Title: Preclinical Characterization of an Intravenous Coronavirus 3CL Protease Inhibitor for the Potential Treatment of COVID19

Authors: Britton Boras^{1,†}, Rhys M. Jones^{1,†,*}, Brandon J. Anson², Dan Arenson³, Lisa Aschenbrenner³, Malina A. Bakowski⁴, Nathan Beutler⁵, Joseph Binder¹, Emily Chen⁴, Heather Eng³, Holly Hammond⁶, Jennifer Hammond⁷, Robert E. Haupt⁶, Robert Hoffman¹, Eugene P. Kadar³, Rob Kania¹, Emi Kimoto³, Melanie G. Kirkpatrick⁴, Lorraine Lanyon³, Emma K. Lendy⁸, Jonathan R. Lillis⁹, James Logue⁶, Suman A. Luthra¹⁰, Chunlong Ma¹¹, Stephen W. Mason^{12,3}, Marisa E. McGrath⁶, Stephen Noell³, R. Scott Obach³, Matthew N. O' Brien¹³, Rebecca O'Connor³, Kevin Ogilvie³, Dafydd Owen¹⁰, Martin Pettersson¹⁰, Matthew R Reese³, Thomas F. Rogers^{5,14}, Romel Rosales^{15,16}, Michelle I. Rossulek¹⁰, Jean G. Sathish¹², Norimitsu Shirai³, Claire Steppan³, Martyn Ticehurst⁹, Lawrence W. Updyke¹⁰, Stuart Weston⁶, Yuao Zhu¹², Kris M. White^{15,16}, Adolfo García-Sastre^{15,16}, Jun Wang¹¹, Arnab K. Chatterjee⁴, Andrew D. Mesecar^{2,8}, Matthew B. Frieman⁶, Annaliesa S. Anderson¹², Charlotte Allerton¹⁰

Affiliations:

† These authors contributed equally to this work.

¹Worldwide Research and Development, Pfizer Inc., La Jolla, CA 92121,

²Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907 USA.

³Worldwide Research and Development, Pfizer Inc., Groton, CT 06340 USA

⁴Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037 USA

⁵Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037

⁶Department of Microbiology and Immunology University of Maryland School of Medicine, Baltimore, MD 21201

Worldwide Research and Development, Pfizer Inc., Collegeville, PA 19426, USA

⁸Department of Biochemistry, Purdue University, West Lafayette, IN, 47907 USA

⁹Worldwide Research and Development, Pfizer Inc., Sandwich, CT13 9ND, UK

¹⁰Worldwide Research and Development, Pfizer Inc., Cambridge, MA 02139 USA

¹¹Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721

¹²Worldwide Research and Development, Pfizer Inc., Pearl River, NY 10965 USA

¹³Worldwide Research and Development, Pfizer Inc., Lake Forest, IL 60045 USA

¹⁴UC San Diego Division of Infectious Diseases and Global Public Health, UC San Diego School of Medicine, La Jolla, CA 92093.

¹⁵Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ¹⁶Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai,

New York, NY, USA

^{*} To whom correspondence should be addressed. Email: rhys.jones@pfizer.com

This Supplement includes:

Figures S1-S3 Tables S1-S12 References (1-7)

Physiologically-based pharmacokinetic (PBPK) modeling of PF-00835231

A commercially available dynamic PBPK model, Simcyp population-based simulator (version 18.2; Certara UK Limited, Simcyp Division, Sheffield, United Kingdom), was used in the present study¹. Physicochemical and pharmacokinetic parameters of PF-00835231 for the PBPK models are summarized in Table S11. Since PF-07304814 (prodrug) was predicted to be converted to PF-00835231 rapidly and extensively *in vivo*, the simulation was performed assuming an intravenous infusion of PF-00835231 with the conversion efficiency of 75% from PF-07304814, which was predicted from animal data. For the prediction of DDIs of PF-00835231 with itraconazole, the vendor-verified compound files in Simcyp library were used, i.e., itraconazole (sv-itraconazole_fed capsule) with competitive $K_i = 0.0013 \,\mu\text{M}$ and itraconazole metabolite (sv-OH-itraconazole) with competitive $K_i = 0.0023 \,\mu\text{M}$.

