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Supplemental file 1: Search strategy

Search date: 19 November 2019 

1. Machine Learning[MeSH Terms]

2. Deep learning[MeSH Terms]

3. supervised machine learning[MeSH Terms]

4. "Neural Networks, Computer"[Mesh]

5. data mining[MeSH Terms]

6. machine[tiab] AND (learn* OR model*)

7. (statistical[tiab] OR "statistical to learning"[tiab]) AND ( strateg*[tiab])

8. multilayer perceptron*[tiab]  OR random forest*[tiab]  OR bayes* network*[tiab]  OR support

vector machine*[tiab]  OR nearest neighbor*[tiab]  OR k nearest neighbor*[tiab]  OR elastic

net[tiab]  OR naive bayes*[tiab]

9. (classification[tiab]  OR regression[tiab]  OR estimation[tiab]  OR decision[tiab]) AND tree[tiab]

10. ridge[tiab] OR kernel[tiab]  OR ensemble[tiab]  OR bagging[tiab]  OR bagged[tiab]  OR

boosting[tiab]  OR boosted[tiab]  OR fuzzy[tiab]

11. #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10

12. (Validat* OR Predict* OR Rule*). [tiab]

13. (Predict* AND (Outcome* OR Risk* OR Model*). [tiab]

14. ((History OR Variable* OR Criteria OR Scor* OR Characteristic* OR Finding* OR Factor*) AND

(Predict* OR Model* OR Decision* OR Identif* OR Prognos*)). [tiab]

15. (Decision* AND (Model* OR Clinical*). [tiab]

16. (Prognostic AND (History OR Variable* OR Criteria OR Scor* OR Characteristic* OR Finding* OR

Factor* OR Model*). [tiab]

17. #12 OR #13 OR #14 OR #15 OR #16

18. (discrimination[tiab]  OR discriminative[tiab]  OR discriminatory[tiab]) AND (accuracy[tiab]  OR

ability[tiab]  OR performance[tiab]  OR value[tiab] OR model[tiab]  OR models[tiab]  OR

power[tiab]  OR capacity[tiab]  OR capabilit*[tiab]  OR efficiency[tiab])

19. (discriminability[tiab] OR c to index[tiab]  OR c to statistic[tiab]  OR concordance[tiab]  OR

DCA[tiab])

20. "decision curve"[tiab]
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21. calibrat*[tiab]  AND (plot*[tiab]  OR curve*[tiab]  OR slope*[tiab]  OR model[tiab]  OR

models[tiab])

22. performance[tiab]  AND (classification[tiab]  OR classifier[tiab]  OR clinical[tiab]  OR accuracy[tiab]

OR validation[tiab]  OR metrics[tiab]  OR diagnostic[tiab]  OR AUC[tiab])

23. (sensitivity[tiab]  OR specificity[tiab]  OR PPV[tiab]  OR NPV[tiab])

24. "correctly classified"[tiab]

25. "clinical accuracy"[tiab]

26. positive predictive value*[tiab]

27. negative predictive value*[tiab]

28. classification[tiab]  OR classifier[tiab]

29. Area Under Curve[Mesh]

30. "Area under the curve"[tiab]

31. "Area under the ROC"[tiab]

32. “Area Under the Receiver”[tiab]

33. (ROC[tiab]  OR AUC[tiab]  OR AUROC[tiab])

34. ROC Curve [Mesh]

35. "Hosmer to Lemeshow"[tiab]  OR "H to L test"[tiab]

36. "expected ratio"[tiab]  OR "observed ratio"[tiab]  OR "E:O ratio"[tiab]

37. #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR

#30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36

38. #11 AND #17

39. #11 AND (#17 OR #37)

40. #39 AND (“2018/01/01”[PDat]: “2019/12/31”[PDat])

41. #40 NOT “review”[pt]

42. #39 AND (“2019/01/01”[PDat]: “2019/12/31”[PDat])

43. #42 NOT “review”[pt]

Results #41= 24732 

Results #43=12977 
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Supplemental file 2: Summary table with criteria to judge risk of bias per domain 
P

A
R

T
IC

IP
A

N
T

S
 

1.1 Were appropriate data sources used, e.g., cohort, RCT or nested case-control study? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Prospective longitudinal cohorts (or

proper registry) with consistent methods

for inclusion and exclusion of

participants, predefined predictors, and

outcome determination across a

predefined follow-up.

• RCTs with broader inclusion criteria and

including treatment as predictor.

• Nested case-control or case-cohort

studies adjusted for the original outcome

frequency (e.g., inverse sampling fraction)

• Existing cohorts with potentially

inconsistent participant

inclusion/exclusion criteria (i.e., data

collected for other purposes than

developing and validating a prediction

model)

• RCTs with narrower eligibility for

participants.

