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Supporting Information Text26

1. Data.27

We use two sources of data: synthetic data generated from an agent-based model (ABM) describing macrophage28

infiltration into avascular tumor spheroids, and clinical data from digitized immunohistochemistry (IHC) slides of29

human head and neck tumors. We explain below how each dataset was generated. First we introduce the ABM,30

then we describe the protocol used to stain and image the IHC slides, and outline the image analysis process used to31

extract point clouds from the digitized IHC images.32

A. Agent-based Model (ABM). We use the open source software Chaste (Cancer, Heart and Soft Tissue Environment)33

(1, 2) to extend a two-dimensional, hybrid ABM for the growth of multicellular tumor spheroids (3) to simulate their34

infiltration by macrophages. The simulations are based on in vitro experiments designed to investigate the effect of35

chemotaxis on macrophage infiltration into tumor spheroids (4). The key features of our ABM are summarized in36

Figure S1, which is adapted from (3).37

We distinguish two cell types in our ABM: tumor cells and macrophages. The behavior of the tumor cells is affected38

by the local concentration of oxygen, ω (see Equation (1)). Macrophages are not directly affected by the local oxygen39

concentration; they move along spatial gradients of a chemoattractant, c, which is produced by tumor cells under40

hypoxia (see Equation (2)). For simplicity, we assume that the macrophages do not inhibit or promote tumor cell41

growth.42

We use an off-lattice ABM in which each cell is represented by its cell center. Cell movement is determined by43

applying a force balance to each cell (Figure S1B-C indicate the forces that act on tumor cells and macrophages44

respectively). Cell-cell interactions are modeled by assuming that a spring connects the centers of cells within a45

specified interaction radius (see Equation (8)).46

Oxygen and chemoattractant concentrations. Reaction-diffusion equations describe the concentrations of oxygen ω(x, t)47

and a hypoxia-induced chemoattractant c(x, t). While multiple chemoattractants, such as macrophage colony-48

stimulating factor 1 (CSF-1) or chemokine ligand 2 (CCL2)(5), may bias macrophage movement, here, without loss49

of generality, this chemoattractant is taken to be CSF-1. The centers of viable tumor cells act as point sinks for50

oxygen, modeling oxygen consumption, while the centers of hypoxic tumor cells act as point sources for the diffusible51

macrophage chemoattractant. As the timescale of diffusion for oxygen and CSF-1 (seconds) is much faster than52

the timescale of cell proliferation (hours), we make the standard quasi-steady state assumption (see, e.g., (6)) and53

consider the following dimensionless equations for ω and c:54

0 = Dω∇2ω − κω
∑
i

δ(x− xi), for x ∈ Ω. [1]55

56

0 = Dc∇2c+ κc
∑
i

δ(x− xi)H(ωh − ω(xi)), for x ∈ Ω. [2]57

In Equation (1) and Equation (2), Dω and Dc are non-negative diffusion coefficients for oxygen and CSF-1 respectively,58

κ is the rate at which viable cells consume oxygen, κc is the rate at which CSF-1 is produced by hypoxic tumor cells59

and xi is the location of viable cell i. We denote by δ(x) the delta function (δ(x) = 1 when x = 0; δ(x) = 0 otherwise),60
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and Ω is a square domain which fully encloses the spheroid. H is the Heaviside step function (H(ωh − ω) = 1 if61

ω < ωh; H(ωh − ω) = 0 otherwise).62

Equation (1) and Equation (2) are solved subject to Dirichlet boundary conditions (ω = ω∞ on δΩ and c = 063

on δΩ) and suitable initial conditions (ω = ω∞ and c = 0 in Ω at t = 0). We assume that oxygen is maintained at64

a constant level, ω∞, in the culture medium which surrounds the tumor spheroid and, by continuity, that on the65

spheroid boundary the oxygen concentration is also maintained at this constant value. In Equation (2), we account66

for diffusion of CSF-1 and its production by hypoxic tumor cells. We assume that chemoattractant removal at the67

boundary of the domain is the dominant sink of chemoattractant and, therefore, as stated above, we fix c = 0 there.68

In particular, we neglect natural decay of CSF-1 in the domain of interest; this could be modeled by including a decay69

term in Equation (2), and replacing the Dirichlet boundary conditions by zero-flux Neumann boundary conditions.70

Equation (1) and Equation (2) are solved numerically on a regular tetrahedral 2D finite element mesh spanning Ω.71

Figure S1A shows the distribution of CSF-1 across the spheroid at the timestep shown, with the highest concentration72

of chemoattractant colocalizing with hypoxic tumor cells.73

Tumor cell phenotypes. We account for the effect the local oxygen concentration has on the behavior of the tumor cells74

by introducing the following four phenotypes (see also Figure S1D):75

• If ω > ωq, then a tumor cell proliferates.76

• If ω ≤ ωq, then the tumor cell becomes quiescent and immediately pauses its cell cycle (and conversely).77

• If 0 ≤ ωh ≤ ω ≤ ωq, then the tumor cell immediately becomes hypoxic (and conversely). If a cell remains78

hypoxic for longer than τ̃i hours then it becomes necrotic (7).79

• Necrotic cells are dead, and do not consume oxygen, although they occupy space for a fixed time period, τ̄80

hours, before being removed from the simulation.81

Tumor cell proliferation and death. Each viable tumor cell contains two subcellular variables: its cell cycle time Ti82

determines when it proliferates; its hypoxia time T̃i determines whether it has been hypoxic for long enough to become83

necrotic. Both subcellular variables increase at rates which depend on the local oxygen concentration. Pseudocode84

describing how the cell cycle is updated is presented in Algorithm 1.85
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Fig. S1. Schematic of the multiscale, agent-based model (ABM) used to simulate the growth of multicellular tumor spheroids and
their infiltration by macrophages.
A: Left - snapshot from an ABM simulation, Right - corresponding distribution of colony stimulating factor 1 (CSF-1) at this timestep. Tumor cells are characterized by their
spatial location and local oxygen concentration, ω: proliferating cells (dark red) exist in oxygen-rich regions, where ωq ≤ ω ≤ 1; quiescent cells (pink) are non-proliferating,
viable cells which exist in moderate oxygen levels, where ωh ≤ ω < ωq ; hypoxic cells (purple) are non-proliferating, viable cells that become necrotic if they remain in low
oxygen regions where ω ≤ ωh, for longer than a prescribed time period; necrotic cells (orange) degrade over time. Macrophages (green) move by chemotaxis up spatial
gradients of CSF-1, c, which is produced by hypoxic tumor cells (right, with spheroid outline shown in white). B&C: Schematic indicating the forces which act on individual
tumor cells (B) and macrophages (C) and drive their movement. All cells experience: spring forces, due to cell-cell interactions with their neighbors; a random force, which
represents fluctuations in the local environment; and a drag force, which resists cell movement. Tumor cells on the spheroid boundary also experience a surface tension
force which is directed radially inwards, towards the spheroid centroid, and maintains spheroid compactness (see B). Macrophages experience a chemotactic force, which
points in the direction of increasing levels of CSF-1, c (see C). D: Schematic showing how tumor cell phenotype changes in response to the local oxygen concentration, ω. E:
Flowchart summarizing how the ABM is updated on each timestep. Pseudocode describing the tumor cell cycle can be found in Algorithm 1.
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Algorithm 1 Pseudocode outlining the procedure used to update the cell cycle for tumor cells.
Input: All tumor cells, viable or necrotic
for All tumor cells do

if Cell is alive then
if ωq < ω ≤ 1 then

// Cell is proliferative
// Move cell through cell cycle by one timestep
Set Ti = Ti + dt // Ensure hypoxia timer is unset
Set T̃i = 0
// If cell is less than one hour old, increase the cell radius
if Ti < 1 then

Set si = si +RCelldt
end
// If cell is at end of cell cycle, proliferate
if Ti = τi then

Choose random location within Rint of cell i
Place daughter cell j in selected location
Set si = RCell

2
Set sj = RCell

2
Set Ti = 0 for cells i and j
Choose new cell cycle durations τi for cells i and j

end
else if ωh < ω ≤ ωq then

// Cell is quiescent
// Ensure hypoxia timer is unset
Set T̃i = 0

else if ω ≤ ωh then
// Cell is hypoxic
// Increment hypoxia timer by one timestep
Set T̃i = T̃i + dt
// Check for cell death
if T̃i = τ̃i then

Mark cell as dead
end

end
else

// Cell is necrotic
// Reduce necrotic cell radius linearly over τ̄ hours to model decay
Set si = si − RCell dt

τ̄ if si = 0 then
Remove cell from simulation

end
end

end

At birth, the cell cycle time of tumor cell i is initialized so that Ti = 0, and the cell is assigned a cell cycle duration86

τi chosen from a uniform distribution U(0.75 τ , 1.25 τ), where τ defines the average cell cycle length. Thereafter, Ti87

evolves as follows:88

dTi
dt

= H(ω(xi, t)− ωq) [3]89

where H is the Heaviside step function (H(ω − ωq) = 1 if ω > ωq; H(ω − ωq) = 0 otherwise). When Ti = τi, the cell90

divides. One daughter cell is located at the same site as its parent, the other is placed at a distance of half a cell91

diameter away from the parent cell center, in a randomly chosen direction. Both daughter cells are assigned new cell92

cycle durations, their cell cycle times are set to 0, and thereafter evolve according to Equation (3). The spring length93

of newborn cells is initially half that of other cells, and grows linearly over the course of 1 hour until it reaches the94

natural spring length of the parent cell (for details, see description of mechanical forces below).95
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Each cell has an internal hypoxia time, T̃i, which evolves as follows:96

dT̃i
dt

= H(ωh − ω(xi, t)), [4]97

with T̃i = 0 at the onset of hypoxia. If the local oxygen concentration increases so that ω(xi, t) > ωh then we re-set98

