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Supporting Information Text

1. Supplementary Figures
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Fig. S1. The decomposition of the total mechanical energy U into contributions from the molecular components of the cytoskeletal network. These contributions include
stretching and bending of actin filaments, stretching of myosin motors, stretching of cross-linkers, and the excluded volume repulsion between nearby actin filaments (see SI
Appendix, Description of MEDYAN simulation platform for further details on the network’s mechanical potential). A: The trajectory of each component’s energy over time
is shown, corresponding to the plot shown in Figure 1.A of the main text. The colors of each line are described in the legend of the bottom panel. B: The complementary
cumulative distribution functions for positive (solid lines) and negative (dashed lines) increments of each component are shown. This corresponds to Figure 1.B of the main
text. All distributions are heavy tailed (η± > 0, where η− describes |∆U−| and η+ describes ∆U+ for each component) and asymmetric, with heavier tails for negative
increments (η− > η+). These plots show that at any time, most of the energy of the network is stored in the filament strain energy, but the changes in mechanical energy of
myosin motors and actin filaments are comparable.
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Fig. S2. Plots of the non-Gaussian parameter η for the distributions of |∆U−| (solid lines) and of ∆U+ (dashed lines) at QSS for various concentrations of myosin motor ([M ])
and α-actinin cross-linkers ([α]). The mean and standard deviation is shown over five runs of each condition. A small horizontal offset is added to the points to ease visibility.
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Fig. S3. Histograms of the level spacings ∆ω = ωk+1 − ωk , where ωk =
√
λk are ordered so that ωk increases as k increases, normalized by their average ∆ω for the

very soft (λk < 10 pN/nm) and delocalized (rk > 100) vibrational modes at different times of a run of condition C3,3. The Poisson distribution p(∆ω/∆ω) = e−∆ω/∆ω

and the Wigner-Dyson distribution p(∆ω/∆ω) = π
2 (∆ω/∆ω)e−π

4 (∆ω/∆ω)2 are plotted as red and blue solid lines. This transition in distributions signifies that in the

percolated network at 2000 s the frequencies of these modes are no longer randomly spaced and begin to interact, exhibiting level repulsion for small ∆ω/∆ω.
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2. Weibull plots

The degree to which the plots of Q(u) = ln (− ln (P (x ≥ u))) against ln(u) appear to be linear serves as a check of the
appropriateness of modeling P (x) as a stretched exponential, or Weibull, distribution (1). See Figure S4 for x = |∆U − | and
Figure S5 for x = ∆U+. On the basis of these plots we conclude that the Weibull distribution is a satisfactory choice for all
values of V . In the main text, the Weibull parameters k and λ were determined by fitting the stretched exponent e−(x/λ)k to
the observed CCDF P (|∆U−|) on a log-scale, that is, by fitting −(x/λ)k to ln (P (|∆U−|)) using standard nonlinear fitting
routines. Treating these functions on a log-scale ensured a better fit to the distribution tails which are of most interest in the
present case.

We interpret these fits to a Weibull distribution as mainly empirical, rather than as representing a “true” description of the
distribution of ∆U . We could view the true distribution as being constructed by drawing samples from the distributions for each
contribution to the total energy of the network’s molecular components and summing them together (see SI Appendix, Figure
S1). ∆U would be distributed as a convolution over these underlying distributions if the samples were drawn independently,
but we expect them to instead be dependent. Rather than attempt to build up a model for the distribution ∆U from these
underlying distributions, here we directly fit Weibull distributions which allows us to straightforwardly parameterize the
distribution and study its scaling with system volume (see Figure 5 of the main text). Building a multicomponent statistical
model for the distribution of ∆U would be an interesting direction for future work, however.
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Fig. S4. Plots of the function Q(u) = ln (− ln (P (|∆U−| ≥ u))) for different volumes V along with a fitted line, where P (|∆U−|) is the observed CCDF obtained from
five runs of each volume.
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Fig. S5. Plots of the function Q(u) = ln (− ln (P (∆U+ ≥ u))) for different volumes V along with a fitted line, where P (∆U+) is the observed CCDF obtained from five
runs of each volume.
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3. Filament displacements

The area between the two filaments x and y is triangulated using the beads comprising the filaments ({xi}nx−1
i=0 and {yj}ny−1

j=0 )
as vertices, where nx is the number of beads in x and similarly for ny. To compute the displacement of filament x during the
time interval δt, we set y to the new configuration of x at the end of the interval. The triangles come in pairs for most of the
filament lengths, as shown using the dark and light colors of green of Figure S6. If nx and ny are unequal (say nx < ny), extra
triangles are added using the last bead in x, xnx−1, as the only vertex in filament x. The sum of these triangle areas Atot is
divided by the average of the two filament contour lengths Lx and Ly to give the measure of distance d = 2Atot

Lx+Ly
.

