Title: Preclinical Characterization of an Intravenous Coronavirus 3CL Protease Inhibitor for the Potential Treatment of COVID19 Authors: Britton Boras^{1,†}, Rhys M. Jones^{1,†,*}, Brandon J. Anson², Dan Arenson³, Lisa Aschenbrenner³, Malina A. Bakowski⁴, Nathan Beutler⁵, Joseph Binder¹, Emily Chen⁴, Heather Eng³, Holly Hammond⁶, Jennifer Hammond⁷, Robert E. Haupt⁶, Robert Hoffman¹, Eugene P. Kadar³, Rob Kania¹, Emi Kimoto³, Melanie G. Kirkpatrick⁴, Lorraine Lanyon³, Emma K. Lendy⁸, Jonathan R. Lillis⁹, James Logue⁶, Suman A. Luthra¹⁰, Chunlong Ma¹¹, Stephen W. Mason^{12,3}, Marisa E. McGrath⁶, Stephen Noell³, R. Scott Obach³, Matthew N. O' Brien¹³, Rebecca O'Connor³, Kevin Ogilvie³, Dafydd Owen¹⁰, Martin Pettersson¹⁰, Matthew R Reese³, Thomas F. Rogers^{5,14}, Romel Rosales^{15,16}, Michelle I. Rossulek¹⁰, Jean G. Sathish¹², Norimitsu Shirai³, Claire Steppan³, Martyn Ticehurst⁹, Lawrence W. Updyke¹⁰, Stuart Weston⁶, Yuao Zhu¹², Kris M. White^{15,16}, Adolfo García-Sastre^{15,16}, Jun Wang¹¹, Arnab K. Chatterjee⁴, Andrew D. Mesecar^{2,8}, Matthew B. Frieman⁶, Annaliesa S. Anderson¹², Charlotte Allerton¹⁰ #### **Affiliations:** † These authors contributed equally to this work. ¹Worldwide Research and Development, Pfizer Inc., La Jolla, CA 92121, ²Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907 USA. ³Worldwide Research and Development, Pfizer Inc., Groton, CT 06340 USA ⁴Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037 USA ⁵Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 ⁶Department of Microbiology and Immunology University of Maryland School of Medicine, Baltimore, MD 21201 Worldwide Research and Development, Pfizer Inc., Collegeville, PA 19426, USA ⁸Department of Biochemistry, Purdue University, West Lafayette, IN, 47907 USA ⁹Worldwide Research and Development, Pfizer Inc., Sandwich, CT13 9ND, UK ¹⁰Worldwide Research and Development, Pfizer Inc., Cambridge, MA 02139 USA ¹¹Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721 ¹²Worldwide Research and Development, Pfizer Inc., Pearl River, NY 10965 USA ¹³Worldwide Research and Development, Pfizer Inc., Lake Forest, IL 60045 USA ¹⁴UC San Diego Division of Infectious Diseases and Global Public Health, UC San Diego School of Medicine, La Jolla, CA 92093. ¹⁵Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ¹⁶Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA ^{*} To whom correspondence should be addressed. Email: rhys.jones@pfizer.com ## This Supplement includes: Figures S1-S3 Tables S1-S12 References (1-7) ## Physiologically-based pharmacokinetic (PBPK) modeling of PF-00835231 A commercially available dynamic PBPK model, Simcyp population-based simulator (version 18.2; Certara UK Limited, Simcyp Division, Sheffield, United Kingdom), was used in the present study¹. Physicochemical and pharmacokinetic parameters of PF-00835231 for the PBPK models are summarized in Table S11. Since PF-07304814 (prodrug) was predicted to be converted to PF-00835231 rapidly and extensively *in vivo*, the simulation was performed assuming an intravenous infusion of PF-00835231 with the conversion efficiency of 75% from PF-07304814, which was predicted from animal data. For the prediction of DDIs of PF-00835231 with itraconazole, the vendor-verified compound files in Simcyp library were used, i.e., itraconazole (sv-itraconazole_fed capsule) with competitive $K_i = 0.0013 \,\mu\text{M}$ and itraconazole metabolite (sv-OH-itraconazole) with competitive $K_i = 0.0023 \,\mu\text{M}$. Simulation of clinical trials was performed with a virtual population of healthy volunteers in 10 trials of 10 subjects (total 100 subjects), each aged 20 to 50 years with a female/male ratio of 0.5, whose CYP3A4 degradation rate constant (k_{deg}) was 0.019 h⁻¹ in liver and 0.030 h⁻¹ in intestine. The output sampling interval in Simcyp simulation toolbox was set to 0.2 hours in all simulations. To predict DDIs of PF-00835231 with itraconazole, PF-00835231 at 320mg/day (equivalent to PF-00835231 formed following PF-07304814 ~500mg/day taking into account conversion and molecular weight differences) was administered IV for 10 days (days 5 to 15) to a virtual population with and without 15-day repeated oral administration of itraconazole 200mg once daily (days 1 to 15). Pharmacokinetic parameters such as maximal plasma concentration (C_{max}), area under the plasma concentration time-curve from time zero to 24 hours post dose (AUC) and the ratios of C_{max} (C_{max} R) and AUC (AUCR) in treatment groups relative to control groups were obtained from Simcyp outputs. The model-predicted $C_{max}R$ and AUCR for PF-00835231 were ~2x at the daily dose of 320mg/day (corresponding to ~500mg/day PF-07304814) (Table S12). #### C_{eff} projection of protease inhibitor to the clinic The inhibitory quotient (IQ) has been a useful metric for translating preclinical antiviral potencies to the clinic across a number of viral diseases as indicated in the FDA guidance². IQ is defined as the human $C_{min,u}$ unbound concentration divided by the *in vitro* unbound (serum adjusted) $EC_{50,u}$ value in the antiviral assay (equation 13). $$IQ = \frac{C_{\min,u}}{EC_{50,u}}$$ (13) Some antiviral therapies have shown significant benefit with IQ close to 1^3 ; however, rapidly controlling viral replication frequently requires maintaining an exposure at least 10x higher than *in vitro* EC_{50}^4 . Clinically approved protease inhibitors have effectively decreased viral loads when dosed at IQ values from 1-100, when protein binding and site of action exposure are taken into account⁴. Importantly, antivirals in general and, specifically, protease inhibitors can potentially lead to increased mutations and additional drug resistance when dosed at an IQ less than 1^5 . How high an IQ value is required depends on the steepness of the dose response curve. The hill coefficient (m), and the EC_{50} are related to the *in vitro* antiviral activity at a range of concentrations (C) by equation 14: in vitro antiviral activity = 100 * $$\frac{C^m}{EC_{50}^m + C^m}$$ (14) PF-00835231 shows a high hill coefficient (m=3) across a range of *in vitro* antiviral assays, like those of clinical protease inhibitors targeting HIV and HCV^{6,7}. There is only a 2- to 3-fold difference between the antiviral EC₅₀ and EC₉₀ concentrations (Fig. 2), rather than the typical 9-fold difference for antiviral agents with hill coefficients of 1. Therefore, relatively small ratios of exposure to EC₅₀ values (3-10) are related to near complete viral suppression. #### References - Jamei, M. et al. The Simcyp Population-based ADME Simulator. Expert Opin. Drug Metab. Toxicol. 5, 211– 223 (2009). - 2. Guidance for Industry Antiviral Product Development Conducting and Submitting Virology Studies to the Agency. https://www.fda.gov/media/71223/download (2006). - 3. Mo, H. *et al.