T̃i = 0. Tumor cells become necrotic if they remain hypoxic for longer than a threshold time τ̃i, where τ̃i is drawn99

from a uniform distribution U(0.75 τ̃ , 1.25 τ̃) when a cell is born, and τ̃ represents the average time a cell can remain100

viable under hypoxia. Necrotic cells are not viable and do not progress through the cell cycle. They occupy space,101

but their size reduces over a period of τ̄i hours and then they are removed from the simulation. We explain below102

how size reduction is implemented.103

Force balances for tumor cells and macrophages. As indicated in Figure S1, three forces act on the tumor cells: mechanical104

forces (Fmi ) caused by cell-cell interactions, random forces (Fri ) which represent fluctuations in the local environment,105

and surface tension forces (Fsi ) which maintain compactness of the spheroid. In addition to mechanical forces and106

random forces, macrophages are subject to a chemotactic force (Fχi ), which biases their movement up spatial gradients107

in the chemoattractant CSF-1, c. We assume that macrophages are not subject to surface tension forces. The108

equations of motion for tumor cells and macrophages derive from Newton’s second law, in the over-damped limit,109

when inertial effects are neglected. The force balances for cell i and macrophage j are given by:110

Tumor cells: ν
dxi
dt

= Fmi + Fri + Fsi . [5]111

112

Macrophages: ν
dxj
dt

= Fmj + Frj + Fχi . [6]113

In Equation (5) and Equation (6), the drag force acting on tumor cell i (or macrophage j) is assumed to be proportional114

to its velocity, with constant of proportionality ν. Functional forms for Fmi , Fri , Fsi and Fχi are defined below.115

Mechanical forces, Fmi (tumor cells and macrophages) Mechanical forces act on tumor cells and macrophages; for116

simplicity we refer to their cell centers as “nodes”. Node j exerts a mechanical spring force on node i (and vice versa) if117

the distance between their centers is less than a fixed value, Rint. Following the overlapping spheres approach outlined118

in (3, 8–11), if |xi − xj| < Rint then the force acts in the direction of the vector between the nodes. The magnitude119

of the force depends on the distance between the associated cells and their sizes. Although cells in our ABM are120

represented as points, each cell has an associated size which is implicitly implemented by adjusting the resting spring121

length si for each node i. The resting spring length between two nodes, si,j , is the sum of the equilibrium spring122

lengths for each node (si,j = si + sj). If the distance between two cell centers is larger than si,j then the nodes123

experience an attractive force; otherwise, the force is repulsive. The mechanical force, Fmi,j , between nodes i and j, at124

locations xi and xj , has the form:125

Fmi,j =


µsi,j log (1 + x

si,j
) xi − xj
|xi − xj |

if x < 0 (Repulsive)

µxsi,j exp (−λ x

si,j
) xi − xj
|xi − xj |

if x ≥ 0 (Adhesive)

 [7]126

where x = |xi − xj | − si,j is the overlap between cells i and j, the parameter µ > 0 represents the spring stiffness and127

the parameter λ > 0 determines the strength of cell-cell adhesion. Following Bull et al. (3), the net mechanical force128

acting on a node i at location xi is the sum of the contributions of all nodes j within radius Rint:129

Fmi =
∑

{j | |xi−xj |≤Rint}

Fmi,j . [8]130

With the exception of newborn and necrotic cells, we assume that si = RCell for tumor cells and macrophages. For131

convenience, all lengths in our ABM are scaled with respect to this lengthscale, assuming that 1 cell diameter =132

2RCell = 20µm.133

Following division, daughter cells are initially assumed to be smaller than their parent cells and, so, we set si = RCell
2134

for both daughter cells. Their spring lengths increase linearly over a period of one hour until si = RCell. Similarly, we135

represent the gradual decay of necrotic cells by decreasing their spring lengths linearly to zero over a period of τ̄i136

hours and then remove them from the simulation.137
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Random forces, Fri (tumor cells and macrophages) The random force acting during the timestep dt is given by:138

Fri =
√

2Ddt ξ. [9]139

In Equation (9), D > 0 is a random motility coefficient and ξ = (ξx, ξy) where ξx and ξy are random variables drawn140

from a standard normal distribution.141

Surface tension forces, Fsi (boundary tumor cells) The surface tension force, Fsi , experienced by tumor cells on the142

spheroid boundary has the form:143

Fsi = −βx̂i, [10]144

where the unit vector x̂i points from boundary cell i to the spheroid centroid, and parameter β> 0 determines the145

strength of the surface tension force. Boundary cells are those belonging to the α-shape of the set of tumor cell146

centers, where α = RCell (12).147

Chemotactic forces, Fχi (macrophages) Following (8), the chemotactic force experienced by macrophage i is given by:148

Fχi = χ∇c(xi, t), [11]149

where the parameter χ> 0 determines the macrophage sensitivity to the chemotactic gradient of CSF-1.150

Simulation protocol. Following Bull et al. (3), simulations are initialized by uniformly distributing 300 tumor cells151

within a circle of radius 5 cell diameters. All tumor cells are initially assigned a cell cycle time Ti from a uniform152

distribution U(0, 0.75 τ) to ensure that cell cycles are not synchronized. After 300 hours of spheroid growth, 100153

macrophages are distributed randomly around the spheroid edge and the simulation continued for a further 100 hours.154

Table S1. Parameter values and ranges used for ABM simulations.

Symbol Parameter Dimensionless value Dimensional range Refs
dt Timestep 1/120 1/200 - 1/100 (hours) (13)
RCell Radius of a cell 0.5 7 - 12 (µm) (14)
Rint Radius of interaction 1.5 21 - 36 (µm) (13)
α Radius used to determine α-shape 0.5 7 - 12 (µm) ∗
ω∞ Oxygen boundary value 1.0 100 - 150 (mm Hg) (15, 16)
ωh Hypoxia threshold 0.1 - 0.7 10 (mm Hg) (16)
ωq Quiescence threshold 0.3 - 0.7 30 - 70 (mm Hg) (3), ∗
τ Average cell cycle length 8 - 32 13 - 32 (hours) (17, 18)
τi Cell cycle duration for cell i 0.75τ - 1.25τ 9.75 - 40 (hours) (3), ∗
τ̃ Average critical hypoxic duration 8 - 16 Assumed (hours) (3), ∗
τ̃i Critical hypoxic duration for cell i 0.75τ̃ - 1.25τ̃ Assumed (hours) (3), ∗
τ̄ Average necrosis duration 48 Assumed (hours) (3), ∗
τ̄i Necrosis duration for cell i 0.75τ̄ - 1.25τ̄ Assumed (hours) (3), ∗
ν Damping coefficient 1 0.4 (N s−1m−1) (13, 19)
µ Spring constant 45.0 3 - 50 (µg Cell diameter−1 hours−2) (13, 20)
µbead Spring constant for macrophages 45.0 3 - 50 (µg Cell diameter−1 hours−2) (3), ∗
λ Intercellular adhesion scaling coefficient 5.0 Assumed (-) (13)
si Radius of cell i at equilibrium RCell 7 - 12 (µm) (14)
si,j Resting spring length between cells i and j si + sj 0 - 24 (µm) (3), ∗
D Random motility coefficient 0.01 Assumed (Cell diameter2 hours−1) (3), ∗
κ Oxygen consumption rate 0.03 20× 10−18 ( mol/(cell s) ) (21)
Dω Oxygen diffusion coefficient 1 1,750 (µm2 seconds−1) (21)
β Surface tension coefficient 5 Assumed (µg hours−2) (3), ∗
χ Chemotaxis sensitivity coefficient 0-10 Assumed ∗
Dc CSF-1 diffusion coefficient 1 1,750 (µm2 seconds−1) ∗
κc CSF-1 production rate 0.03 0.01-0.1 (nM min−1) (22), ∗

∗Estimated to maintain realistic model behaviour.

Parameter values. Table S1 contains dimensionless parameter values used in the ABM simulations and ranges of their155

dimensional counterparts. Parameter values with ∗ are based on estimates which have been chosen in order to156

produce biologically reasonable behavior, where no suitable reference value can be identified. In particular, parameter157

values were chosen to ensure that spheroids remained compact, exhibited logistic growth patterns characteristic of158
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diffusion-limited spheroid growth and, where possible, were consistent with previous modeling studies. Following159

previous work of (3), (23) and (16), dimensional values for parameters relating to oxygen thresholds are stated160

in terms of partial pressures, p. These can be converted to concentrations, ω, using Henry’s Law p = Ωω, with161

Ω = 3.0318× 107mmHg kg m−3.162

B. Head and Neck Clinical Histology Images.163

IHC data collection protocol. As previously reported (24), all patients gave informed consent for use of their tissue164

in research. Access to the tissue samples analyzed in this study was approved under Oxford Radcliffe Biobank165

(ORB) research tissue bank ethics, reference 09/H0606/5+5 (approved by the National Research Ethics Service166

[NRES] Committee South Central – Oxford C). All experimental protocols were approved prospectively by the ORB167

committee and subsequently conducted in accordance with its conditions and those of NRES. 4µm sections were cut168

from formalin-fixed paraffin embedded tissue blocks of 16 cases of head and neck squamous cell carcinoma (HNSCC).169

These (near) serial sections underwent IHC staining on a Leica BOND-MAX automated staining machine (Leica170

Biosystems). Briefly, sections were deparaffinized, underwent epitope retrieval and endogenous peroxidase activity was171

blocked with 3% hydrogen peroxide (5 minutes). Subsequently, sections were incubated with the primary antibody172