Simulation of clinical trials was performed with a virtual population of healthy volunteers in 10 trials of 10 subjects (total 100 subjects), each aged 20 to 50 years with a female/male ratio of 0.5, whose CYP3A4 degradation rate constant (k_{deg}) was 0.019 h⁻¹ in liver and 0.030 h⁻¹ in intestine. The output sampling interval in Simcyp simulation toolbox was set to 0.2 hours in all simulations. To predict DDIs of PF-00835231 with itraconazole, PF-00835231 at 320mg/day (equivalent to PF-00835231 formed following PF-07304814 ~500mg/day taking into account conversion and molecular weight differences) was administered IV for 10 days (days 5 to 15) to a virtual population with and without 15-day repeated oral administration of itraconazole 200mg once daily (days 1 to 15). Pharmacokinetic parameters such as maximal plasma concentration (C_{max}), area under the plasma concentration time-curve from time zero to 24 hours post dose (AUC) and the ratios of C_{max} (C_{max} R) and AUC (AUCR) in treatment groups relative to control groups were obtained from Simcyp outputs.

The model-predicted $C_{max}R$ and AUCR for PF-00835231 were ~2x at the daily dose of 320mg/day (corresponding to ~500mg/day PF-07304814) (Table S12).

C_{eff} projection of protease inhibitor to the clinic

The inhibitory quotient (IQ) has been a useful metric for translating preclinical antiviral potencies to the clinic across a number of viral diseases as indicated in the FDA guidance². IQ is defined as the human $C_{min,u}$ unbound concentration divided by the *in vitro* unbound (serum adjusted) $EC_{50,u}$ value in the antiviral assay (equation 13).

$$IQ = \frac{C_{\min,u}}{EC_{50,u}}$$
 (13)

Some antiviral therapies have shown significant benefit with IQ close to 1^3 ; however, rapidly controlling viral replication frequently requires maintaining an exposure at least 10x higher than *in vitro* EC_{50}^4 . Clinically approved protease inhibitors have effectively decreased viral loads when dosed at IQ values from 1-100, when protein binding and site of action exposure are taken into account⁴. Importantly, antivirals in general and, specifically, protease inhibitors can potentially lead to increased mutations and additional drug resistance when dosed at an IQ less than 1^5 .

How high an IQ value is required depends on the steepness of the dose response curve. The hill coefficient (m), and the EC_{50} are related to the *in vitro* antiviral activity at a range of concentrations (C) by equation 14:

in vitro antiviral activity = 100 *
$$\frac{C^m}{EC_{50}^m + C^m}$$
 (14)

PF-00835231 shows a high hill coefficient (m=3) across a range of *in vitro* antiviral assays, like those of clinical protease inhibitors targeting HIV and HCV^{6,7}. There is only a 2- to 3-fold difference between the antiviral EC₅₀ and EC₉₀ concentrations (Fig. 2), rather than the typical 9-fold difference for antiviral agents with hill coefficients of 1. Therefore, relatively small ratios of exposure to EC₅₀ values (3-10) are related to near complete viral suppression.

References

- Jamei, M. et al. The Simcyp Population-based ADME Simulator. Expert Opin. Drug Metab. Toxicol. 5, 211– 223 (2009).
- 2. Guidance for Industry Antiviral Product Development Conducting and Submitting Virology Studies to the Agency. https://www.fda.gov/media/71223/download (2006).
- 3. Mo, H. *et al.* Estimation of inhibitory quotient using a comparative equilibrium dialysis assay for prediction of viral response to hepatitis C virus inhibitors. *J. Viral Hepat.* **18**, 338–348 (2011).
- Reddy, M. B. et al. Pharmacokinetic/Pharmacodynamic Predictors of Clinical Potency for Hepatitis C Virus Nonnucleoside Polymerase and Protease Inhibitors. Antimicrob. Agents Chemother. 56, 3144–3156 (2012).