* Estimation of inhibitory quotient using a comparative equilibrium dialysis assay for prediction of viral response to hepatitis C virus inhibitors. *J. Viral Hepat.* **18**, 338–348 (2011). - Reddy, M. B. et al. Pharmacokinetic/Pharmacodynamic Predictors of Clinical Potency for Hepatitis C Virus Nonnucleoside Polymerase and Protease Inhibitors. Antimicrob. Agents Chemother. 56, 3144–3156 (2012). - Duval, X. et al. Amprenavir Inhibitory Quotient and Virological Response in Human Immunodeficiency Virus-Infected Patients on an Amprenavir-Containing Salvage Regimen without or with Ritonavir. Antimicrob. Agents Chemother. 46, 570–574 (2002). - 6. Shen, L. *et al.* Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. *Nat. Med.* **14**, 762–766 (2008). - 7. Shen, L. *et al.* A Critical Subset Model Provides a Conceptual Basis for the High Antiviral Activity of Major HIV Drugs. *Sci. Transl. Med.* **3**, 91ra63-91ra63 (2011). **Fig. S1. Synthesis of PF-07304814 and PF-00835231 with reagents and conditions**. **a)** Ditert-butyl N,N-dipropan-2-ylphosphoramidite, tetrazole, tetrahydrofuran, 0°C to room temp., then H2O2, 0°C, 91% over 2 steps; **b)** CF3COOH, CH2Cl2, 0°C, 54%. **Fig. S2. Metabolism of PF-07304814 in human liver S9** (**A**) Substrate saturation plot of the metabolism of phosphate prodrug PF-07304814 to the active drug PF-00835231 in human liver S9 fraction. (**B**) HPLC-UV chromatograms of extracts of an incubation of phosphate prodrug PF-07304814 (Rt 6.3 min) in human liver S9 demonstrating complete conversion to the active entity PF-00835231 (Rt 6.7 min). Fig. S3. 3CL protease expression constructs and associated TEV and nsp5 cleavage sites. Table S1. Summary of the In Vitro Antiviral Activity for PF-00835231 on Related Coronaviruses in Vero E6 cells with Efflux Inhibitor | Drug Treatment | EC ₅₀ | EC50 | EC ₅₀ | EC ₅₀ | |--------------------------|------------------|-----------------|------------------|------------------| | | SARS-CoV-2 | MERS | SARS-CoV | MA-15 | | | μM ± Std. Dev | µM ± Std. Dev | μM ± Std. Dev | µM ± Std. Dev | | PF-00835231
+ 2 μM EI | 0.06 ± 0.03 | 0.04 ± 0.01 | 0.09 ± 0.04 | 0.08 ± 0.01 | EI = efflux inhibitor (CP-00100356); Std. Dev. = standard deviation; N=3 for SARS-CoV-2 and MERS: N=2 for SARS-CoV and MA-15 Table S2. Activity of PF-00835231 against human proteases and HIV protease. | Protease | IC ₅₀ μM | | |------------------------------|---------------------|--| | SAR-Cov-2 3CL ^{pro} | 0.0069 | | | Human Cathepsin B | 6.1 | | | Human Elastase | >33 | | | Human Chymotrypsin | >100 | | | Human Thrombin | >100 | | | Human Caspase 2 | >33 | | | Human Cathepsin D | >11 | | | HIV-1 protease | >11 | | Table S3. Summary of the In Vitro Antiviral Activity, Cytotoxicity, and Therapeutic Index for PF-00835231 with and without P-gp Inhibitor | Virus Strain ^a | Host Cell | Compound | P-gp Inhibitor ^b
(μM) | EC ₅₀ (μM) | CC50
(µM) | TI° | |---------------------------|-----------|--------------------------|-------------------------------------|-----------------------|--------------|------| | SARS-CoV2 | Vero | CP-100356 ^d | - | 23.4 | 29.5 | 1.26 | | SARS-CoV2 | Vero | PF-00835231 ^d | 0 | 35.9 | >50 | 1.39 | | SARS-CoV2 | Vero | PF-00835231e | 0.5 | 2.36 | >50 | 21.2 | | SARS-CoV2 | Vero | PF-00835231 ^e | 1 | 0.95 | >50 | 52.6 | | SARS-CoV2 | Vero | PF-00835231 ^d | 2 | 0.46 | >50 | 109 | a. Data generated at Southern Research Institute (SRI) – 2020. SARS-CoV-2 Washington strain. Table S4. Evaluation of the fractional