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A. Regularity Conditions 

C1 The finite population size 𝑁, the cohort sample sizes 𝑛!, and survey sample size 𝑛" satisfy 

lim
#→%,
'!→%

𝑛!/𝑁 = 𝑓! ∈ (0, 1), and lim
#→%,
'"→%

𝑛(/𝑁 = 𝑓( ∈ (0, 1).  

C2 There exist constants 𝑐) and 𝑐* such that 0 < 𝑐) ≤ 𝑁𝜋+
(!) 𝑛!3 ≤ 𝑐*, and 0 < 𝑐) ≤

𝑁𝜋+
(() 𝑛(3 ≤ 𝑐* for all units 𝑖 ∈ 𝐹. 

C3 The finite population (𝐹𝑃) and the sample selection for 𝑠" satisfy 𝑁.) ∑ 𝑑+𝒓++∈"" −

𝑁.)∑ 𝒓++∈01 = 𝑂(=𝑛(
.)/*>, where 𝒓+ includes 𝒙+ and 𝑦+ where the order in probability is with 

respect to the probability sampling mechanism used to select 𝑠( and 𝑑+ = 1/𝜋+
((). 

C4 The 𝐹𝑃 and the propensity scores 𝑝+’s satisfy 𝑁.)∑ 𝑦+*+∈01 = 𝑂(1), 𝑁.) ∑ ‖𝒙+‖3+∈01 =

𝑂(1), 𝑁.)∑ 𝑝+𝒙+𝒙+4+∈01 = 𝑂(1) being a positive definite matrix. 

C5 The cohort participation and the survey sample selection satisfy 𝐶𝑜𝑣 F𝛿+
(!), 𝛿5

(()H = 0 for 

𝑖, 𝑗 ∈ 𝐹𝑃.  

Conditions C1 – C3 are regularly used in practice. Under C1, sample fractions of the 

nonprobability and probability sample are bounded. Condition C2 indicates the (implicit) sample 

weights of nonprobability and probability sample units are bounded, i.e., 𝜋+
(!) = 𝑂(𝑛! 𝑁⁄ ) and 

𝜋+
(() = 𝑂=𝑛( 𝑁⁄ >, and the inclusion probabilities for the nonprobability and probability samples 

do not differ in terms of order of magnitude from simple random sampling. Condition C3 

guarantees consistency of the Horvitz-Thompson estimators obtained from the probability 

sample. Condition C4 is the typical finite moment conditions to validate Taylor series 

expansions. Condition C5 requires that selection of the nonprobability and the probability 

samples be independent, which simplifies the asymptotic variance calculation. 
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B. Proof of Theorem 

We consider the following limiting process (Krewski & Rao, 1981; Chen, Li &Wu, 2019). 

Suppose there is a sequence of finite populations 𝐹𝑃6 of size 𝑁6, for 𝑘 = 1, 2,⋯. Cohort 𝑠!,6 of 

size 𝑛!,6 and survey sample 𝑠(,6 of size 𝑛(,6 are sampled from each 𝐹𝑃6. The sequences of the 

finite population, the cohort and the survey sample have their sizes satisfy lim
6→%

𝑛7,6 𝑁6⁄ → 𝑓7 

where 𝑡 = 𝑐	or 𝑝 and 0 < 𝑓7 ≤ 1	(regularity condition C1 in Appendix A). In the following the 

index 𝑘 is suppressed for simplicity. 

 

Let 𝜼4 = (𝜇, 𝜷4). The ALP estimate of the finite population mean, 𝜇̂891, given in expression 

(2.3.6) in the main text, along with the estimates of propensity score model parameters, 𝜷U 

(solution of 𝑆W∗(𝜷) = 0 in expression (2.3.7) in the main text), can be combined as 𝜼X4 =

=𝜇̂891 , 𝜷U4>, which is the solution to the joint pseudo estimating equations 

 
Φ(𝜼) =

⎝

⎛
𝑈(𝜇) =

1
𝑁] 𝛿+

(!)𝑤_+(𝑦+ − 𝜇)
+∈01

																																																											

𝑆̀∗(𝜷) =
1

𝑁 + 𝑛!
] 𝛿+

(!)(1 − 𝑝+)𝒙+
+∈01

−
1

𝑁 + 𝑛!
] 𝛿+

(()𝑑+𝑝+𝒙+
+∈01 ⎠

⎞

= 𝟎, 

(B.1) 

where 𝑤_+ = 1/𝜋+
(!) = (1 − 𝑝+)/𝑝+. Under the joint randomization of the propensity model (i.e., 

self-selection of 𝑠!) and the sampling design of 𝑠", we have 𝐸{Φ(𝜼;)} = 𝟎, where 𝜼;4 = (𝜇;, 𝜷;4) 

with 𝜇; and 𝜷; being the true value of 𝜇 and 𝜷 respectively. The consistency of 𝜼X follows 

similar arguments to those in Chen, Li & Wu (2019) (which cited Section 3.2 of Tsiatis (2007)). 

