Supplementary Information for

Macrophages exert homeostatic actions in pregnancy to protect against

preterm birth and fetal inflammatory injury

Authors: Nardhy Gomez-Lopez¹⁻⁴, Valeria Garcia-Flores^{2,3}, Peck Yin Chin¹, Holly M. Groome¹, Melanie T. Bijland¹, Kerrilyn R. Diener^{1,5}, Roberto Romero^{2,6-10}, Sarah A. Robertson¹

¹Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, AU

²Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, and Detroit, Michigan, USA

³Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA ⁴Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA

⁵University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, AU

⁶Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.

⁷Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA

⁸Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.

⁹Detroit Medical Center, Detroit, MI, USA

¹⁰Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA

Corresponding author:

Sarah A Robertson, PhD, Robinson Research Institute, Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide SA 5005, Australia, T: +61 8 8313 4094, E-mail: sarah.robertson@adelaide.edu.au

Nardhy Gomez-Lopez, PhD, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Perinatology Research Branch, NICHD/NIH/DHHS, 275 E Hancock St, Detroit, Michigan 48201 USA, Tel: 313-577-8904, Email: <u>nardhy.gomez-lopez@wayne.edu</u>

This PDF file includes:

SI Materials and Methods Supplementary Figures 1 to 11 Supplementary Tables 1 to 5

SI Materials and Methods

Human subjects, clinical specimens, and definitions

Human decidual tissues samples were collected at Hutzel Women's Hospital in the Detroit Medical Center, Detroit, MI, USA, in partnership with Wayne State University School of Medicine and the Perinatology Research Branch, an intramural program of the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA. The study groups included women who delivered at term, women with spontaneous preterm birth, and women with iatrogenic preterm birth. Term birth was defined as delivery after 37 weeks of gestation whereas preterm birth occurred before 37 weeks of gestation. Gestational age was determined by the date of the last menstrual period and confirmed by ultrasound examination. Spontaneous preterm birth was defined as delivery following the spontaneous onset of labor. Patients with multiple births or neonates that had congenital or chromosomal abnormalities were excluded from this study. The demographic and clinical characteristics of the study populations are shown in Table 1 and Supplementary Table 1.

Isolation of human decidual leukocytes

Leukocytes were isolated from decidual tissues of each study group, as previously described (1). Briefly, the decidua basalis and the decidua parietalis were homogenized using a gentleMACS Dissociator (Miltenyi Biotec, San Diego, CA, USA) in StemPro Accutase Cell Dissociation Reagent (Life Technologies, Carlsbad, CA, USA) and incubated for 45 minutes (min) at 37°C with gentle agitation. After incubation, tissues were washed in phosphate-buffered saline (PBS) (Life Technologies) and filtered through a 100 µm cell strainer (Falcon; Corning Life Sciences, Durham, NC, USA). The resulting cell suspension was centrifuged at 300 x g for 10 min at 4°C. Decidual leukocytes were then separated by density gradient using Ficoll-Paque Plus (GE Healthcare Biosciences, Uppsala, Sweden). Cells collected from the mononuclear layer of the density gradient were washed with PBS and immediately used for immunophenotyping.

Immunophenotyping of human decidual macrophage subsets

Isolated decidual mononuclear cells were incubated with 20 µL of human FcR blocking reagent (Miltenyi Biotec) in 80 µL of stain buffer (Cat#554656; BD Biosciences, San Jose, CA, USA) for 10 min at 4°C, then incubated with fluorochrome-conjugated anti-human monoclonal antibodies for 30 min at 4°C in the dark (Supplementary Table 2). After extracellular staining, the cells were washed with PBS to remove excess antibody, resuspended in 0.5 mL stain buffer, and acquired using the BD LSR II Flow Cytometer (BD Biosciences) and BD FACSDiva 6.0 software (BD Biosciences). For intracellular staining, the cells were then fixed and permeabilized using the BD Cytofix/Cytoperm™ Fixation and Permeabilization Solution (BD Biosciences). Next, the cells were washed with BD Perm/Wash™ Buffer (BD Biosciences), re-suspended in 50 µL of the same buffer, and stained with intracellular antibodies for 30 min at 4°C in the dark (Supplementary Table 2). Finally, the stained cells were washed with BD Perm/Wash™ Buffer, re-suspended in 0.5 ml stain buffer, and acquired using the BD Perm/Wash™ Buffer, re-suspended in 0.5 ml stain buffer, and acquired using the BD Perm/Wash™ Buffer, re-suspended in 0.5 ml stain buffer, and acquired using the BD T™ LSR II Flow Cytometer and BD™ FACSDiva 6.0 software. Data analysis was performed using FlowJo software version 10 (FlowJo, Ashland, OR, USA).

Mice

Cd11b^{DTR/DTR} mice expressing the simian diphtheria toxin receptor (DTR) driven by the *Cd11b* promoter on an inbred FVB/N background (Tg[ITGAM-DTR/EGFP]34Lan) (2, 3) were provided by Richard Lang (University of Cincinnati, Cincinnati, Ohio, USA). *Cd11b*^{DTR/DTR} and *Cd11b*^{WT/WT} (wild-type FVB/N) mice were housed and bred under specific pathogen-free conditions at the University of Adelaide Medical School Animal House on a 12 hour (h) light/12 h dark cycle. Eight- to twelve-week-old *Cd11b*^{DTR/DTR} and *Cd11b*^{WT/WT} females were mated with BALB/c males and examined the following morning for the presence of a vaginal plug, which indicated 0.5 days *post coitum* (dpc). C57BL/6, FVB/N, and C57BL/6-Tg(CAG-EGFP)131Osb/LeySop mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). Mice were bred in the animal care facility at the C.S. Mott Center for Human Growth and Development (Wayne State University, Detroit, MI, USA) and housed on a 12 h light/12 h dark cycle. Eight- to twelve-week-old C57BL/6 or FVB/N females were mated with males of proven fertility and examined daily between 8:00 and 9:00 a.m. for the presence of a vaginal plug. After observation of a vaginal plug, female mice were removed from the mating cages and housed separately. A weight gain \geq 2 grams at 12.5 dpc confirmed pregnancy.

Experimental treatments in pregnant mice and perinatal outcome variables

 $Cd11b^{DTR/DTR}$ dams were administered 25 ng/g of diphtheria toxin (DT) (in 200 µl PBS, i.p.) from Corynebacterium diphtheriae (Sigma, St. Louis, MO, USA) on either 16.0 dpc (15.5 dpc at 5-6 pm) or 17.0 dpc (16.5 dpc at 5-6 pm) to deplete CD11b⁺ cells. Control $Cd11b^{DTR/DTR}$ dams were administered 200 µL PBS and $Cd11b^{WT/WT}$ females were administered 25 ng/g of DT in 200 µL PBS. A group of $Cd11b^{DTR/DTR}$ and $Cd11b^{WT/WT}$ dams was also administered progesterone (Sigma) (200 ng/100 µl sesame oil) or sesame oil vehicle control (Sigma) on 16.0 dpc, 17.0 dpc, and 18.0 dpc. The endotoxin content of DT was confirmed to be <0.25 EU/ml (25-50 pg/ml) by Limulus amebocyte assay (E-Toxate, Sigma Aldrich).

