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Supplementary Note 1 — Snake trajectory as a particle in planar motion

In this note we provide the necessary derivations and justifications for analyzing the trajectory of the snake’s
center of mass as a particle on a planar trajectory analyzed using a polar coordinate frame. In the main text,
the steering rate is denoted as θ̇, however, for notational convenience, in this note the steering rate will be
denoted as Θ̇ in order to allow θ̇ = dθ/dt in the usual manner for polar coordinates. The trajectory of the
snake’s center of mass x̄(t) can be represented in polar coordinates x̄(t) = (r cos θ, r sin θ) for an arbitrarily
located origin point with unit vectors ur = (cos(θ), sin(θ)) and uθ = (− sin(θ), cos(θ)). The velocity and
acceleration of the particle can then be written as v(t) = ṙur+rθ̇uθ and a(t) = (r̈−rθ̇2)ur+(rθ̈+2ṙθ̇)uθ,
respectively. Further, the norm of the particle’s velocity is |v|2 = ṙ2 + (rθ̇)2.

Substituting rθ̇2 = |v|2/r − ṙ2/r into a(t) yields

a(t) =

(
r̈ − |v|

2

r
+
ṙ2

r

)
ur +

(
rθ̈ + 2ṙθ̇

)
uθ, (1)

which can then be rearranged, multiplied by r and integrated over one undulation period to yield∫ t1

t0

ra(t) dt =

∫ t1

t0

(
−|v|2 +

d

dt
(ṙr)

)
ur dt+

∫ t1

t0

d

dt

(
r2θ̇
)
uθ dt. (2)

Finally, expanding out terms gives∫ t1

t0

ra(t) dt =

[
−
∫ t1

t0

|v|2 dt+ ṙ(t1)r(t1)− ṙ(t0)r(t0)
]
ur +

[
r(t1)

2θ̇(t1)− r(t0)2θ̇(t0)
]
uθ. (3)

The forcing functions κ(s, t) and N̂(s, t) are periodic over the undulation interval [t0, t1] and so it is
reasonable to ask if the trajectory of the snake also exhibits periodicity over this same interval. If true,
the time-averaged trajectory of the snake will necessarily be a circle (minus some inter-undulation period
oscillations—see black lines in Fig. 2b) with the snake traversing some fraction of this circular trajectory
every undulation period. Such a reduction would mean that the snake’s behavior could be fully quantified
based only on its trajectory over a single undulation period (T =

∫ t1
t0

dt), greatly simplifying our analysis
of the snake’s behavior.

The assumption that the snake’s overall trajectory is periodic and follows a circle requires that no inertial
effects perturb the snake over an interval other than the undulation interval [t0, t1] (i.e. there are no higher-
order harmonic effects). This implies that the forcing functions on the particle trajectory must also be
periodic over the undulation time interval [t0, t1]. This is true for integer values of the lateral to horizontal
wave number ratio λ, which is always satisfied in our case.

Let us assume for the moment that such inertial effects do not occur. Under this assumption the time-
averaged trajectory of the snake is indeed a circle, and one can define a new coordinate system with an origin
point at its center. In this new coordinate systems, ṙ(t1)r(t1) = ṙ(t0)r(t0) and r(t1)2θ̇(t1) = r(t0)

2θ̇(t0).
These terms will then cancel in Eq. 3 yielding (after taking the L2 norm)∣∣∣∣∫ t1

t0

r(t)a(t) dt

∣∣∣∣ =

∫ t1

t0

|v(t)|2 dt. (4)

Combining Eq. 4 with Fr x̄tt(t) = C(t) from the Methods section (where C(t) =
∫ 1
0 −N(s, t)µ(s, t) ds)

allows us to write ∣∣∣∣∫ t1

t0

r(t) C(t) dt

∣∣∣∣ = Fr

∫ t1

t0

|v(t)|2 dt. (5)
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Supplementary Figure 1. Numerically evaluated LHS and RHS of Eq. 5 are computed at each simulation timestep and summed
over one undulation period. Agreement with Eq. 5 indicates that there are no non-periodic or higher-order inertial effects influencing
the snake’s trajectory and thus one undulation period sufficiently describes the steady state trajectory of the snake.