Fig. S6. Illustration of how the area between two filaments x and y is triangulated to allow calculation of the distance between them. The beads comprising the filaments are
labeled xi, yj , and areas between triplets of beads are labeled Ai,j where the lowest indices of the beads xi and yj in the triplet are used.
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4. Binning

One goal of our study is to explore the correlations between anomalous changes in the network’s mechanical energy ∆U and
other measures of network dynamics, including the filament displacements, numbers of motor walking events and cross-linker
unbinding events, the change in the spatial uniformity of tension (see Figure 3 of the main text), and the effective stiffness
of the network motion (see Figure 8 of the main text). To this end, the joint distributions of these pairs of quantities are
constructed at quasi-steady state. One difficulty in dealing directly with the full joint distributions to study anomalous events
is the concentration of probability around ∆U = 0 kBT (see Figure S7). Measures of correlation defined on the full numerical
data, such as the maximal information criterion, will provide information mainly about the bulk of data around ∆U = 0 kBT
rather than about the tails which we are interested in (2). To facilitate studying correlations in the tails of the distribution of
∆U , we convert the numerical values of ∆U to categorical labels via binning and compare the distributions of other network
measures between these bins using statistical tests such as Kruskal-Willis and the Wilcoxon rank sum test (3). The bins near
∆U = 0 kBT contain more data than those near the tails, but these statistical tests are still valid on groups with different
numbers of samples. In the main text, results based on these statistical tests are reported using four bins with edges at
−∞, −100, 0, 100, and ∞ kBT . These bins represent both negative and positive values of ∆U as well as typical and atypical
magnitudes of ∆U . One can ask whether our main results are sensitive to the choice of bins edges or the number of bins.
This was tested by varying the lowest bin edge from −300 to −50 kBT (keeping the even total number of bins distributed
symmetrically about ∆U = 0 kBT ), and varying the total number of uniformly spaced bins (excluding those with edges at
±∞) from 4 to 10. Our primary conclusions in the main text, that there is a significant difference between any of the bins and
that the bins near the lower tail of ∆U have extremal typical values of the correlated network measures, were found not to be
sensitive to these different choices for bins. In each case there were statistically significant test results that agree with the
conclusions reported in the main text.
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Fig. S7. The scatter plot data at quasi-steady state from which Figure 3 in the main text is constructed via binning with respect to ∆U . For each panel a Gaussian kernel
density estimate of the joint probability density function is constructed and shown as a contour plot. The labels of the contour are the values of the density function (c.f. Figure 8
in the main text).
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5. Degree distributions

One may ask whether the connectivity of the network itself, viewed as a graph object as described in the main text, is at a
critical point and whether this may explain the observed heavy-tailed distributions of mechanical energy fluctuations. Previous
studies have indicated a tendency for actomyosin networks in 2D to self-organize to a critically connected architecture similar
to the onset of percolation, and this tendency was observed to be robust against modest changes in the concentration of
cross-linking proteins (4). To investigate whether our data can be explained by critically connected network architectures, we
plot the distributions of the weighted node degree (i.e. how many linkers are bound to each filament, Figure S8) in the network
and the node connectivity (i.e. how many filaments would have to be removed to disconnect a given pair of filaments, Figure
S9) across the tested range of conditions of cross-linker and motor concentrations Ci,j (see the Materials and Methods for
a description of the experimental conditions). The absence of power laws in these plots indicate that the networks are not
critically connected, lying for most conditions well above the percolation threshold.
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Fig. S8. The weighted degree distributions for networks of each condition Ci,j , where i (j) indexes the row (column) of the corresponding plot in the grid. These plots are
constructed from a single snapshot at quasi-steady state from a trial of each condition. The lack of power laws in these plots indicate that the networks are not critically
connected.
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Fig. S9. The node connectivity distributions for networks of each condition Ci,j , where i (j) indexes the row (column) of the corresponding plot in the grid. These plots are
constructed from a single snapshot at quasi-steady state from a trial of each condition.
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6. Description of MEDYAN simulation platform

A detailed introduction to the MEDYAN (Mechanochemical Dynamics of Active Networks) model can be found in Ref. 5, and
additional extensions and applications of MEDYAN to study the dynamics of actomyosin networks are described in Refs. 6–13.
Here we outline the relevant aspects of MEDYAN to facilitate understanding the results in this paper, and direct the reader to
the above references for a more thorough description.

A. Simulation protocol. A MEDYAN simulation proceeds by iterating a cycle of four steps which propagate the chemical and
mechanical dynamics forward while maintaining a tight coupling between the two. The steps are as follows:

1. Evolve system using stochastic chemical simulation for a time δt.

2. Compute the changes in the mechanical energy resulting from the reactions that occurred in step 1).

3. Mechanically equilibrate the network in response to the new stresses from step 2).

4. Update the reaction rates of force-sensitive reactions based on the new tensions from step 3).

Further details related to these four steps are provided next.