(30 minutes) followed by post-primary and polymer reagents (8 minutes each). Next, 3,3’-Diaminobenzidine (DAB)173

chromogen was applied (10 minutes) (all reagents contained within the BOND Polymer Refine Detection kit, Leica174

Biosystems, catalog no. DS9800). The following primary antibodies were used to stain individual sections:175

• CD8 – mouse monoclonal clone C8/144B, Agilent Technologies (catalog reference: M710301-2), 1:100 concentra-176

tion;177

• FoxP3 – mouse monoclonal clone 236A/E7, Abcam (catalog reference: ab20034), 1:100 concentration;178

• CD68 – mouse monoclonal clone PG-M1, Agilent Technologies (catalog reference: M087601-2), 1:200 concentra-179

tion;180

• Pimonidazole – mouse monoclonal clone 4.3.11.3, Hypoxyprobe Inc. (catalog reference: Mouse-Mab), 1:1000181

concentration;182

• CAIX – rabbit polyclonal, Abcam (catalog reference: ab15086), 1:2000 concentration;183

• Pancytokeratin – rabbit polyclonal, Abcam (catalog reference: ab9377), 1:200 concentration.184

Stained slides were scanned at x200 magnification using the NanoZoomer S210 digital slide scanner (Hamamatsu)185

and co-registered to allow comparison of labeled cells and regions.186

Image analysis of clinical data. We use a bespoke image analysis pipeline (25), implemented in MATLAB (MathWorks),187

to extract CD8+, FoxP3+and CD68+cell locations from IHC slides as (x,y)-coordinates for downstream analysis188

(Figure S2). Initially, whole slide IHC images were reviewed by a trained pathologist (PSM) who annotated tumor189

regions, areas of necrosis and any artifactual changes for exclusion from analysis. For the dataset presented in Figure 3,190

1.5mm × 1.5mm regions of interest were then selected to saturate as much of the tumor tissue as possible whilst191

avoiding any artifacts present on the stained slides. Each region was then extracted at 100x effective magnification192

(resolution of 0.882µm per pixel) for analysis. For the dataset presented in Figure 4, larger regions of interest193

(≈ 4.75mm× 4mm) were extracted from the CD8, FoxP3, CD68, pimonidazole, CAIX and pancytokeratin labelled194

slides, computationally aligned and merged into a single multi-labeled image. Following the process described by195

Bull et al. in (25), we then applied the Simple Linear Iterative Clustering (SLIC) superpixellation algorithm (26) to196

obtain an oversegmented image in which each cell is represented by multiple superpixels. We collected 26 summary197

features from each superpixel: the mean and standard deviation of values of the red, green and blue color channels of198

constituent pixels; the mean and standard deviation of these color channels in neighboring superpixels; the means199

and standard deviation of these color channels in neighbors of neighboring superpixels, and morphological properties200

of the superpixel (e.g., height, width, aspect ratio, number of constituent pixels).201

We applied a support vector machine (SVM) classifier (27) to identify positively stained superpixels and to obtain202

a mask of positive pixels. For CD8, FoxP3 and CD68 labeled images, watershed segmentation was used to split203

the corresponding mask into connected components. Using stain-specific parameters identified by PSM, connected204

components below a threshold were classed as noise and excluded from the mask. Connected components larger than205

a second threshold were deemed too large to represent a single cell and were bisected midway along the longest axis.206

This process was repeated until all connected components had an area within the target range. The centroids of the207
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connected components were converted into (x, y)-coordinates for analysis. For pimonidazole, CAIX and pancytokeratin208

images, positively stained regions were identified and combined with manual annotations of regions of necrosis to209

derive overlay masks that were used to segment tumor cell nests from tumor stroma and to define gradients of oxygen210

availability. In keeping with previous studies (28), we report ‘hypoxic fractions’ for each marker, defined as the211

hypoxia marker positive surface area divided by the total tumor surface area (including both epithelial and stromal212

components).213

Performance of image analysis pipeline. Results validating the performance of our image analysis pipeline can be found214

in the Supplementary Information of (25). We also include here Figure S3, which reproduces the IHC region associated215

with Figure 4 in the main text. We show magnifications of three representative regions of the CD8+IHC slide, together216

with the corresponding magnified regions of the aligned FoxP3+and CD68+slides. Immune cells detected by our217

pipeline are circled in gold (CD8+), teal (FoxP3+) and purple (CD68+) in the relevant images.218

Hypoxia markers. Well-vascularized stromal regions are the best oxygenated areas within tumors, with the perivascular219

partial pressure of oxygen reported to be approximately 30 mmHg (29). Endogenous (genetic) hypoxia markers, such220

as carbonic anhydrase 9 (CAIX), are activated within tumor cells via the hypoxia-inducible factor (HIF) system at an221

oxygen partial pressure of approximately 20mmHg (30). By comparison, exogenous (chemical) hypoxia markers, such222

as pimonidazole, label more profoundly hypoxic tumor regions with a partial pressure of oxygen below approximately223

10mmHg (31). Regions of necrosis, identified by manual annotations by a pathologist, are virtually anoxic (32).224

Figure S4 provides exemplar images of these hypoxia markers in a human head and neck tumor.225

2. Analysis Techniques.226

A. Spatial Statistics.227

Pair-correlation function. The pair-correlation function (PCF), g(r), is a second-order spatial statistic which can identify228

clustering and dispersion in point datasets.229

We calculate the PCF as follows. For each point in the dataset, we calculate the ratio of the number of points230

observed in an annulus of width dr and inner radius r to the number of points expected to be in the annulus if231

points were distributed according to complete spatial randomness (CSR). We average these values across all points to232

determine the PCF, g(r) (see Figure S5). Under CSR, the expected number of points within an annulus of area A is233

n = Ad, where d is the density of points in the domain.234

If g(r) > 1 then more points are separated by radius r than would be expected under CSR. Similarly, g(r) < 1235

indicates that fewer points are separated by distance r than expected by CSR. Thus, the PCF describes clustering236

and dispersal of points over different length scales. We consider the maximum observed value of the PCF, denoted237

gmax. This summary statistic can be interpreted as describing how densely clustered the points are in comparison to238

CSR at any length scale.239

B. Topological Techniques.240

Introduction to Persistent Homology. In this section we introduce persistent homology (PH), a technique from the241

field of Topological Data Analysis which is used to extract topological features of data. PH extracts non-linear242

features of a dataset and can be applied to a range of data types (33–39). Interactive examples demonstrat-243

ing single parameter persistent homology (1-PH), multiparameter persistent homology (MPH) and persistence244

landscapes are available online at (40) and a video tutorial is available at https://drive.google.com/drive/folders/245

1X20C1RYZyk6cmkcRX9NZ9MGdrE41kRqu?usp=sharing.246

PH enjoys a number of desirable properties which make it a viable technique for use with biological datasets.247

The topological summary produced by PH provides a multiscale description of a dataset. A multiscale descriptor is248

particularly useful for biological datasets since the length scales over which biological phenomena occur may not be249

known a priori. By contrast, traditional data analysis techniques such as machine learning and various statistical tests,250

focus on a single length scale. The extraction of topological features through PH satisfies a stability result (Theorem251

2), which guarantees that similar datasets produce similar topological summaries. Biological datasets are susceptible252

to the introduction of noise in various stages of data collection and processing, as well as the noise derived from the253

inherent stochasticity of biological processes. The robustness that derives from the stability result for PH means that254

the topological summaries produced by PH theory are not very sensitive to small perturbations of datasets. However,255

outliers can disrupt topological features. We demonstrate the sensitivity to moderate levels of outlier noise in our256

analysis.257
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Fig. S2. Workflow for extracting point clouds from immunohistochemistry (IHC) images
Workflow used to extract (x, y)-coordinates of cell centroids from IHC slides, demonstrated here on a 300µm× 300µm region extracted from a head and neck tumor IHC
slide stained to show CD68+ macrophages. The input image is converted into superpixels, and the summary features of each superpixel are calculated. These features are
used to classify each superpixel using a support vector machine classifier. Individual cells are identified via watershedding.
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Fig. S3. Examples of cell detection in the region analyzed in Figure 4
Magnified immunohistochemistry (IHC) regions showing points used in the analysis for Figure 4. The magnified regions shown in (a)-(c) come from the CD8+, FoxP3+ and
CD68+ IHC slides respectively. Scale bars are 50µm.
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Fig. S4. Mapping oxygen (O2) availability in solid tumors by immunohistochemistry.
Oxygen gradients exist within solid tumors as a result of complex interaction between factors that include the blood’s oxygen carrying capacity, the integrity and function of
tumor blood vessels and the metabolic demands of tumor and stromal cells. These gradients can be mapped by combining a panel of different immunohistochemical markers.
In this example, the histological images, from left to right, illustrate: (1) differentiation of stroma (pancytokeratin negative) and tumor cell nests (pancytokeratin positive) (upper
panel) and labeling of stromal blood vessels with the endothelial marker CD31 (lower panel), (2) tumor cell expression of the endogenous hypoxia marker carbonic anhydrase
9 (CAIX) and (3) the adducts formed by the exogenous hypoxia marker pimonidazole and (4) an area of necrosis (N).
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Fig. S5. Example calculation of the pair-correlation function (PCF)
A: Schematic showing how the the pair-correlation function (PCF), g(r), is calculated. An annulus of width dr and inner radius r is centered at each point in turn, and the
number of points observed within the annulus is recorded. This number is then averaged over all points in the point cloud, and compared with the number of points expected
to lie within the annulus under complete spatial randomness. B: Points derived from macrophage (CD68+) locations in a 1.5 mm× 1.5 mm immunohistochemistry image of
a sample of human head and neck cancer. C: PCF calculated for the point cloud in B. When the radius is less than approximately 20µm, g(r) < 1, suggesting dispersion
of points; this length scale corresponds to the approximate size of a macrophage and indicates that identified macrophage centers are at least one cell diameter apart. The
PCF, g(r), peaks at r ≈ 0.06mm, indicating that macrophages are approximately 1.75 times more likely to be found within 0.06mm of another macrophage than if they were
randomly distributed in the domain.
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Single Parameter Persistent Homology (1-PH). In this section we introduce the basic concepts from 1-PH required to258

describe our analysis techniques. See (41) and (42) for a more detailed exposition of 1-PH.259

