Authorization (EUA). The overarching agenda for the VAC was to independently review any available data or guidance before offering vaccines to employees. The VAC subsequently evaluated preliminary data and guidance being provided by the Advisory Committee on Immunization Practices (ACIP) of the Centers for Disease Control and Prevention (CDC) and developed a risk-based tiered approach for vaccine administration among the employees. Patient-facing HCWs directly involved in the care of COVID-19 patients were prioritized within the initial weeks after vaccination began on December 15, 2020; all other employees were encouraged to wait until vaccine supply for non-frontline HCWs was available to make an appointment. HM employees received electronic invitations to schedule vaccination across all HM locations and were offered a mRNA vaccine (BNT162b2 or mRNA-1273) being administered on the day of the appointment. During the early stages of vaccine rollout, various incentives for vaccination were provided and subsequently vaccination was mandated on June 7, 2021. Our analyses represent the pre-mandate time period. This study was not regarded as human subjects research by the Houston Methodist Institutional Review Board (IRB) since this study does not involve direct human participation and was therefore exempt from human subject research approval. This study was approved by the HM Institutional Review Board as a quality improvement project with waiver of informed consent. Statistical Analysis

1 2		
2 3 4 5 6 7 8	138	We assimilated de-identified summary data of SARS-CoV-2 infections and STDL
	139	utilization among HCWs across the period of the pandemic and defined the first 12-
	140	week period (December 15, 2020 to March 6, 2021) as an initial rapid rollout period for
9 10 11	141	COVID-19 vaccination among HCWs. Summary metrics are provided as frequencies
12 13	142	and proportions. Tests for proportional comparisons and Chi-squared trends were used
14 15	143	to assess pre- and post-vaccination (including the rapid rollout period) SARS-CoV-2
16 17 18	144	positivity rates and trends. Reporting of vaccine efficacy was limited to descriptive
19 20	145	accounts of the number and proportion of breakthrough infections as assessed through
21 22	146	the employee surveillance program.
23 24 25	147	Patient and Public Involvement
25 26 27	148	Patients or the public were not involved in the design, or conduct, or reporting, or
28 29	149	dissemination plans of our research.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90 51 52 53 54	150	
	151	RESULTS
	152	The COVID-19 vaccine rollout was simultaneously initiated at all HM locations on
	153	December 15, 2020. Updated for June 5, 2021, from among a total of 27,291
	154	employees, 26,791 (98.2%) had received at least a single dose of either one of the two
	155	approved mRNA COVID-19 vaccines, whereas 26,723 (97.9%) had completed both
	156	doses. During the 12-week initial rapid rollout period (December 15, 2020 to March 6,
	157	2021) the vaccination rate was 3,700 doses / 7-days.
	158	The recent (November 1, 2020 to June 5, 2021) trends in SARS-CoV-2 positivity
	159	among HCWs are demonstrated in Figure 1. The mean SARS-CoV-2 weekly positivity
	160	rate prior to initiation of the HCW vaccination program (11.8%) was significantly higher
56 57		
58 59		8
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
2 3 4	161	compared to the positivity rate following vaccination initiation (2.4%, $p < 0.001$). The
5 6	162	upward trend in SARS-CoV-2 positivity rate observed in the 45-day pre-vaccination
7 8	163	period (November 1, 2020 to December 12, 2020) has significantly trended down during
9 10 11	164	the post-vaccination phase (December 15, 2020 to June 5, 2021) (p _{trend} < 0.001).
12 13	165	Since the end of January 2021, the weekly SARS-CoV-2 infection rate among
14 15	166	HCWs participating in surveillance testing has consistently remained below 3.1%.
16 17 19	167	During the initial 12-week rapid rollout period, the proportional decline in HM HCW
19 20	168	SARS-CoV-2 positivity rate was 84.3% (8.9% to 1.4%), as compared to a 54.7% decline
21 22	169	(12.8% to 5.8%) observed in the greater Houston metropolitan area [1].
23 24 25	170	As a part of the HCW surveillance program, 117 (0.4%) employees were
25 26 27	171	reported to have tested positive more than 7 days after receiving the second dose of the
28 29	172	vaccine, which includes both asymptomatic random surveillance of employees as well
30 31	173	as symptomatic referrals from the employee health service. Among these positive
32 33 34	174	cases, 66 (56.4%) were reported to be symptomatic.
35 36	175	Figure 2 represents the weekly frequency of STDL utilization among HCWs. We
37 38	176	also report the approximate temporal emergence of known SARS-CoV-2 mutations
39 40 41	177	(D614G) [6] as well as detection of viral variants (Alpha B.1.1.7; Beta B.1.351; Gamma
41 42 43	178	P.1 and P.2; B.1.429 and B.1.427) in the greater Houston area, based on sequencing
44 45	179	data of patient specimens performed at HM [7]. Compared to the peak of STDL
46 47 48	180	utilization during the initial weeks of vaccine rollout (January 3 to 9, 2021: 315 leaves), a
40 49 50	181	69.8% decline has been observed during the most recent reporting period (May 30 to
51 52	182	June 5, 2021: 95 leaves), with utilization numbers approaching pre-pandemic levels.
53 54	183	
55 56 57		
58		9
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3	1
4	Т
5 6	1
7	1
o 9	T
10 11	1
12	1
13 14	1
15	1
16 17	1
18 10	
20	1
21 22	1
23	
24 25	1
26	1
27	1
29 30	T
31	1
32 33	1
34	T
35 36	1
37	1
38 39	T)
40	2
41 42	2
43 44	2
45	2
46 47	2
48	_
49 50	2
51	2
52 53	_
54	2
55 56	
57	
58 50	
60	