- Duval, X. et al. Amprenavir Inhibitory Quotient and Virological Response in Human Immunodeficiency Virus-Infected Patients on an Amprenavir-Containing Salvage Regimen without or with Ritonavir. Antimicrob.
 Agents Chemother. 46, 570–574 (2002).
- 6. Shen, L. *et al.* Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. *Nat. Med.* **14**, 762–766 (2008).
- 7. Shen, L. *et al.* A Critical Subset Model Provides a Conceptual Basis for the High Antiviral Activity of Major HIV Drugs. *Sci. Transl. Med.* **3**, 91ra63-91ra63 (2011).

Fig. S1. Synthesis of PF-07304814 and PF-00835231 with reagents and conditions. **a)** Ditert-butyl N,N-dipropan-2-ylphosphoramidite, tetrazole, tetrahydrofuran, 0°C to room temp., then H2O2, 0°C, 91% over 2 steps; **b)** CF3COOH, CH2Cl2, 0°C, 54%.

Fig. S2. Metabolism of PF-07304814 in human liver S9 (**A**) Substrate saturation plot of the metabolism of phosphate prodrug PF-07304814 to the active drug PF-00835231 in human liver S9 fraction. (**B**) HPLC-UV chromatograms of extracts of an incubation of phosphate prodrug PF-07304814 (Rt 6.3 min) in human liver S9 demonstrating complete conversion to the active entity PF-00835231 (Rt 6.7 min).

Fig. S3. 3CL protease expression constructs and associated TEV and nsp5 cleavage sites.

Table S1. Summary of the In Vitro Antiviral Activity for PF-00835231 on Related Coronaviruses in Vero E6 cells with Efflux Inhibitor

Drug Treatment	EC ₅₀	EC50	EC ₅₀	EC ₅₀
	SARS-CoV-2	MERS	SARS-CoV	MA-15
	μM ± Std. Dev	µM ± Std. Dev	μM ± Std. Dev	µM ± Std. Dev
PF-00835231 + 2 μM EI	0.06 ± 0.03	0.04 ± 0.01	0.09 ± 0.04	0.08 ± 0.01

EI = efflux inhibitor (CP-00100356); Std. Dev. = standard deviation; N=3 for SARS-CoV-2 and MERS: N=2 for SARS-CoV and MA-15

Table S2. Activity of PF-00835231 against human proteases and HIV protease.

Protease	IC ₅₀ μM	
SAR-Cov-2 3CL ^{pro}	0.0069	
Human Cathepsin B	6.1	
Human Elastase	>33	
Human Chymotrypsin	>100	
Human Thrombin	>100	
Human Caspase 2	>33	
Human Cathepsin D	>11	
HIV-1 protease	>11	

Table S3. Summary of the In Vitro Antiviral Activity, Cytotoxicity, and Therapeutic Index for PF-00835231 with and without P-gp Inhibitor

Virus Strain ^a	Host Cell	Compound	P-gp Inhibitor ^b (μM)	EC ₅₀ (μM)	CC50 (µM)	TI°
SARS-CoV2	Vero	CP-100356 ^d	-	23.4	29.5	1.26
SARS-CoV2	Vero	PF-00835231 ^d	0	35.9	>50	1.39
SARS-CoV2	Vero	PF-00835231e	0.5	2.36	>50	21.2
SARS-CoV2	Vero	PF-00835231 ^e	1	0.95	>50	52.6
SARS-CoV2	Vero	PF-00835231 ^d	2	0.46	>50	109

a. Data generated at Southern Research Institute (SRI) – 2020. SARS-CoV-2 Washington strain.

Table S4. Evaluation of the fractional metabolism of PF-00835231 in human liver microsomes and recombinant CYP3A using selective CYP3A inhibitor ketoconazole.