• Non-nested case–control design

1.2 Were all inclusions and exclusions of participants during enrolment appropriate? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Inclusion/exclusion of participants is

appropriate to obtain a representative

sample of target population

• Inappropriate inclusion/exclusion of

participants of the target population

• Include participants who have already

had the outcome

P
R

E
D

IC
T

O
R

S
 

2.1 Were predictors defined and assessed in a similar way for all participants? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Predictors defined and assessed in the

same way for all participants

• Different definitions or assessment of

predictors (e.g., pre-op Hb measured

using blood test or blood gas)

• Assessment of predictors involved

subjective judgement or skilled training

which was done by assessors with

different experience

• Data collected for non-research purposes from multiple sources (i.e., routinely collected

data) needs to be scrutinized on the likelihood to have used different definitions.

2.2 Were predictor assessments made without knowledge of outcome data? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Outcome information was clearly not

(yet) available to those assessing

predictors

• Blinding of the outcome

• Outcome information was used when

assessing predictors

• Lack of blinding of the outcome

• Retrospectively recorded predictors

2.3 Are all predictors available at the time the model is intended to be used? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Included predictors would be available at

the time the model is intended to be

applied

• Included predictors would be

unavailable at the time the model is

intended to be applied
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• For validation studies, predictor data

needed for the model is missing from

the validation dataset.

O
U

T
C

O
M

E
 

3.1 Was the outcome determined appropriately? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Outcome determination is considered

optimal or acceptable by guidelines or

previous publications on the topic.

• Suboptimal method to determine

outcome, leading to errors in

determining the status of participants

• Subjective outcomes (e.g., imaging

outcomes, outcomes at surgeon

discretion, or ones which need special

skill training)

3.2 Was a prespecified or standard outcome definition used? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Prespecified or standard outcome

definition is used and substantiated by a

definition from clinical guidelines,

previously published studies, or a

published study protocol

• Atypical threshold on a continuous scale

has been used

• Composite outcomes that exclude

atypical components

• Consensus-based outcomes

3.3 Were predictors excluded from the outcome definition? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Outcome determined without using

predictors information

• Any predictor forms part of the outcome

definition

• Outcome determined using consensus

panel

3.4 Was the outcome defined and determined in a similar way for all participants 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Outcome was defined and determined in

a similar way for all participants

• Outcome was clearly defined and

determined in different way for some

participants

3.5 Was the outcome determined without knowledge of predictor information? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Information about predictors is not

known when determining the outcome

status

• Studies clearly reported outcome status

was determined without knowledge of

predictor information

• Objective outcome

• Information about predictors is used to

determine the outcome status

3.6 Was the time interval between predictor assessment and outcome determination 

appropriate? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 
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• Time interval between predictor

assessment and outcome determination

enables to correctly record the outcome

and achieve a representative number of

events.

• Time interval between predictor

assessment and outcome determination

is either too long or too short to

correctly record the outcome and

achieve a representative number of

events.

A
N

A
L
Y

S
IS

 

4.1 Were there a reasonable number of participants with the outcome? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• For model development studies, if the

number of participants with the outcome

relative to the number of candidate

predictor parameters (EPV) is ≥20

• For model validation studies, if the

number of participants with the outcome

is ≥100

• For model development studies, if the

number of participants with the outcome

relative to the number of candidate

predictor parameters is <10

• For model validation studies, if the

number of participants with the outcome

is <100

4.2 Were continuous and categorical handled appropriately? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Continuous predictors are not

dichotomized

• Continuous predictors are categorized

based on clinical cut-points

• Continuous predictors are examined for

nonlinearity

• For validation studies, predictors are

collected using same definitions or

categorized using same cut-points

• Continuous predictors are dichotomised

• Continuous predictors are categorised

using widely accepted clinical cut-points

or data driven cut-points

• For validation studies, predictors are

collected using different definitions or

categorized using different cut-points

4.3 Were enrolled participants included in the analysis? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• All participants who met the inclusion

criteria in the study are included in the

analysis, or a very low number are

excluded

• Some participants or subgroups are

inappropriately excluded from the

analysis (e.g., participants with ‘unclear’

findings, missing data, outliers,

incomplete follow-up)

4.4 Were participants with missing data handled appropriately? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• No missing values of predictors or

outcomes. The study explicitly reports

that participants are not excluded based

on missing data

• Missing data are handled using multiple

imputation

• Comparing results with and without

missing data

• Missing data are omitted from the

analysis (e.g., complete-case analysis)

• Method for handling missing data is

clearly flawed (e.g., missing indicator

method or inappropriate use of last

value carried forward)

• Study had no explicit mention of

methods to handle missing data
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• For validation studies, omitting

systematically missing predictors.

