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Supplementary Note 1. Creep compliance of Kelvin-Voigt material in 

3D 

The creep response of the Kelvin-Voigt model is: 

 ( )KV ( ) 1 tJ t e E−= − τ ,  (S1) 

where JKV is the compliance, t  the time, E  the elastic modulus, and τ  relaxation 

time. When 1t τ  , it takes a power-law form with an exponent of 1.0. The creep 

response of Kelvin-Voigt material in 3D can be expressed as: 
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Because of the transverse elastic expansion, the creep response of the material is 

equivalent to the standard linear viscoelastic model that consists of Kelvin-Voigt 

models and springs in series. As shown in Supplementary Fig. 1, if the cytoskeleton is 

neglected, the displacement response of cells shows a power-law dependence on time, 

even if the cytoplasm takes different Poisson's ratios. The power-law exponents are 
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approximately 0.5, which is the upper limit of scale-free cell rheology 1. 

 
Supplementary Fig. 1 Creep responses of the adopted cell model without cytoskeleton for the 

cytoplasm with different Poisson's ratios. 

Supplementary Note 2. Creep compliance of the self-similar 

hierarchical model over time 

Schiessel and Blumen 2 obtained solutions to the complex modulus of the ladder 

viscoelastic model by using a method of continued fractions, which is much 

complicated and not suitable for expansion. Here we propose a simple yet robust 

method to obtain the creep compliance of our self-similar hierarchical model over time. 

The creep compliances of 1st, 2nd, and 3rd level hierarchies are denoted by 1J , 2J  

and 3J , respectively. Taking 1J  as an example, the serial number k of each element 

in the 1st level hierarchy increases from left to right and from bottom to up, as shown 

in Supplementary Fig. 2a.  
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Supplementary Fig. 2 (a) Schematic diagram of the 1st level hierarchy. (b) Creep compliances of 

the 1st level hierarchy model for different values of τ . 

The recurrence relations in numerical analysis are: 
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Thus, the relation between 1(2 2)J n −  and 1(2 )J n  is

( )( )1 1 1 1(2 ) 1 (2 2) 1J n J n E t= − + +η . When n  tends to be infinite, one has 

1 1(2 2) (2 )J n J n− = . Consequently, the creep compliance of the 1st level hierarchy is 

simplified to be: 

 2
1 1 1 0E J J t+ − =η η ,  (S4) 

for which the solution is: 
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Since the elastic modulus of the cytoplasm is in the range of 2 410  ~ 10 Pa  3 and 

the viscosity of the cytoplasm is in the range of 3 110  ~ 10 Pa s−
  4–7, one can evaluate 

τ  in the range of 4 110  ~ 10− − s. Comparing with the time in experiments 3–7, the value 

of τ  is sufficiently small. Therefore, the creep compliance of the 1st level hierarchy 

approaches: 
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Considering a cell without cytoskeleton, the self-similar hierarchical model will reduce 

to the 1st level hierarchy. Supplementary Fig. 2b shows that the power-law exponent of 

the 1st level hierarchy is approximately 0.5 under different values of τ , in agreement 

with Eq. (S6) and our simulation results in Supplementary Fig. 1.  

Analogously, we can obtain the analytic expressions of creep compliances of the 

2nd and 3rd level hierarchies: 
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If 2 1 1E J  , 2J  can be rewritten as: 
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The power-law exponent of 2J  is half of that of 1J . If 2 1 1E J  , 2J  is re-expressed 

as: 
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In this case, 2J  has the same power-law exponent as 1J . Hence, the power-law 

exponent α  of 2J  falls in the range of 0.25 ~ 0.5. 
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When 3 2 1E J  , 3J  can be rewritten as: 
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If 3 2 1E J  , 3J  is given by: 

 3 2 3 2
3 2

3 3

1 1 4 2
2 2

E J E JJ J
E E

− + +
= ≈ ∝ . (S12) 

Similar to the above analyses, the power-law exponent α  of 3J  is in the range of 

0.125 ~ 0.5. To further confirm these findings, we have performed a series of numerical 

simulations, as shown in Supplementary Fig. 3. It can be seen that the power-law 

exponents of 2nd and 3rd level hierarchies are in the range of 0.25 ~ 0.5 (Supplementary 

Fig. 3a) and 0.125 ~ 0.5 (Supplementary Fig. 3b), respectively. For each level of the 

self-similar hierarchical model, α  decreases gradually with the increase of the spring 

stiffness ( 2E  or 3E ). The minimal power-law exponent of each level is half of that of 

its lower level. The power-law exponent of our model falls in the range of 0.125 ~ 0.5, 

which is in agreement with a vast variety of experiments 1. Since the elastic stiffness of 

MT is much higher than that of the cytoplasm and 2E  is close to 3E , we conjecture 

that the power-law exponent will be concentrated around 0.25, as found in experiments 

8, 9. 