Under the conditions C1-C4, we have Φ(𝜼X) = 𝟎 By applying the first-order Taylor expansion, 

we have  

 𝜼X − 𝜼; =̇ [𝐸{𝜙(𝜼;)}].)Φ(𝜼;), (B.2) 

where 𝐸{𝜙(𝜼)} = 𝐸 l<=(𝜼)
<𝜼

m = n
𝑈? 𝑈𝜷
𝟎 𝑆𝜷

o, and 

𝑈? = 𝐸(𝜕𝑈 𝜕𝜇⁄ ) = −
1
𝑁] 𝜋+

(!)𝑤_+
+∈01

= −1, 
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𝑈𝜷 = 𝐸(𝜕𝑈 𝜕𝜷4⁄ ) =
1
𝑁] 𝜋+

(!)(𝑦+ − 𝜇)
𝜕𝑤_+
𝜕𝜷4+∈01

= −
1
𝑁]

(𝑦+ − 𝜇)𝒙+4
+∈01

 

𝑆𝜷 = 𝐸=𝜕𝑆W∗ 𝜕𝜷⁄ > = −
1

𝑁 + 𝑛!
] 𝜋+

(!) ⋅ 𝑝+(1 − 𝑝+)𝒙+
+∈01

𝒙+4 −
1

𝑁 + 𝑛!
] 𝑝+(1 − 𝑝+)𝒙+𝒙+4

+∈01
 

																																		= −
1

𝑁 + 𝑛!
] 𝑝+𝒙+𝒙+4

+∈01
(negative	definite	by	condition	𝐂𝟒) 

It follows that 𝜇̂ = 𝜇; + 𝑂(=𝑛!
.)/*>, and  

 𝑉𝑎𝑟(𝜼X) =̇ [𝐸{𝜙(𝜼;)}].)𝑉𝑎𝑟{Φ(𝜼;)}[𝐸{𝜙(𝜼;)}4].), (B.3) 

where [𝐸{𝜙(𝜼)}].) = �
−1 #A'!

#
𝒃4

𝟎 𝑆𝜷.)
�, and 𝒃4 = {∑ (𝑦+ − 𝜇)𝒙+4+∈01 }{∑ 𝑝+𝒙+𝒙+4+∈01 }.). The 

middle part of (B.3), i.e., 𝑉𝑎𝑟{Φ(𝜼;)}, can be calculated by partitioning Φ(𝜼) = Φ) +Φ*, 

where  

Φ) =]

⎩
⎨

⎧
1
𝑁 𝛿+

(!)𝑤_+(𝑦+ − 𝜇)

1
𝑁 + 𝑛!

𝛿+
(!)(1 − 𝑝+)𝒙+⎭

⎬

⎫

+∈01
, Φ* =

−1
𝑁 + 𝑛!

] �
0

𝛿+
(()𝑑+𝑝+𝒙+

�
+∈01

. 

Notice that Φ) and Φ* are independent under condition C5, because Φ) only involves 

randomization of cohort participation while Φ) only involves survey sample selection. Hence,  

𝑉𝑎𝑟{Φ(𝜼;)} = 𝑉𝑎𝑟(Φ)) + 𝑉𝑎𝑟(Φ*) where 

𝑉𝑎𝑟(Φ)) =] 𝑝+(1 − 2𝑝+)

⎩
⎨

⎧
1
𝑁* (𝑦+ − 𝜇)

*/𝑝+*
1

𝑁(𝑁 + 𝑛!)
(𝑦+ − 𝜇)𝒙+4/𝑝+

1
𝑁(𝑁 + 𝑛!)

(𝑦+ − 𝜇)𝒙+/𝑝+
1

(𝑁 + 𝑛!)*
𝒙+𝒙+4 ⎭

⎬

⎫

+∈01
	 

under the assumption of Poisson sampling of the nonprobability sample, and  

𝑉𝑎𝑟(Φ*) = F0 𝟎4
𝟎 𝑫

H, 
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with 𝑫 being the design-based variance-covariance matrix under the probability sampling design 

for sample 𝑠". For example, if survey sample is randomly selected by Poisson sampling, 𝑫 =

(𝑁 + 𝑛!).*∑ (𝑑+ − 1)𝑝+*𝒙+𝒙+4+∈01 . 