B. Chemistry. In MEDYAN, diffusing chemical species are represented with discrete copy numbers belonging to several
compartments, which form a regular grid comprising the simulation volume. The compartment size is chosen so that it may
be assumed that inside the compartments the diffusing species are well-mixed, allowing the use of mass-action kinetics to
determine their instantaneous propensities to participate in chemical reactions within compartments and diffusion events
between adjacent compartments. The minimum Kuramoto length (i.e. the mean free diffusional path length of a reactive
species before it participates in a chemical reaction) among the species sets this compartment size to ensure that the well-mixed
assumption holds (14). The diffusing chemical species may participate in local chemical reactions according to the copy
numbers of the reactants in its compartment, or else they may jump to an adjacent compartment in a diffusion event with a
propensity determined by its copy number in the original compartment (15). The algorithm for stochastically choosing which
event (including local reactions or jumps between compartments) will occur next is the Next Reaction Method, an accelerated
variant of the Gillespie algorithm (15, 16). These are Monte Carlo methods which randomly select both the time to any next
event and which event will occur at that time in accordance with each event’s instantaneous propensity.

The user specifies the different chemical species and the reactions that they participate in. Several types of reactions are
possible. Regular reactions involve only diffusing species (e.g. the conversion of ADP-bound to ATP-bound G-actin monomer).
Polymerization reactions result in the subtraction of a diffusing monomer from the local compartment and its conversion into a
filament species, and depolymerization reactions do the opposite. Filaments in MEDYAN’s have definite spatial coordinates,
rather than the compartment-level description of the diffusing species’ positions. This network of spatially resolved filaments is
overlaid on the compartment grid, so that sections of filaments are able to react with diffusing species according to their local
copy numbers. In addition, filaments have mechanical properties which will be discussed in the next section. A filament may
react with a diffusing species such as a cross-linker (e.g. α-actinin), branching (e.g. Arp2/3), or molecular motor (e.g. NMIIA).
Binding reactions involve a discrete set of binding sites along the filament, and they stochastically occur as chemical reaction
events according to the number of those binding sites and the local copy number of diffusing binding molecules. A bound
molecular motor may participate in a walking reaction, which causes it to move one of its ends to an adjacent binding site,
stretching the motor and generating forces. Other reactions not used in this paper but encompassed by MEDYAN include
filament nucleation, filament destruction, filament severing, and filament branching reactions.

C. Mechanics. The mechanical energy U of networks in MEDYAN is a function of the positions of the filament beads and the
lengths of the molecules bound to the filaments. There are also potentials describing a branched filament’s energy which are
not included in this paper. Filament beads mark the joined end points (i.e. hinges) of the cylinders comprising the filament.
Individual cylinders can stretch but not bend, but a bending energy term is included for pairs of adjacent cylinders. The energy
term for the stretching of cylinders is

Ustr = 1
2Kfil,str(l − l0)2, [1]

where l = ||ri+1 − ri|| is the length of the cylinder whose beads are at positions ri+1 and ri, l0 is the cylinder’s equilibrium
length, and Kstr is the spring constant of this harmonic potential. The energy term for the bending of adjacent cylinders is

Ubend = εbend (1− cos(θi,i+1)) , [2]

where εbend parameterizes the strength of the interaction and θi,i+1 is the angle between the cylinders. Molecules bound to
pairs of filaments (e.g. α-actinin and NMIIA) of stretched length lbound have a harmonic stretching energy term:

Ubound,str = 1
2Kbound,str(lbound − l0bound)2, [3]
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where the subscript “bound" indicates that the variables and parameters are specific to the bound molecule. An excluded
volume interaction is included to prevent cylinders from overlapping. The analytical formula for this interaction is complicated
but can be expressed as a double integral over the two lengths of the participating cylinders i and j:

Uvol,ij = Kvol

∫ 1

0

∫ 1

0

dsdt

||ri(s)− rj(t)||4
, [4]

where ri(s) = ri + s(ri+1 − ri) is the position along the i cylinder, which is parameterized by a variable s running from 0 to 1
along the cylinder’s length. These positions ri(s) are also therefore functions of the cylinders’ bead positions, ri and ri+1.
Finally, an exponentially decaying boundary repulsion term prevents the filaments from poking outside the simulation volume:

Uboundary = εboundarye
−di/λ, [5]

where εboundary parameterizes the interaction strength, di is the distance from the boundary to the nearest endpoint of the i
cylinder, and λ parameterizes the interaction screening length.

At the end of each chemical evolution cycle, the positions of the bound molecules and the filament beads will have changed
due to the chemical reactions which occurred, displacing the system from near-equilibrium. The positions of the filament
beads are then updated in a mechanical equilibration cycle by minimizing the total mechanical energy function U . This is
accomplished using the conjugate-gradient minimization algorithm. The minimization procedure ends when the maximum
net force remaining in the network is below a user-specified force tolerance FT , as result of which the system returns to near
mechanical equilibrium.