4.5 Was selection of predictors based on univariable analysis avoided? † 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Predictors selected on existing

knowledge and forced into the model

• Any methods not based on prior

statistical test between predictor and

outcome (e.g., principal component

analysis)

• Multivariable selection strategy during

modelling needs to be testing for

overfitting

• Predictors are selected based on

univariable analysis prior to multivariable

modelling

4.6 Were complexities in the data (e.g., censoring, competing risks, sampling of control 

participants) accounted for appropriately? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Case-cohort or nested case-control

design account for sampling fractions.

• Cox regression is used for long-term

outcomes in which censoring occurs.

• Multilevel or random effects models for

multiple events for the same outcome

• Complexities in the data are not

accounted for appropriately

• Competing risk are ignored

4.7 Were relevant model performance measures evaluated appropriately? 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Both calibration and discrimination are

evaluated appropriately

• Performance measures accounting for

censoring are used in models predicting

survival outcomes (e.g., D-statistics,

Harrell’s c-index)

• Both calibration and discrimination are

not evaluated

• Only goodness-of-fit tests are used to

evaluate calibration (e.g., Hosmer–

Lemeshow)

• Performance measures accounting for

censoring are not used in models

predicting survival outcomes

• Classification measures (e.g., sensitivity,

specificity, or predictive values) were

presented using predicted probability

thresholds derived from the data set at

hand or based on non-clinical cut-points

4.8 Was model overfitting and optimism in model performance accounted for?† 

↓ Decreases RoB (Y/PY) ↑ Increases RoB (N/PN) 

• Internal validation using bootstrapping or

cross-validation, and subsequent

adjustment of the model performance

estimates have been applied, if necessary.

• No internal validation has been

performed, or if internal validation

consists only of a single random split-

sample of participant data
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• Bootstrapping or cross-validation did

not include all model development

procedures (e.g., variable selection

procedure)

We removed signalling question 4.9 -Do predictors and their assigned weights in the final model correspond to the results 
from the reported multivariable analysis?  
Unclear RoB: if relevant information is missing for some of the signalling questions and all other signalling questions in the 

domain were answer as Y/PY.  

† Signalling questions applicable only to development studies 

Criteria are based on PROBAST tool. For details, please visit www.probast.org 

Abbreviations: RoB, risk of bias; Y, yes; PY, probably yes; N, no; PN, probably no; EPV, events per variable.

http://www.probast.org/
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Supplemental file 3: Characteristics of included studies 

Table S1. Characteristics of included studies (n=152)

First Author Journal 
Impact 

factor a 

Publication 

year 
Clinical field Outcome Study design 

Prognosis

X Jiang(1) PLoS ONE 2.740 2019 Oncology 5-year breast cancer metastasis
Development with external 

validation (same model) 

L Adhikari(2) PLoS ONE 2.740 2019 Nephrology 
Acute kidney injury at first 7 days 

after surgery 

Development only (including 

internal validation) 

G Lorenzoni(3) Journal of Clinical Medicine 3.303 2019 
Cardiovascular 

medicine 

First hospitalization in heart failure 

patients 

Development only (including 

internal validation) 

L-K Pries(4) Schizophrenia Bulletin 7.958 2019 Psychiatry Schizophrenia 
Development with external 

validation (same model) 

I Sánchez 

Fernández(5) 
Journal of Child Neurology 2.092 2018 Neurology 

In-hospital mortality in critically ill 

children monitored with cEEG in 

the ICU 

Development only (including 

internal validation) 

GGP Garcia(6) 
American Journal of 

Ophthalmology 
4.483 2018 Ophthalmology 

progression normal tension 

glaucoma 

Development only (including 

internal validation) 

A Tam(7) GigaScience 5.993 2019 Neurology 
Progression to Alzheimer’s 

dementia 

Development with external 

validation (same model) 

V Bhat(8) Mayo Clinic Proceeding 7.091 2018 Surgery 
New-onset diabetes after 

transplant 

Development only (including 

internal validation) 

KG Friedman(9) 
Ultrasound in Obstetrics & 

Gynecology 
5.595 2018 Neonatology Circulation type 

Development only (including 

internal validation) 

H Duan(10) 
BMC Medical Informatics and 

Decision Making 
2.317 2019 

Cardiovascular 

medicine 
Major adverse cardiac event 

Development only (including 

internal validation) 

J Kwon(11) Resuscitation 4.215 2019 
Cardiovascular 

medicine 
neurological recovery after ROSC 

Development only (including 

internal validation) 