The finite population variance of 𝜇̂891 is the first diagonal element of 𝑉𝑎𝑟(𝜼X), and given by 

𝑉𝑎𝑟(𝜇̂891) = (−1 𝒃4) ⋅ =𝑉𝑎𝑟(Φ)) + 𝑉𝑎𝑟(Φ*)> ⋅ F
−1
𝒃 H 

																						= 𝑁.*] 𝑝+(1 − 2𝑝+) �
(𝑦+ − 𝜇)
𝑝+

− 𝒃4𝒙+�
+∈01

*

+ 𝒃4𝑫𝒃. 

Note 𝑝+ = 𝑃(𝑖 ∈ 𝑠!∗|𝑠!∗ ∪ 𝐹𝑃) ≤ 1/2. 

 

C. Comparing Orders of Magnitude of 𝑽𝒂𝒓(𝝁X𝑨𝑳𝑷	) and 𝑽𝒂𝒓(𝝁X𝑪𝑳𝑾	) 

The pseudo-weighted nonprobability sample estimator of the population mean is written as 

𝜇̂ =
1

∑ 𝑤_++∈"!
] 𝑤_+𝑦+

+∈"!
 

where 𝑤_+ is the pseudoweight 𝑤+891in the ALP estimator 𝜇̂891 

𝑤+891 =
1 − 𝑝̂+
𝑝̂+

= exp.)=𝜷U4𝒙+> 

or the pseudoweight 𝑤+G9H	in the CLW estimator 𝜇̂G9H 

𝑤+G9H =
1
𝜋�+
(!) = 1 + exp.)(𝜸X4𝒙+) 

where 𝜷U and 𝜸X are solutions of pseudo estimation equations 𝑆W∗(𝜷) = 0 and 𝑆W(𝜸) = 0 in 

formulae (2.3.7) and (2.2.7) in the main text, respectively. 

According to the law of total variance, finite population variance of 𝜇̂ can be written as 

 𝑉(𝜇̂) = 𝐸I[𝑉!(𝜇̂|𝒘_)] + 𝑉I[𝐸!(𝜇̂|𝒘_)] (C.1) 

where 𝒘_ = (𝑤_), … , 𝑤_#) is the vector of pseudo nonprobability sample weight for the finite 

population; 𝐸I and 𝑉I are with respect to the propensity model; 𝑉! and 𝐸! are with respect to the 

nonprobability sampling process, and we have  
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𝐸!(𝜇̂|𝒘_) =
∑ 𝜋+

(!)𝑤_+𝑦++∈01

∑ 𝜋+
(!)𝑤_++∈01

+ 𝑂(𝑛!.))	and 

𝑉!(𝜇̂|𝒘_) =
∑ 𝜋+

(!)F1 − 𝜋+
(!)H𝑤_+* �𝑦+ −

∑ 𝜋+
(!)𝑤_++∈01 𝑦+

∑ 𝜋+
(!)𝑤_++∈01

�
*

+∈01

F∑ 𝜋+
(!)𝑤_++∈01 H

*
	

 

assuming Poisson sampling. The first term in (C.1), which is 𝐸I[𝑉!(𝜇̂|𝒘_)], has order 𝑂(𝑛!.)) for 

both 𝜇̂891 and 𝜇̂G9H under condition C2. The second term in (C.1) is approximately 

 𝑉I[𝐸!(𝜇̂|𝒘_)] ≐ �
𝜕𝐸!(𝜇̂|𝒘_)

𝜕𝒘_ �𝑉(𝒘_) �
𝜕𝐸!(𝜇̂|𝒘_)

𝜕𝒘_ �
4

 (C.2) 

The middle term in (C.2)is 

𝑉(𝒘_) = n
𝜕𝒘_
𝜕𝚩U
o𝑉=𝚩U> n

𝜕𝒘_
𝜕𝚩U
o
4

= �
𝜕
𝜕𝚩U

exp.)=𝚩U4𝒙>� ¡𝑉=𝚩U>¢ �
𝜕
𝜕𝚩U

exp.)=𝚩U4𝒙>�
4

. 

where 𝚩U = 𝜷U or 𝜸X are solutions of pseudo estimating equations 𝑆W∗(𝜷) = 0 and 𝑆W(𝜸) = 0 in the 

formulae (2.3.7) and (2.2.7). Therefore 

𝑉I[𝐸!(𝜇̂|𝒘_)] ≐ �
𝜕𝐸!(𝜇̂|𝒘_)