We empirically validate that Eq. 5 holds in the case of our snake model by plotting the LHS vs RHS in
Supplementary Fig. 1 for λ = 1 and a range of Froude numbers, demonstrating a perfectly linear relation-
ship. Computationally, the transformed origin was found by fitting a circle to the snake’s trajectory over ten
undulation periods (collected after the ten startup periods). Ten periods are used to provide robustness to
small numerical errors in the trajectory. The origin associated with Eq. 5 then enables trajectories to be quan-
tified using the simple metrics of effective velocity veff =

∫ t1
t0
rθ̇ uθ dt/T and steering rate Θ̇ =

∫ t1
t0
θ̇ dt/T .

We conclude by noting that further analysis of Eq. 5 is impaired due to the highly non-linear nature of
µ(s, t), which has a complex dependence on the local velocity along the snake’s body.

Supplementary Note 2 — Definition of backward trajectories
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Supplementary Figure 2. Classification criteria for backwards locomotion behaviors found for µt/µf < 1. These definitions are
the same as the forward locomotion behaviors except that the pose angle is defined to be in the opposite direction of the velocity
direction, as opposed to aligned with it in the forward behavior cases. Though not considered, for these backward trajectories,
the value of µb might be expected to have a larger effect on the trajectory behaviors as compared to forward and sidewinding
trajectories.
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Supplementary Note 3 — Steering rate, pose angle, and effective speed maps

In this note we provide additional field maps of the steering rate θ̇, pose angle γ, and effective speed |veff|
to illustrate how these quantities vary for different friction ratios µt/µf , Froude numbers Fr, and lateral to
horizontal wavenumber ratio λ.

Supplementary Note 3.1 — Impact of transverse friction ratio
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Supplementary Figure 3. Field maps of the steering rate θ̇, pose angle γ, and effective speed |veff| for the four different friction ratios
µt/µf considered in the main text. Field maps are plotted with the same color range across friction ratios. As µt/µf increases, the
pose angle tends towards γ = 0 for all A and Φ. Similarly, the effective speed |veff| increases and becomes progressively uniform
for higher friction ratios.
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Supplementary Note 3.2 — Impact of Froude number
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Supplementary Figure 4. Steering rate θ̇ and pose angle γ over a range of Froude numbers for (a) µt/µf = 2 and (b) µt/µf = 10.
For Fr ∈ [0, 01, 1.0] the steering rate and pose angle are broadly equivalent, justifying our analysis over a single Froude number
(Fr = 0.1). As the Froude number exceeds values found in both biological and robotic snakes (Fr = 10), the behavior of the pose
angle begins to exhibit substantially different trends. Dotted lines are zero contours.

Supplementary Note 3.3 — Impact of lateral to horizontal wavenumber ratio

The lateral, planar curvature of the snake is prescribed as κ(s, t) = ε cos(2πk(s + t)). For all cases con-
sidered in the main text, ε = 7.0 and k = 1. The horizontal body lifting wave is modeled as friction
modulation along the length of the snake through use of the non-dimensional scaling factor N̂(s, t) =
max{0, A cos(2πkl(s+ t+φ)) + 1}. We define the ratio of these two lateral and lifting waves as λ = kl/k.
Two of the three stereotypical gaits considered in the main text are defined in terms of this ratio: asymmetric
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(λ = 1) and symmetric (λ = 2) friction modulation, which represent the cases of out-of-plane body lift
by the snake. As mentioned in the main text, at steady-state motion, integrating over the body length and
undulation period yields zero net force Fnet =

∫ 1
0

∫ 1
0 F(s, t) ds dt and torque Tnet =

∫ 1
0

∫ 1
0 (x − x̄) ×

F(s, t) ds dt for both symmetric body lifting and planar gait cases. In the symmetric body lifting case this
means that the snake travels in a straight trajectory for allA and Φ, as opposed to the turning and sidewinding
behaviors demonstrated by the asymmetric lifting case.

