
Supplementary Material:
MBG: Minimizer-based Sparse de

Bruijn Graph Construction

A. Methods

Homopolymer compression. Most errors in HiFi reads are homopolymer run length
errors (Wenger et al., 2019). The sequences are first homopolymer compressed by
collapsing homopolymer runs into one character, reducing the error rate by an order
of magnitude. The lengths of the homopolymer runs are stored so that the original
sequence can be reconstructed at the end.

Minimizer winnowing. MBG uses the rolling hash function from ntHash (Mohamadi
et al., 2016) to assign hash values to each k-mer of the input reads. The runtime of the
rolling hash function is independent of k-mer size. In practice minimizer winnowing
is the performance bottleneck of MBG, so we chose the ntHash method since it is the
fastest hash we are aware of.

Minimizer winnowing (Schleimer et al., 2003) is then applied to the k-mers given
their hash values. The smallest k-mer in each window is selected for later processing.
Selected k-mers which appear in the input data fewer times than a user given k-
mer abundance cutoff are also discarded. Since the density of random minimizers is
2
w (Schleimer et al., 2003), a window size of w will on average lead to a w

2 -fold sparsity
of selected k-mers.

Compressing arbitrary sized k-mers by hashing. The selected k-mers are compressed
by hashing them into 128-bit integers. The 128-bit hashes are then used as the nodes
of the graph. We used the c++ standard library’s string hash function for building
the hash. For a string s, the lower 64 bits of the hash are taken from the standard

library hash of s[1..
⌊
|s|
2

⌋
] and the upper 64 bits from the hash of s[

⌊
|s|
2

⌋
+ 1..|s|]. Note

that hash quality is very important in this step. Since a hash collision would lead to
two different sequences being represented by the same node, every k-mer must result
in a unique hash to ensure correctness of the resulting graph.
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Hash collisions. Given 128-bit random hashes, it is reasonable to assume that there
are no hash collisions. To estimate the probability of a hash collision, the birthday
paradox can be used. Given n k-mers to hash, and the size of the hash space d = 2128,

the probability of collision can be approximated with p ≈ 1 − e−n2

2d . As of 1st July
2020, the size of the SRA database is 42441459655506377 base pairs. If the entire
database were concatenated to one string and all of its k-mers for one k were hashed,
there would be less than 4.3 ∗ 1016 k-mers to hash. Applying the approximation of the
birthday paradox to this number of k-mers gives a hash collision probability of p ≈
1−e−n2

2d < 1−e
−1.9∗1033

2∗2128 < 1−e−10−5

< 10−4 for hashing the entire SRA database. The
probability of hash collision for any realistic dataset is therefore negligible assuming
a random hash function. In addition, MBG checks for hash collisions during runtime.
We have not seen a hash collision so far.

Transitive edge cleaning. Because the minimizers are sampled from a window, a
sequencing error outside of a k-mer can affect whether the k-mer was chosen. That
is, an error within a window but outside of the chosen k-mer in the error-free window
can cause a different k-mer to be chosen in the error-containing window.

x1
x2

x3

x4 x5
x1

(x2)

w

w

Figure 1: An illustration of the transitive edge problem. The top sequence (solid black
line) has no errors and three k-mers, x1, x2 and x3, are selected from it. The
area marked by w is one window, from which x2 was selected in the error-
free sequence. The bottom sequence (solid black line) has a sequencing error
(red cross). Due to the sequencing error, k-mer x4 is selected from window
w instead of x2. The k-mers selected from the bottom sequence are x1, x4

and x5. Even though the bottom sequence contains x2 without errors, x2 is
not selected.

Figure 1 illustrates the problem. The error-free sequence has chosen k-mers x1, x2,
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and x3. The second sequence has a sequencing error outside of x2 but covered by each
window that selected x2, causing x2 to not be selected, and instead minimizers x4 and
x5 are selected. If the minimizers were used as-is, the graph would have an extra edge
x1 → x4, and the correct edge x2 → x4 would be missing.

To solve this, we look at all edges connecting minimizers. We build an edge sequence
of the two adjacent minimizers. Given k-mers m1 with sequence σ1 and m2 with
sequence σ2, and an overlap of b base pairs between them, the edge sequence is defined
as s = σ1 + σ2[b..k], that is, the concatenation of the two k-mers, taking into account
not to duplicate the shared sequence in the overlap. Then, we check all k-mers in the
edge sequence. If a k-mer m3 inside the edge sequence was selected as a minimizer
during minimizer winnowing, we mark the edge (m1,m2) as transitive, and add the
edges (m1,m3) and (m3,m2) if they were not already present. Finally, we remove
all transitive edges and transfer their read coverage to the replacement edges. In the
example in Figure 1, this would remove the edge x1 → x4, add the new edge x2 → x4,
and add the coverage of the removed edge x1 → x4 to the edges x1 → x2 and x2 → x4.