 
Supplementary Fig. 3 The power-law rheological responses of the (a) 2nd and (b) 3rd level 
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hierarchies by varying parameters. Here we take 0.1 Pa sη =   and 1 10 PaE = . 

Supplementary Note 3. Complex modulus of the self-similar 

hierarchical model over frequency 

Here we propose a method to obtain the storage modulus E′  and the loss modulus 

E′′  of the self-similar hierarchical model over frequency. The complex modulus of the 

spring is its elastic modulus, while the complex modulus of the dashpot is iωη  with 

ω  being angular frequency. Let 1G , 2G  and 3G  denote the complex moduli of 1st, 

2nd, and 3rd level hierarchies, respectively. Similar to the above section, the recurrence 

relations of the 1st level hierarchy in numerical analysis are: 
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When n  tends to be infinite, 1 1(2 2)  (2 )G n G n− = . Consequently, the complex 

modulus of the 1st level hierarchy is simplified as: 

 2
1 1 1 0G i G i E− − =ωη ωη ,  (S14). 

for which the solution is: 
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Using 1Eτ η=  to replace η , one can get: 
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Analogously, we can obtain the analytic expressions of complex moduli of 2nd and 3rd 

level hierarchies: 
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It can be seen from Eq. (S16) that with increasing frequency, the loss modulus increases 

faster than the storage modulus, because the term iωτ  increases the proportion of the 

imaginary part of the complex modulus. Thus, the power-law exponent of the loss 

modulus will be larger than that of the storage modulus at high frequencies, which is 

confirmed in experiments 7, 10 and our simulation results (Fig. 1b). 

Supplementary Note 4. Stress stiffening behavior of cells 

Many biological systems, including cells, exhibit stress stiffening behavior under 

static loadings, which reflects the strong nonlinearity of their stress-strain relations. In 

the cortex layer, there are abundant microtubules (MTs), intermediate filaments (IFs), 

microfilaments (MFs), and binding proteins 11. This layer can be modeled by a prismatic 

tensegrity (Supplementary Fig. 4) in which rods and strings are used to represent 

components bearing compressive and tensile loads, respectively, since the tensegrity 

structure model can well describe the mechanical response of cells 12, 13. In the modeling, 

the microfilaments and intermediate filaments in the cytoskeleton are treated as tension 

strings, and the microtubules are considered as compression bars. The prismatic 

tensegrity structure consists of top strings, bottom strings, diagonal strings, and bars 14. 

Supplementary Fig. 4 shows some vertices and elements in a v-prismatic tensegrity. 

Here, v is the number of sides of the polygon. As shown in Supplementary Fig. 1, a is 

the number of torsional sides of the top and bottom polygons that satisfies  1 a≤ <υ . 
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1r  and 2r  are the radii of the top and bottom circles, respectively. Let β  denote the 

relative torsion angle between the top and bottom polygons, and 1sq , 2sq , 3sq  and 

bq  represent the force density of top strings, bottom strings, diagonal strings, and bars, 

respectively. Then, the analytic solution for the equilibrium configuration of such a v-

prismatic structure can be expressed as 15:  
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Supplementary Fig. 4 Elements meeting at node 1 in a v-prismatic tensegrity. 

 

Here, we use a combination of the cortex layer and emanative MTs with different 

lengths as the cytoskeleton (see Inset of Supplementary Fig. 5). MFs are solid truss 
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17, 18 showed that the differential stiffness Ed of cells increases linearly with the 

externally applied stress σ , i.e., 0dE d d Eσ ε λσ= = +  where λ  is the stress 
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0 ( 1)E eλεσ λ= −  . To examine whether our model can capture this behavior, we apply 

static loads on the cell and plot the stress-strain curves with different cortex layer 

structures in Supplementary Fig. 5a. It can be seen that the curves can be well fitted by 

the function 0 ( 1)E eλεσ λ= − , indicating that our model can also simulate the stress 

stiffening behavior of cells. The stiffening mainly originates from the structural 

configurational change of the cytoskeleton with cytoskeleton filaments gradually 

rotating to align with the loading direction during the deformation process. Prestress in 

living cells is a key regulator of many cellular functions 19. By varying the prestrain of 

the strings in the tensegrity, we can regulate the prestress level in the cell. We find that 

the cellular stiffness calculated from this model is proportional to the prestrain 

(Supplementary Fig. 5b), which agrees with relevant experimental results 19. 

 
Supplementary Fig. 5 Predicted stress stiffening behavior from the cellular tensegrity model. 

(a) The stress-strain curves in the cases of 10-prismatic and 20-prismatic tensegrity structures. The 

simulation data can be well fitted by the function 0 ( 1)E e= −λεσ λ . (b) The cellular stiffness 

increases linearly with prestrain. 
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