D. Mechanochemical coupling. An important facet of the dynamics of actomyosin networks is that the chemical reaction rates
of the associated proteins depend on the forces they sustain: at high tension the myosin minifilaments will walk and unbind
more slowly (stalling and catch-bond behavior) whereas the passive cross-linkers are modeled as unbinding more quickly under
tension (slip-bond behavior) (17, 18). These force-sensitive behaviors thus play the role of non-linearly coupling the mechanical
state of the actomyosin network to its stochastic chemical dynamics.

The myosin motors used in MEDYAN are modeled after non-muscle myosin IIA (NMIIA), which exists in the cell as a
minifilament consisting of tens of individual myosin heads. The chemical dynamics of the myosin minifilaments are based
on the Parallel Cluster Model of Erdmann et al. (19, 20). In this model, a myosin minifilament contains a number Ntotal of
individual myosin heads and has a binding rate to the actin filament pair equal to

kfil,bind = Ntotalkhead,bind, [6]

where khead, bind is the individual myosin head binding rate. In MEDYAN, Ntotal is uniformly randomly selected between a
minimum and maximum number of heads each time a minifilament binds. The bound myosin minifilament has a number of
bound heads N0

bound under zero tension equal to the duty ratio ρ times the total number of heads:

N0
bound = ρNtotal. [7]

The duty ratio is determined by the individual head unbinding rate:

ρ = khead,bind
k0
head,unbind + khead,bind

, [8]

where k0
head,unbind is the head unbinding rate under zero tension. Under tension Fext the bound myosin minifilament has altered

walking and unbinding rates as well as an altered number of bound heads. The number of bound heads under tension is given
by

Nbound(Fext) = min
{
Ntotal, N

0
bound + β

Fext
Ntotal

}
, [9]

where the parameter β = 2.0 is chosen to fit experimental data. The myosin minifilament walking rate under zero tension is

k0
fil,walk = s

1− ρ
ρ

khead,bind, [10]

where s is called the stepping fraction, defined as the ratio of the user-specified real distance between binding sites on the
filament dstep to the distance between binding sites on the computational cylinder representing the filament segment dtotal:
s = dstep

dtotal
. Equation 10 is based on the PCM and is explained Refs. (5, 19). Under tension, the myosin minifilament walking

rate is altered according to a formula of the Hill type:

kfil,walk = max
{

0.0, k0
fil,walk

Fstall − Fext
Fstall + Fext/α

}
, [11]

Carlos Floyd, Herbert Levine, Christopher Jarzynski, Garegin A. Papoian 13 of 24



where the stall force Fstall is the maximum tension a minifilament can sustain before it stops walking, and where α = 0.2 is
another parameter chosen to fit to experimental data. The myosin minifilament will unbind from the pair of actin filaments
under zero tension with a rate

k0
fil,unbind = khead,bindNtotal

exp
(

log
(
k0

head,unbind+khead,bind

k0
head,unbind

)
Ntotal

)
− 1

. [12]

This non-obvious expression is the inverse of the mean residence time of the minifilament as determined using the PCM. Under
tension, the myosin minifilament unbinding is modeled with Kramers-type catch-bond behavior:

kfil,unbind(Fext) = k0
fil,unbind max

{
0.1, exp

(
−Fext

Nbound(Fext)F0,head

)}
, [13]

where F0,head is the characteristic force a single myosin head catch-bond, and the minimum unbinding factor 0.1 is a parameter
to chosen to ensure the possibility to unbind under arbitrarily large tension. We assume for myosin minifilaments that the
stretching constant is given by

Kbound,str = Khead,strNbound, [14]

where Khead,str is the stretching constant for an individual head; this equation assumes the bound heads share the load in
parallel.

The unbinding of passive cross-linkers (e.g. α-actinin) are modeled as Kramers-type slip-bond:

klinker,unbind(Fext) = k0
linker,unbind exp

(
Fext

F0,linker

)
, [15]

where F0,linker is the characteristic force of the cross-linker slip-bond.
Finally, the actin filament will polymerize with a rate that exponentially decreases with the component of the sustained

force along the polymerizing tip, Fext. This dependence is based on the Brownian ratchet model of Peskin et al. (21):

kpoly(Fext) = k0
poly exp

(
− Fext
F0,poly

)
, [16]

where F0,poly is the characteristic force of the Brownian ratchet model, and k0
poly is the zero-force polymerization rate.

Any of the above characteristic forces F0 may be converted to a corresponding characteristic distance x0 via

F0 = kBT/x0, [17]

where kBT is the thermal energy, casting expressions of the form Fext/F0 to the form Fextx0/kBT .
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E. Parameterization. The following table lists the parameters chosen for the simulations presented in this paper.