Checking if a k-mer was selected as a minimizer takes O(k) time and checking all
k-mers in all edges would then take O(mk2) time for m minimizers. We improve the
speed in practice by first using the rolling hash from minimizer winnowing to limit
which k-mers to check. The hash values of the selected k-mers are stored, and then a
k-mer within an edge sequence is checked only if its hash value exists in the stored hash
values. This check can be done in O(mk) time for all k-mers in all edges. Empirically,
more than 99.99% of k-mers that pass the rolling hash check are also selected k-mers.
This does not affect the theoretical runtime of the algorithm but in practice it leads
to a significant speedup.

Graph construction. The 128-bit hashes are used as the nodes of the graph. Edges are
added whenever two hashes are adjacent to each other in a read. The constructed graph
is then processed by condensing non-branching paths into unitigs. After this, unitigs
are filtered based on a user given unitig abundance cutoff. Unitigs whose average
coverage is less than the cutoff are discarded. In addition, edges whose coverage is less
than the cutoff are also discarded. After unitig and edge removal the non-branching
paths are again condensed into unitigs. The 128-bit hashes are transformed back to
base pair sequences and homopolymer runs are decompressed. Finally, the graph is
written in GFA format (Li, 2016).

Storing sequences. The base pair sequences of the selected k-mers are stored in
memory as a store that contains a list of contiguous blocks. When a k-mer is added
to the store, if the k-mer has overlap with the most recently added k-mer, the non-
overlapping part is appended to the contiguous block. That is, the overlapping part is
only stored once. If the k-mer does not overlap with the most recently added k-mer,
a new block is started. The sequences are stored in homopolymer compressed format,
with the lengths of the homopolymer runs stored separately. In practice this means
that adjacent k-mers from the same read can be stored efficiently without duplicating
the overlapping sequences, and moving from one read to another will almost certainly
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start a new contiguous block.

Homopolymer run length consensus. When storing the sequences, homopolymer
run lengths are also stored. Each stored base pair also has a sum of run lengths s
stored in a 16-bit integer and a base pair count c stored in an 8-bit integer. When a
k-mer is read from the input, for every base pair in the k-mer, the base pair count c
of the associated base pair is incremented by one, and the homopolymer run length is
added to the sum of run lengths s. If adding a k-mer would lead to an overflow of s
or c, the run lengths for that k-mer are ignored and s and c are not updated. The run
length consensus of each base pair is taken from the average s

c rounded to the nearest
integer. For example, if the input sequences are CAAAATTA and CAATTA, they
would be stored as the base pair sequence CATA, sum of run lengths s = [2, 6, 4, 2],
and base pair counts c = [2, 2, 2, 2] and their consensus would be CAAATTA. The run
length consensus can optionally be disabled to reduce memory use, which is intended
for the case when the input reads are already homopolymer compressed.

Runtime. Assuming no sequencing errors and given a genome size g, genomic cover-
age c, k-mer size k and window size w, the number of selected minimizers is m with
O(m) = O( g

w ) assuming the minimizer winnowing hash is random. The runtime of

minimizer winnowing is O(gc). Hashing the selected k-mers is O(kcm) = O(kcg
w ).

Cleaning transitive edges requires O(km) = O(kg
w ) for the selected minimizers, and

O(kmk) = O(k2g
w ) for k-mers which share their rolling hash value with a selected mini-

mizer. Graph construction is O(m) = O( g
w ). In total the runtime is O(k2g

w + kcg
w +gc).

In practice the k2g
w term has a tiny constant factor and the runtime is dominated by

the O(kcg
w ) term.

Assuming no sequencing errors and a constant read length r > k + w, the memory
use of MBG is O(g + mk

r−k−w + m) = O(g + gk
w(r−k−w) + g

w ). In practice increasing w

reduces memory use significantly.

B. Experimental setup

We used MBG version 1.0.1 from Bioconda. We used BCalm2 version 2.2.3 compiled
with the option DKSIZE LIST=”32 64 96 128 160 192 224 256 320 512 1024 2048 3072
4096” to support higher k-mer sizes. All experiments were ran on a computing server
with 48 Intel(R) Xeon(R) E7-8857 v2 CPUs and 1.5Tb of RAM. BCalm2 was given
one thread in the command line invocation, and MBG is single threaded. Runtime
and memory use was measured with “/usr/bin/time -v” in all experiments.