Ultrasound-guided intra-amniotic injection of LPS was performed on 16.5 dpc C57BL/6 mice, as previously described (4-6). Briefly, dam anaesthesia was induced with 2–3% isoflurane (Aerrane, Baxter Healthcare Corporation, Deerfield, IL, USA) and 1–2 L/min of oxygen, then maintained with 1.5–2% isoflurane and 1.5–2 L/min of oxygen. Dams were positioned on a heating pad and abdominal hair removed. Body temperature was monitored by rectal probe (Visual Sonics, Toronto, ON, Canada) and maintained at 37 ± 1°C, and respiratory and heart rates were monitored by electrodes embedded in the heating pad. Using an ultrasound probe fixed and mobilized with a mechanical holder, ultrasound guided intra-amniotic injection of LPS (*Escherichia coli* O111: B4, Sigma)(100 ng in 25 μ L of sterile PBS, or 25 μ L of PBS alone for controls) was performed in each amniotic sac using a 30G needle (Becton Dickinson) stabilized by a mechanical holder (VisualSonics). Following treatments, dams were either monitored by infrared camera (Sony, Tokyo, Japan) until delivery or euthanized for tissue recovery at specific time points in late gestation, as detailed below.

Preterm birth was defined as delivery within 48 h of intervention (CD11b⁺ myeloid cell depletion or LPS administration): ≤18.0 dpc (Figure 2B & Supplementary Figure 9C) or <18.5 dpc (Figure 4B, Figure 6C), and the rate was calculated as proportion of total number of pregnant mice. Gestational length was calculated as the length of time from the presence of the vaginal plug until the appearance of the first pup in the cage bedding. Neonatal survival (% pups born) was calculated at birth, at 12-24 h after birth, and at 8 and 21 days of age. Pup weights were recorded at 12-24 h after birth, as well as 8 and 21 days of age.

Isolation, differentiation, and adoptive transfer of bone marrow-derived macrophages

For reconstitution experiments in $Cd11b^{DTR/DTR}$ mice, bone marrow was collected from $Cd11b^{WT/WT}$ mice and treated with red blood cell lysis buffer. Cells were resuspended in complete RPMI medium (cRPMI, 10% FBS, 100 U/mL penicillin, 100 mg/mL streptomycin, 1% L-glutamate) supplemented with 20% L929 conditioned media as a source of CSF-1 and seeded at 1 x 10⁶ cells/mI, as described (7). Macrophages were collected on day 6 for adoptive transfer experiments after repeated washing with ice-cold PBS using StemPro Accutase Cell Dissociation Reagent (Life Technologies). Approximately 5–10 x 10⁶ cells were resuspended in 250 µl RPMI for intravenous (i.v.) injection into each dam on both 14.5 and 16.5 dpc, prior to i.p. administration of DT, or PBS on 16.5 dpc. This number was the maximum number of cells that could feasibly be transferred by tail vein injection, and was judged sufficient to partially repopulate a $CD11b^{DTR/DTR}$ mouse after DT administration, based on estimates of ~3 x 10^5 CD11b⁺F4/80⁺ cells/ ml in peripheral blood, and ~1 x 10^6 CD11b⁺F4/80⁺ cells/ g of uterus (Fig. 2B).

For experiments in C57BL/6 mice, bone marrow-derived cells from C57BL/6 donors were treated with red blood cell lysis buffer and cultured in IMDM medium (Thermo Scientific) supplemented with 10% FBS (Invitrogen, Carlsbad, CA, USA) and 10 ng/mL of recombinant CSF1 (Cat#576402; BioLegend, San Diego, CA, USA), and incubated at 37°C with 5% CO₂ for 7 days. On day 7, the culture medium was replaced with fresh IMDM medium + 10% FBS and 10 ng/mL each of recombinant IL-4 (Cat#574302, BioLegend) and IL-13 (Cat#575902, BioLegend), or fresh IMDM medium + 10% FBS and 10 ng/mL CSF1. On day 8 of culture, 14-18 hours later, macrophages were collected for adoptive transfer. Either M2-polarized BMDM or non-polarized BMDM (2 – 3 x 10⁶) were re-suspended in 100 μL sterile PBS for i.v. injection on 15.5 or 16.5 dpc, prior to the intra-amniotic administration of lipopolysaccharide (LPS), or PBS. Flow cytometry was performed to quantify expression of phenotype markers Egr-2 and Ym1/2 in both BMDM preparations (Supplementary Table 3). Some mice were administered GFP⁺ M2-polarized BMDM to allow tracking of passively transferred macrophages recruited into gestational tissues. BMDM were recovered from C57BL/6-Tg(CAG-EGFP)131Osb/LeySop mice, cultured and administered to recipients, as described above. Leukocytes were isolated from myometrial, decidual, and placental tissues as previously described, and flow cytometry was performed to determine the numbers of GFP⁺F4/80⁺ cells in each tissue as detailed below.

Immunohistochemistry

Whole uterus (myometrium and endometrium) and placenta were collected from *Cd11b*^{DTR/DTR} dams 24 h after administration of DT or PBS on 16.0 dpc. Tissue sections (5 µm thick) were cut and mounted on glass microscope slides. The sections were blocked with 15% normal mouse serum (NMS) and 15% normal rabbit serum for 30 min at 37°C followed by overnight incubation with rat anti-mouse F4/80 in PBS (1:100 dilution), 1.5% NMS, and 1.5% normal rabbit serum (eBioscience, San Diego, CA, USA) at 4°C in a humidified chamber. Afterwards, the tissues were incubated with biotinylated rabbit anti-rat IgG (1:200 dilution) for 40 min at room temperature (Vector Laboratories, Burlingame, CA, USA), followed by a 30 min incubation with Elite ABC reagent from the VECTASTAIN ABC Elite kit (Vector Laboratories). Horseradish peroxidase was localized with diaminobenzidine tetrachloride (DAB) (DAKO, Glostrup, Denmark), and tissues were counterstained with hematoxylin (Sigma). Negative control sections were incubated either with irrelevant primary antibody, the secondary antibody alone, or no antibody. There was no positive staining identified in the control slides. Within the labyrinth zone of the placenta, F4/80⁺ cells in the intervillous space containing maternal blood, identified by their characteristic structure and the presence of red blood cells, were considered macrophages of maternal origin. F4/80⁺ cells within the interstitial compartment, exhibiting structural features typical of villous tissue with a syncytiotrophoblast lining, were considered macrophages of fetal origin (Hofbauer cells) (8, 9).

Isolation of murine leukocytes for immunophenotyping

Maternal and fetal tissues were collected from *Cd11b^{DTR/DTR}* dams 24 h after administration of DT or PBS on 16.0 dpc, and *Cd11b^{WT/WT}* dams 24 h after administration of 25 ng/g of DT on 16.0 dpc, and leukocytes were isolated as previously described (10). Dams were weighed and anesthetized with avertin [tribromoethanol dissolved in amylene hydrate and distilled water] (Sigma). Peripheral blood was recovered by cardiac puncture and placed in tubes containing heparin sodium (Sigma). Mice were then euthanized by cervical dislocation, and the uterine myometrium, uterine decidua, placenta, and fetal liver were collected, rinsed in PBS, pooled (3-4 tissues, respectively), and gently dissociated in StemPro Accutase Cell Dissociation Reagent (Life Technologies) using scissors. After incubation at 37°C for 40 min, cells were filtered using a 100 µm cell strainer (Becton Dickinson, Franklin Lakes, NJ, USA) and washed with FACS buffer (0.1% bovine serum albumin and 0.05%

sodium azide in PBS). Cell debris was removed by centrifugation in 1 mL of fetal calf serum, followed by washing with 500 µL of FACS buffer.