184 **DISCUSSION**

Given the critical need to maintain an effective and safe healthcare workforce 85 and to minimize inadvertent viral transmission in the healthcare setting, frontline HCWs 86 were ubiquitously recognized as a priority group for vaccination. In addition to continued 87 care provided to COVID-19 and non-COVID-19 patients; large healthcare organizations 88 89 have been called upon to organize and execute delivery of COVID-19 vaccines among its HCWs and across the community at large. HM is a state-designated vaccine hub 90 and, as of June 5, 2021, has administered over 780 thousand vaccines to members of 91 92 the community [8].

Vaccine supply and delivery during the initial nationwide rollout was beset with 93 logistical challenges, and administration metrics lagged behind target levels. However, 94 during the same time period we were able to achieve rapid rates of HCW vaccination 95 with demonstrated vaccine RWE in terms of curtailing infection rates as well as reducing 96 97 utilization of STDL for HCWs. Our vaccination planning started several months prior to vaccine delivery and required close coordination between a vaccine scientific 98 committee, operational leadership, physician organization, and the system's infection 99 00 control management. We instituted a seamless vaccination program among our HCWs while caring for large numbers of COVID-19 and non-COVID-19 patients and 01 02 maintaining regular hospital operations. Furthermore, hospital leadership maintained a 03 consistent and transparent line of communication with the workforce. This included weekly communication of the latest scientific and policy updates, reminders on public 04 05 health guidance, and encouragement of individual vaccination. Our initial results with 06 indices of HCW protection against SARS-CoV-2 infection and related disability indicate

Page 12 of 24

that the vaccines can be deployed in the real-world settings with high levels of
effectiveness. Of note, we provide evidence of vaccine effectiveness amid the
emergence of multiple variants of concern (VOC) in the greater Houston area starting in
December 2020 [7].

Interpretation of our findings should take into account the contextual differences between our healthcare system setting and the general Houston public. During the 12week rapid rollout period (December 15, 2020 to March 6, 2021), vaccines were made available to all HM employees. At the same time, vaccine administration throughout the greater Houston metropolitan area followed recommendations set by the state of Texas and was only available to frontline workers (Phase 1A) and individuals aged 65 years and older or with co-existing conditions (Phase 1B) [1]. Vaccine administration for individuals aged 50 years and older in the general public was not initiated until Phase 1C (March 15, 2021). Given this, it is possible that the phased differences in vaccine eligibility and administration contributed to the observed differences in SARS-CoV-2 positivity rate between the HM workforce and the general Houston population.