Metabolite	$K_{M}(\mu M)$	\mathbf{V}_{max}	$\mathrm{CL}_{\mathrm{int}}$	\mathbf{f}_{CL}	% Inhibition	$\mathbf{f}_{\mathbf{m}}$
		(pmol/min/mg)	(µL/min/mg)		by	(CYP3A)
					ketoconazole	
Metabolite 1	124	321	2.6	0.61	86	0.53
Metabolite 2	119	91	0.76	0.18	90	0.16
Metabolite 3	120	68	0.57	0.13	82	0.11
Metabolite 4	43	12	0.30	0.07	82	0.06
Sum			4.2			0.86

 CL_{int} = Intrinsic clearance; CYP = Cytochrome P450; f_{CL} = Fractional clearance; f_m = Fraction metabolized; HLM = Human liver microsomes; K_M = Concentration at 50% maximum velocity; rCYP = Recombinant human CYP; V_{max} = Maximum initial velocity.

b. P-gp Inhibitor is CP-100356.

c. The TI was calculated by dividing the individual CC50 by the EC50 values and then calculating TI mean.

d. Values are averages based on an n=2 (EC₅₀) and n=1 (CC₅₀).

e. Values are the geometric means based on n=4 (EC₅₀) and n=2 (CC₅₀).

Table S5. Reversible CYP inhibition by PF-07304814 or PF-00835231 in human liver microsomes using individual CYP substrates in the presence of NADPH.

			Minute ation $(T_0)^a$	30-Minute Preincubation $(T_{30})^a$	
CYP	Enzyme Reaction	PF-07304814	PF-00835231	PF- 07304814	PF-00835231
		IC ₅₀ (μM)	IC ₅₀ (μM)	IC ₅₀ (μM)	IC ₅₀ (µM)
1A2	Phenacetin O-dealkylation	>100	>200	>100	>200
2B6	Bupropion hydroxylation	ND	>200	ND	>200
2C8	Amodiaquine N- dealkylation	>100	>200	>100	>200
2C9	Diclofenac 4 '-hydroxylation	>100	>200	>100	>200
2C19	S-Mephenytoin 4 / -hydroxylation	>100	>200	>100	>200
2D6	Dextromethorphan O-demethylation	>100	>200	>100	>200
3A4/5	Midazolam 1 // -hydroxylation	>100	>200	>100	>200
3A4/5	Testosterone 6β- hydroxylation	ND	108 (70-172)	ND	62.4 (41-98)

Confidence interval shown in parenthesis; CYP = Cytochrome P450; $IC_{50} = 50\%$ inhibitory concentration; NADPH = Reduced form of nicotinamide adenine dinucleotide phosphate; NC = Not calculated; ND = Not determined, TDI = Time-dependent inhibition; $T_0 = Time$ zero; $T_{30} = Time$ 30 minutes.

 $^{^{}a}$ Average data obtained from triplicate samples for each test article concentrations were used to calculate IC50 values.

Table S6. Time dependent CYP3A4/5 inhibition by PF-00835231 in human liver microsomes using individual CYP substrates.

СҮР	Probe Substrate (Concentration)	$k_{inact} \pm SE$ (min^{-1})	$K_{I} \pm SE$ (μM)	k _{inact} / K _I (mL/μmol/min)
3A4/5	Midazolam (20 μM)	0.0300 ± 0.0020	163 ± 31	0.184
3A4/5	Testosterone (386 µM)	0.0434 ± 0.0007	168 ± 8	0.258

CYP = Cytochrome P450; HLM = Human liver microsomes; $K_I = Apparent inactivation constant at half-maximal rate of inactivation; <math>k_{inact} = Maximal rate$ of enzyme inactivation; $k_{inact}/K_I = Measure$ of inactivator efficiency; NADPH = Reduced form of nicotinamide adenine dinucleotide phosphate; SE = Standard error; TDI = Time-dependent inhibition.

Table S7. $In\ vitro$ transporter inhibition by PF-07304814 or PF-00835231 using probe substrates.