Immunophenotyping of murine leukocytes

Immediately after isolation, leukocyte cell pellets from the blood, myometrium, decidua, placenta, and fetal liver were re-suspended in FACS buffer and pre-incubated with Fc Block (Becton Dickinson, clone 2.4G2) for 10 min on ice and subsequently incubated with specific fluorochrome-conjugated anti-mouse antibodies shown in Supplementary Table 3. Red blood cells were lysed using RBC lysis buffer (150 mM ammonium chloride, 10 mM potassium bicarbonate and 0.1 mM EDTA, pH 7.2). The lineage and phenotype of viable leukocytes [4',6diamidino-2-phenylindole (DAPI)*CD45* cells] were analyzed using combinations of antibodies against CD45, CD11b, F4/80, CD11c, MHC class II, Ly6G, CD3, CD4, CD8, CD49b, and CD69 according to gating strategies shown in Supplementary Figures 6A, 7 and 8A. Total numbers of leukocyte subsets were determined using CountBright Absolute Counting Beads (Molecular Probes, Invitrogen, Eugene, OR, USA). The term 'cells/ml' refers to the number of cells per ml of FACS buffer, at the time of flow cytometry analysis, and is directly proportional to the number of cells/uterus. The number of cells per ml was calculated using the formula provided by CountBrightTM Absolute Counting Beads (Molecular Probes). This formula considers the number of cells, number of beads, and volume in which cells were resuspended. For tissues, cells were obtained after dissociation of ~30-50 mg of tissue resuspended in 1 ml of FACS buffer. For blood, 100 uL of blood was utilized in all experiments and white blood cells were resuspended in 1 mL of FACS buffer. The analysis and preparation of images were performed using FlowJo Software Version 10.

Gene expression analysis in murine decidual tissue

Uterine decidual tissue was collected from *Cd11b^{DTR/DTR}* dams 24 h after administration of DT or PBS on 16.0 dpc. Total RNA was extracted from each sample with Trizol, following the manufacturer's instructions. RNA concentration and purity were assessed with the NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and RNA integrity was evaluated using agarose gels. Complementary (c) DNA was synthesized using the RT² First Strand Kit (QIAGEN, Hilden, Germany). A single pooled sample was generated for each group (n = 7-8 dams/pool). The RT² Profiler Mouse Innate & Adaptive Immune Response PCR Array (Cat#PAMM-052ZA-2, QIAGEN) and RT² Profiler Mouse Inflammatory Response & Autoimmunity PCR Array (Cat#PAMM-077ZA-2, QIAGEN) were used for mRNA expression profiling and performed using RT² SYBR Green ROX qPCR MasterMix (QIAGEN) on a 7500 Fast Real-Time PCR System (Applied Biosystems, Life Technologies, Foster City, CA, USA) (Supplementary Table 4).

Interaction network analysis of down-regulated and up-regulated genes with protein–protein interactions was performed using STRING (Search Tool for the Retrieval of Interacting Genes) v.10.0 software (11).

Measurement of plasma progesterone

For measurement of plasma progesterone, peripheral blood was collected by cardiac puncture from *Cd11b*^{DTR/DTR} dams 24 h after administration of DT or PBS on 16.0 dpc. Plasma was obtained after centrifugation at 1300 x g for 10 min at 4°C and progesterone concentrations were measured using an enzyme-linked immunoassay (Mouse/Rat Progesterone Kit, Cat#55-PROMS-E01, ALPCO Diagnostics, Salem, NH, USA), following the manufacturer's instructions.

Cytokine secretion by myometrial and decidual macrophages

Myometrial and decidual tissue was collected from *Cd11b^{WT/WT}* mice on 16.5 dpc, 17.5 dpc and 18.5 dpc, and disaggregated as described above. Single cell suspensions were then incubated with biotin-conjugated rat anti-mouse F4/80 (clone BM8, eBioscience) and streptavidin microbeads (Miltenyi Biotec) for positive selection

using MS columns and a magnetic MACS separator. The purity of isolated macrophages were confirmed to be >90% by flow cytometry to detect F4/80⁺ cells. Cells were counted using an automatic cell counter (Cellometer Auto 2000; Nexcelom, Lawrence, MA, USA) and plated in a 24-well plate (Fisher Scientific, Waltham, MA, USA) at a density of 1×10⁶ cells/mL in complete RPMI medium for culture at 37°C with 5% CO₂. Macrophages were collected 6 h later and the supernatant recovered for analysis of IL-10, IL-12p70, TNF, and TGFβ concentrations using Quantikine ELISA Kits (R&D Systems, Minneapolis, MN, USA).

Cytokine and chemokine concentrations in the maternal circulation and amniotic fluid

C57BL/6 dams were administered LPS or PBS by intra-amniotic injection on 16.5 dpc, with or without adoptive transfer of M2-polarized BMDM, as described above, then 16 h later were anesthetized with avertin (Sigma) for recovery of maternal peripheral blood by cardiac puncture. After euthanasia by cervical dislocation, amniotic fluid was collected from each amniotic sac with a 26G needle. Maternal plasma and amniotic fluid were stored at -20°C until analysis. The ProcartaPlex Mouse Cytokine & Chemokine Panel 1A 36-plex (Invitrogen by Thermo Fisher Scientific, Vienna, Austria) was used to quantify IFNα, IFNα, IL-12p70, IL-1β, IL-2, TNF, GM-CSF, IL-18, IL-17A, IL-22, IL-23, IL-27, IL-9, IL-15/IL-15R, IL-13, IL-4, IL-5, IL-6, IL-10, Eotaxin (CCL11), IL-28, IL-3, LIF, IL-1α, IL-31, GRO-α (CXCL1), MIP1α (CCL3), IP10 (CXCL10), MCP-1 (CCL2), MCP-3 (CCL7), MIP-1β (CCL4), MIP-2 (CXCL2), RANTES (CCL5), G-CSF, M-CSF, and ENA-78 (CXCL5) according to the manufacturer's instructions. Plates were read using the Luminex 100 SystemFill (Luminex, Austin, TX, USA), and analyte concentrations were calculated with ProcartaPlex Analyst 1.0 Software (Affymetrix, San Diego, CA, USA). The sensitivities of the assays were: 3.03 pg/mL (IFNα), 0.09 pg/ml (IFNγ), 0.21 pg/mL (IL-12p70), 0.14 pg/mL (IL-1β), 0.10 pg/mL (IL-2), 0.39 pg/mL (TNF), 0.19 pg/mL (GM-CSF), 9.95 pg/mL (IL-18), 0.08 pg/mL (IL-17A), 0.24 pg/mL (IL-22), 2.21 pg/mL (IL-23), 0.34 pg/mL (IL-27), 0.28 pg/mL (IL-9), 0.42 pg/mL (IL-15/IL-15R), 0.16 pg/mL (IL-13), 0.03 pg/mL (IL-4), 0.32 pg/mL (IL-5), 0.21 pg/mL (IL-6), 0.69 pg/mL (IL-10), 0.01 pg/mL (Eotaxin), 20.31 pg/mL (IL-28), 0.11pg/mL (IL-3), 0.28 pg/mL (LIF), 0.32 pg/mL (IL-1α), 0.45 pg/mL (IL-31), 0.05 pg/mL (GRO-α), 0.13 pg/mL (MIP-1α), 0.26 pg/mL (IP-10), 3.43 pg/mL (MCP-1), 0.15 pg/mL (MCP-3), 1.16 pg/mL (MIP-1β), 0.37 pg/mL (MIP-2), 0.35 pg/mL (RANTES), 0.19 pg/mL (G-CSF), 0.02 pg/mL (M-CSF), and 5.67 pg/mL (ENA-78). Inter-assay and intra-assay coefficients of variation were less than 10%.