Furthermore, it is important to note circumstances influencing the implementation of protective public health measures. Throughout the duration of the pandemic, our hospital system has consistently followed public health recommendations. Personal protective equipment (PPE) for frontline workers was always made available; masks and social distancing guidelines were followed, even in non-clinical settings. Patients were required to wear masks and the allowance of visitors was restricted, depending on the severity of case surges at the time. Conversely, although a statewide mask mandate Page 13 of 24

1

59

60

BMJ Open

2			
3 4	229	was in effect for a duration of the pandemic (July 2020 – March 2021), adherence to	
5 6	230	these public health measures may have not been consistently enforced.	
7 8 0	231	Our results are limited to a narrative and descriptive account of the reduction in	
9 10 11	232	infection and STDL utilization across one healthcare system. Furthermore, we have no	ot
12 13	233	analyzed individual HCW characteristics (such as demographics, comorbidities and ris	k
14 15	234	of occupational exposure) that may be associated with SARS-CoV-2 infection.	
16 17	235	Concurrent studies on the established immunological protection against infection are	
19 20	236	needed to fully understand the population-wide and individual benefits that vaccination	S
21 22	237	confer. The observed trends in SARS-CoV-2 positivity rate were based on diagnostic	
23 24	238	tests conducted as part of the employee surveillance program and were requested	
25 26 27	239	voluntarily and at the prerogative of the HCW. We did not distinguish results based on	
27 28 29	240	either the purpose of testing or whether HCWs experienced viral exposure and / or	
30 31	241	presented with symptoms. It is possible that the dynamics of program participation	
32 33	242	differed in the pre- and post-vaccination periods. Nonetheless, we observed testing	
34 35 36	243	participation to remain relatively consistent during the initial phase of the vaccination	
37 38	244	program, with the mean number of weekly tests performed post-vaccination rollout	
39 40	245	(December 20, 2020 to February 25, 2021: 2,621 tests) continuing at a rate comparable	le
41 42 43	246	to that during the peak surveillance period prior to vaccination rollout (August 30, 2020)
44 45	247	to December 12, 2020: 2,599 tests). Finally, although our data demonstrate a high	
46 47	248	degree of correlation between vaccination and reduction in infection and STDL	
48 49	249	utilization, the potential influence of protective effect offered by lower community sprea	ıd
50 51 52	250	of the virus or differences in behavioral patterns between health system employees an	d
53 54	251	the general community cannot be ruled out.	
55 56			
57 58			12

3 4	2
5 6	2
7 8	2
9 10	2
11 12 13	2
14 15	2
16 17	2
18 19	2
20 21	2
22 23	2
24 25	2
26 27	2
28 29	2
30 31 22	2
33 34	2
35 36	2
37 38	2
39 40	2
41 42	-
43 44	2
45 46	2
47 48	2
49 50	2
51 52	2
53 54	
55 56	
57 58	
59 60	