R Hammond(12) PLoS ONE 2.740 2019 Nutrition Obesity status at the age of five 
Development only (including 

internal validation) 

AL Nobles(13) 

Proceedings of the SIGCHI 

Conference on Human Factor 

in Computing Systems(c) 

- 2018 Psychiatry Suicidality 
Development only (including 

internal validation) 
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NW Sterling(14) 
International Journal of Medical 

Informatics 
3.025 2019 

Emergency 

medicine 
ED disposition 

Development only (including 

internal validation) 

FB Bouallegue(15) Journal of Alzheimer's Disease 3.517 2018 Neurology Alzheimer's disease 
Development only (including 

internal validation) 

T-L Tsai(16) Journal of Clinical Medicine 3.303 2019 Critical care Successful extubation 
Development only (including 

internal validation) 

RR Lopes(17) Netherlands Heart Journal 1.933 2019 
Cardiovascular 

medicine 
Mortality 

Development only (including 

internal validation) 

G Maragatham(18) Journal of Medical Systems 3.058 2019 
Cardiovascular 

medicine 
Heart failure 

Development only (including 

internal validation) 

C-Y Shao(19) Thoracic Cancer 2.610 2019 Surgery 
anastomosis leakage after 

esophagectomy 

Development only (including 

internal validation) 

M Cearns(20) Translational Psychiatry 5.280 2019 Psychiatry 
Re-hospitalization within 2 years of 

major depressive episode 

Development only (including 

internal validation) 

NB Huben(21) Journal of Endourology 2.267 2018 Urology Operative time for RARP 
Development only (including 

internal validation) 

AT Hale(22) Neurosurgical focus 2.891 2018 Critical care Death or alive with GOS score ≤ 3 
Development only (including 

internal validation) 

C Salvatore(23) 
Journal of Neuroscience 

Methods 
2.785 2018 Neurology 

Cognitive status (HC; ncMCI; cMCI; 

AD) 

Development only (including 

internal validation) 

M Zhou(24) 
BMC Medical Informatics and 

Decision Making 
2.317 2019 Preventive care Exercise relapse 

Development only (including 

internal validation) 

X Kang(25) 
Journal of Maternal-Fetal & 

Neonatal Medicine 
1.737 2019 

Obstetrics & 

Gynecology 

Gestational diabetes mellitus with 

macrosomia 

Development only (including 

internal validation) 

CM Sauer(26) PLoS ONE 2.776 2018 Infectious diseases Tuberculosis treatment failure 
Development only (including 

internal validation) 

LW Thornblade(27) 
Journal for Electronic Health 

data and Methods(c) 
- 2018 Surgery Elective colon resection 

Development only (including 

internal validation) 

VJ Lei(28) 
Studies in Health Technology 

and Informatics 
0.71b 2019 Surgery All-cause in-hospital mortality 

Development only (including 

internal validation) 

SJ Lee(29) 
Studies in Health Technology 

and Informatics 
0.71b 2019 Oncology Cancer recurrence 

Development only (including 

internal validation) 

GB Auffenberg(30) European Urology 18.728 2019 Urology Prostate cancer treatment option 
Development only (including 

internal validation) 

Z Wang(31) 
Journal of Biomedical 

Informatics 
3.526 2019 

Cardiovascular 

medicine 
1-year mortality

Development only (including 

internal validation) 
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A Nelson(32) np Digital Medicine 0.00 2019 
Healthcare 

services 
Schedule appointment attendance 

Development only (including 

internal validation) 

T Shibahara(33) 
JCO Clinical Cancer 

Informatics(b) 
0.43 2018 Oncology Blood cell count 

Development only (including 

internal validation) 

R Chen(34) 
Circulation-Cardiovascular 

Quality and Outcomes 
5.071 2019 

Cardiovascular 

medicine 
Heart failure 

Development only (including 

internal validation) 

Y Fan(35) Endocrine 3.235 2019 Surgery 
Tumor remission after 

transphenoidal surgery (TSS) 

Development only (including 

internal validation) 

A Ferre(36) 
Journal of Clinical Sleep 

Medicine 
3.586 2019 Neurology RDI equal to or above 10 events/h 

Development with external 

validation (same model) 

F Zhang(37) Metabolomics 3.167 2018 Oncology 
Recurrence of Epithelial Ovarian 

Cancer at 5-years 

Development only (including 

internal validation) 

AHS Harris(38) The Journal of Arthroplasty 3.524 2018 Surgery 30-day mortality
Development only (including 

internal validation) 