Gene expression in the fetal brain and lung upon treatment with M2-polarized macrophages

C57BL/6 dams were administered LPS or PBS by intra-amniotic injection on 16.5 dpc, with or without adoptive transfer of M2-polarized macrophages, as described above, then 16 h later were euthanized to collect the fetal brain and lung. The tissues were stored in RNAlater Stabilization Solution (Invitrogen by Thermo Fisher Scientific, Baltics UAB, Lithuania) until RNA isolation. Total RNA was isolated using QIAshredders, RNase-Free DNase Sets, and RNeasy Mini Kits (QIAGEN), according to the manufacturer's instructions. RNA concentrations and purity were assessed with the NanoDrop 1000 spectrophotometer (Thermo Scientific), and RNA integrity was evaluated with the Bioanalyzer 2100 (Agilent Technologies, Wilmington, DE, USA). Complementary (c)DNA was synthesized using SuperScript III First-Strand Synthesis SuperMix (Invitrogen by Thermo Fisher Scientific, Carlsbad, CA, USA). Gene expression profiling was performed on the BioMark[™] System for high-throughput RT-qPCR (Fluidigm, San Francisco, CA, USA) with the TaqMan® gene expression assays (Applied Biosystems, Life Technologies Corporation, Foster City, CA, USA) listed in Supplementary Table 5.

REFERENCES

- 1. Xu Y, Plazyo O, Romero R, Hassan SS, and Gomez-Lopez N. Isolation of leukocytes from the human maternal-fetal interface. *J Vis Exp.* 2015(99):e52863.
- 2. Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S, et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. *J Immunol.* 2005;174(4):2336-42.
- 3. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. *J Clin Invest.* 2005;115(1):56-65.
- 4. Gomez-Lopez N, Romero R, Arenas-Hernandez M, Panaitescu B, Garcia-Flores V, Mial TN, et al. Intraamniotic administration of lipopolysaccharide induces spontaneous preterm labor and birth in the absence of a body temperature change. *J Maternal-Fetal & Neonatal Med.* 2018;31(4):439-46.
- 5. Garcia-Flores V, Romero R, Miller D, Xu Y, Done B, Veerapaneni C, et al. Inflammation-induced adverse pregnancy and neonatal outcomes can be improved by the immunomodulatory peptide exendin-4. *Frontiers Immunol.* 2018;9:1291.
- Faro J, Romero R, Schwenkel G, Garcia-Flores V, Arenas-Hernandez M, Leng Y, et al. Intra-amniotic inflammation induces preterm birth by activating the NLRP3 inflammasome. *Biol Reprod.* 2019;100(5):1290-305.
- 7. Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, and Robertson SA. Macrophages regulate corpus luteum development during embryo implantation in mice. *J Clin Invest.* 2013;123(8):3472-87.
- 8. Takahashi K, Naito M, Katabuchi H, and Higashi K. Development, differentiation, and maturation of macrophages in the chorionic villi of mouse placenta with special reference to the origin of Hofbauer cells. *J Leukoc Biol.* 1991;50(1):57-68.
- 9. Adamson SL, Lu Y, Whiteley KJ, Holmyard D, Hemberger M, Pfarrer C, et al. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. *Dev Biol.* 2002;250(2):358-73.
- 10. Arenas-Hernandez M, Sanchez-Rodriguez EN, Mial TN, Robertson SA, and Gomez-Lopez N. Isolation of leukocytes from the murine tissues at the maternal-fetal interface. *J Vis Exp.* 2015(99):e52866.
- 11. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. *Nucleic Acids Res.* 2015;43:D447-52.

Supplementary Figure 1, related to Figure 1. Gating strategy to identify macrophage subsets at the maternal-fetal interface of women with term or spontaneous preterm birth. (A) Gating strategy used to identify CD45⁺CD14⁺CD80⁺HLA-DR⁺ cells, considered pro-inflammatory macrophages, and subsets expressing TNF, iNOS, or IL12, in uterine decidual tissues. (B) Gating strategy used to identify CD45⁺CD14⁺ICAM3⁻ cells, considered homeostatic macrophages, and subsets expressing CD206 and CD209, CD163, IL-10, or NRP-1, in uterine decidual tissues.

Supplementary Figure 2, related to Figure 1. Macrophage subsets that were not differentially abundant at the maternal-fetal interface of women with spontaneous preterm birth (sPTB), compared to term birth. Frequency of macrophages and macrophage subsets in in the decidua basalis and the decidua parietalis of women who underwent term birth (n = 63-68) or spontaneous preterm birth (n = 23-28). The frequency of (A) CD14⁺ / CD45⁺ cells and ICAM3⁻ / CD45⁺ CD14⁺ cells; (B) CD80⁺ / CD45⁺ CD14⁺ cells and HLA-DR⁺ / CD45⁺ CD14⁺ CD45⁺ CD14⁺ (CD45⁺ CD14⁺ CD45⁺ CD14⁺ CD45⁺ CD14⁺ (CD45⁺ CD14⁺ ICAM3⁻ and NRP-1⁺ / CD45⁺ CD14⁺ ICAM3⁻ cells. Data are shown as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range. Symbols are values from individual women. Data were analyzed by Mann-Whitney U-test. *P* values were considered significant when *P* < 0.05. Demographic and clinical characteristics of the study population are shown in Table 1.

Supplementary Figure 3, related to Figure 1. Macrophage subsets at the maternal-fetal interface of women with iatrogenic preterm birth (PTB), compared to term birth. (A) Frequency of TNF⁺ / CD45⁺CD14⁺CD80⁺HLA-DR⁺ cells in the decidua basalis and the decidua parietalis of women who underwent term (n = 63-66) and iatrogenic preterm birth (n = 9-11). (B) Frequency of %CD206*CD209* / CD45*CD14*ICAM3 cells in the decidua basalis and the decidua parietalis of women who underwent term (n = 67-68) or iatrogenic preterm birth (n = 9-11). Data are shown as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range. Symbols are values from individual women. Data were analyzed by Mann-Whitney U-tests. P values were considered significant when P < 0.05.

Supplementary Figure 4, related to Figure 2. Depletion of Cd11b⁺ myeloid cells on 17.0 days *post coitum*. $Cd11b^{DTR/DTR}$ or $Cd11b^{WTWT}$ dams were administered diphtheria toxin (DT, 25 ng/g, i.p.) or PBS on 16.0 days *post coitum* (dpc). There was no effect of treatment on rate of preterm birth (delivery within 48 h of intervention, eg. <19.0 dpc). Parameters shown are (A) gestational length presented as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range medians with interquartile and minimum/maximum ranges, analyzed by Kruskal-Wallis test followed by Mann-Whitney U-test, and (B) Kaplan-Meier survival curves showing the percentage survival per litter of neonates at 1, 8, and 21 days postpartum, analyzed by Mantel–Cox tests. (C, D, E) Violin plots showing the mean weight per litter of surviving pups at 1, 8, and 21 days postpartum. Symbols are median values from individual dams. Data were analyzed by one-way ANOVA followed by post-hoc t-test. *P* values were considered significant when *P* < 0.05.