Definition 1 (1-Parameter Filtration) Let X be a topological space and {Xt}t∈R a collection of subspaces of X such260

that Xs ⊂ Xt for all s ≤ t. We say that {Xt}t∈R is a 1-parameter filtration of the topological space X if X =
⋃
t∈RXt.261

Definition 2 (Single Parameter Persistence Module) Let {Vt}t∈R be a collection of vector spaces and {ιs,t : Vs →262

Vt}s≤t a collection of linear maps such that ιt,t = idVt and ιs,t ◦ ιr,s = ιr,t. We say that the collection of this data is a263

single parameter persistence module which we shall simply denote by V . This data can be thought of as an R-graded264

module over the monoid ring ([0,∞),+) with the action given by the linear maps, that is to say for all v ∈ Vt and265

a ∈ [0,∞) we have a · v = ιt,t+a(v).266

Example 1 (Sublevel Set Single Parameter Persistent Homology) Let X be a topological space equipped with a267

filtering function f : X → R, inducing a R-indexed collection of sublevel sets {Xt = f−1((−∞, t])}t∈R and a collection268

of inclusion maps {is,t : Xs → Xt}s≤t. Let H denote a homology functor with coefficients in a field. Applying the269

homology functor H to the collection of sublevel sets and inclusion maps gives rise to a single parameter persistence270

module, {Vt = H(Xt)}t∈R, {ιs,t = H(is,t) : Vs → Vt}s≤t, called persistent homology (1-PH).271

The choice of filtering function is crucial in the formation of a persistence module. A filtering function can be272

tailored to the specific application one has in mind for a dataset. The filtering function may be chosen to track the273

spatial distribution of data.274

Example 2 (Čech Filtration) Let (M,d) be a metric space and P ⊂ M a collection of points in the metric space.275

Consider the filtering function distP : M → R, defined to be the distance function from the collection of points:276

distP (x) = minp∈P d(x, p). The induced R≥0-indexed collection of sublevel sets {Xr = distP−1((−∞, r])}r∈R≥0 and277

collection of inclusion maps {ir,s : Xr → Xs}r≤s is known as the Čech filtration.278

The Čech filtration is commonly used in applications of persistent homology. For well-behaved metric spaces such279

as Euclidean space, one can encode the topology of the filtration in a combinatorial object called a filtered simplicial280

complex. Moreover, the Čech filtration may be approximated by a simpler filtration known as the Vietoris-Rips281

filtration. The Vietoris-Rips filtration is more efficiently computable and will be used in our computations. An282

example Čech filtration for a point cloud is illustrated in Figure S8c.283

Theorem 1 (Decomposition Theorem)(43) Let I ⊂ R be an interval and let V I denote the single parameter persistence284

module such that dimV It = 1I(t) and such that the linear maps ιs,t are isomorphisms for all s, t ∈ I. If V is a single285

parameter persistence module such that dimVt <∞ for all t ∈ R then V admits a unique decomposition V ∼=
⊕

I∈B V
I

286

for some multiset of intervals B. The multiset B is known as the barcode of the persistence module V .287

Definition 3 (Interleaving Distance) Let V and W be single parameter persistence modules. An ε-interleaving
between modules V and W is specified by a collection of linear maps {φt : Vt →Wt+ε}t∈R,{ψt : Wt → Vt+ε}t∈R such
that for all t ∈ R these linear maps satisfy ψt+ε ◦ φt = ιVt,t+2ε and φt+ε ◦ ψt = ιWt,t+2ε. If an ε interleaving between V
and W exists we say that V and W are ε-interleaved. The interleaving distance between a pair of modules is denoted
by dI and given by:

dI(V,W ) = inf{ε ≥ 0 : V and W are ε− interleaved}

where we take the infimum of the empty set to be ∞.288

The interleaving distance is an extended pseudo-metric on the collection of persistence modules and so satisfies the289

intuitive properties one would want from a distance function to compare these algebraic objects. For well-behaved290

persistence modules that arise in data analysis the interleaving distance is computable.291

Theorem 2 (Stability Theorem) Let X be a topological space and f, g : X → R be a pair of filtering functions, and
V (f), V (g) be the associated sublevel set single parameter persistence modules. Then

dI(V (f), V (g)) ≤ ‖f − g‖∞

292
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Consider the case that f and g are the distance functions associated to point clouds P and P ′ in a metric space,293

that is f = distP and g = distP ′ . It is straightforward to show that the infinity norm between f and g is the Hausdorff294

distance between the point clouds P and P ′. If P ′ is a perturbation of the collection of points P then the Hausdorff295

distance between the two point clouds will be small, and, thus, by Theorem 2, the resulting sublevel set single296

parameter persistence modules will be close in the interleaving distance. However, if one of the points in P ′ is distant297

from all points in P , the Hausdorff distance between the point clouds is large and there is no guarantee that the298

resulting modules will be close in the interleaving distance. In this sense, single parameter persistent homology is299

stable to perturbations of point clouds but sensitive to the introduction of outliers.300

Multiparameter Persistent Homology. Multiparameter persistent homology is a topic of considerable research interest for301

the Topological Data Analysis community (44–46). The algebraic objects which arise in the study of multiparameter302

persistence are significantly more complex than their single parameter counterparts. Multiparameter persistence303

facilitates the study of richer topological properties of data inaccessible by single parameter persistence. In return for304

richer topological summaries, one has to pay the price of increased complexity in the computation of multiparameter305

persistence (47). As a result, multiparameter persistence has largely remained a topic of theoretical interest and has306

not been applied as a data analysis technique as widely as single parameter persistence. The techniques used in this307

work provide a framework for the application of multiparameter persistence, applicable to a wide variety of datasets.308

In this section we shall outline the theory of multiparameter persistence required to exposit our novel multiparameter309

persistence techniques.310

Throughout this section we shall consider Rn equipped with the following partial order: (s1, ..., sn) = s ≤ t =311

(t1, ..., tn) if and only if si ≤ ti for all i = 1, ..., n.312

Definition 4 (Multiparameter Filtration) Let X be a topological space and {Xt}t∈Rn a collection of subspaces of X313

such that Xs ⊂ Xt for all s ≤ t. We say that {Xt}t∈Rn is a multiparameter filtration of the topological space X if314

X =
⋃

t∈Rn Xt.315

Definition 5 (Multiparameter Persistence Module) Let {Vt}t∈Rn be a collection of vector spaces and {ιs,t : Vs →316

Vt}s≤t a collection of linear maps such that ιt,t = idVt and ιs,t ◦ ιr,s = ιr,t. We say that the collection of this data is317

a multiparameter persistence module which we shall simply denote by V . This data can be thought of as an Rn-graded318

module over the monoid ring ([0,∞)n,+) with the action given by the linear maps, that is to say for all v ∈ Vt and319

a ∈ [0,∞)n we have a · v = ιt,t+a(v).320

Example 3 (Sublevel Set Multiparameter Persistent Homology) Let X be a topological space equipped with a filtering321

function f : X → Rn, inducing an Rn-indexed collection of sublevel sets {Xt = f−1({≤ t})}t∈Rn and a collection322

of inclusion maps {is,t : Xs → Xt}s≤t. Let H denote a homology functor with coefficients in a field. Applying the323

homology functor H to the collection of sublevel sets and inclusion maps gives rise to a multiparameter persistence324

module, {Vt = H(Xt)}t∈Rn , {ιs,t = H(is,t) : Vs → Vt}s≤t, called multiparameter persistent homology (MPH).325

Multiparameter persistence modules enable a richer choice of filtering function than single parameter persistence.326

The filtering function may be chosen to track both the spatial distribution of data together with its interdependence327

with other parameters of interest (48). The other parameters of interest can include further spatial parameters such328

as density or eccentricity, as well as parameters independent of the spatial distribution such as charge or oxygen329

concentration or some other chemical marker.330

Example 4 (Čech-Codensity Filtration) Let (M,d) be a metric space and P ⊂M a collection of points in the metric331

space. Let distQ : M → R, denote the distance function from the collection of points Q: distQ(x) = minq∈Q d(x, q)332

and let f : P → R be a codensity function. Let Pρ = f−1((−∞, ρ]). Consider the multiparameter filtration333

{X(r,ρ) = distPρ
−1((−∞, r])}. We call this filtration the Čech-Codensity filtration.334

We illustrate an example Čech-Codensity filtration in Figure S11b. As in the single parameter case, we will335

approximate the Čech-Codensity filtration using a computationally cheaper filtration which computes the Vietoris-Rips336

complex rather than the Čech complex, which we shall refer to as the radius-codensity filtration.337

Definition 6 (Interleaving Distance) Let V and W be multiparameter persistence modules. Let ε denote the diagonal
vector (ε, ..., ε). An ε-interleaving between modules V and W is specified by a collection of linear maps {φt : Vt →
Wt+ε}t∈Rn ,{ψt : Wt → Vt+ε}t∈Rn such that for all t ∈ Rn these linear maps satisfy ψt+ε ◦ φt = ιVt,t+2ε and
φt+ε ◦ ψt = ιWt,t+2ε. If an ε interleaving between V and W exists we say that V and W are ε-interleaved. The
interleaving distance between a pair of modules is denoted by dI and given by:

dI(V,W ) = inf{ε ≥ 0 : V and W are ε− interleaved}
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where we take the infimum of the empty set to be ∞.338