Supplementary Fig. 5 demonstrates how the the symmetric body lifting case exhibits only straight
forward locomotion behavior over a range of phase offsets Φ and friction ratios µt/µf (for a fixed A = 1).
The range of different steering and pose behaviors exhibited by the asymmetric lifting case instead is evident
in comparison. For both asymmetric and symmetric body lifting, the effective velocity of the snake varies
for both µt/µf and Φ. Maximum and minimum effective velocities are found at µt/µf = 1 for asymmetric
and symmetric lifting, respectively. At low to moderate friction ratios there is a strong dependence on Φ.
As µt/µf increases, the effective velocity behavior begins to lose its dependence on Φ and both lifting
behaviors exhibit similar effective velocities.
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Supplementary Figure 5. Trajectory metrics for (a) asymmetric friction modulation and (b) symmetric friction modulation over
different friction ratios µt/µf and phase offset between lateral and horizontal waves Φ. All cases are for a constant lifting amplitude
A = 1. For all µt/µf and Φ, symmetric modulation results in θ̇ = 0 and γ = 0, so that the snake travels in a forward direction
with no turning behavior, while asymmetric modulation yields a variety of different steering and pose behaviors.

Supplementary Note 3.4 — Impact of modulation functional form

In the main text, we consider a cosine form of the modulating wave N̂ , chosen for consistency with the
lateral wave form κ. Here, we test the snake model with two alternative modulation functions to show that
the particular form of N̂ does not significantly impact the locomotory behavior of the snake, as long as
temporal decoupling with κ is achieved. As presented in Supplementary Fig.6, we use the same numerical
protocol to generate the filed maps of snakes’ steering rate and pose angle under exponential and linear
modulation waves. Both scenarios yield quantitatively similar results relative to the cosine wave of the main
text. Note that we still apply the normalization N = N̂/

∫ 1
0 N̂ds.
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Supplementary Figure 6. Field maps of the steering rate θ̇ and pose angle γ under (a) exponential and (b) linear modulation waves.

Supplementary Note 4 — Simulating snakes using Cosserat rods

Supplementary Note 4.1 — Muscular activations and surrounding physics

As introduced in the main text, we utilize a 3D simulation approach to validate our planar analytical model
and to study the interfacial dynamics of the snake with heterogeneous frictional terrains. We model the
snake using an elastic filament described by Cosserat rod theory (Supplementary Fig. 7a), which has the
governing equation stated in the Method section. Here, we provide detailed information about our numerical
approach to account for the environmental effects and internal muscular activities of the snake.

Following the approach introduced in (1), we model the ground as a soft boundary to allow snake’s
interpenetration due to gravity, which will be eventually balanced out by the ground response force Fg,
written as

Fg(s) = H(ε) · (Fng(s) + kgε− γgv(s) · ng)ng (6)

where ng is the normal direction of the ground, Fng is the normal component of the overall forces experi-
enced by the snake, v(s) is the local velocity of the snake and ε is the local interpenetration, kg and γg are
coefficients introduced to account for the elasticity and dissipation of the ground, respectively, and H(ε) is
the Heaviside function that enables this response force only at the snake parts that are in contact with the
ground (ε ≥ 0), which is assumed to be the z = 0 plane in all simulations. The friction model is based on a
kinetic Coulomb friction model that incorporates the scaling factor p to account for ground heterogeneities.
Therefore, the frictional force can be written as Ff = −µfpFng ·µ(s, t), where µ(s, t) captures anisotropic
friction effects and has the same expression as Eq. 5 in the Method section.