Supplementary Figure 5, related to Figure 3. Administration of diphtheria toxin to Cd11b^{DTR/DTR} dams depletes F4/80⁺ macrophages from the uterus and reduces F4/80⁺ macrophages in the placenta. Cd11b^{DTR/DTR} or Cd11b^{WT/WT} dams were administered diphtheria toxin (DT, 25 ng/g, i.p.) or PBS on 16.0 days post coitum (dpc). Twenty-four hours post-injection, sections of intact uterine implantation sites (myometrium and decidua) and placenta were collected to detect F4/80⁺ cells by immunohistochemistry. (A, B, C) Myometrium, decidua, and placenta from Cd11b^{DTR/DTR} dams administered PBS. (D, E, F) Myometrium, endometrium, and placenta from *Cd11b*^{DTR/DTR} dams administered DT. Representative photomicrographs are shown, with the marked area shown at a 2-fold higher magnification in boxes in the lower right hand side of panel C and F. In the placental labyrinth, F4/80⁺ cells within the intervillous maternal blood space (considered macrophages of maternal origin) can be distinguished from F4/80⁺ cells within the interstitial villous tissue (considered macrophages of fetal origin, e.g. Hofbauer cells). Macrophages in placental tissue in panel C are located in both the interstitial (fetal) tissue and the maternal blood space, while the macrophages in placental tissue in panel F appear to be located in the interstitial (fetal) tissue. Red arrowheads indicate F4/80⁺ cells. Black arrows indicate F4/80⁺ cells within the maternal blood space (panel C) and the fetal interstitial tissue (panel F). Bars are 100 µm.

Cd11b DTR/DTR + PBS

Cd11b DTR/DTR + DT

Supplementary Figure 6, related to Figure 3. Effects of depletion of maternal CD11b⁺ myeloid cells on leukocyte populations in maternal and fetal tissues. $Cd11b^{DTR/DTR}$ or $Cd11b^{WTWT}$ dams were administered diphtheria toxin (DT, 25 ng/g, i.p.) or PBS on 16.0 days *post coitum* (dpc). Tissues were collected 24 h later for analysis of leukocytes by flow cytometry. (A) Gating strategy used to identify macrophages (CD45⁺CD11b⁺F4/80⁺Ly66⁻ cells), neutrophils (CD45⁺CD11b⁺F4/80⁻Ly66⁺ cells), and dendritic cells (CD45⁺CD11b⁺CD11c⁺ cells). (Gating strategy used to identify T cells is shown in Supplementary Figure 8). Proportions of CD45⁺ Leukocytes comprised by macrophages (B-F), neutrophils (G-K), dendritic cells (L-P), and T cells (CD45⁺CD11b⁻CD3⁺ cells) (Q-U), in the maternal peripheral blood, uterine myometrium, uterine decidua, placenta, and fetal liver (n = 8-9 per group). Data are percentage of CD45⁺ leukocytes, shown as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range. Symbols are values from individual dams. Data were analyzed by ANOVA followed by post-hoc t-test. *P* values were considered significant when *P* < 0.05.

Supplementary Figure 7, related to Figure 3. Expression of MHC class II by F4/80⁺ cells in the maternal peripheral blood, uterine myometrium, uterine decidua, placenta, and fetal liver. Tissues were collected from *CD11b^{WT/WT}* dams on 17.0 days post coitum for analysis of macrophages by flow cytometry using markers F4/80 and MHC class II (see Materials and Methods). Representative density plots are shown.

Supplementary Figure 8, related to Figure 3. Effects of depletion of maternal CD11b⁺ myeloid cells on CD4⁺ and CD8⁺ T cell populations in maternal and fetal tissues. (A) Gating strategy used to identify CD4⁺ T cells (CD45⁺CD11b⁻CD3⁺CD4⁺ cells), and CD8⁺ T cells (CD45⁺CD11b⁻CD3⁺CD8⁺ cells). *Cd11b^{DTR/DTR}* or *Cd11b^{WT/WT}* dams were administered diphtheria toxin (DT, 25 ng/g, i.p.) or PBS on 16.0 days *post coitum* (dpc). Tissues were collected 24 h later for analysis of T cells by flow cytometry. Numbers of CD4⁺ T cells (**B-F**) and CD8⁺ T cells (**G-K**) in the maternal peripheral blood, uterine myometrium, uterine decidua, placenta, and fetal liver (n = 8-9 per group). Proportions of CD4⁺ T cells (**L-P**), and CD8⁺ T cells (**Q-U**) in the maternal circulation, myometrium, decidua, placenta, and fetal liver from macrophage-depleted *Cd11b^{DTR/DTR}* or control dams (n = 8-9 per group). Data in B-K are number of cells/ ml of digested tissue single cell suspension (see Materials and Methods), and data in L-U are percentage of CD3⁺ T cells presented as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range. Symbols are values from individual dams. Data were analyzed by ANOVA followed by post-hoc t-test. *P* values were considered significant when *P* < 0.05.

Supplementary Figure 9. Progesterone administration prevents preterm birth but does not reverse adverse neonatal outcomes after depletion of CD11b⁺ myeloid cells in Cd11b^{DTR/DTR} dams. (A) Maternal plasma progesterone concentration in Cd11b^{DTR/DTR} dams (mean and SEM, n = 8-9 per group) 24 h after injection of diphtheria toxin (DT, 25 ng/g, i.p.) or PBS on 16.0 dpc. Systemic progesterone concentrations are shown as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range. Data were analyzed by Mann-Whitney U-test. (B) Cd11b^{DTR/DTR} or Cd11b^{WT/WT} dams were administered diphtheria toxin (DT, 25 ng/g, i.p.) or PBS on 16.0 days post coitum (dpc), then administered either progesterone (P4, 200 ng in 100 µl sesame oil, s.c.) or sesame oil (vehicle control; Veh) on 16.0 dpc, 17.0 dpc, and 18.0 dpc. Timing of birth and neonatal outcomes were recorded (all n = 9-13 dams per group). Parameters shown are (C) rate of preterm birth (delivery within 48 h of intervention, eg. ≤ 18.0 dpc), analyzed by Fisher's exact test; (D) gestational length presented as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range medians with interquartile and minimum/maximum ranges, analyzed by Kruskal-Wallis test followed by Mann-Whitney U-test. (E) Kaplan-Meier survival curves showing the percentage survival per litter of neonates at 1, 8, and 21 days postpartum, analyzed by Mantel-Cox tests. (F, G, H) Violin plots showing the mean weight per litter of surviving pups at 1, 8, and 21 days postpartum. Symbols are median values from individual dams. Data were analyzed by one-way ANOVA followed by post-hoc t-test. P values were considered significant when P < 0.05.

Supplementary Figure 10. Changing dynamics of cytokine synthesis by macrophages in the uterine decidua and myometrium during late gestation in wild-type mice. (A) The myometrium and decidua were collected from $Cd11b^{WTWT}$ dams on 16.5 dpc, 17.5 dpc, or 18.5 dpc. Macrophages were isolated and cultured for 4-6 h, and cytokine concentrations were evaluated in the culture media. (B, C) Concentrations of IL-10, TGF- β , TNF, and IL-12 in culture media from decidual macrophages collected on day 16.5 dpc, 17.5 dpc, or 18.5 dpc, or 18.5 dpc (n = 7-8 per group). (D, E) Concentrations of IL-10, TGF- β , TNF, and IL-12 in culture media from myometrial macrophages collected on day 16.5 dpc, or 18.5 dpc (n = 7-8 per group). Data are presented as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range. Symbols are median values from individual dams. Data were analyzed by Kruskal-Wallis test followed by Mann-Whitney U-test. *P* values were considered significant when *P* < 0.05.

Supplementary Figure 11, related to Figure 8. Effect of adoptive transfer of M2 polarized macrophages to dams on inflammatory gene expression in the brain and lung of fetuses after intra-amniotic administration of LPS. M2-polarized macrophages (M2 M ϕ), or vehicle, were administered intravenously on 15.5 days *post coitum* (dpc) and 16.5 dpc to C57BL/6 dams, followed by intra-amniotic injection with lipopolysaccharide (LPS) on 16.5 dpc (M2+LPS). Control C57BL/6 dams were injected intra-amniotically with LPS only (LPS). Dams were euthanized 16 h after LPS injection to collect fetal brain and lung for evaluation of gene expression. (A) Expression of *II1a, II2, II3, II23, Aim2, NIrp1a, Casp11, Sele, Sell, Mki67, Vcam, Arg1*, and *Ym1* in the fetal brain (n = 4-10 per group). (B) Expression of *II5, Aim2, Arg1*, and *Ym1* in the fetal lung (n = 8-21 per group). Data are shown as boxplots where midlines indicate medians, boxes indicate interquartile range, and whiskers indicate minimum/maximum range. Symbols are values from individual fetuses. Data were analyzed by Mann-Whitney U-tests. *P* values were considered significant when *P* < 0.05. * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.0001.