The interleaving distance is an extended pseudo-metric on the collection of multiparameter persistence modules (49)339

and so satisfies the intuitive properties one would want from a sensible distance function to compare multiparameter340

persistence modules. However, in distinct contrast to the single parameter setting, the interleaving distance is341

NP-hard to compute and approximate for multiparameter persistence modules (47). The difficulty in computing342

the interleaving distance in the multiparameter setting points towards the increased complexity of multiparameter343

persistence modules. Nevertheless the interleaving distance for multiparameter modules still satisfies the stability344

theorem.345

Theorem 3 (Stability Theorem) Let X be a topological space and f, g : X → Rn be a pair of filtering functions, and
V (f), V (g) be the associated sublevel set multiparameter persistence modules:

dI(V (f), V (g)) ≤ ‖f − g‖∞

Persistence Landscapes and Statistics. In this section we shall introduce a vectorization technique for single parameter346

and multiparameter persistence modules. A principal advantage of vectorizing persistence modules is that one can347

leverage traditional data analysis techniques and statistical techniques on the resulting topological feature vectors.348

There are a wide range of vectorization techniques for single parameter persistence (50–54). Recent work has seen349

the development of a couple of vectorization techniques for multiparameter persistence (48, 55, 56). We choose to350

use the multiparameter persistence landscapes (48) due to the computational feasibility and interpretability of this351

vectorization technique, as well as the readily available statistical tools.352

Persistence landscapes were first introduced in (51) and have subsequently been widely used as a vectorization353

technique for single parameter persistent homology (57–59). The article (48) extends the persistence landscape to354

the multiparameter setting of Rn indexed modules. This extension coincides with the single parameter persistence355

landscape in the case n = 1. We recall the definition of the multiparameter persistence landscape and some of the356

statistical properties enjoyed by the persistence landscape. Further properties of the single parameter persistence357

landscape are explored in (60–62) and further properties of the multiparameter persistence landscape are explored in358

(48).359

Definition 7 (Multiparameter Persistence Landscape) Let V be a multiparameter persistence module, the associated
multiparameter persistence module is a function λ : N× Rn → R≥0 given by:

λ(k,x) = sup{ε ≥ 0 : rank(ιx−ε1,x+ε1) ≥ k}

where the supremum of the empty set is taken to be 0.360

The multiparameter persistence landscape is computable, interpretable and amenable to statistical analysis. The361

multiparameter persistence landscape associated to a multiparameter persistence module lies in a Banach space362

Lp(N× Rn). We shall refer to the p-norm distance between a pair of landscapes associated to persistence modules as363

the p-landscape distance between these modules. This distance is readily computed and is stable with respect to the364

interleaving distance.365

Theorem 4 (Multiparameter Persistence Landscape Stability) Let V, V ′ be multiparameter persistence modules with
associated landscapes λ, λ′. Let E ⊂ N × Rn be a Lebesgue measurable subset with measure |E| and characteristic
function χE. The multiparameter persistence landscapes satisfy the following stability property:

‖λ− λ′‖∞ ≤ dI(V, V ′)

‖(λ− λ′)χE‖p ≤ |E|dI(V, V ′) for all p ∈ [1,∞).

We can view the multiparameter persistence landscape associated to a dataset as a Banach space valued random366

variable. Suppose X is a Borel measurable random variable on some probability space (Ω,F ,P) thought of as367

sampling data from some distribution. Further let Λ = Λ(X) denote the multiparameter persistence landscape368

associated to some filtration of the data X, so that in summary Λ : (Ω,F ,P) → Lp(N × Rn) for 1 ≤ p < ∞ is369

a random variable taking values in a real, separable Banach Space. Let {Xi} be i.i.d copies of X and {Λi} their370

associated landscapes. Denoting the pointwise mean of the first n landscapes by Λn and applying the general theory371

of probability in Banach spaces we attain several results. Associated to a well-behaved Banach space valued random372

variable Λ : (Ω,F ,P)→ Lp(N× Rn) is a set function IΛ : F → Lp(N× Rn) called the Pettis Integral of Λ. This can373

be thought of as the expectation of a Banach space valued random variable. For more details see374
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Theorem 5 (Strong Law of Large Numbers) With our notation as in the above discussion Λn → IΛ(Ω) almost surely375

if and only if E[‖Λ‖] <∞.376

Theorem 6 (Central Limit Theorem) Let us consider the landscapes endowed with the p-landscape distance for p ≥ 2.377

If E[‖Λ‖] <∞ and E[‖Λ2‖] <∞, then
√
n(Λn − IΛ(Ω)) converges weakly to a Gaussian random variable G(Λ) with378

the same covariance structure as Λ.379

The central limit theorem for multiparameter persistence landscapes induces a central limit theorem for associated380

real valued random variables and facilitates the computation of approximate confidence intervals.381

Corollary 1 Let us consider the landscapes endowed with the p-landscape distance for p ≥ 2. Suppose E[‖Λ‖] <∞382

and E[‖Λ2‖] <∞. If f ∈ Lp(N× Rn)∗, so that Y = f(Λ) is a real valued random variable, then
√
n(Y n − E[Y ])→383

N (0,Var(Y )) converges in distribution.384

Corollary 2 (Approximate Confidence Intervals) Suppose Y is a real-valued random variable attained from a385

functional applied to the multiparameter landscape Λ satisfying the conditions of Corollary 1. Let {Yi}ni=1 be i.i.d.386

instances of this random variable and S2
n = 1

n−1
∑n
i=1(Yi − Y n)2 the sample variance. An approximate (1 − α)387

confidence interval for E[Y ] is given by: [Y n − zα2
Sn√
n
, Y n + zα

2
Sn√
n

], where zα
2
is the α

2 critical value for the normal388

distribution.389

In practice, a functional of interest could be given by integrating the landscapes over a subset R of the parameter390

domain, fR(Λ) =
∫
R

Λ dµ. These functionals can be used to establish the significance of homological features in391

different regions of the parameter space.392

3. Data Analysis.393

A. Multiparameter Persistence Examples. In this section we demonstrate, with a couple of examples, the topological394

features which may be extracted from a dataset using multiparameter persistence. In particular, we look at radius-395

codensity filtrations and their associated multiparameter persistence modules. Further examples may be found online396

(40).397

First, we show that we can detect clustering in noisy samples using H0-modules and their associated multiparameter398

persistence landscapes. We produce two groups of point clouds: a group we call One Cluster consisting of 200 points399

uniformly sampled from a unit disc (see Figure S6a), and a group we call Two Clusters consisting of 200 points400

uniformly sampled from a unit disc together with two dense clusters of 30 points centered at coordinates (0, 1
2 ), (0,− 1

2 )401

within the unit disc (see Figure S6b).402

We plot the average persistence landscapes λ(k,x) in the parameter range [0, 1]2 for k ∈ {1, ..., 5} for theH0-modules403

of the radius-codensity filtrations of each group (see Figures S6c and S6d). Recall that the kth landscape detects the404

parameter values for which the associated space has at least k-homological features together with the persistence of405

those features. In this case, the H0-functor detects connected components. Thus the persistence landscape λ(k,x)406

is non-zero at the parameter value x if the space Xx has at least k-connected components, and the height of the407

landscape at parameter value x corresponds to the persistence of these components. The first landscapes λ(1,x) are408

thus identical for both groups of point clouds, since the radius-codensity filtration of such point clouds support 1409

connected component for all parameter values. The second landscapes of the two groups differ since the point clouds410

with two clusters support 2 connected components across a wide range of parameter values, whereas the one cluster411

point clouds do not. The remaining landscapes have support only for small Rips filtration parameters, indicating that412

both groups of point clouds support many connected components when the Rips parameter is small.413

In Figure S6e we plot the distributions of the 1-norms of the H0-landscapes for the two groups of point clouds.414

We observe that there is a significant difference in the 1-norms of the second H0-landscapes (k = 2). The second415

H0-landscapes from the Two Clusters group have larger norm than those from the One Cluster groups and the large416

drop off in norm between the second and third landscapes indicates that there are two distinct clusters present in the417

Two Clusters group.418

The presence of background noise in the Two Cluster point clouds would render single linkage clustering methods419

(such as the Rips-filtration for single parameter persistence) unable to detect the two clusters in these point clouds.420

One could identify that there are two clusters in these samples if we only considered the points from the point cloud421

in areas of high density. This however, requires us to identify an appropriate density hyperparameter to threshold our422

point cloud. A significant advantage of our multiparameter approach is that we are able to detect two clusters in this423

example and, moreover, we are not required to choose a density hyperparameter. This feature of our technique is424
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(b) An Example Two Cluster Point Cloud.
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(c) Average Persistence Landscapes for One Cluster Point Clouds (H0).
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(d) Average Persistence Landscapes for Two Cluster Point Clouds (H0).
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Fig. S6. MPH-landscapes of data sampled from one or two cluster point clouds.
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particularly useful for heterogeneous data where it may not be clear how to identify an appropriate hyperparameter425

and the appropriate hyperparameter value may differ between samples.426

Our second set of examples demonstrates the topological features which may be extracted using H1-modules and427

their associated multiparameter persistence landscapes. Figure S7a displays an example point cloud sampled from two428

discs of different radius and colored by the codensity value of the points. More precisely, the large and small rings have429

radii 1, 1
2 and centers (−1, 0), (0.5, 0) respectively and 80 points are sampled uniformly from the rings with 20 points430

uniformly sampled from the discs they enclose. The codensity value for point p is given by ρ5(p) = 1
5
∑5
i=1 ‖p− p(i)‖2431

where p(i) is the ith nearest neighbor of p. The point clouds are standardized to have unit variance and the codensity432

parameter is linearly rescaled so that 95% of values lie in the range [0, 1] and 2.5% lie above and below this range.433