Comparison to existing tools. We compared MBG to BCalm2 (Chikhi et al., 2016)
for building graphs. Table 1 contains the results. We used HiFi data from E. coli1,
containing 290x coverage HiFi reads. We randomly downsampled the reads to 29x

1SRA accession number SRR10971019

4



coverage. We varied the window size parameter w for MBG from 1, resulting in an
edge-centric de Bruijn graph, to higher values resulting in graphs of various sparsity.
The k-mer abundance threshold was set to 3 for BCalm2, and the unitig average
abundance threshold was set to 3 for MBG.

Due to the average density of random minimizers of w/2, and the homopolymer
compression reducing the average length of sequence by 1/4, the results for a de Bruijn
graph with k-mer size kDBG are most closely comparable to a sparse de Bruijn graph
with kMBG = 3

4kDBG − w
2 . We tried different values of kMBG and w which result in

similar graph quality as predicted by the above equation, and which match the kDBG

given to BCalm2. We also tried using equal values of k = 61, 91 and 127 for both
MBG and BCalm2 while varying w for MBG. Finally, we tried higher k values up to
3001 for BCalm and up to 3501 for MBG.

Since the N50 of the k = 2001 and k = 2501 graphs matches the E. coli genome
size, we evaluated their correctness by running QUAST (Gurevich et al., 2013) on
the E. coli K-12 substring MG1665 reference genome2, and a de novo HiCanu (Nurk
et al., 2020) assembly of the same HiFi reads. The results were the same for k = 2001
and k = 2501 graphs produced by MBG. When compared to the reference genome,
QUAST reported 8 misassemblies for both the MBG contigs and the HiCanu de novo
assembly, all at the same locations. On the other hand the MBG contigs and the
HiCanu de novo assembly were structurally consistent with each others. We suspect
that the difference is due to the sequenced strain having differences to the strain used
for constructing the reference genome.

Assembly error rates. We ran QUAST (Gurevich et al., 2013) on all of the E. coli
assemblies to evaluate the error rates of the assembled contigs using the E. coli K-12
substring MG1665 reference genome3. Most errors are expected to be wrong homopoly-
mer run lengths. These are usually reported as indels, however the case where two
adjacent runs have an extra character on one run and a missing character on the other
may be reported as a mismatch. To include this case as well, we evaluated the error
rates in two settings: first, using the sequences as is, and second, by homopolymer
compressing both the assembled contigs and the reference and evaluating using the
homopolymer compressed sequences. The difference in error rates between the two
settings shows how many errors are caused by incorrect homopolymer run lengths,
while the homopolymer compressed case measures errors unrelated to homopolymer
runs. We take the error rate difference between the two settings as the homopolymer
run length error rate, and the error rate of the homopolymer compressed setting as
the error rate of all other errors.

Table 2 shows the results. Increasing w while keeping k constant degrades the ho-
mopolymer run length consensus accuracy, resulting in an increase in the homopolymer
run length error rate but no effect on other types of errors. Taking the k = 2000, w =
2000 as a representative case of typical parameters, we estimate that homopolymer
errors account for 99.6% of all errors, with a total error rate of 4.96 ∗ 10−4 consisting

2GenBank accession U00096.2
3GenBank accession U00096.2
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of a homopolymer run length error rate of 4.95 ∗ 10−4 and an error rate of 1.8 ∗ 10−6

for all other errors, corresponding to quality values of QV=33 in the default setting
and QV=57 in the homopolymer compressed setting. In the homopolymer compressed
setting, the k = 2000, w = 2000 assembly had just 3 substitutions and 3 indel errors
over the entire E. coli genome, for a total error rate of 1.8 ∗ 10−6. For comparison, a
de novo HiCanu (Nurk et al., 2020) (version 2.1.1) assembly of the same reads with
the default HiFi assembly parameters has an error rate of 2.9 ∗ 10−5 in the default
setting and 5.2 ∗ 10−6 in the compressed setting.

Whole human genome HiFi. We ran MBG on whole human genome HiFi data from
the individual HG002. We used HiFi reads from the Human Pangenome Reference
Consortium HG002 data freeze v1.0 (Wenger et al., 2019)4. The reads contain 50x
coverage HiFi reads with sizes ranging from 15kbp to 25kbp. For comparison we also
ran BCalm2 (Chikhi et al., 2016) on the same reads with k = 127. We did not run
BCalm2 with higher k since the results of the E. coli experiment suggest the runtime
would be prohibitive.