The filament in simulation is activated by muscular torques in both lateral and vertical directions, which
produce the lateral undulation and lifting body wave of the snake, respectively. Muscular activations in both
directions are modeled as traveling wave propagating along the filament from head to tail, and have the
magnitude Tm expressed as

Tm = βm(s) · sin
(

2π

τm
t− 2πΦ− 2πs

)
, (7)
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Supplementary Figure 7. (a) Using Cosserat rod theory to model the snake as an elastic filament. (b) Muscular activation imple-
mented in simulation (solid curves) in both lateral and vertical directions, generated using cubic B-spline functions defined by six
control points (dashed curves). (c) Comparing the non-dimensionalized lateral curvature of the simulated snake during movement
against the stereotypical curvature function κ.

where τm is the undulation period fixed to be 2 seconds in all simulations, Φ indicates the phase offset of the
lifting muscular signal, which is set to be 0 in the lateral torques, βm(s) denotes the cubic B-spline function
that represents the amplitude of the torque and is characterized by 6 equally spaced control points along the
filament. The selected control points together with the resulting βm(s)s are plotted in Supplementary Fig.
7b for both lateral and lifting cases. As shown in Supplementary Fig. 7c, the snake actuated by the given
lateral torques recovers the prescribed lateral curvature employed in our planar model (see Methods).

Supplementary Note 4.2 — Extended simulation methods and results

As mentioned in the main text, snakes simulated in Fig.4 employ the same lateral muscular activities, thus
their diverse behaviors stem solely from the effect of friction modulation. Here, we provide detailed infor-
mation about our simulation setups and environmental settings to reproduce the results of each test case.

In Fig. 4b, snakes employ lifting muscle torques of different magnitude and phase offset. The magnitude
is captured by ATmaxm , where A ∈ [0, 1] denotes the lifting ratio and Tmaxm is the maximum torque allowed
in the simulation, expressed as Eq. 7, with βm(s) values given in Supplementary Fig. 7b. The phase
spaces are constructed by the result of 1681 snake simulations (on a 41 × 41 equally spaced grid) with
friction ratio µt/µf = 2. Similarly, the steering and pose of snakes having µt/µf = 10 are explored by
deploying the same simulation protocol, generating the phase spaces presented in Supplementary Fig. 8a.
The result demonstrates the decreased steering and rotational capabilities of the snake at high friction ratios,
with corresponding phase spaces exhibiting color patterns consistent with Fig. 4b. This result complements
our study at µt/µf = 2, providing validations against the planar model across frictional environments.

Supplementary Fig. 8b plots snake trajectories for friction condition µt/µf = 2 in addition to the result
in Fig. 4c, with A = 1 and extended range of Φ ∈ [0, 1]. Trajectories of snakes having µt/µf = 10 are
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plotted in Supplementary Fig. 8c, for (1) Φ = 0 and A ∈ [0, 1] and (2) A = 1 and Φ ∈ [0, 1].
Moving to the studies of heterogeneous terrains, we demonstrate the results in Fig.4e-j by employing

fast moving snakes having friction ratio µt/µf = 10.
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Supplementary Figure 8. (a) Phase spaces of snakes’ steering and pose angle under µt/µf = 10, plotted with the same color
ranges as in µt/µf = 2 case. (b) Trajectories of snakes having µt/µf = 2 with different phase offsets. (c) Trajectories of snakes
having µt/µf = 10 with varying amplitude or phase offsets.

In Fig. 4e, we show how the snake’s diffraction behavior observed in experiment (2) can be recovered
by friction modulation. In our simulation, high frictional patches have a scaling factor p = 30, meaning that
friction coefficients in all directions are scaled up 30 times. To reproduce the experimental setup, patches
are designed to have radius rp = 7.2 mm (combining post radius 3.2 mm and snake radius 4 mm in (2)) and
center-to-center distance dp = 23 mm. The initial position of the snake’s head can vary within the dashed
box in the figure, so that snakes with different starting point will interact with the patches at different phases
during undulation. The box has width 0.14 m (snakes further away will not interact with patches) and length
0.178 m (distance traveled by the snake in one cycle). We simulated 525 snakes with uniformly distributed
head positions to generate the probability density function of the main text. Half of the trajectories are
included in the trajectory plot, to avoid excessively occluding the figure.