𝜕𝒘_
𝜕𝒘_
𝜕𝚩U
�𝑉=𝚩U> �

𝜕𝐸!(𝜇̂|𝒘_)
𝜕𝒘_

𝜕𝒘_
𝜕𝚩U
�
4

 

where  

𝜕𝐸!(𝜇̂|𝒘_)
𝜕𝒘_ = £𝜋)

(!) 𝑦+ − 𝐸!(𝜇̂|𝒘_)
∑ 𝜋)

(!)𝑤_)+∈01 	
, ⋯ , 𝜋#

(!) 𝑦+ − 𝐸!(𝜇̂|𝒘_)
∑ 𝜋#

(!)𝑤_#+∈01 	
¤
4

, 

and 

�
𝜕𝐸!(𝜇̂|𝒘_)

𝜕𝒘_
𝜕𝒘_
𝜕𝚩U
� = −

∑ l𝜋+
(!) exp.)=𝚩U4𝒙+> =𝑦+ − 𝐸!(𝜇̂|𝒘_)>𝒙+m+∈01

∑ 𝜋+
(!)𝑤_++∈01 	

= 𝑂(1) 

for both ALP and CLW. 

To solve the order of 𝑉=𝚩U>, we first write 

 𝚩U − 𝚩 = 𝐼.)(𝚩)𝑆=𝚩U> + 𝑜( F𝑆=𝚩U>H, (C.3) 

where 𝑩 = 𝜷 or 𝜸 are solutions to the census estimating equation 𝑆(𝚩) = 0, and 𝐼(𝚩) = <J
<𝚩
(𝐁) 

is the Hessian matrix.  
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 Specifically, for the ALP method the census estimating equation can be obtained by 

rewriting expression (3) in the main text and differentiating with respect to 𝜷, leading to 

𝑆(𝜷) =
1

𝑁 + 𝑛!
] {𝑅+ − 𝑝+(𝜷)}𝒙+

+∈"!∗∪01
,	 

where 𝑅+ indicates the membership of 𝑠!∗ in 𝑠!∗ ∪ 𝐹𝑃 (=1 if 𝑖 ∈ 𝑠!∗; 0 if 𝑖 ∈ 𝐹𝑃), and 𝑝+(𝜷) =

𝐸(𝑅+ ∣∣ 𝒙+; 𝜷 ) = expit(𝜷4𝒙+) defined  in Section 2.3 in the main text respectively.  

 The estimate 𝜷U is solution to the pseudo estimating equation𝑆W∗(𝜷) = 0, where 𝑑+ is the 

basic design weights for 𝑖 ∈ 𝑠( and 𝑑+ = 1 for 𝑖 ∈ 𝑠!. We have  

𝑆W∗=𝜷U> =
1

𝑁 + 𝑛!
] 𝑑+¡𝑅+ − 𝑝+=𝜷U>¢𝒙+

+∈"!∪∗""
= 𝑆=𝜷U> + 𝑂( �

1
«𝑛! + 𝑛(

� = 0, 

under condition C3, where the union ∪∗ allows for duplicated units in 𝑠! and 𝑠(. Combined with 

(C.3), this leads to 𝜷U − 𝜷 = 𝑂(=𝑛! + 𝑛(>
.) *⁄  with  

𝐼(𝜷) =
𝜕𝑆
𝜕𝜷

(𝜷) = −
1

𝑁 + 𝑛!
] 𝑝+(𝜷){1 − 𝑝+(𝜷)}𝒙+

+∈"!∗∪01
= 𝑂(1) 

under Condition C4. We have  

𝑉=𝜷U> = 𝑂 �
1

𝑛! + 𝑛(
�. 

For the CLW method, the census estimating equation is  

𝑆(𝜸) =
1
𝑁] l𝛿+ − 𝜋+

(!)(𝜸)m𝒙+
+∈01

 

where 𝛿+ is the indicator of the population unit 𝑖 being included in 𝑠! (=1 if 𝑖 ∈ 𝑠!; 0 otherwise), 

and 𝜋+(𝜸) = 𝐸( 𝛿+ ∣∣ 𝒙+; 𝜸 ) = expit(𝜸4𝒙+).  

 

The estimate 𝜸X is solution to the pseudo estimating equation 𝑆W(𝜸) = 0 shown below 

 
𝑆"(𝜸$) =

1
𝑁 &' 𝒙𝑖

𝑖∈𝑠𝑐
−' 𝑑𝑖𝜋𝑖

(𝑐)(𝜸$)𝒙𝑖
𝑖∈𝑠𝑝

(																																																	 

=
1
𝑁] 𝛿+𝑥+

+∈01
+
1
𝑁] 𝑑+l𝛿+

(!) − 𝜋�+
(!)m𝒙+

+∈""
−
1
𝑁] 𝑑+𝛿+

(!)𝒙+
+∈""

= 0. 