metabolism of PF-00835231 in human liver microsomes and recombinant CYP3A using selective CYP3A inhibitor ketoconazole. | Metabolite | $K_{M}(\mu M)$ | \mathbf{V}_{max} | $\mathrm{CL}_{\mathrm{int}}$ | \mathbf{f}_{CL} | % Inhibition | $\mathbf{f}_{\mathbf{m}}$ | |--------------|----------------|--------------------|------------------------------|----------------------------|--------------|---------------------------| | | | (pmol/min/mg) | (µL/min/mg) | | by | (CYP3A) | | | | | | | ketoconazole | | | Metabolite 1 | 124 | 321 | 2.6 | 0.61 | 86 | 0.53 | | Metabolite 2 | 119 | 91 | 0.76 | 0.18 | 90 | 0.16 | | Metabolite 3 | 120 | 68 | 0.57 | 0.13 | 82 | 0.11 | | Metabolite 4 | 43 | 12 | 0.30 | 0.07 | 82 | 0.06 | | Sum | | | 4.2 | | | 0.86 | CL_{int} = Intrinsic clearance; CYP = Cytochrome P450; f_{CL} = Fractional clearance; f_m = Fraction metabolized; HLM = Human liver microsomes; K_M = Concentration at 50% maximum velocity; rCYP = Recombinant human CYP; V_{max} = Maximum initial velocity. b. P-gp Inhibitor is CP-100356. c. The TI was calculated by dividing the individual CC50 by the EC50 values and then calculating TI mean. d. Values are averages based on an n=2 (EC₅₀) and n=1 (CC₅₀). e. Values are the geometric means based on n=4 (EC₅₀) and n=2 (CC₅₀). Table S5. Reversible CYP inhibition by PF-07304814 or PF-00835231 in human liver microsomes using individual CYP substrates in the presence of NADPH. | | | | Minute ation $(T_0)^a$ | 30-Minute Preincubation $(T_{30})^a$ | | |-------|-----------------------------------|-----------------------|------------------------|--------------------------------------|-----------------------| | CYP | Enzyme Reaction | PF-07304814 | PF-00835231 | PF-
07304814 | PF-00835231 | | | | IC ₅₀ (μM) | IC ₅₀ (μM) | IC ₅₀ (μM) | IC ₅₀ (µM) | | 1A2 | Phenacetin
O-dealkylation | >100 | >200 | >100 | >200 | | 2B6 | Bupropion
hydroxylation | ND | >200 | ND | >200 | | 2C8 | Amodiaquine N-
dealkylation | >100 | >200 | >100 | >200 | | 2C9 | Diclofenac 4 '-hydroxylation | >100 | >200 | >100 | >200 | | 2C19 | S-Mephenytoin 4 / -hydroxylation | >100 | >200 | >100 | >200 | | 2D6 | Dextromethorphan O-demethylation | >100 | >200 | >100 | >200 | | 3A4/5 | Midazolam 1 // -hydroxylation | >100 | >200 | >100 | >200 | | 3A4/5 | Testosterone 6β-
hydroxylation | ND | 108 (70-172) | ND | 62.4 (41-98) | Confidence interval shown in parenthesis; CYP = Cytochrome P450; $IC_{50} = 50\%$ inhibitory concentration; NADPH = Reduced form of nicotinamide adenine dinucleotide phosphate; NC = Not calculated; ND = Not determined, TDI = Time-dependent inhibition; $T_0 = Time$ zero; $T_{30} = Time$ 30 minutes. $^{^{}a}$ Average data obtained from triplicate samples for each test article concentrations were used to calculate IC50 values. Table S6. Time dependent CYP3A4/5 inhibition by PF-00835231 in human liver microsomes using individual CYP substrates. | СҮР | Probe Substrate (Concentration) | $k_{inact} \pm SE$ (min^{-1}) | $K_{I} \pm SE$ (μM) | k _{inact} / K _I