1 2

252	Hospitals are a microcosm of the communities they serve as well as a nexus in
253	which there is a high rate of encounters between healthy and ill individuals. Despite
254	determined efforts to vaccinate the broader population, the risk of SARS-CoV-2
255	infections and related COVID-19 hospitalizations has not been fully eliminated,
256	especially due to the continued emergence of VOCs [9, 10] and relaxation of protective
257	public health measures. Furthermore, although robust vaccine effectiveness (VE) has
258	been reported [11], the duration of VE is currently unknown; consequently, booster
259	shots that confer additional protection against VOCs may be recommended and are
260	currently undergoing testing [12].
261	In spite of varying challenges, vaccination rates in the US have continued at a
262	progressive pace; at the time of this reporting, \geq 62.9% of individuals are at least
263	partially immunized and \geq 53.6% are fully immunized [13]. Nonetheless, global
264	vaccination rates are estimated at approximately only \geq 41.5% of the population [14]. As
265	efforts to support international partners in their respective vaccination programs
266	proceed, insights from the success of vaccine rollout in the US will provide a valuable
267	model for reference. Furthermore, in the face of continued high rates of vaccine
268	hesitancy [15] as well as the risk of a resurgence in cases globally, assimilating and
269	reporting cumulative evidence of real-world vaccine effectiveness is paramount to build
270	population-wide confidence in vaccination, hence rapidly achieving desirable levels of
271	herd immunity against the current predominant strains of SARS-CoV-2.
272	
273	

1 2			
2 3 4	274	ACKNOWLEDGMENTS:	
5 6 7 8 9	275	We would like to acknowledge the efforts of the following Houston Methodist employe	es
	276	in successfully instituting the employee vaccination and surveillance programs: Ms.	
10 11	277	Jennifer Borders (System Director Wellness Services), Ms. Paula DesRoches (Direct	tor
12 13	278	Employee Health and Occupational Medicine), Mr. Stephen Spielman (SVP & COO o	of
14 15 16	279	Specialty Physician Group), Mr. Jeff Carr (VP Finance) and Dr. Dan Metzen (System	
16 17 18	280	Director of Pharmacy). All individuals are full time employees of Houston Methodist a	nd
19 20	281	were not financially compensated for this work. We additionally acknowledge all	
21 22	282	Houston Methodist employees and physicians for their services during the COVID-19)
23 24 25	283	pandemic.	
26 27	284		
28 29	285	FUNDING: This research received no specific grant from any funding agency in the	
30 31 32	286	public, commercial or not-for-profit sectors.	
32 33 34	287		
35 36	288	COMPETING INTEREST: None declared.	
37 38	289		
39 40 41	290	DATA AVAILABILITY STATEMENT: Data cannot be shared publicly because of	
42 43	291	hospital employee confidentiality concerns. Reasonable requests by researchers who	C
44 45	292	meet the criteria for access to confidential data can be made to the corresponding	
46 47 48	293	author (fvahidy@houstonmethodist.org).	
48 49 50	294		
51 52	295	RESEARCH ETHICS APPROVAL STATEMENT: This study was not regarded as	
53 54 55	296	human subjects research by the Houston Methodist (HM) Institutional Review Board	
56 57			
58 59			14
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

297 (IRB) since this study does not involve direct human participation and was therefore

exempt from human subjects approval. This study was approved by the HM Institutional

BMJ Open

299 Review Board as a quality improvement project with waiver of informed consent.

301 AUTHOR CONTRIBUTIONS:

FV was responsible for the study conception and design. Data acquisition and analysis
were performed by AP. Interpretation of results and initial drafting of the manuscript
were completed by FV and AP. FV, AP, KH, AB, DS, RS, RP, and MB contributed to
critical revision of the manuscript and approved the final version for submission.

307 EXCLUSIVE LICENSE:

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author license), an exclusive license and/or a non-exclusive license for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY license shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in Journal of Epidemiology & Community Health and any other BMJ products and to exploit all rights, as set out in our license.

BMJ Open

The Submitting Author accepts and understands that any supply made under these

2	
3	319
4	010
5	320
6 7	010
, 8	321
9	-
10	322
11	
12	323
13 1/1	
15	324
16	
17	325
18	
19	326
20 21	
22	327
23	
24	328
25	
26 27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53 51	
54 55	
56	
57	
58	

59

60

terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be .1S i. governed by a Creative Commons license – details of these licenses and which Creative Commons license will apply to this Work are set out in our license referred to above.