Parameter Description Value
General Simulation Parameters

kBT Thermal energy 4.1 pN · nm
Lcomp Cubic compartment side length 500 nm
Nx, Ny , Nz Number of compartments in each dimension 2, 2, 2
Lcyl Filament cylinder equilibrium length 54 nm
δt Length of chemical evolution step 0.05 s
FT Force tolerance of mechanical minimization 1 pN

Mechanical Parameters
Kfil,str Actin filament stretching constant 100 pN/nm (5)
εbend Actin filament bending energy 1344 pN · nm (5, 22)
Kvol Cylinder excluded volume constant 105 pN/nm4 (5)
Khead,str NMIIA head stretching constant 2.5 pN/nm (23)
Kα,str α-actinin stretching constant 8 pN/nm (24)
εboundary Boundary repulsion energy 41 pN · nm a

λ Boundary repulsion screening length 2.7 nm b

Mechanochemical Parameters
NNMIIA,bind Binding sites per cylinder for myosin motors 8 c

Nα,bind Binding sites per cylinder for α-actinin 4 d

dstep NMIIA minifilament step size 6.0 nm (23)
Nmin, Nmax Range of number of NMIIA heads per minifilament 15, 25 e (25)
Fstall Stall force of NMIIA minifilament 100 pN f

F0,head Characteristic force of NMIIA catch-bond 12.6 pN (19)
F0,α Characteristic force of α-actinin slip-bond 17.2 pN (26)
F0,poly Characteristic force of actin Brownian ratchet 1.5 pN (27)
lM Equilibrium length of NMIIA minfilament 175 − 225 nm (5)
lα Equilibrium length of α-actinin 30 − 40 nm (5)

Chemical Parameters
kactin,diff Diffusion constant of actin monomer 20 µMs−1 (5)
kα,diff Diffusion constant of α-actinin 2 µMs−1 (5, 28)
kmotor,diff Diffusion constant of NMIIA minifilament 0.2 µMs−1 (5)
kactin,poly,+ Actin plus-end polymerization 11.6 µMs−1 (29)
kactin,poly,- Actin minus-end polymerization 1.3 µMs−1 (29)
kactin,depoly,+ Actin plus-end depolymerization 1.4 s−1 (29)
kactin,depoly,- Actin minus-end depolymerization 0.8 s−1 (29)
khead,bind NMIIA head binding 0.2 s−1 (30)
k0

head,unbind NMIIA head unbinding under zero tension 1.7 s−1 (5, 30)
kα,bind α-actinin binding 0.7 µMs−1 (31)
k0
α,unbind α-actinin unbinding under zero tension 0.3 s−1 (31)

Table S1. All parameters used in the simulations reported in this paper.

a - Chosen for the energy scale to be 10 kBT .
b - Chosen as the the length of a G-actin monomer.
c - Chosen to allow the spacing between binding sites to be roughly equal to its physiological value near 6 nm (23).
d - Chosen to allow the spacing between binding sites to be roughly equal to its physiological value near 30 nm (32).
e - Chosen to given an average Ntotal = 20 in approximate agreement with literature values (25).
f - A wide range of values are found in the literature for the stall force of the minifilament. We take an order of magnitude

estimate for this parameter based on the stall force of a single head (on the order of 10 pN , estimated as dstepKhead,str (5))
times the number of bound heads in the minifilament (on the order of 10). This parameter choice is empirically valid as it
yields observable network contraction.

7. Dependence on δt and FT

The heavy-tailed distributions of |∆U−|, the magnitudes of the negative energy increments which are the chief subject of this
paper, may have strong dependence on certain key parameters governing the mechanical equilibration protocol. To ensure
that these distributions are not artifacts of simulation we investigate whether changing the parameters FT and δt alters the
qualitative properties of the distributions. In Figure S10 we compare these distributions using 3 runs for each parameter choice.
Only weak dependence on FT is observed (Figure S10.A). We find strong dependence on δt (Figure S10.B), however for each
parameter choice heavy tails exist and thus we may conclude that the cytoquake phenomenon is not an artifact despite their
frequency and magnitude having dependence on δt. We can ask whether the observed discrepancy between the distributions
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for different choices of δt is due to a change in the underlying dynamics or due to the effect of summing over larger time
intervals to obtain the quantities ∆U . We expect that by summing over larger time intervals, the heavy tails are “averaged
out,” or coarse-grained, causing them to be increasingly Gaussian for larger δt. We can check this by summing consecutive
increments ∆U for small choices of δt over time windows equal to the largest value of δt tested. When this is done (shown
in Figure S10.C), we find the distributions for all choices of δt to approximately collapse on each other. This suggests that
coarse-graining in time indeed explains the discrepancy in the distributions of |∆U |− in Figure S10.B. Without showing the
data, we find a similar picture to apply for the distributions of positive increments ∆U+, with a similar asymmetry in the
non-Gaussian parameters for all choices of δt and FT as observed for conditions used in main text, δt = 0.05 s and FT = 1 pN .
While a smaller choice for FT and δt should correspond more closely to reality, we find that for the smallest of the tested values
for these parameters the simulations did not complete in the allotted computer wall time of 2 weeks. Thus our choices for these
parameters used in this paper are chosen to be small while still allowing us to run full 2,000 s simulations.

