
Dear Dr. Schneidman-Duhovny,

Thank you very much for the time and consideration you’ve given to reviewing the
manuscript. Please find my responses to reviewer comments below, marked in blue. The
revised paper also indicates the changes in blue text, for your convenience.

The new additions mainly concern the MAGUS compression scheme, brought up by both
reviewers; I added some discussion to the main paper pertaining to compression
performance, new functionality to permit lossless compression, some data pertaining to
lossless compression, and a new figure demonstrating the compression scheme. I also
added some discussion about using large alignments for tree estimation, as requested
by the second reviewer. Please let me know if there are any additional changes anyone
would like to see.

Thank you again for your time and assistance.

With warmest regards,
Vladimir Smirnov

Reviewer #1:
The author presents an update to a recently-published tool (MAGUS; Smirnov & Warnow,
2020). For context, MAGUS is a divide-and-conquer approach for Multiple Sequence Alignment
(MSA) that is similar in spirit to PASTA (Mirarab et al., 2015) in that a complete sequence
dataset is decomposed into smaller subsets, and the subsets are aligned and merged into a
single MSA using a guide tree. The novelty of MAGUS (from the original manuscript) is the use
of a novel "Graph Clustering Merger" approach for merging the subset alignments.

In this manuscript specifically, the author expands upon MAGUS to improve scalability in 4 key
ways:

1. Recursion: To better handle ultra-large datasets in which even the subsets are prohibitively
large for the underlying aligner (e.g. MAFFT), MAGUS can now recursively call itself on the
subsets (i.e., to break them down into *even smaller* subsets). This is a clever idea, and I'm
excited to see that it yielded significant speed-up with respect to the original MAGUS approach,
but the notion of breaking down a divide-and-conquer algorithm into smaller versions of itself
recursively is fairly standard (I would even argue that *all* divide-and-conquer algorithms are
inherently recursive, and in this context, the only theoretical change is that the MAGUS "base
case" of using MAFFT is being made smaller).

2. Parallelism: Prior to this manuscript, MAGUS supported thread-parallelism (i.e., it could utilize
all available threads on a single node), and in this update, MAGUS now also supports
node-parallelism (i.e., it can now distribute tasks to multiple compute nodes, with each
supporting thread-parallelism). This is an excellent additional feature that I'm excited to see



implemented, but the notion of sending the individual components of a divide-and-conquer
algorithm to multiple compute nodes is also fairly standard from a technical standpoint.

3. Guide Tree: In the original manuscript, MAGUS used FastTree to estimate a rough guide tree
(via the maximum-likelihood approach) with which to decompose the dataset. In this update,
MAGUS now supports more types of trees (e.g. to enable using a faster tree-construction
approach at the expense of accuracy). This is a nice addition as far as the software itself is
concerned, but from a theoretical standpoint, this is a fairly trivial update (the fundamental
approach is still the same, just with the newly-added ability to swap in different tools to construct
this initial guide tree).

4. Memory Management and Alignment Compression: To reduce the memory complexity of
MAGUS, the author has implemented optimizations on two fronts. First, memory management is
conducted more optimally by only fully loading a single subalignment into memory at any given
time. This is a nice fix that I'm very excited to see implemented into MAGUS, but this is certainly
more of a code revision rather than a novel approach: only loading pieces of a dataset into
memory at any given time has been a standard systems programming approach for decades.
Second, to *further* improve the memory complexity of MAGUS, the author has now also
implemented a lossy compression scheme to "dissolve" neighboring columns that are
highly-similar. I actually found the idea quite interesting, and more exploration of how this lossy
compression scheme impacts accuracy would have been nice to see, especially as a function of
the threshold.

The results are nice to see, but they are unsurprising: nice (but not inherently novel)
optimizations were made to the MAGUS codebase, and the MAGUS runtime improved
considerably as a result, but with negligible impact to accuracy. From my perspective, while
these improvements are excellent from a codebase improvement perspective and are surely
welcome to the MAGUS userbase, they seem to be fairly standard approaches and, in the
context of the original MAGUS manuscript (which I have been reading side-by-side next to this
manuscript), do not seem sufficiently novel beyond the previous MAGUS manuscript to justify
publication in PLOS Computational Biology (rather, this article seems more appropriate for a
technical blog post or similar).

Thank you very much for your review. I certainly agree that, taken individually, these four
scalability improvements are not significant innovations in computer science. You are
absolutely correct that these changes would not offer much if judged solely on the basis
of their algorithmic novelty.

Rather, the intended contribution of this work is more to demonstrate the leap in
alignment capability that they collectively enable. In this context, these changes are not
merely incremental improvements to the MAGUS codebase, but allow it to become the
most effective large-scale alignment method of any that I am currently aware of. Thus,
the contribution of this manuscript is to demonstrate what is hopefully the current
state-of-the-art in solving such problems.



I also agree with your request to expand on the compression part of the paper, so I
fleshed it out with some additional information. I also implemented the functionality for
MAGUS to perform lossless compression only (i.e. the user can request to terminate the
compression step as soon as further compression becomes lossy), and added data
showing the thresholds for maximum lossless compression at each of the RNASim
dataset sizes. Lastly, I also added a figure walking through a simple example (as
requested by the second reviewer).

Reviewer #2:
The manuscript “Recursive MAGUS: scalable and accurate multiple sequence alignment” by
Vladimir Smirnov describes an extension of the earlier MAGUS alignment package (which itself
is an extension of the even earlier PASTA alignment approach). The fundamental idea behind
MAGUS and PASTA is straightforward – 1) sequences to align are broken into groups and each
group is aligned; 2) the subalignments are then merged. This basic approach and need for good
methods of very large-scale multiple sequence alignments is clear – the PASTA method has
been cited almost 250 times in the 6 years since it was published. Thus, the important question
for this manuscript is: does Recursive MAGUS represent an important and useful extension of
these approaches.

I’ve gone over the results quite carefully and believe the program is both straightforward and
potentially quite useful. There is clear evidence that alignments produced by MAGUS are quite
good under all settings tested (Figures 3, 5, 6, and 7). Run-times also appeared to be
reasonable in general. The options used to run programs are clear. I do have one big question
about the lossy compression (discussed on page 4). I would like to see a figure depicting the
algorithm (i.e., a flowchart with examples showing the operations on data columns). That is the
one part of the paper where, try as I might, I simply could not understand what is being done by
the program.

Another more philosophical area that the author might consider discussing is the potential uses
of very large alignments. This issue came to me when I was trying to understand the lossy
compression issue. For phylogeny it might be better to estimate several alignments, each of
which is relatively large but not so large as to require the lossy compression, and then estimate
trees from each and combine the trees using a supertree approach. It is not clear to me whether
very large alignments would have benefits for studies of molecular evolution. Again, the
alignments could be broken down into subsets and analyzed separately. Note that by “very
large” I mean large enough to have to invoke lossy compression – it is clear that large
alignments are useful.

Finally, I would like to apologize for a delayed review. Some unexpected stresses on my time
came up after I agreed to review. I kept thinking I’d get to the review but then got buried under
other obligations. Please accept my sincere apology.



Thank you very much for your review.

I agree that the lossy compression scheme was not presented with enough clarity, and
I’ve added more details and results on the subject, as well as an explanatory figure to the
manuscript.

You also raised a very valid point regarding the utility of such large alignments, and
whether it might be better to analyze them in smaller chunks. I’ve added a discussion on
this topic to the Future Directions portion of the paper. I think this issue deserves its
own, much more detailed investigation in the context of estimating trees over very large
datasets, which I’m hoping to explore in the near future.