Figure S7c displays the first three average persistence landscapes associated to this point cloud distribution. We434

detect the two rings in the point cloud in the first landscape λ(1,x). The smaller ring produces a peak in the first435

landscape for small codensity and Rips parameter values, whilst the larger ring induces a peak in the first landscape436

for larger codensity and Rips parameter values. The second landscape does not contain a significant peak, indicating437

that the range of parameter values for which both rings are detected simultaneously is small.438

Figure S7b displays an example point cloud sampled from three discs of the same radius and colored by the439

codensity value of the points. More precisely, the rings have radius 1
2 and centers (1, 0), (0, 0), ( 1

2 ,
√

3
2 ). As before, 80440

points are sampled uniformly from each of the rings and 20 points uniformly sampled from the discs they enclose.441

We use the ρ5 codensity function as before, and once again normalize the point cloud and codensity parameter.442

Figure S7d displays the first four average persistence landscapes associated to this point cloud distribution. The443

third landscape peaks in the range of parameter values for which all three rings are detected. The three rings are444

detected simultaneously since the rings are of the same scale and density of sampling. The fourth landscape contains445

no significant peak.446

This pair of examples demonstrates how one can interpret the persistence landscape for radius-codensity filtrations.447

We can deduce information about the scale, density and number of loops within a point cloud from the multiparameter448

persistence landscapes. Multiparameter persistence is able to quantify the structure of these point clouds in ways449

that traditional spatial statistics cannot (examples of traditional spatial statistics applied to the point patterns in450

Figure S7 can be seen at https://github.com/JABull1066/SyntheticDataSpatialStats).451

B. Single Parameter Persistence for Simulation Data. In this section we apply persistent homology to simulated452

histology data. This example demonstrates the viability of applying persistent homology techniques to histology data453

and the types of insight that it affords. The simulated data are generated from the ABM described in Section A.454

We consider 5 simulations, with chemotaxis parameter values χ = {0, 2.5, 5, 7.5, 10}. Each simulation consists of455

25 snapshots. At the start of the simulation, macrophages are introduced to the boundary of a disc of tumor cells456

(spheroid). Over time, the macrophages are attracted to chemoattractants released by tumor cells under low oxygen457

(or hypoxia). Thus, initially the macrophages form an annulus and then migrate into the core of the spheroid as the458

simulation proceeds. Snapshots from a typical simulation are presented in Figure S8a.459

At each snapshot we compute the H1 persistence module for the Vietoris-Rips filtration built upon the point cloud460

of macrophages (thought of as lying in the metric space R2). We then compute the ∞-norm of the resulting barcode461

and trace how this norm evolves throughout the simulation. The larger the norm of the barcode, the larger the inner462

radius of the annulus formed by the macrophages. Hence, we can track the rate at which the macrophages migrate463

into the core of the spheroid by tracking the decay of the norm of the barcode.464

We plot decay curves for each value of the chemotaxis parameter χ in Figure S8d, each curve obtained by averaging465

over 5 simulations. Several qualitative observations about the behavior of the macrophages can be drawn from the466

decay curves. First, the value of the chemotaxis parameter χ affects the time at which the macrophages begin to467

penetrate the spheroid boundary: the larger the chemotaxis parameter, the sooner the macrophages begin to enter468

into the spheroid. Secondly, the gradient of the linear portion of the decay curves are approximately identical. This469

indicates that once the macrophages have traversed the spheroid boundary, the rate at which they proceed to its core470

is independent of the value of the chemotaxis parameter. These observations were attained solely using topological471

techniques and are consistent with the independent observations of (63).472

This simple example application of single parameter persistent homology demonstrates the utility of applying a473

topological approach to histology-like data. Analyzing real world data, rather than simulated data, requires more474

sophisticated techniques. Indeed, in a real world setting data may be corrupted by multiple, unknown, sources of475

noise. We note that the Čech filtration and the Vietoris-Rips filtration are sensitive to even a single outlier. We use476

multiparameter persistence to produce topological summaries which are robust to such outliers.477

To demonstrate the sensitivity of single parameter persistence to outliers, we rerun the single parameter topological478

analysis on the simulated ABM data where we artificially introduce measurement error by incorrectly registering 1%479
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(c) Average Persistence Landscapes for 2 Rings Point Clouds taken over 30 samples.
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(d) Average Persistence Landscapes for 3 Rings Point Clouds taken over 30 samples.

Fig. S7. MPH-landscapes of two point clouds sampled from either two discs of different radius or three discs of the same radius and colored by the codensity value of the
points. We note that this Figure is identical to Figure 2A,C from the main text; it is repeated here so that the supplementary information can be read as a self-contained
document.
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of tumor cells as macrophages at each timestep of the simulation. There are ∼2000 tumor cells and ∼100 macrophages480

at each timestep. Thus the 1% misregistering introduces ∼20 false macrophages cells at each timestep.481

See Figure S8b for an example of an ABM simulation with this measurement error. The resulting decay curves482

in Figure S8e display the sensitivity of single parameter persistence to the incorrectly registered tumor cells. Using483

multiparameter persistence techniques we produce decay curves for the simulation data; this analysis is more robust484

to the measurement error since filtering by codensity reduces the impact of outliers on our topological summaries. At485

each timestep we produce the radius-codensity filtration on the point cloud of macrophages, compute the H1-landscape486

for this bifiltration and integrate the square of the landscape function over the region R for which we have computed487

λ(1,x):
(∫
R
λ(1,x)2dx

) 1
2 . This can be thought of as approximately taking the norm of the H1-landscape function488

since we consider the landscape functions living in L2(N× Rn). The resulting decay curves are displayed in Figure489

S8g. The decay curves from the multiparameter analysis more closely resemble the decay curves without noise (Figure490

S8d), particularly at later times in the simulation, when the infiltration is significant. Other traditional spatial491

statistics are also unable to adequately describe macrophage structure in these simulations (in addition to the PCF492

examples shown in Figure 1, other traditional spatial statistics applied to the simulations in Figure S8 can be seen at493

https://github.com/JABull1066/SyntheticDataSpatialStats).494

C. Comparison to 1PH Noise Reduction Techniques. The challenge of increasing the robustness of the persistent495

homology of a point cloud P has been previously addressed with a number of techniques. Broadly, these techniques496

involve either subsampling the point cloud with landmarks, or using the point cloud to induce a filtration on the497

ambient space in which the point cloud lies. We summarize several of these techniques in Table S2, and illustrate the498

result of these techniques on an example point cloud in Table S3.499

The example point cloud used in Table S3 consists of rings with radii 1
2 , 1 and centers (−1, 0), (0.5, 0) respectively,500

with 80 points sampled uniformly from the rings and a further 20 points uniformly sampled from the discs they501

enclose representing noise.502

We see in Table S3 that MPH-landscapes capture the two predominant H1 features in the point cloud. Using the503

Rips Filtration directly on the point cloud the resulting barcode does not detect the large ring, since all bars die504

before radius 0.5 and neither does the barcode have two clear features. The max-min sampling (64) preferentially505

samples outlier points and again we do not recover the two features of the point cloud.506

The random sampling technique (65) requires a choice of the number of points k to sample. If we choose too few507

points the features have a late birth time and small persistence as the rings are not sampled densely enough, and if508

we choose too many points the chance of selecting a disruptive outlier point increases. For a well chosen number of509

points, in this case k = 20, the two features are recovered.510

The power distance to measure (66) technique is sensitive to the choice of the mass parameter m. Tuning this511

parameter we found that m = 0.1 results in a barcode which detects both features. To compute the sublevel512

set persistent homology we use the lower-star filtration of the function dPµ,m on the Freudenthal triangulation on513

a meshgrid of 500 × 500 points in the region [−2, 2] × [−1.5, 1.5] using the Dionysus2 software package (https:514

//mrzv.org/software/dionysus2/).515

Whilst the refinements of 1PH have their merits, in this work we use MPH-landscapes, motivated by exploring516

the descriptive capability of this new technique, and the desire to compare bifiltrations with codensity and oxygen517

environment as a second parameter.518

D. Quantifying Immune Cell Infiltration.519

Spatial Distributions of CD8+, FoxP3+and CD68+Immune Cells. In this section we use multiparameter persistent homology520

techniques to analyze the spatial distribution of CD8+, FoxP3+ and CD68+ cells within head and neck tumors; the521

behavior of these cells is biologically interesting and may be of prognostic significance. By looking at infiltration across522

multiple (>50) small 1.5mm × 1.5mm regions of interest we can make statistically evidenced qualitative observations523

about the comparative behaviors of the three types of immune cells. Taking this approach avoids confounding effects524

that may arise if individual sample regions are compared. Such confounding effects can arise because the H1-landscape525

will fail to detect the largest potential immune cell annulus if this cuts the boundary of the region of interest or if the526

size of the tumor specimen on the slide (itself dependent on the position and orientation of each individual section527

within the 3D tissue) is limiting.528

As noted by (48), in applications of multiparameter persistence it is important that the filtration function is529

appropriately standardized so that the parameters occur at similar scales. We apply two procedures to our point530
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(a) Snapshots of an ABM simulation. Immune cells (green) are introduced on
the boundary of a disc of tumor cells (red) and dying tumor cells (orange). The
immune cells are drawn to the center of the tumor as the simulation progresses.