Transporter	Probe Substrate (Concentration)	IC ₅₀	(μΜ)
		PF-07304814	PF-00835231
MDR1/P-gp	N-methyl quinidine (0.2 µM)	>300	65.6
BCRP	Rosuvastatin (0.2 µM)	238	19.5
OATP1B1	Rosuvastatin (0.5 µM)	134	30.1
OATP1B3	Rosuvastatin (0.5 µM)	202	51.6
OCT1	[14C]Metformin (10 µM)	>300	36.3
OAT1	[³ H]PAH (0.5 μM)	>300	>300
OAT3	$[^{3}H]ES (0.1 \mu M)$	>300	>300
OCT2	[14C]Metformin (20 µM)	>300	>300
MATE1	[14C]Metformin (20 µM)	>300	175.1
MATE2K	[14C]Metformin (20 µM)	>300	179.8

BCRP = Breast cancer resistance protein; BSEP = Bile salt export pump; OAT = Organic anion transporter; OATP = Organic anion-transporting polypeptide; OCT = Organic cation transporter; IC₅₀ = 50% inhibitory concentration; MATE = Multidrug and toxin extrusion protein; MDR = Multidrug resistance protein; PAH = P-aminohippuric acid; P-gp = P-glycoprotein.

Table S8. Plasma protein binding of PF-07304814 or PF-00835231 in plasma, liver microsomes and S9.

Species	Matrix	Unbound fraction fu (%CV)	
		PF-07304814 ^d	PF-00835231
Human	Liver microsomes ^{a,c}	ND	0.75 (8.7)
Human	Liver S9 ^{b,c}	0.890 (1.9)	ND
Human	Plasma	0.184 (5.9)	0.449 (7.5)
Monkey	Plasma	0.361 (10.2)	0.441 (7.7)
Dog	Plasma	0.312 (10.9)	0.416 (9.5)
Rat	Plasma	0.379 ^f (12.7)	0.327g (12.1)

^ameasured at 0.8mg/mL protein, ^bmeasured at 0.03mg/mL protein, ^c2 μM substrate concentration, ^d3.4 μM substrate concentration, ^e5 μM substrate concentration, ^fSprague-Dawley rat plasma, ^gWistar Hannover rat plasma

Table S9. Preclinical plasma PK summary of PF-07304814 or PF-00835231 following oral and/or IV administration to rats, dogs and monkeys.

Rat PK Data following IV or oral administration				
PK parameter	PF-07304814 (n=2)	PF-00835231 (n=3)		
Dose	1.17mg/kg	2mg/kg (IV + PO)		
CL (mL/min/kg)	194 (168-220)	27.0 ± 3.10		
Vdss (L/kg)	0.58 (0.57-0.59)	0.75 ± 0.24		
Terminal T1/2 (h)	0.30 (0.36-0.23)	0.72 ± 0.12		
Oral F%	ND	1.4 ± 0.76		
%unchanged in urine	<0.1 (<0.1-<0.1)	7.8 ± 11.5		
PF-00835231 AUCinf (ng.h/mL)	424 (366-481)	1250 ± 146		
%Conversion to PF-00835231	68% (59-77)	-		
	following IV administration			
PK parameter	PF-07304814	PF-00835231		
Dose (mg/kg)	1.17mg/kg	1.0mg/kg (IV)		
CLp (mL/min/kg)	517 (301-733)	18.2 (15.9-20.5)		
Vdss (L/kg)	9.3 (5.8-12.9)	1.1 (0.9-1.2)		
Terminal T1/2 (h)	0.5 (0.3-0.7)	1.5 (1.4-1.6)		
%unchanged in urine	<0.1 (<0.1-<0.1)	4.8 (1.6-8.0)		
PF-00835231 AUCinf (ng.h/mL)	753 (633-872)	932 (813-1050)		
%Conversion to PF-00835231	81% (78-83)	-		
	llowing IV or oral admini			
PK parameter	PF-07304814	PF-00835231		
Dose (mg/kg)	1.17mg/kg	1.0mg/kg (IV), 5mg/kg PO		
Cl (mL/min/kg)	191 (129-252)	28.7 (27.1-30.2)		
Vdss (L/kg)	1.8 (0.91-2.6)	1.4 (1.3-1.5)		
Terminal T1/2 (h)	2.6 (2.2-3.0)	1.2 (1.1-1.3)		
Oral F%	ND	<0.1 (<0.1-<0.1)		
%unchanged in urine	<0.1 (<0.1-<0.1)	0.9 (0.8-1.0)		
PF-00835231 AUCinf (ng.h/mL)	447 (304-589)	583 (614-552)		
%Conversion to PF-00835231	76% (55-96)	-		