(mL/μmol/min) | |-------|---------------------------------|---------------------------------|--------------------------|--| | 3A4/5 | Midazolam (20 μM) | 0.0300 ± 0.0020 | 163 ± 31 | 0.184 | | 3A4/5 | Testosterone (386 µM) | 0.0434 ± 0.0007 | 168 ± 8 | 0.258 | CYP = Cytochrome P450; HLM = Human liver microsomes; $K_I = Apparent inactivation constant at half-maximal rate of inactivation; <math>k_{inact} = Maximal rate$ of enzyme inactivation; $k_{inact}/K_I = Measure$ of inactivator efficiency; NADPH = Reduced form of nicotinamide adenine dinucleotide phosphate; SE = Standard error; TDI = Time-dependent inhibition. Table S7. $In\ vitro$ transporter inhibition by PF-07304814 or PF-00835231 using probe substrates. | Transporter | Probe Substrate (Concentration) | IC ₅₀ | (μΜ) | |-------------|---------------------------------|------------------|-------------| | | | PF-07304814 | PF-00835231 | | MDR1/P-gp | N-methyl quinidine (0.2 µM) | >300 | 65.6 | | BCRP | Rosuvastatin (0.2 µM) | 238 | 19.5 | | OATP1B1 | Rosuvastatin (0.5 µM) | 134 | 30.1 | | OATP1B3 | Rosuvastatin (0.5 µM) | 202 | 51.6 | | OCT1 | [14C]Metformin (10 µM) | >300 | 36.3 | | OAT1 | [³ H]PAH (0.5 μM) | >300 | >300 | | OAT3 | $[^{3}H]ES (0.1 \mu M)$ | >300 | >300 | | OCT2 | [14C]Metformin (20 µM) | >300 | >300 | | MATE1 | [14C]Metformin (20 µM) | >300 | 175.1 | | MATE2K | [14C]Metformin (20 µM) | >300 | 179.8 | BCRP = Breast cancer resistance protein; BSEP = Bile salt export pump; OAT = Organic anion transporter; OATP = Organic anion-transporting polypeptide; OCT = Organic cation transporter; IC₅₀ = 50% inhibitory concentration; MATE = Multidrug and toxin extrusion protein; MDR = Multidrug resistance protein; PAH = P-aminohippuric acid; P-gp = P-glycoprotein. Table S8. Plasma protein binding of PF-07304814 or PF-00835231 in plasma, liver microsomes and S9. | Species | Matrix | Unbound fraction fu (%CV) | | |---------|---------------------------------|---------------------------|---------------| | | | PF-07304814 ^d | PF-00835231 | | Human | Liver microsomes ^{a,c} | ND | 0.75 (8.7) | | Human | Liver S9 ^{b,c} | 0.890 (1.9) | ND | | Human | Plasma | 0.184 (5.9) | 0.449 (7.5) | | Monkey | Plasma | 0.361 (10.2) | 0.441 (7.7) | | Dog | Plasma | 0.312 (10.9) | 0.416 (9.5) | | Rat | Plasma | 0.379 ^f (12.7) | 0.327g (12.1) | ^ameasured at 0.8mg/mL protein, ^bmeasured at 0.03mg/mL protein, ^c2 μM substrate concentration, ^d3.4 μM substrate concentration, ^e5 μM substrate concentration, ^fSprague-Dawley rat plasma, ^gWistar Hannover rat plasma Table S9. Preclinical plasma PK summary of PF-07304814 or PF-00835231 following oral and/or IV administration to rats, dogs and monkeys. | Rat PK Data following IV or oral administration | | | | | |---|-----------------------------|--------------------------|--|--| | PK parameter | PF-07304814 (n=2) | PF-00835231 (n=3) | | | | Dose | 1.17mg/kg | 2mg/kg (IV + PO) | | | | CL (mL/min/kg) | 194 (168-220) | 27.0 ± 3.10 | | | | Vdss (L/kg) | 0.58 (0.57-0.59) | 0.75 ± 0.24 | | | | Terminal T1/2 (h) | 0.30 (0.36-0.23) | 0.72 ± 0.12 | | | | Oral F% | ND | 1.4 ± 0.76 | | | | %unchanged in urine | <0.1 (<0.1-<0.1) | 7.8 ± 11.5 | | | | PF-00835231 AUCinf (ng.h/mL) | 424 (366-481) | 1250 ± 146 | | | | %Conversion to PF-00835231 | 68% (59-77) | - | | | | | | | | | | | following IV administration | | | | | PK parameter | PF-07304814 | PF-00835231 | | | | Dose (mg/kg) | 1.17mg/kg | 1.0mg/kg (IV) | | | | CLp (mL/min/kg) | 517 (301-733) | 18.2 (15.9-20.5) | | | | Vdss (L/kg) | 9.3 (5.8-12.9) | 1.1 (0.9-1.2) | | | | Terminal T1/2 (h) | 0.5 (0.3-0.7) | 1.5 (1.4-1.6) | | | | %unchanged in urine | <0.1 (<0.1-<0.1) | 4.8 (1.6-8.0) | | | | PF-00835231 AUCinf (ng.h/mL) | 753 (633-872) | 932 (813-1050) | | | | %Conversion to PF-00835231 | 81% (78-83) | - | | | | | | | | | | | llowing IV or oral admini | | | | | PK parameter | PF-07304814 | PF-00835231 | | | | Dose (mg/kg) | 1.17mg/kg | 1.0mg/kg (IV), 5mg/kg PO | | | | Cl (mL/min/kg) | 191 (129-252) | 28.7 (27.1-30.2) | | | | Vdss (L/kg) | 1.8 (0.91-2.6) | 1.4 (1.3-1.5) | | | | Terminal T1/2 (h) | 2.6 (2.2-3.0) | 1.2 (1.1-1.3) | | | | Oral F% | ND | <0.1 (<0.1-<0.1) | | | | %unchanged in urine | <0.1 (<0.1-<0.1) | 0.9 (0.8-1.0) | | | | PF-00835231 AUCinf (ng.h/mL) | 447 (304-589) | 583 (614-552) | | | | %Conversion to PF-00835231 | 76% (55-96) | - | | | [%]Conversion to PF-00835231 76% (55-96) n=2 range shown in parenthesis, n=3 ± SD shown in parenthesis, ND = not determined Table S10. Predicted pharmacokinetic parameters of PF00835231 with and without coadministration of itraconazole. | PF-07304814 ^a | Itraconazole | Cn | nax | AU | C | CmaxR | AUCR | |--------------------------|--------------|----------|--------------------|------------|-----------------|-------------------|---------------| | mg/day | mg/day | μM total | $\mu M \\ unbound$ | µM∙h total | µM∙h
unbound | ratio | ratio | | 500 | 0 | 1.1 | 0.50 | 27 | 12 | - | - | | | 200 | 2.4 | 1.1 | 58 | 26 | 2.2 (2.1-
2.3) | 2.1 (2.0-2.2) | Data are expressed as geometric mean for C_{max} and AUC and geometric mean with 90% confidence intervals in parentheses for $C_{max}R$ and AUCR. Table S11. Metabolic stability and enzyme kinetics of PF-07304814 in liver S9. | Kinetic | | | | | |--|---------------------|------------------------|------------------------|---------------------| | Parameters | Rat | Dog | Monkey | Human | | Model | Two Enzyme – MM and | Two Enzyme –
MM and | Two Enzyme –
MM and | Two Enzyme – MM and | | | Unsaturable | Unsaturable | Unsaturable | Unsaturable | | $K_{M}(\mu M)$ | 53.4 | 2.91 | 8.10 | 6.23 | | V_{max} | 2188 | 214 | 1186 | 2313 | | (pmol/min/mg) | | 4.50 | 2.0.5 | 0.05 | | CL _{int,2} | 4.56 | 1.69 | 3.06 | 9.96 | | (μL/min/mg) | 45 F | 75.0 | 150 | 201 | | CL _{int,app} | 45.5 | 75.2 | 150 | 381 | | (μL/min/mg)
CL _{intu}
(μL/min/mg) | 51 | 84 | 168 | 428 | $CL_{int,app}$ = Apparent intrinsic clearance; $CL_{int,2}$ = Apparent intrinsic clearance of low affinity kinetic component; CL_{intu} = unbound intrinsic clearance calculated by CL_{int} / fu inc. K_M = Michaelis-Menten constant; MM = Michaelis-Menten; NADPH = β -Nicotinamide Adenine Dinucleotide Phosphate; SP = Subcellular fraction; V_{max} = Maximum enzyme velocity. ^a Daily dose of PF-07304814 provides formation of PF00835231 equivalent to 320mg/day used in the simulation. $Table \ S12. \ Physicochemical \ and \ pharmacokinetic \ parameters \ of \ PF00835231 \ for \ PBPK \ modeling.$ | Parameter (units) | Value | Source | |--|---------|--| | Molecular weight | 472 | Calculated | | LogP | 0.75 | Calculated | | pK_{a} | neutral | Calculated | | Rbp | 0.8 | Measured in vitro | | f
u,plasma | 0.449 | Measured in vitro | | $V_{ss}(L/kg)$ | 1 | Predicted from animal data | | Kp scalar | 3.1 | Adjusted from the prediction (method 2) | | CL _{plasma} (L/h) | 25 | Predicted from in vitro CL | | f
m,CYP3A | 0.76 | Predicted from in vitro phenotyping data | | ${ m rCL}_{{ m int},{ m CYP3A4}}$ (µL/min/pmol P450) | 0.15 | Calculated by Simcyp (retrograde model) | | $CL_{int,HLM}$ ($\mu L/min/mg$ protein) | 6 | Calculated by Simcyp (retrograde model) | | $\operatorname{CL}_{\operatorname{renal}}(\operatorname{L/h})$ | 3 | Predicted from animal data | | CYP3A4 K_i (μM) | 108 | Measured in vitro | | CYP3A4 K_{I} (μ M) | 163 | Measured in vitro | | CYP3A4 k _{inact} (h ⁻¹) | 1.8 | Measured in vitro |