Supplementary Table 1. Demographic and clinical characteristics of women with iatrogenic preterm birth.

	latrogenic Preterm Birth (n=11)
Maternal age [years; median (IQR)]	26 (23.5-35.5)
Body mass index [kg/m2; median (IQR)]	28.1 (22.2-35.3)
Gestational age at delivery [weeks; median (IQR)]	33.7 (31.7-36.2)
Birth weight [grams; median (IQR)]	1805 (1501-2220)
Race/ethnicity	
African-American	81.8% (9/11)
White	18.2% (2/11)
Other	0% (0/11)
Primiparity	18.2% (2/11)
Cesarean section	72.7% (8/11)
Indication for latrogenic Preterm Birth	
Hypertensive Disorders of Pregnancy	90.9% (10/11)
Preeclampsia	72.7% (8/11)
Chronic Hypertension	9.1 % (1/11)
Eclampsia	9.1 % (1/11)
Placental Abruption	9.1 % (1/11)

^a One missing datum; IQR, interquartile range

Antigen	Fluorophore	Clone	Company	Isotype
CD45	V450	HI30	BD Biosciences	Mouse IgG1, к
CD14	APC-Cy7	ΜφΡ9	BD Biosciences	Mouse IgG2b, κ
CD80	PE-Cy7	L307.4	BD Biosciences	Mouse C3H
HLA-DR	PE-Cy5	G46-6	BD Biosciences	Mouse IgG2a, κ
TNF	Alexa Fluor 700	Mab11	BD Biosciences	Mouse IgG1, κ
iNOS	Alexa Fluor 488	4E5	Abcam	Mouse IgG1
IL-12	PE	C11.5	BD Biosciences	Mouse IgG1
ICAM-3	FITC	TU41	BD Biosciences	Mouse IgG1, κ
CD209	PE-Cy7	9E9A8	Biolegend	Mouse IgG2a, κ
CD206	PE-Cy5	19.2	BD Biosciences	Mouse IgG1, κ
CD163	PE-CF594	GHI/61	BD Biosciences	Mouse IgG1, κ
IL-10	PE	JES3-9D7	BD Biosciences	Rat IgG1
NRP1	APC	12C2	Biolegend	Mouse IgG2a, к

Supplementary Table 2. Antibodies used for human cell analysis.

*Antibodies were labelled using the Alexa Fluor 488 Monoclonal Antibody Labeling Kit and Alexa Fluor 680. Antibody Labeling Kit (Life Technologies, Grand Island, NY, USA) following the manufacturer's instructions.

Antigen	Fluorophore	Clone	Company
CD45	APC	30-F11	BD Biosciences
Ly6G	APC Cy7	1A8	BD Biosciences
F4/80	PE	BM8	eBioscience
CD11b	PECy7	M1/70	BD Biosciences
CD8	PE	53-67	BD Biosciences
CD4	APC	RM4-5	BD Biosciences
CD3	FITC	17A2	BD Biosciences
CD11b	PE-CF594	M1/70	BD Horizon
F4/80	APC-eFluor 780	BM8	eBioscience
Egr-2	APC	erongr2	eBioscience
Ym1/2	Phycoerythrin	EPR15263	Abcam
CD3	APC-Cy7	145-2C11	BD Biosciences
CD49b	PE	DX5	BD Biosciences
CD69	PE-Cy7	H1.2F3	BD Biosciences
CD11c	Alexa Fluor 488	N418	eBioscience
CD11c	PECy7	HL3	BD Biosciences
MHC class II	AF700	M5/114.15.2	eBioscience

Supplementary Table 3. Antibodies used for mouse cell analysis.

Supplementary Table 4. Genes assessed using RT² Profiler PCR Array Mouse Innate & Adaptive Immune Response, and RT² Profiler PCR Array Mouse Inflammatory Response & Autoimmunity.

UniGene	GenBank	Symbol	Description
Mm.330510	NM_011318	Apcs	Serum amyloid P-component
Mm.19131	NM_009778	СЗ	Complement component 3
Mm.247623	NM_007577	C5ar1	Complement component 5a receptor 1
Mm.1051	NM_009807	Casp1	Caspase 1
Mm.867	NM_011331	Ccl12	Chemokine (C-C motif) ligand 12
Mm.284248	NM_013653	Ccl5	Chemokine (C-C motif) ligand 5
Mm.1337	NM_009916	Ccr4	Chemokine (C-C motif) receptor 4
Mm.14302	NM_009917	Ccr5	Chemokine (C-C motif) receptor 5
Mm.8007	NM_009835	Ccr6	Chemokine (C-C motif) receptor 6
Mm.442098	NM_007720	Ccr8	Chemokine (C-C motif) receptor 8
Mm.3460	NM_009841	Cd14	CD14 antigen
Mm.2209	NM_013488	Cd4	CD4 antigen
Mm.271833	NM_011611	Cd40	CD40 antigen
Mm.4861	NM_011616	Cd40lg	CD40 ligand
Mm.89474	NM_009855	Cd80	CD80 antigen
Mm.1452	NM_019388	Cd86	CD86 antigen
Mm.1858	NM_001081110	Cd8a	CD8 antigen, alpha chain
Mm.28767	NM_007768	Crp	C-reactive protein, pentraxin-related
Mm.4922	NM_009969	Csf2	Colony stimulating factor 2 (granulocyte-macrophage)
Mm.877	NM_021274	Cxcl10	Chemokine (C-X-C motif) ligand 10
Mm.12876	NM_009910	Cxcr3	Chemokine (C-X-C motif) receptor 3
Mm.86382	NM_172689	Ddx58	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58
Mm.3355	NM_010177	Fasl	Fas ligand (TNF superfamily, member 6)
Mm.182291	NM_054039	<i>Fox</i> p3	Forkhead box P3
Mm.313866	NM_008091	Gata3	GATA binding protein 3

RT² Profiler PCR Array Mouse Innate & Adaptive Immune Response

Mm.88795	NM_010391	H2-Q10	Histocompatibility 2, Q region locus 10
Mm.439648	NM_010398	H2-T23	Histocompatibility 2, T region locus 23
Mm.435508	NM_010493	lcam1	Intercellular adhesion molecule 1
Mm.14091	NM_010503	lfna2	Interferon alpha 2
Mm.502	NM_010508	lfnar1	Interferon (alpha and beta) receptor 1
Mm.1245	NM_010510	lfnb1	Interferon beta 1, fibroblast
Mm.240327	NM_008337	lfng	Interferon gamma
Mm.549	NM_010511	lfngr1	Interferon gamma receptor 1
Mm.874	NM_010548	ll10	Interleukin 10
Mm.1284	NM_008355	ll13	Interleukin 13
Mm.5419	NM_010552	ll17a	Interleukin 17A
Mm.1410	NM_008360	ll18	Interleukin 18
Mm.15534	NM_010554	ll1a	Interleukin 1 alpha
Mm.222830	NM_008361	ll1b	Interleukin 1 beta
Mm.896	NM_008362	ll1r1	Interleukin 1 receptor, type I
Mm.14190	NM_008366	<i>II</i> 2	Interleukin 2
Mm.125482	NM_031252	ll23a	Interleukin 23, alpha subunit p19
Mm.276360	NM_021283	114	Interleukin 4
Mm.4461	NM_010558	<i>II</i> 5	Interleukin 5
Mm.1019	NM_031168	116	Interleukin 6
Mm.38241	NM_008363	lrak1	Interleukin-1 receptor-associated kinase 1
Mm.3960	NM_016849	lrf3	Interferon regulatory factor 3
Mm.3233	NM_016850	lrf7	Interferon regulatory factor 7
Mm.262106	NM_008401	ltgam	Integrin alpha M
Mm.275839	NM_008413	Jak2	Janus kinase 2
Mm.116844	NM_016923	Ly96	Lymphocyte antigen 96
Mm.45436	NM_017372	Lyz2	Lysozyme 2
Mm.196581	NM_011949	Mapk1	Mitogen-activated protein kinase 1
Mm.21495	NM_016700	Mapk8	Mitogen-activated protein kinase 8
Mm.30045	NM_010776	Mbl2	Mannose-binding lectin (protein C) 2