4Libraries m64012 190920 173625, m64012 190921 234837, m64015 190920 185703,
m64015 190922 010918, m64011 190712 225711, m64011 190726 220327
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Dataset Tool k w CPU-time Memory (Gb) N50
E. coli BCalm2 61 - 0:00:59 1.1 1 025

91 - 0:01:18 1.6 1 080
127 - 0:01:40 2.0 1 212
501 - 0:17:11 3.6 4 999

1001 - 1:42:26 3.5 13 688
2001 - 8:12:45 3.8 5 908
3001 - 10:33:11 4.0 4 393

E. coli MBG 61 1 0:01:33 3.2 73 728
61 10 0:00:25 0.6 82 427
61 20 0:00:16 0.3 82 418
61 30 0:00:13 0.3 82 394
91 1 0:01:46 3.5 117 742
91 10 0:00:28 0.7 117 724
91 20 0:00:18 0.4 117 742
91 30 0:00:14 0.3 125 699

127 1 0:01:53 3.9 132 765
127 10 0:00:30 0.8 132 569
127 20 0:00:17 0.4 132 766
128 30 0:00:13 0.3 132 764
45 1 0:01:46 2.8 60 479
41 10 0:00:32 0.5 59 657
35 20 0:00:20 0.3 57 134
31 30 0:00:18 0.2 34 101
69 1 0:01:44 3.1 82 820
65 10 0:00:34 0.6 82 810
59 20 0:00:23 0.4 73 682
55 30 0:00:20 0.3 78 679
95 1 0:02:13 3.4 117 784
85 20 0:00:25 0.4 125 638
81 30 0:00:19 0.3 117 643

E. coli MBG 501 500 0:00:10 0.12 177 653
1001 1000 0:00:09 0.13 698 111
1501 1500 0:00:09 0.14 1 517 634
2001 2000 0:00:08 0.14 4 639 237
2501 2500 0:00:08 0.14 4 644 046
3001 3000 0:00:08 0.14 4 090 727
3501 3500 0:00:07 0.14 392 371

HG002 BCalm2 127 - 32:00:32 6.4 249
HG002 MBG 501 500 4:10:28 123.7 2 012

1001 1000 4:38:40 132.6 4 501
2001 2000 4:07:22 138.5 12 095
3001 3000 3:57:59 137.3 23 104
4001 4000 3:35:03 120.4 26 736
5001 5000 2:06:52 68.9 20 699
501 100 6:50:21 269.0 1 784

1001 200 6:16:38 244.2 3 749
2001 400 6:01:18 250.0 8 669
3001 600 6:05:17 243.9 15 085
4001 800 3:55:50 245.3 23 868
5001 1000 4:47:44 244.1 33 649

Table 1: Experimental results
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Default Compressed
k w Subst. Indel Total Subst. Indel Total
61 1 0.31 3.37 3.68 0 0.06 0.06
61 10 0.62 11.87 12.49 0 0.06 0.06
61 20 0.59 15.35 15.94 0 0.06 0.06
61 30 0.53 17.57 18.1 0 0.06 0.06
91 1 0.29 11.54 11.83 0 0.06 0.06
91 10 0.5 14.3 14.8 0 0.06 0.06
91 20 0.61 15.27 15.88 0 0.06 0.06
91 30 0.61 17.27 17.88 0 0.06 0.06
127 1 0.39 87.36 87.75 0 0.06 0.06
127 10 0.44 12.97 13.41 0 0.06 0.06
127 20 0.46 12.47 12.93 0 0.06 0.06
127 30 0.35 13.33 13.68 0 0.06 0.06
45 1 0.29 3.44 3.73 0 0.06 0.06
41 10 0.71 14.72 15.43 0 0.06 0.06
35 20 0.4 16.12 16.52 0 0.06 0.06
31 30 0.84 18.12 18.96 0 0.03 0.03
69 1 0.26 11.74 12 0 0.06 0.06
65 10 0.37 10.45 10.82 0 0.06 0.06
59 20 0.73 16.61 17.34 0 0.06 0.06
55 30 0.64 19.79 20.43 0 0.06 0.06
95 1 0.29 11.1 11.39 0 0.06 0.06
85 20 0.55 15.96 16.51 0 0.06 0.06
81 30 0.35 16.43 16.78 0 0.06 0.06
501 500 0.97 65.94 66.91 0.21 0.15 0.36
1001 1000 1.16 65.95 67.11 0.15 0.09 0.24
1501 1500 0.88 59.58 60.46 0.15 0.09 0.24
2001 2000 0.78 48.86 49.64 0.09 0.09 0.18
2501 2500 0.67 43.97 44.64 0.09 0.09 0.18
3001 3000 0.52 32.69 33.21 0.09 0.09 0.18
3501 3500 0.5 35.3 35.8 0.15 0.15 0.3

Table 2: Error rates of the E. coli assemblies measured by substitution errors per
100kbp (Subst.), indel errors per 100kbp (Indel) and total error rate per
100kbp (Total), separated into the setting where the reference and contigs are
not homopolymer compressed (Default) and the setting where the reference
and contigs are homopolymer compressed (Compressed).
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