100 101 102 103

U (kBT)
10 4

10 3

10 2

10 1

100

CC
DF

A

FT (pN)
0.1
1
5
10

101 102 103 104 105

U/ t (kBT/s)
10 4

10 3

10 2

10 1

100

CC
DF

B

t (s)
0.01
0.05
0.1
0.2

101 102 103

U (kBT)
10 4

10 3

10 2

10 1

100

CC
DF

C

t (s)
0.01
0.05
0.1
0.2

Fig. S10. A: Complementary cumulative distribution functions of the negative increments |∆U−| at QSS for various choices of the force tolerance parameter FT plotted
against fitted half-normal CCDFs. For these runs condition C3,3 is used with δt = 0.05 s. B: CCDFs of the negative increments |∆U−| at QSS for various choices of the
time between minimization, δt. The energy increments are normalized by δt for more direct comparison between these curves. For these runs condition C3,3 is used with
FT = 2 pN . B: Complementary cumulative distribution functions of the negative increments |∆U−| at QSS for various choices of the time between minimization, δt. The
energy increments are normalized by δt for more direct comparison between these curves. For these runs condition C3,3 is used with FT = 1 pN . C: The same data is
shown as in part B, except here ∆U for each choice of δt is obtained by summing consecutive energy increments over time windows equal to 0.2 s. In this way the values of
∆U for each choice of δt correspond to the same duration of time.
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We also investigated how the fraction of negative eigenvalues persisting after mechanical minimization depends on the force
threshold FT . When minimization ceases at higher forces, more negative eigenvalues are left remaining, as expected. This
behavior is illustrated in Figure S11.
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Fig. S11. Scatter plot showing the fraction of negative eigenvalues remaining after mechanical minimization when different choices of the parameter FT are used. The data is
collected from QSS for 3 runs of C3,3, with the standard deviation taken over time and over the runs.
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8. Machine learning model

A. Cytoquake classification. To forecast the occurrence of cytoquakes, we resorted to using a high-dimensional ML model (3
layer feed-forward neural network) after it was found that several simple features in the eigenspectrum which we believed
might reflect mechanical stability (for instance the value of the smallest positive eigenvalue) did not by themselves significantly
correlate with cytoquake occurrence. We pose the forecasting of cytoquakes as a binary classification problem. A trajectory
∆U(t) = U(t+ δt)−U(t) at QSS (after 1,000 s) is converted to a binary sequence such that each t for which ∆U(t) ≤ ∆UT , as
well as the tW = 0.15 previous seconds (i.e. 3 previous time points) are classified as cytoquakes, and the rest are not. This tW
window is chosen to help overcome the stochasticity inherent in the chemical dynamics which, along with the instantaneous
mechanical stability we are using as a predictor, controls cytoquake occurrence. We focus here on the five runs of conditions
C3,3. ∆UT = −100 kBT is chosen to lie well in the tail of the distribution of |∆U−| for this condition and therefore distinguishes
rare events, as shown in Figure 1 in the main text. With these choices, ∼ 10% of samples across all runs are labeled as events
in the classification problem.

B. Model inputs. The predictors of the model capture information about the network’s mechanical stability. The ordered sets
of eigenvalues {λk}3N

k=1 at each time t is padded by adding zero eigenvalues between the unstable (λk < 0) and stable (λk ≥ 0)
parts of the spectrum to maintain a fixed input dimension across all time points and runs. We then collect these eigenvalues
into a tuple M(t) such that the first element of M(t) is the largest negative λk at time t and the last element is the largest
positive λk at time t. We optionally include the the inverse participation ratios {rk}3N

k=1 in this vector by first adding zeros in
the places of the set {rk}3N

k=1 corresponding to where zeros were added in the set {λk}3N
k=1, and then interleaving the λk and rk

in the now doubly sized tuple M(t), so that now for example the first two elements of M(t) correspond to the largest negative
λk and the associated rk at time t. The tuples M(t) are then linearly rescaled, so for each element Mi(t) the average over all
times of a run is 0 and the variance is 1. These rescaled tuples are labeled M̃(t).

When only the λk are included then M̃(t) has ∼ 1,600 dimensions, and with the rk are also included it has ∼ 3,200
dimensions. To avoid overfitting the model, we first reduce the dimensionality of M̃(t) via principal component analysis (PCA)
using all QSS time points in a run. We choose 30 dimensions as the size of the reduced tuple m(t) because this allows for more
than 95% of the variance of M̃(t) to be explained when just the λk are included as shown in Figure S12.A. Model performance
appreciably decreases when fewer than 30 dimension are used and improves only marginally if more are used. A row of ones is
added as a 31st dimension to m(t) as a bias for the neural network. As an additional indicator of the network’s mechanical
stability we also consider its mechanical energy U at time t. U(t) is linearly rescaled to give Ũ(t) so that it has zero mean and
unit variance. We then optionally augment with input tuple m(t) with the Ũ(t) as a 32nd dimension.