(C.4) 

Under condition C3, we have the second and third term in (C.4) 
1
𝑁] 𝑑+F𝛿+ − 𝜋�+

(!)H𝑥+
+∈""

=
1
𝑁] F𝛿+ − 𝜋�+

(!)H𝑥+
+∈01

+ 𝑂(=𝑛(
.)/*>, and	 
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1
𝑁] 𝑑+𝛿+𝑥+

+∈""
=
1
𝑁] 𝛿+𝑥+

+∈01
+ 𝑂(=𝑛(

.)/*>. 

Hence 

𝑆W(𝜸X) = 𝑆(𝜸X) + 𝑂(=𝑛(
.)/*> = 0, 

which, combined with (C.3), leads to 𝜸X − 𝜸 = 𝑂(=𝑛(
.)/*> with  

𝐼(𝜸) = −
1
𝑁] 𝜋+

(!)(𝜸)l1 − 𝜋+
(!)(𝜸)m𝒙+4𝒙+

+∈01
= 𝑂(1) 

under condition C6 in Chen, Li & Wu (2019).  

We have  

𝑉(𝜸X) = 𝑂 �
1
𝑛(
� 

As the result, the second term in (C.1) for the ALP and the CLW method has the order of 

𝑂 n )
'"A'!

o and 𝑂 n )
'"
o, respectively. Combining the two terms in (C.1), we have  

𝑉(𝜇̂891) = 𝑂 �
1
𝑛(
� + 𝑂 �

1
𝑛( + 𝑛!

� = 𝑂 n
1
𝑛!
o 

and 

𝑉(𝜇̂G9H) = 𝑂 n
1
𝑛!
o + 𝑂 �

1
𝑛(
� = 𝑂 �

1
min(𝑛! , 𝑛()

�. 

Therefore, in large samples we have 𝑉(𝜇̂891) ≤ 𝑉(𝜇̂G9H), and the estimator 𝜇̂891 is more 

efficient than 𝜇̂G9H especially when 𝑛! ≫ 𝑛(. 

Notice that Comparison in analytical efficiency of the CLW and the ALP methods is made 

under their respective pseudo estimating equations (2.2.7) and (2.3.7) in Appendix C. Although 

the CLW pseudoweights are specified as 𝑤+G9H = 1 + exp.)(𝜸X4𝒙+), the justification also 

follows when 𝑤+G9H = exp.)(𝜸X4𝒙+). The ALP estimator tends to have smaller variance 

especially when the nonprobability sample is relatively larger than the probability sample, 

assuming nonprobability cohort and the survey sample are selected independently. 

 

D. Supplementary table on estimated coefficients of propensity models  

  RDW CLW 
ALP 

(FDW) ALP.S 
(Intercept) -8.92 -8.92 -8.92 0.05 



 8 

Age (in years) -0.06 -0.06 -0.06 -0.06 
Age2 0.00 0.00 0.00 0.00 
Sex (ref: male)     
  Female -0.10 -0.10 -0.10 -0.03 
Education level -0.16 -0.16 -0.16 -0.11 
Race/Ethnicity (ref: NH-White) 
  NH-Black 1.33 1.33 1.33 1.47 
  Hispanic 1.62 1.62 1.62 1.64 
  NH-Other -0.35 -0.35 -0.35 -0.28 
Poverty (ref: No)     
  Yes 0.15 0.15 0.15 0.11 
  Unknown -0.01 -0.01 -0.01 0.01 
Health Status 0.24 0.24 0.24 0.24 
Region (ref: Northeast) 
  Midwest 0.25 0.25 0.25 0.15 
  South 0.41 0.41 0.41 0.35 
  West 0.29 0.29 0.29 0.14 
Marital Status (ref: married or living as married) 
  Single -0.19 -0.19 -0.19 -0.12 
  Previously married -0.01 -0.01 -0.01 -0.02 
Smoking (ref: Non-smoker) 
  Former smoker 0.12 0.12 0.12 0.10 
  Current smoker  0.16 0.16 0.16 0.14 
Household Income -0.01 -0.01 -0.01 -0.01 
Chewing tobacco (ref: No) 
  Yes -0.35 -0.35 -0.35 -0.34 
BMI (ref: normal)     
  Under-weight -0.02 -0.02 -0.02 -0.12 
  Over-weight 0.03 0.03 0.03 0.01 
  Obese -0.06 -0.06 -0.06 -0.04 
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