3 4	329	REFE	RENCES
5 6 7	330	1.	Texas Department of State Health Services. Texas COVID-19 Data.
7 8 9	331		https://dshs.texas.gov/coronavirus/cases.aspx (accessed 8 Feb 2021)
10 11	332	2.	Texas Medical Center. Coronavirus (COVID-19) Updates.
12 13	333		https://www.tmc.edu/coronavirus-updates/ (accessed 8 Feb 2021).
14 15 16	334	3.	Tittle S, Braxton C, Schwartz RL, et al. A Guide for Surgical and Procedural
10 17 18	335		Recovery After the First Surge of Covid-19. NEJM Catalyst Innovations in Care
19 20	336		Delivery Published Online First: 2 July 2020. doi:10.1056/cat.20.0287
21 22	337	4.	Vahidy FS, Drews AL, Masud FN, et al. Characteristics and Outcomes of COVID-
23 24 25	338		19 Patients During Initial Peak and Resurgence in the Houston Metropolitan
26 27	339		Area. JAMA 2020;324:998. doi:10.1001/jama.2020.15301
28 29	340	5.	Vahidy FS, Bernard DW, Boom ML, et al. Prevalence of SARS-CoV-2 Infection
30 31 32	341		Among Asymptomatic Health Care Workers in the Greater Houston, Texas, Area.
32 33 34	342		JAMA Netw Open 2020;3:e2016451. doi:10.1001/jamanetworkopen.2020.16451
35 36	343	6.	Long SW, Olsen RJ, Christensen PA, et al. Molecular Architecture of Early
37 38	344		Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major
39 40 41	345		Metropolitan Area. mBio 2020;11. doi:10.1128/mBio.02707-20
42 43	346	7.	Long SW, Olsen RJ, Christensen PA, et al. Sequence Analysis of 20,453 Severe
44 45	347		Acute Respiratory Syndrome Coronavirus 2 Genomes from the Houston
46 47 48	348		Metropolitan Area Identifies the Emergence and Widespread Distribution of
49 50	349		Multiple Isolates of All Major Variants of Concern. The American Journal of
51 52	350		Pathology 2021;191:983–92. doi:10.1016/j.ajpath.2021.03.004
53 54			
55 56 57			
58 59			17