C. Treating multiple trials. We can treat the data from all five runs of condition C3,3 separately or combine all data together to
train a larger model. Model performance is generally found to be better when trained on data from a single run, however by
combining data from all runs we probe more general underlying trends that are not specific to the network organization of one
run. When describing trends from varying model inputs, as in Figure S12.D, we focus on results obtained by combining all
runs due to their greater generality.

For a single run there are ∼ 20,000 samples, giving 100,000 samples when combining all runs. When combining runs, we
first rescale and perform PCA on the predictors using only the data within a single run, and then concatenate the resulting
m(t) with their associated labels into a larger data set. This way the relative variation of the predictors compared to their
typical values for a particular organization of the actomyosin network is retained, and the typical values of particular network
organizations themselves affect the model inputs to a lesser degree.

D. Neural network architecture. We used the Python modules scikit-learn and Keras with a Tensorflow back end to train a
deep feed-forward neural network and a logistic regression model for the binary classification problem (33, 34). The 31 or
32-dimensional (depending on if Ũ(t) is included as a predictor) input tuple m is fed into three fully connected hidden layers
Li, i = 1, 2, 3, each with either 30 or 100 nodes depending on if the data consists of a single run (20,000 samples) or of all five
runs (100,000 samples). Each node in the hidden layers uses a rectified linear unit activation function. The output of the
network is two nodes using a softmax activation function whose values are p and 1− p, where p is the predicted probability of a
cytoquake event at that time t. This architecture is schematically illustrated in Figure S12.B. The network is trained for either
400 or 200 epochs using a categorical cross-entropy loss function with Adam optimization in stochastically chosen batches of
either 1,000 or 10,000 samples, depending on the whether the single or multiple run data sets, respectively, are used. The
cytoquake samples are given a higher weight (×3) than the non-cytoquake samples during training. A L2 penalty of 0.05 is
used to curb overfitting. When using only Ũ(t) as a predictor, a logistic regression model is fit using the same sample weights.

E. Model validation. Of all the data samples, we use 2/3 to train the model with and validate the model on the remaining
1/3. We repeat these random training/testing set splits to gather statistics on model performance. The binary classification
procedure involves the probability threshold pT (such that p > pT means the model predicts a cytoquake). Model performance
is measured by varying pT from 0 to 1 and measuring the true positive rate (TPR, the proportion of actual cytoquakes correctly
predicted as such) and false positive rate (FPR, the proportion of actual non-cytoquakes incorrectly predicted as cytoquakes)
on the test data; the locus of these points forms the receiver operator characteristic (ROC) curve. A random model would have
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Fig. S12. A: Cumulative explained variance from PCA of the∼ 1, 600 eigenvalues {λk(t)}3Nk=1. B: Schematic depiction of the feed-forward neural network architecture. C:
ROC curves for the model using only {λk}3Nk=1 as input and trained on a single run of condition C3,3, with five realizations of the stochastic batch network training and their
average shown. The ROC curve of a random model is plotted as the red dotted line. D: Bar plot indicating the AUC of ROC curves using different combinations of inputs
for the model trained on data collected from all runs of condition C3,3. From left to right, the labels indicate that the model inputs are: {λk}3Nk=1; {λk|0 ≤ λk < λT };
{λk|λT ≤ λk}; {λk}3Nk=1 and {rk}3Nk=1; U , using a logistic regression model; {λk}3Nk=1, {rk}3Nk=1, and U ; {λk}3Nk=1, {rk}3Nk=1, and U with forecasting done for large
positive increments ∆U > 100 kBT . Error bars indicate uncertainty from five realizations of stochastic batch training.
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FPR = TPR, so an area under the curve (AUC) of the ROC curve greater than 0.5 indicates a good model, and a perfect
model would have an AUC of 1. One can also consider precision-recall (PR) curves, which contain points in the space of model
precision (the proportion of predicted cytoquakes which were actual cytoquakes) and recall (the same as TPR). A random
model would have the same precision, equal to the proportion of actual cytoquakes in the testing data, for all values of recall as
pT is varied, giving an AUC equal to that proportion.

When the test data is unbalanced, i.e. when there are many more non-cytoquake events than cytoquake events, it has been
shown that the AUC of the PR curve is a more faithful metric for model performance (since a model may score a high AUC of
the ROC curve by overestimating that events are not cytoquakes) (35, 36). To overcome this limitation of ROC curves, which
we believe has a more intuitive interpretation that PR curves, we balance the testing data, keeping all cytoquake events and
randomly keeping an equal number of non-cytoquake events. We confirmed that trends observed in the AUC of the ROC
curves as the model is varied also hold when considering the AUC of PR curves on the full test set.