Mm.4668	NM_010824	Мро	Myeloperoxidase
Mm.33996	NM_010846	Mx1	Myxovirus (influenza virus) resistance 1
Mm.213003	NM_010851	Myd88	Myeloid differentiation primary response gene 88
Mm.256765	NM_008689	Nfkb1	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, p105
Mm.170515	NM_010907	Nfkbia	Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
Mm.54174	NM_145827	NIrp3	NLR family, pyrin domain containing 3
Mm.28498	NM_172729	Nod1	Nucleotide-binding oligomerization domain containing 1
Mm.222633	NM_145857	Nod2	Nucleotide-binding oligomerization domain containing 2
Mm.828	NM_009019	Rag1	Recombination activating gene 1
Mm.4372	NM_011281	Rorc	RAR-related orphan receptor gamma
Mm.2913	NM_013612	Slc11a1	Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1
Mm.277406	NM_009283	Stat1	Signal transducer and activator of transcription 1
Mm.249934	NM_011486	Stat3	Signal transducer and activator of transcription 3
Mm.1550	NM_011487	Stat4	Signal transducer and activator of transcription 4
Mm.121721	NM_009284	Stat6	Signal transducer and activator of transcription 6
Mm.477879	NM_019507	Tbx21	T-box 21
Mm.203952	NM_174989	Ticam1	Toll-like receptor adaptor molecule 1
Mm.273024	NM_030682	Tlr1	Toll-like receptor 1
Mm.87596	NM_011905	Tlr2	Toll-like receptor 2
Mm.33874	NM_126166	Tlr3	Toll-like receptor 3
Mm.38049	NM_021297	TIr4	Toll-like receptor 4
Mm.116894	NM_016928	TIr5	Toll-like receptor 5
Mm.42146	NM_011604	TIr6	Toll-like receptor 6
Mm.23979	NM_133211	TIr7	Toll-like receptor 7
Mm.196676	NM_133212	TIr8	Toll-like receptor 8
Mm.44889	NM_031178	Tlr9	Toll-like receptor 9
Mm.1293	NM_013693	Tnf	Tumor necrosis factor
Mm.292729	NM_009424	Traf6	Tnf receptor-associated factor 6

Mm.20249	NM_018793	Tyk2	Tyrosine kinase 2
Mm.328431	NM_007393	Actb	Actin, beta
Mm.163	NM_009735	B2m	Beta-2 microglobulin
Mm.343110	NM_008084	Gapdh	Glyceraldehyde-3-phosphate dehydrogenase
Mm.3317	NM_010368	Gusb	Glucuronidase, beta
Mm.2180	NM_008302	Hsp90ab1	Heat shock protein 90 alpha (cytosolic), class B member 1

RT² Profiler PCR Array Mouse Inflammatory Response & Autoimmunity

UniGene	GenBank	Symbol	Description
Mm.347398	NM_009744	Bcl6	B-cell leukemia/lymphoma 6
Mm.19131	NM_009778	C3	Complement component 3
Mm.2408	NM_009779	C3ar1	Complement component 3a receptor 1
Mm.477109	NM_009780	C4b	Complement component 4B (Childo blood group)
Mm.1283	NM_011329	Ccl1	Chemokine (C-C motif) ligand 1
Mm.4686	NM_011330	Ccl11	Chemokine (C-C motif) ligand 11
Mm.867	NM_011331	Ccl12	Chemokine (C-C motif) ligand 12
Mm.41988	NM_011332	Ccl17	Chemokine (C-C motif) ligand 17
Mm.424740	NM_011888	Ccl19	Chemokine (C-C motif) ligand 19
Mm.290320	NM_011333	Ccl2	Chemokine (C-C motif) ligand 2
Mm.116739	NM_016960	Ccl20	Chemokine (C-C motif) ligand 20
Mm.12895	NM_009137	Ccl22	Chemokine (C-C motif) ligand 22
Mm.31505	NM_019577	Ccl24	Chemokine (C-C motif) ligand 24
Mm.7275	NM_009138	Ccl25	Chemokine (C-C motif) ligand 25
Mm.1282	NM_011337	Ccl3	Chemokine (C-C motif) ligand 3
Mm.244263	NM_013652	Ccl4	Chemokine (C-C motif) ligand 4
Mm.284248	NM_013653	Ccl5	Chemokine (C-C motif) ligand 5
Mm.341574	NM_013654	Ccl7	Chemokine (C-C motif) ligand 7
Mm.42029	NM_021443	Ccl8	Chemokine (C-C motif) ligand 8
Mm.274927	NM_009912	Ccr1	Chemokine (C-C motif) receptor 1
Mm.6272	NM_009915	Ccr2	Chemokine (C-C motif) receptor 2

Mm.57050	NM_009914	Ccr3	Chemokine (C-C motif) receptor 3
Mm.1337	NM_009916	Ccr4	Chemokine (C-C motif) receptor 4
Mm.2932	NM_007719	Ccr7	Chemokine (C-C motif) receptor 7
Mm.3460	NM_009841	Cd14	CD14 antigen
Mm.271833	NM_011611	Cd40	CD40 antigen
Mm.4861	NM_011616	Cd40lg	CD40 ligand
Mm.439656	NM_009883	Cebpb	CCAAT/enhancer binding protein (C/EBP), beta
Mm.28767	NM_007768	Crp	C-reactive protein, pentraxin-related
Mm.795	NM_007778	Csf1	Colony stimulating factor 1 (macrophage)
Mm.21013	NM_008176	Cxcl1	Chemokine (C-X-C motif) ligand 1
Mm.877	NM_021274	Cxcl10	Chemokine (C-X-C motif) ligand 10
Mm.131723	NM_019494	Cxcl11	Chemokine (C-X-C motif) ligand 11
Mm.4979	NM_009140	Cxcl2	Chemokine (C-X-C motif) ligand 2
Mm.244289	NM_203320	Cxcl3	Chemokine (C-X-C motif) ligand 3
Mm.4660	NM_009141	Cxcl5	Chemokine (C-X-C motif) ligand 5
Mm.766	NM_008599	Cxcl9	Chemokine (C-X-C motif) ligand 9
Mm.337035	NM_178241	Cxcr1	Chemokine (C-X-C motif) receptor 1
Mm.234466	NM_009909	Cxcr2	Chemokine (C-X-C motif) receptor 2
Mm.1401	NM_009911	Cxcr4	Chemokine (C-X-C motif) receptor 4
Mm.3355	NM_010177	Fasl	Fas ligand (TNF superfamily, member 6)
Mm.246513	NM_010234	Fos	FBJ osteosarcoma oncogene
Mm.240327	NM_008337	lfng	Interferon gamma
Mm.874	NM_010548	ll10	Interleukin 10
Mm.4154	NM_008349	ll10rb	Interleukin 10 receptor, beta
Mm.5419	NM_010552	ll17a	Interleukin 17A
Mm.1410	NM_008360	ll18	Interleukin 18
Mm.15534	NM_010554	ll1a	Interleukin 1 alpha
Mm.222830	NM_008361	ll1b	Interleukin 1 beta
Mm.896	NM_008362	ll1r1	Interleukin 1 receptor, type I
Mm.253424	NM_008364	ll1rap	Interleukin 1 receptor accessory protein