In Fig. 4g, snakes traveling through a horizontal frictionless strip (where p = 0) are refracted/reflected
in different directions due to friction modulation at the interface. The strip is set to be infinitely long in the
x direction and centered at y = 0.2. All snakes start out with their heads being positioned at the origin (38
simulations).

Fig. 4h presents three examples of passive control of snake trajectory using frictionless surface patterns.
(1) Two parallel strips are centered at y = −0.3225 and y = 0.7036825, and three snakes move towards the
strips with initial bearings α = 30◦ (blue), −30◦ (red) and −10◦ (green), respectively. (2) Strips that are
perpendicular to the snake’s moving direction can be designed to rather precisely modulate the deflection
of the snake’s trajectory. Snakes that encounter the strip centered at y = 0.2 are deflected to the left (blue)
while snakes that encounter the strip centered at y = 0.28 are deflected to the right (red). Here, we note that
when the snake employs the same lateral wave, the distance between the strip and origin of the snake d can
be though of as the phase offset Φ for 3D gaits, since they both determine the onset of friction modulation
in one snake cycle. We demonstrate that when we offset the strip location by 0.8, which is close to half of
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the snake’s displacement in one cycle (0.178m), the snake trajectories are reflected. This is reminiscent of
a scenario in which two 3D snakes have ∆Φ = 0.5. In this case, indeed, the two trajectories will also be
symmetric (as shown in Supplementary Fig. 8b,c). (3) Six strips are radially arranged to guide the turning
motion of snakes. The radial pattern is centered at (-0.83044147,0.2), with the angle between every two
strips being 34.21◦. The starting points for the three snakes are (0.2,0), (0,0), and (-0.2,0) respectively.

In Fig. 4i, the circular friction patterns are modeled using radial basis functions p(dc) = 1+pmaxe
−(σdc)2 ,

where dc is the distance between any point on the snake and the pattern center, pmax (≥ −1) is the eleva-
tion/depth at the pattern center, and σ controls the size of the pattern. We use σ = 3 for larger patterns and
σ = 5 for smaller patterns in the figure.

The frictional landscape in Fig. 4j is constructed using a series of radial basis functions expressed as

p = 1 +

Np∑
i=1

pimaxe
−(σidic)

2
(8)

where parameters for each radial function have the same definitions as in the previous case, with Np = 30
being the total number of the radial functions. Values used to create the landscape are in the following list

xi

yi

σi

pimax

 =


1 0.5 1 2 2.25 3.5 4 4.5 5 3.1

0.5 −0.7 −0.7 0.25 −0.25 −0.75 −1 −1 −0.5 1.1
2.5 2.5 2.5 2.5 3 3 2.5 2.5 3 6
7 4 5 6 5 −1 −1 −1 −1 −1/3

3.2 3.3 1.3 1.6 1.9 2.15 2.4 5.5 5.8 6.5
0.75 0.3 2.3 2.25 2.1 1.95 1.8 0.55 0.9 0.7
3.5 4 6.5 5.5 5 6 7.5 3.5 4 3.5
−1 −1 −0.5 −1 −1 −1 −0.5 7 7 3

6.9 6.5 7.2 5 5.3 5.6 6.25 6.5 7 6.8
0.5 −0.3 −0.3 1.25 1.5 1.6 1.75 1.75 0.85 0.9
3.5 4.5 4 3 3 3 6 6 4.5 5
5 2 1 −1 −1 −0.5 −1 −0.5 −1 −0.5

 ,
where (xi, yi) is the center of each radial function. p is then ensured to be non-negative by taking max{0, p}.

Supplementary Note 4.3 — Simulation Parameters

Parameters relative to our numerical scheme are listed in the following table.

Supplementary Table S1. Simulation parameters

Parameters Values Parameters Values
Time step 8× 10−6s Simulation time > 20s
Number of elements in snake 50 Snake density 1g/cm3

Snake Young’s modulus 1MPa Poisson Ratio 0.5
Ground stiffness kg 1kg/s2 Ground damping γg 10−6kg/s
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