1 2			
3 4	351	8. Houston Methodist. COVID-19 Vaccine Information.	
5 6 7	352	https://www.houstonmethodist.org/coronavirus/vaccine-updates/ (accessed 7	
/ 8 0	353	Mar 2021)	
9 10 11	354	9. Walensky RP, Walke HT, Fauci AS. SARS-CoV-2 Variants of Concern in the	
12 13	355	United States—Challenges and Opportunities. JAMA Published Online First: 1	7
14 15	356	February 2021. doi:10.1001/jama.2021.2294	
16 17 18	357	10.Mascola JR, Graham BS, Fauci AS. SARS-CoV-2 Viral Variants—Tackling a	
19 20	358	Moving Target. JAMA Published Online First: 11 February 2021.	
21 22	359	doi:10.1001/jama.2021.2088	
23 24	360	11. Pilishvili T, Fleming-Dutra KE, Farrar JL, et al. Interim Estimates of Vaccine	
25 26 27	361	Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among	
28 29	362	Health Care Personnel — 33 U.S. Sites, January–March 2021. MMWR Morb	
30 31	363	Mortal Wkly Rep 2021;70:753–8. doi:10.15585/mmwr.mm7020e2	
32 33 34	364	12. Rubin R. COVID-19 Vaccines vs Variants-Determining How Much Immunity I	s
34 35 36 37 38	365	Enough. JAMA 2021;325:1241. doi:10.1001/jama.2021.3370	
	366	13. Centers for Disease Control and Prevention. COVID-19 Vaccinations in the	
39 40	367	United States. COVID Data Tracker. https://covid.cdc.gov/covid-data-	
41 42 43	368	tracker/#vaccinations (accessed 1 Jun 2021).	
44 45	369	14. Mathieu E, Ritchie H, Ortiz-Ospina E, et al. A global database of COVID-19	
46 47	370	vaccinations. Nat Hum Behav Published Online First: 10 May 2021.	
48 49 50	371	doi:10.1038/s41562-021-01122-8	
50 51 52			
53 54			
55 56 57			
58 59			18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2 3	372	15 University of Houston Hobby School of Public Affairs, Texas Policy & Politics
4 5	072	
6 7	3/3	2021: Texans and the COVID-19 Vaccine. https://un.edu/hobby/tx2021/
8 9	374	(accessed 3 Feb 2021)
$\begin{array}{c} 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 43\\ 536\\ 37\\ 38\\ 940\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\end{array}$	374	(accessed 3 Feb 2021)
58 50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	377	Figure Legends
5 6	378	
7 8	379	Figure 1: SARS-CoV-2 Positivity Rates from the Houston Methodist (HM) Surveillance
9 10 11	380	Employee Program Pre- and Post-COVID-19 Vaccine Initiation. Reference lines for the
12 13	381	initial 12-week rapid rollout period for vaccination (December 15, 2020 to March 6,
14 15	382	2021) are shown.
16 17 18	383	
19 20	384	
21 22	385	Figure 2: Enhanced Short-Term Disability Leave Utilization by Houston Methodist (HM)
23 24 25	386	Employees Across the COVID-19 Pandemic Timeline. Reference lines for the initial 12-
26 27	387	week rapid rollout period for vaccination (December 15, 2020 to March 6, 2021) are
28 29	388	shown. Annotations depict relative emergence and detection of SARS-CoV-2 mutations
30 31 32	389	and viral variants in greater Houston.
33 34	390 201	
35	391	
36 37 38	393	
39 40		
41 42		
43		
44		
45 46		
47		
48		
49 50		
51		
52		
53		
54		
56		
57		
58		20
59		For peer review only - http://bmionen.hmi.com/site/about/auidelines.yhtml
60		ror peer review only intep.//binjopen.binj.com/site/about/guidennes.xittini

Figure 1. SARS-CoV-2 Positivity Rates from the Houston Methodist (HM) Surveillance Employee Program Pre- and Post-COVID-19 Vaccine Initiation. Reference lines for the initial 12-week rapid rollout period for vaccination (December 15, 2020 to March 6, 2021) are shown.

119x64mm (300 x 300 DPI)

Figure 2: Enhanced Short-Term Disability Leave Utilization by Houston Methodist (HM) Employees Across the COVID-19 Pandemic Timeline. Reference lines for the initial 12-week rapid rollout period for vaccination (December 15, 2020 to March 6, 2021) are shown. Annotations depict relative emergence and detection of SARS-CoV-2 mutations and viral variants in greater Houston.

353x239mm (96 x 96 DPI)

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
20
27 20
20
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
52
4د 57
55 57
50
5/
58
59

60

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studie	?S

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2-3
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation	5-6
C		being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	5-6
Methods			
Study design	4	Present key elements of study design early in the paper	6-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6-7
2 com		recruitment, exposure, follow-up, and data collection	0,
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6-7
I I I I I		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-8
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-8
measurement	-	of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	6-8
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7-8
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7-8
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	N/A
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, describe analytical methods taking account of sampling	7-8
		strategy	
		(e) Describe any sensitivity analyses	N/A
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	8-9
ratucipants	15	potentially eligible, examined for eligibility, confirmed eligible, included	0 /
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	8-9
r		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	N/A
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8-9
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	8-9
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
Outcome data Main results	<u>15*</u> 16	Report numbers of outcome events or summary measures(a) Give unadjusted estimates and, if applicable, confounder-adjustedestimates and their precision (eg, 95% confidence interval). Make clearwhich confounders were adjusted for and why they were included	8-9 8-9

		(b) Report category boundaries when continuous variables were categorized	N/A
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8-9
Discussion			
Key results	18	Summarise key results with reference to study objectives	10-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10-12
Generalisability	21	Discuss the generalisability (external validity) of the study results	10-13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.