Mm.882	NM_031167	ll1rn	Interleukin 1 receptor antagonist
Mm.103585	NM_016971	<i>II</i> 22	Interleukin 22
Mm.125482	NM_031252	ll23a	Interleukin 23, alpha subunit p19
Mm.221227	NM_144548	ll23r	Interleukin 23 receptor
Mm.4461	NM_010558	II5	Interleukin 5
Mm.1019	NM_031168	<i>II6</i>	Interleukin 6
Mm.2856	NM_010559	ll6ra	Interleukin 6 receptor, alpha
Mm.3825	NM_008371	117	Interleukin 7
Mm.3006	NM_008373	119	Interleukin 9
Mm.1137	NM_008404	ltgb2	Integrin beta 2
Mm.2160	NM_023125	Kng1	Kininogen 1
Mm.87787	NM_010735	Lta	Lymphotoxin A
Mm.1715	NM_008518	Ltb	Lymphotoxin B
Mm.116844	NM_016923	Ly96	Lymphocyte antigen 96
Mm.213003	NM_010851	Myd88	Myeloid differentiation primary response gene 88
Mm.256765	NM_008689	Nfkb1	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, p105
Mm.2893	NM_010927	Nos2	Nitric oxide synthase 2, inducible
Mm.129481	NM_008173	Nr3c1	Nuclear receptor subfamily 3, group C, member 1
Mm.292547	NM_011198	Ptgs2	Prostaglandin-endoperoxide synthase 2
Mm.112765	NM_138952	Ripk2	Receptor (TNFRSF)-interacting serine-threonine kinase 2
Mm.5245	NM_011345	Sele	Selectin, endothelial cell
Mm.23987	NM_054096	Tirap	Toll-interleukin 1 receptor (TIR) domain-containing adaptor protein
Mm.273024	NM_030682	Tlr1	Toll-like receptor 1
Mm.87596	NM_011905	Tlr2	Toll-like receptor 2
Mm.33874	NM_126166	Tlr3	Toll-like receptor 3
Mm.38049	NM_021297	Tlr4	Toll-like receptor 4
Mm.116894	NM_016928	Tlr5	Toll-like receptor 5
Mm.42146	NM_011604	TIr6	Toll-like receptor 6
Mm.23979	NM_133211	TIr7	Toll-like receptor 7

Mm.44889	NM_031178	TIr9	Toll-like receptor 9
Mm.1293	NM_013693	Tnf	Tumor necrosis factor
Mm.483369	NM_019418	Tnfsf14	Tumor necrosis factor (ligand) superfamily, member 14
Mm.103551	NM_023764	Tollip	Toll interacting protein
Mm.328431	NM_007393	Actb	Actin, beta
Mm.163	NM_009735	B2m	Beta-2 microglobulin
Mm.343110	NM_008084	Gapdh	Glyceraldehyde-3-phosphate dehydrogenase
Mm.3317	NM_010368	Gusb	Glucuronidase, beta
Mm.2180	NM_008302	Hsp90ab1	Heat shock protein 90 alpha (cytosolic), class B member 1

Gene name	Gene Symbol	Assay ID
Actin, beta	Actb	Mm04394036_g1
Glyceraldehyde-3-phosphate dehydrogenase	Gapdh	Mm99999915_g1
Glucuronidase, beta	Gusb	Mm01197698_m1
Heat shock protein 90 alpha (cytosolic), class B member 1	Hsp90ab1	Mm00833431_g1
Absent in melanoma 2	Aim2	Mm01295719_m1
Arginase, liver	Arg1	Mm00475988_m1
Caspase 1	Casp1	Mm00438023_m1
Chemokine (C-C motif) ligand 2	Ccl2	Mm00441242_m1
Chemokine (C-C motif) ligand 3	Ccl3	Mm00441259_g1
Chemokine (C-C motif) ligand 5	Ccl5	Mm01302427_m1
Chemokine (C-C motif) ligand 17	Ccl17	Mm01244826_g1
Chemokine (C-C motif) ligand 22	Ccl22	Mm00436439_m1
Chitinase-like 3	Chil3/Ym1	Mm00657889_mH
Chemokine (C-X-C motif) ligand 1	Cxcl1	Mm04207460_m1
Chemokine (C-X-C motif) ligand 9	Cxcl9	Mm00434946_m1
Chemokine (C-X-C motif) ligand 10	Cxcl10	Mm00445235_m1
CD3 antigen, epsilon polypeptide	Cd3e	Mm01179194_m1
Cytotoxic T-lymphocyte-associated protein 4	Ctla4	Mm00486849_m1
High mobility group box 1	Hmgb1	Mm00849805_gH
Interleukin 1 alpha	ll1a	Mm00439620_m1
Interleukin 1 beta	ll1b	Mm00434228_m1
Interleukin 2	<i>II</i> 2	Mm00434256_m1
Interleukin 3	<i>II</i> 3	Mm00439631_m1
Interleukin 4	114	Mm00445259_m1
Interleukin 5	<i>II5</i>	Mm00439646_m1
Interleukin 6	116	Mm00446190_m1
Interleukin 9	119	Mm00434305_m1
Interleukin 10	ll10	Mm01288386_m1
Interleukin 12b (IL12p40)	ll12	Mm01288989_m1
Interleukin 17a	ll17a	Mm00439618_m1
Interleukin 18	ll18	Mm00434226_m1
Interleukin 23	<i>ll</i> 23	Mm00518984_m1
Interleukin 33	<i>l</i> /33	Mm00505403_m1
Intercellular adhesion molecule 1	lcam1	Mm00516023_m1
Intercellular adhesion molecule 2	lcam2	Mm00494862_m1
Interferon gamma	lfng	Mm01168134_m1

Supplementary Table 5. Genes analyzed by TaqMan® gene expression assay.

Antigen identified by monoclonal antibody Ki 67	Mki67 (Ki-67)	Mm01278617_m1
NLR family, CARD domain containing 4	NIrc4	Mm01233151_m1
NLR family, pyrin domain containing 1A	Nlrp1a	Mm03047263_m1
NLR family, pyrin domain containing 3	Nlrp3	Mm00840904_m1
Nucleotide-binding oligomerization domain containing 1	Nod1	Mm00805062_m1
Nucleotide-binding oligomerization domain containing 2	Nod2	Mm00467543_m1
Programmed cell death 1	Pdcd1	Mm01285676_m1
PYD and CARD domain containing	Pycard	Mm00445747_g1
SR-related CTD-associated factor 11	Scaf11 (Casp11)	Mm01297328_m1
Selectin; endothelial cell	Sele (E-selectin)	Mm00441278_m1
Selectin, lymphocyte	Sell (L-selectin)	Mm00441291_m1
Transforming growth factor, beta 1	Tgfb1	Mm01178820_m1
Tumor necrosis factor	Tnf	Mm00443258_m1
Vascular cell adhesion molecule 1	Vcam1	Mm01320970_m1