[%]Conversion to PF-00835231 76% (55-96)
n=2 range shown in parenthesis, n=3 ± SD shown in parenthesis, ND = not determined

Table S10. Predicted pharmacokinetic parameters of PF00835231 with and without coadministration of itraconazole.

PF-07304814 ^a	Itraconazole	Cn	nax	AU	C	CmaxR	AUCR
mg/day	mg/day	μM total	$\mu M \\ unbound$	µM∙h total	µM∙h unbound	ratio	ratio
500	0	1.1	0.50	27	12	-	-
	200	2.4	1.1	58	26	2.2 (2.1- 2.3)	2.1 (2.0-2.2)

Data are expressed as geometric mean for C_{max} and AUC and geometric mean with 90% confidence intervals in parentheses for $C_{max}R$ and AUCR.

Table S11. Metabolic stability and enzyme kinetics of PF-07304814 in liver S9.

Kinetic				
Parameters	Rat	Dog	Monkey	Human
Model	Two Enzyme – MM and	Two Enzyme – MM and	Two Enzyme – MM and	Two Enzyme – MM and
	Unsaturable	Unsaturable	Unsaturable	Unsaturable
$K_{M}(\mu M)$	53.4	2.91	8.10	6.23
V_{max}	2188	214	1186	2313
(pmol/min/mg)		4.50	2.0.5	0.05
CL _{int,2}	4.56	1.69	3.06	9.96
(μL/min/mg)	45 F	75.0	150	201
CL _{int,app}	45.5	75.2	150	381
(μL/min/mg) CL _{intu} (μL/min/mg)	51	84	168	428

 $CL_{int,app}$ = Apparent intrinsic clearance; $CL_{int,2}$ = Apparent intrinsic clearance of low affinity kinetic component; CL_{intu} = unbound intrinsic clearance calculated by CL_{int} / fu inc. K_M = Michaelis-Menten constant; MM = Michaelis-Menten; NADPH = β -Nicotinamide Adenine Dinucleotide Phosphate; SP = Subcellular fraction; V_{max} = Maximum enzyme velocity.

^a Daily dose of PF-07304814 provides formation of PF00835231 equivalent to 320mg/day used in the simulation.

 $Table \ S12. \ Physicochemical \ and \ pharmacokinetic \ parameters \ of \ PF00835231 \ for \ PBPK \ modeling.$

Parameter (units)	Value	Source
Molecular weight	472	Calculated
LogP	0.75	Calculated
pK_{a}	neutral	Calculated
Rbp	0.8	Measured in vitro
f u,plasma	0.449	Measured in vitro
$V_{ss}(L/kg)$	1	Predicted from animal data
Kp scalar	3.1	Adjusted from the prediction (method 2)
CL _{plasma} (L/h)	25	Predicted from in vitro CL
f m,CYP3A	0.76	Predicted from in vitro phenotyping data
${ m rCL}_{{ m int},{ m CYP3A4}}$ (µL/min/pmol P450)	0.15	Calculated by Simcyp (retrograde model)
$CL_{int,HLM}$ ($\mu L/min/mg$ protein)	6	Calculated by Simcyp (retrograde model)
$\operatorname{CL}_{\operatorname{renal}}(\operatorname{L/h})$	3	Predicted from animal data
CYP3A4 K_i (μM)	108	Measured in vitro
CYP3A4 K_{I} (μ M)	163	Measured in vitro
CYP3A4 k _{inact} (h ⁻¹)	1.8	Measured in vitro