(b) Snapshots of an ABM simulation with measurement error. We misregister
1% of the tumor cells as macrophages (green) independently at each timestep.

(c) The Čech filtration for the immune cell point cloud at a fixed time witnesses that the immune cells form an annulus for a wide range of parameter values.

(d) Decay curves tracing the ∞-norm of the H1-barcode of the
macrophages against time.

(e) Decay curves tracing the ∞-norm of the H1-barcode of the
macrophages with measurement error against time. The prominence
of the detected annulus is severely diminished by the outliers intro-
duced.

(f) Each decay curve traces the 2-norm of the H1 MPH-landscape for
the radius-codensity bifiltration of the macrophages against time.

(g) Each decay curve traces the 2-norm of theH1 MPH-landscape for
the radius-codensity bifiltration of the macrophages with measurement
error against time.

Fig. S8. Persistent homology analysis of ABM data with and without measurement error. We plot decay curves for 5 different values of the chemotaxis parameter χ ∈
{0, 2.5, 5, 7.5, 10} for simulations with no measurement error (d,f) and with measurement error (e,g). Each curve is averaged over 5 simulations for each chemotaxis
parameter value with standard deviation bands depicted. We apply single parameter and multiparameter persistent homology to the ABM data with and without measurement
error and note that the multiparameter methodology is more robust than the single parameter methodology to the introduction of measurement error. The ‘simulation
timesteps’ presented here represent observations of cell locations at four hourly intervals over the 100 hour period which starts when the macrophages are introduced into
the simulation. We note that panels (d), (e), (f) and (g) are identical to Figure 1C, F from the main text; they are repeated here so that the supplementary information can be
read as a self-contained document.
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Technique Description Advantages Disadvantages
Max-min
Sampling
(64)

A set of k landmark points are chosen sequentially from the
point cloud P . The first point is chosen uniformly at random from
the set of points P and successive points are chosen to maxi-
mize the minimum distance of the next chosen point to all of the
previously chosen points. This results in k landmark points well
spread in the point cloud P . We then compute the persistent
homology of this set of landmark points.

• Reduces point cloud size re-
sulting in cheaper persistent ho-
mology computations.

• Sampling method is easy to
compute.

• Produces more dispersed land-
marks than random sampling.

• Unsuitable if outliers affect the
persistent homology.

• Sensitive to the choice of the
number of landmarks to draw.

Random
Sampling
(65)

A set of k landmark points are chosen from the point cloud P
with respect to the empirical measure on P (that is points are
chosen uniformly with replacement). The persistent homology
of this set of landmarks is computed.

• Reduces point cloud size re-
sulting in cheaper persistent ho-
mology computations.

• Sampling method is easy to
compute.

• Outliers are unlikely to be se-
lected as landmarks.

• The distribution of barcodes at-
tained by this sampling is “uni-
formly robust" (65)

• Landmarks are less dispersed
than max-min sampling.

• Sensitive to the choice of the
number of landmarks to draw.

Power Dis-
tance to
Measure (66)

Let (X, dX) be a metric space with point cloud P ⊂ X, µ
a measure on X, and m ∈ (0, 1] a mass parameter. Define
functions X → R:

• δµ,m(x) = inf{r ≥ 0 : µ(B(x, r)) > m}

• dµ,m(x) =
√

1
m

∫ m
0
δµ,l(x)2dl

• dPµ,m(x) = minp∈P
√
dµ,m(p)2 + dX(x, p)2

Compute the sublevel set persistent homology of the function
dPµ,m : X → R.

• Satisfies stability results (66).
• Efficient to compute.
• Approximates distance to mea-
sure function which can be diffi-
cult to compute.

• Sensitive to choice of mass pa-
rameter m.

• Requires a triangulation of un-
derlying metric space X for the
sublevel set computation.

Table S2. Advantages and disadvantages of techniques used to improve robustness of persistent homology to noise.
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Rips-Codensity Bifiltration H1 MPH-landscapes (48) Rips Filtration Max-min Sampling (64)
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Table S3. Summary of persistent homology noise reduction techniques.
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clouds so that the radius and codensity parameters occur at similar scales. We outline the procedures and their531

relative merits:532

Region Standardization: We rescale each immune cell point cloud to have unit variance. We label each point533

p ∈ R2 with codensity function ρ10(p) = 1
10
∑10
i=1 ‖p−p(i)‖2 where p(i) is the ith nearest neighbor of p. We standardize534

the codensity parameter by linearly rescaling the parameter so that 95% of values lie in the range [0, 1] and 2.5%535

lie above and below this range. This standardization procedure allows us to compare heterogeneous samples which536

may have vastly different numbers of cells. Without this standardization, the comparison of samples containing537

vastly different numbers of cells would be dominated by the different ranges of the codensity parameter values. A538

disadvantage of this approach is that each point cloud is standardized with a different rescaling factor dependent on539

the density of cells and distribution of codensity parameter values.540

Global Standardization: We rescale all immune cell point clouds by a scale factor of 1
600 to have approximately541

unit variance. We label each point p ∈ R2 with codensity function ρ10(p) = 1
10
∑10
i=1 ‖p− p(i)‖2 where p(i) is the ith

542

nearest neighbor of p. We standardize the codensity parameter by rescaling by a factor of 1
360 so that the majority of543

the values lie in the range [0, 1]. This standardization procedure preserves a real world interpretation of the filtration544

parameter values and is consistent across samples. A disadvantage of this approach is that we are required to set a545

global rescaling factor for the point clouds and codensity parameter.546

After standardization we then compute the multiparameter persistence module in the region [0, 1]2 for the547

standardized point cloud samples. We next integrate the multiparameter persistence landscapes over the parameter548

range R>0.4 = {(xcodensity, yradius) : yradius > 0.4} so that each sample produces an R-valued statistic:
∫
R>0.4

λ(1,x)dx549

which we call the large loop statistic. We then use traditional statistical techniques to compare the R-valued statistics550

for the samples for each group.551

We display the point clouds for each cell type (Figure S9 a-c) and the output of this analysis for a particular552

tumor (TC from our cohort of 16 tumors). Examining the persistence landscapes from the different cell types (Figure553

S9d-h) , we observe that the persistence landscapes for the immune cell types have supports in different parts of554

the parameter space. We observe that the CD8+ and FoxP3+ cell samples contain loops with large persistence in555

both the radius and codensity parameters. In contrast, the CD68+ cell samples form comparatively smaller loops556

supported on a smaller range of radius parameters.557

The boxplots in Figure S9h display the distributions of the large loop statistic for the H1-landscapes for the558

samples from this tumor. We analyze the statistical significance of the difference between the large loop statistics for559

the cell types. We apply pairwise two-sided permutation tests for the groups of CD8, FoxP3 and CD68 samples, with560

null hypothesis that the mean of the large loop statistics coincide.561

In Tables S4–S9 we display the output of the same analysis applied to all of the tumors in the cohort using each562

standardization method. The results of our analysis are broadly similar for both the region and global standardization563

techniques. Table S4 and S7 contain the tumors from which we could derive > 50 regions of interest and Tables S5,564

S6 S8 and S9 contain the tumors from which fewer samples could be drawn. The analysis of many of the tumors is565

confounded by the large variance due to the small number of regions available.566

The columns of the tables contain the following information:567

• Hypoxia (% 1 d.p.): Percentage across all regions of interest labeled with the respective hypoxia marker568

• CD8+ Cells, FoxP3+ Cells, CD68+ Cells: The extracted point clouds for each immune cell type.569

• CD8, FoxP3, CD68 λ̄(1,x): The mean first MPH-landscape for each immune cell type.570

• Radius Profile: The mean first MPH-landscape summed over the codensity parameter.571

• Large Loop Statistic Box Plots: The distributions of the large loop statistics for each cell type for this tumor.572

• p-values: The approximate p-values for the pairwise two-sided permutation tests applied to the large loop573

statistics computed over 20, 000 iterations.574

Examination of the summaries in Table S4 reveals an interesting change in behavior of the spatial patterning as575

the oxygenation of the tumor changes. For FoxP3+ cells, as the oxygenation of the tumor decreases the radius of the576

loops that these cells support increases (see the shift in the peak of the radius profiles). In contrast, the radius profile577

for the CD68 labelled samples remains unchanged as the oxygenation varies. This behavior is consistent with the idea578

that T cells are excluded from hypoxic regions of the tumor whereas CD68+ cells are not.579

Moreover we notice that the relative height of the peak in the radius profile for the FoxP3 cells diminishes for the580

hypoxic tumors. The average landscapes reveal that this is due to an increase in the codensity parameter at which581
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the FoxP3+ loops form. That is to say, the loops are supported over a smaller range of codensity parameters. Thus,582

the radius profile which is the sum of the landscape over the codensity parameters, has smaller size.583

Of course, for such a small cohort these observations cannot be statistically verified, however they are consistent584

with a patterning phenomenon of potential biological interest which merits further exploration in a larger dataset.585

We apply PCA to the collection of H1 landscape vectors λ(1,x) for tumors TA–TE (Figure S10a,b). Our PCA586

projections add further evidence that the spatial patterning of the CD8+ and FoxP3+ cells are more similar than the587

CD68+ cells. We also apply LDA (Figure S10c,d) which clearly discriminates between the three cell types.588

We test the ability of the MPH-landscape to distinguish the cell types in each tumor. For each pair of cell types589

we make a randomized 80/20 training/test split, and evaluate the classification accuracy of 3 classifiers (Linear590

Discriminant Analysis, LDA, Regularised Linear Discriminant Analysis, rLDA, and regularised Quadratic Discriminant591

Analysis, rQDA) on the test data. Repeating this process 100 times we attain average pairwise classification accuracies592