In Figure S13 we show examples of these PR and ROC curves on the training and testing data for a model trained on a
single run. The very high AUC of the PR and ROC curves evaluated on the training data indicates that the model has nearly
perfected its prediction on those samples and may indicate overfitting, however this high performance generalizes nicely to the
unseen testing data. Note that the AUC of the ROC evaluated on the testing data is significantly higher than shown in Figure
S12.D reflecting the generally higher performance of models trained on data from a single run compared to models trained on
data from all runs.

Finally, as a sanity check, we confirmed that randomly shuffling the labels on the training set decreases performance on the
training set and causes the performance on the test set to decrease to that of a random model, as shown in Figure S14.

F. Varying the machine learning model inputs. Applying the model using the Hessian eigenspectrum as the input, we obtained
an AUC of 0.81 when using data from a single run of condition C3,3 (Figure S12.C) and of 0.70 when using data from five runs,
i.e. from five different network realizations. In Figure S12.D, we display the effects of varying the machine learning model
inputs on prediction performance, reflecting the degree to which cytoquake occurrence depends on the various inputs. We
point out that these trends from varying the model inputs are not particularly strong, contributing only marginal changes
(though greater the measured uncertainty) to the model performance. These differences are less than the difference resulting
from combing all five runs in a data set rather than using one run. We report them here mainly out of completeness, rather
than in support of some strong conclusion.

Uncertainty in AUC from five repetitions of stochastic batch training is roughly 0.01 for all reported values. Keeping only
the eigenvalues of the soft modes does not harm performance (AUC 0.71), while keeping only the stiff modes does harm
performance (AUC 0.68). Performance is not harmed (AUC 0.72) upon augmenting the input with the inverse participation
ratios {rk(t)}3N

k=1. Interestingly, we found that a logistic regression model using only the mechanical energy U(t) as an input
feature performs well (AUC 0.74, with a smaller uncertainty around 0.002 for this simpler model), reminiscent of the debate
concerning one neuron vs. deep learning models of earthquake aftershock prediction (37, 38). This logistic regression model
has learned an optimal cutoff for U that indicates instability and likely cytoquake occurrence. We may seemingly conclude
that the machine learning model using the Hessian eigenspectrum as an input has merely learned what the mechanical energy
is, however we find that by far the best performance results from combining {λk(t)}3N

k=1, {rk(t)}3N
k=1, and U(t) in the ML

model, reaching an AUC of 0.79 when using data from all five runs. This suggests that the learned features of the Hessian
eigenspectrum are not redundant given U , i.e. that their mutual information is low. Finally, we found that prediction of large
positive increments (∆U > 100 kBT ) is also possible, with an AUC of 0.74 when combining all inputs.
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Fig. S13. A: PR curve evaluated for a model using {λk}3Nk=1, {rk}3Nk=1, and U as inputs trained on data from a single run at QSS of condition C3,3 and evaluated on the
training data. The red line indicates the performance of a random model on the data set. The asterisk on the AUC indicates that the fraction of cytoquake samples in the data
set (for this run∼ 0.06) has been subtracted from the actual AUC, to give the area between the black and red curves. B: ROC curve for the same model evaluated on the
training data. C: PR curve for the same model evaluated on the balanced testing data. D: ROC curve for the same model evaluated on the balanced testing data.
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Fig. S14. A: PR curve evaluated for a model using {λk}3Nk=1, {rk}3Nk=1, and U as inputs trained on data from a single run at QSS of condition C3,3 and evaluated on the
training data, when the training data labels have been randomly shuffled. The red line indicates the performance of a random model on the data set. B: ROC curve for the same
model evaluated on the training data. C: PR curve for the same model evaluated on the balanced testing data. D: ROC curve for the same model evaluated on the balanced
testing data.
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Movie S1. The movie SIMovie1(C33Trajectory).mp4 is a visualization of a 2,000 s long MEDYAN trajectory
of cytoskeletal self-organization for the experimental condition C3,3, which is described in the main text.

Movie S2. The movie SIMovie2(C31_100.11).mp4 is a visualization of a vibrational normal mode correspond-
ing to eigenvalue 100.11/pN/nm for experimental condition C3,1. The amplitude of the oscillation is chosen to
allow easy visualization and is not to scale with any physical quantity.

Movie S3. The movie SIMovie3(C33_0.66).mp4 is a visualization of a vibrational normal mode corresponding
to eigenvalue 100.11/pN/nm for experimental condition C3,3. The amplitude of the oscillation is chosen to allow
easy visualization and is not to scale with any physical quantity.

Movie S4. The movie SIMovie4(C33_5.83).mp4 is a visualization of a vibrational normal mode corresponding
to eigenvalue 5.83/pN/nm for experimental condition C3,3. The amplitude of the oscillation is chosen to allow
easy visualization and is not to scale with any physical quantity.

Movie S5. The movie SIMovie5(C33_13.75).mp4 is a visualization of a vibrational normal mode corresponding
to eigenvalue 13.75/pN/nm for experimental condition C3,3. The amplitude of the oscillation is chosen to allow
easy visualization and is not to scale with any physical quantity.
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