(Table S10). Our results indicate that the classifiers are most significant when used to compare CD68+vs FoxP3+and593

CD8+vs FoxP3+immune cells. Using both the first and second MPH-landscapes, (λ(1,x), λ(2,x)), marginally improves594

these classification accuracies.595

Codensity and Oxygen Environment. In this section, we supplement the data presented in Figure 4 of the main text.596

We again use a bootstrapping technique to compare two bifiltrations on a large area of tumor in order to investigate597

the validity of using codensity as a proxy for hypoxia in topological analysis.598

One way to quantify immune cell infiltration is by counting the number of immune cells in each oxygen environment599

and their distance to that region’s boundary. This methodology requires oxygen staining data which may not be600

available. In contrast, the radius-codensity filtration only uses the spatial distribution of the immune cells and the601

assumption that immune cells are more densely packed in stromal regions compared to tumor regions to infer the602

degree of immune cell infiltration.603

We test the use of codensity as a proxy for hypoxia by comparing the radius-codensity and radius-hypoxia604

bifiltrations on the same regions of tissue (see Figure S11). We analyze the H1-multiparameter persistence landscapes605

associated to the two bifiltrations for the three different cell types: CD8+, FoxP3+ and CD68+. The cell locations606

are displayed in Figure S11a together with labels on each cell marking increasingly hypoxic oxygen levels (Stroma,607

PanCK, CAIX, Pimo and Necrosis).608

The region of interest contains too many cells for direct application of our multiparameter persistence techniques:609

the point clouds are too large for the multiparameter persistence computations to be tractable. However, we can610

overcome the large point cloud size (∼8000 cells) using the Central Limit Theorem (Theorem 6) for multiparameter611

persistence landscapes. We repeatedly subsample the large point cloud and use the fact that the mean of the612

distribution will converge to the mean of the empirical distribution. In particular, for each cell type we take 50613

subsamples of size 1500 and compute the distribution of 1-norms for the multiparameter persistence landscapes for614

the radius-codensity (Figure S11b) and radius-hypoxia (Figure S11c) bifiltrations. The distributions of the 1-norms of615

the landscapes for each cell type are summarized in Figures S11e and S11d.616

Explicitly, the two bifiltrations we use are constructed as follows. First we rescale each immune cell point cloud617

subsample to have unit variance. For the radius-codensity bifiltration, we label each point p ∈ R2 with codensity618

function ρ10(p) = 1
10
∑10
i=1 ‖p − p(i)‖2 where p(i) is the ith nearest neighbor of p. We standardize the codensity619

parameter by linearly rescaling the parameter so that 95% of values lie in the range [0, 1
2 ] and 2.5% lie above and620

below this range. For the radius-hypoxia filtration we label each point with the hypoxia stain indicating the strongest621

hypoxia. We convert the hypoxia labels to hypoxia parameter values by uniformly distributing the values in the range622

[0, 1
2 ]: Stroma = 0, PanCK = 0.1, CAIX = 0.2, Pimo = 0.3 and Necrosis = 0.4. For both bifiltrations we take the623

maximum radius parameter to be 1
2 , and we compute the multiparameter persistence module and landscape in the624

parameter region [0, 1
2 ]2.625

We plot the radius-codensity (Figure S11b) and radius-hypoxia (Figure S11c) bifiltrations for the FoxP3 cells.626

Note the similarity between the filtrations. In the hypoxia filtration we first introduce cells in the stromal region627

(blue) and gradually introduce cells closer to the center of the tumor region with their increasingly severe hypoxic628

environments. Introducing the more hypoxic cells gradually fills in the loop of unstained cells that surrounds the629

tumor region. Similarly, in the codensity filtration we first introduce densely packed cells in the stromal region and630

gradually introduce the more sparsely packed cells closer to the center of the tumor.631

Both the radius-codensity (Figure S11b) and radius-hypoxia (Figure S11c) bifiltrations identify the fact that CD68632

cells infiltrate the hypoxic region to a greater extent than the CD8+ and FoxP3+ cells, as witnessed by the smaller633

norms of the CD68 H1-landscapes. The same phenomenon is observed when we repeat the analysis for another634

hypoxic region using the same techniques (Figure S12).635

To supplement our topological analysis we examine the interaction between the oxygen environment and codensity636
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of each cell type. We label each cell with a hypoxia score given by the most severe hypoxia condition determined by637

the staining taken up by that cell: stroma: 0, PanCK: 1, CAIX: 2, Pimo: 3 and necrosis: 4.638

We extend the hypoxia score to any point in the image by taking a weighted average of the 10 nearest cells.639

Suppose c1, ..., c10 are the 10 closest cell location to point p in the tumor image with hypoxia scores h1, ..., h10 we640

define the hypoxia score of p to be 1∑10
j=1

e−σ‖(p−cj‖2

∑10
i=1 hie

−σ‖(p−ci‖2 .641

We sample a meshgrid of points across the region (clipped away from the edge of the image to mitigte edge effects642

on the codensity function) and record the codensity score ρ10 and hypoxia score for these points. We use locally643

weighted scatterplot smoothing (a non-parametric regression method) to extract the change in codensity across644

hypoxic conditions for each cell type and two large regions of tissue with diverse hypoxic conditions (Figure S13).645

Our observations are consistent with the topological analysis, showing that CD68+cells infiltrate the hypoxic646

regions of the tissue to a greater extent than the T-cells, as seen by the lower codensity (higher density) of the647

CD68+cells in regions of the tissue with hypoxia scores indicating Pimo staining (3.0) and necrosis (4.0).648
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(a) Point clouds of CD8+ cells for 64 sample regions. (b) Point clouds of FoxP3+ cells for 64 sample re-
gions.

(c) Point clouds of CD68+ cells for 64 sample regions.
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(d) The mean of the first H1 multiparameter persis-
tence landscape for the CD8+ cell sample regions.
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(e) The mean of the first H1 multiparameter persis-
tence landscape for the FoxP3+ cell sample regions.
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(f) The mean of the first H1 multiparameter persis-
tence landscape for the CD68+ cell sample regions.
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Fig. S9. Comparison of immune cell spatial patterning within head and neck cancer tissue.
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Fig. S10. PCA and LDA plots of the radius-codensity landscape vectors λ(1,x) for the CD8+ (gold), FoxP3+ (teal) and CD68+ (purple) cell samples from tumors
TA, TB , TC , TD, TE . We compute the landscape vectors both with global standardization (left column) and with region standardization (right column).
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(a) Spatial distribution of CD8 (gold), CD68 (purple) and FoxP3 (teal) cells around a necrotic region. The immune cell point
clouds labeled with oxygen environment: Stroma, PanCK, CAIX, Pimo and necrosis.

(b) The radius-codensity bifiltration associated to the
FoxP3 point cloud.

(c) The radius-hypoxia bifiltration associated to the
FoxP3 point cloud.
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(d) The distribution of the 1-norms of the H1 multi-
parameter persistence landscapes associated to the
radius-codensity bifiltration. We take 50 independent
uniform subsamples of size 1500 from the original
point clouds in Figure S11a.
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(e) The distribution of the 1-norms of the H1 multi-
parameter persistence landscapes associated to the
radius-hypoxia bifiltration. We take 50 independent
uniform subsamples of size 1500 from the original
point clouds in Figure S11a

Fig. S11. Comparing radius-hypoxia and radius-codensity filtrations on a large region with central necrosis.
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(a) Spatial distribution of CD8+ (gold), CD68+ (purple) and FoxP3+ (teal) cells. The immune cell point clouds labeled with
oxygen environment: Stroma, PanCK, CAIX, Pimo and necrosis.

(b) The radius-codensity bifiltration associated to the
FoxP3 point cloud.

(c) The radius-hypoxia bifiltration associated to the
FoxP3 point cloud.
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(d) The distribution of the 1-norms of the H1 multi-
parameter persistence landscapes associated to the
radius-codensity bifiltration. We take 50 independent
uniform subsamples of size 1500 from the original
point clouds in Figure S12a.
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(e) The distribution of the 1-norms of the H1 multi-
parameter persistence landscapes associated to the
radius-hypoxia bifiltration. We take 50 independent
uniform subsamples of size 1500 from the original
point clouds in Figure S12a

Fig. S12. Comparing radius-hypoxia and radius-codensity filtrations on a large region with hypoxia but little necrosis. The CD8+, FoxP3+and CD68+point cloud contains 9360,
3681, 8059 cells respectively. The dominant loop in both the radius-codensity and radius-hypoxia bifiltrations corresponds to the Pimo stained region in the top left of the cell
point clouds.

Vipond, Bull, Macklin et al 38



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Hypoxia Score

0

50

100

150

200

250

10
NN

 C
od

en
sit

y

CD8

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Hypoxia Score

0

50

100

150

200

250

10
NN

 C
od

en
sit

y

CD8

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Hypoxia Score

0

50

100

150

200

250

10
NN

 C
od

en
sit

y

FoxP3

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Hypoxia Score

0

50

100

150

200

250

10
NN

 C
od

en
sit

y

FoxP3

(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Hypoxia Score

0

50

100

150

200

250

10
NN

 C
od

en
sit

y

CD68

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Hypoxia Score

0

50

100

150

200

250

10
NN

 C
od

en
sit

y

CD68

(f)

Fig. S13. Locally weighted scatterplot smoothing of cell codensity against hypoxia score for the poorly oxygenated tumor region depicted in Figure S11 (left column) and the
better oxygenated region Figure S12 (right column). CD68+ cells are present at higher density (lower codensity) than the T-cells (CD8+ and FoxP3+) in the hypoxic regions of
the tissue with scores indicating Pimo staining (3.0) and necrosis (4.0).
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