KM Kuo(39) 
BMC Medical Informatics and 

Decision Making 
2.317 2019 Psychiatry Hospital-acquired pneumonia 

Development only (including 

internal validation) 

Y Arai(40) Blood advances 4.910 2019 Immunology  Acute graft-versus-host disease 
Development only (including 

internal validation) 

L Liu(41) BMC Systems Biology 2.048 2018 Traumatology Side effects of analgesics 
Development only (including 

internal validation) 

C Shappell(42) Critical Care Medicine 6.971 2018 Critical care In-hospital mortality 
Development only (including 

internal validation) 

X Niu(43) Scientific Reports 4.011 2018 
Cardiovascular 

medicine 
MACEs within 1-year follow-up 

Development only (including 

internal validation) 

F Ge(44) Journal of Affective Disorders 3.892 2019 Psychiatry 
Posttraumatic stress disorder at 3 

months 

Development only (including 

internal validation) 

B Rohaut(45) Scientific Reports 3.998 2019 Medical imaging Consciousness at ICU discharge 
Development only (including 

internal validation) 

JM Karnuta(46) The Journal of Arthroplasty 3.524 2019 Surgery 
Inpatient payments prior to lower 

extremity arthroplasty 

Development only (including 

internal validation) 

S Cohen(47) Autism Research 3.697 2018 Psychiatry Daytime challenging behaviors 
Development only (including 

internal validation) 

SHA Faruqui(48) JMIR MHealth and UHealth 4.313 2019 Endocrinology 
Blood glucose level for type 2 

Diabetes Mellitus 

Development only (including 

internal validation) 

M Molinari(49) Transplantation 4.546 2019 Surgery 90-day mortality
Development only (including 

internal validation) 
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VE Staartjes(50) Neurosurgical Focus 2.891 2018 Surgery 

Gross-total resection in 

transspheinoidal surgery for 

pituitary adenoma at 3 months 

Development only (including 

internal validation) 

N Park(51) PLoS ONE 2.776 2018 Oncology AKI occurrence in 14 days 
Development only (including 

internal validation) 

D Chen(52) Clinical Cancer Informatics 0.43) 2019 Oncology 
Time to first treatment in Chronic 

Lymphocytic Leukemia 

Development only (including 

internal validation) 

J Malycha(53) Resuscitation 4.215 2019 Critical care FiO2 Added value 
Development only (including 

internal validation) 

Z Xie(54) Preventing chronic disease 2.144 2019 Endocrinology type 2 diabetes risk 
Development only (including 

internal validation) 

A Rozet(55) 
Journal of Medical Internet 

Research 
5.034 2019 Psychiatry Self-reported stress over 100 days 

Development only (including 

internal validation) 

AV Karhade(56) The Spine Journal 3.191 2019 Surgery 

Prolonged opioid prescription 

after surgery for lumbar disc 

herniation to at least 90 to 180 

days postoperatively 

Development only (including 

internal validation) 

M Mulder(57) 
Archives of Physical Medicine 

and Rehabilitation 
3.098 2019 Neurology Community walkers after stoke 

Development only (including 

internal validation) 

J Debedat(58) Diabetes Care 15.270 2018 Endocrinology 
Type 2 diabetes relapse after 

Gastric Bypass 

Development with external 

validation (same model) 

JCR Alcantud(59) PLoS ONE 2.740 2019 Oncology 5-years survival rate
Development only (including 

internal validation) 

A Sandstrom(60) PLoS ONE 2.740 2019 
Obstetrics & 

Gynecology 

Preeclampsia with delivery <34 

weeks of gestation 

Development only (including 

internal validation) 

JN Cooper(61) Journal of surgical research 1.872 2018 Surgery 
30-day postoperative neonatal

mortality

Development with external 

validation (same model) 

C-S Rau(62) PLoS ONE 2.776 2018 Surgery 
In-hospital mortality after severe 

traumatic brain injury 

Development only (including 

internal validation) 

RS Anand(63) 

AMIA Joint Summits on 

Translational Sciences 

Proceedings(c) 

- 2018 Critical care All cause in-hospital mortality 
Development only (including 

internal validation) 

Y Aperstein(64) PLoS ONE 2.740 2019 Critical care ICU mortality 
Development only (including 

internal validation) 

J Park(65) 
Journal of Medical Internet 

Research 
5.034 2019 

Cardiovascular 

medicine 

Cardio-cerebrovascular event in 

patients with hypertension 

Development with external 

validation (same model) 
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R Gupta(66) 
Canadian Journal of 

Ophthalmology 
1.369 2019 Ophthalmology 

Visual outcome after open globe 

injury 

Development only (including 

internal validation) 

A Kilic(67) Annals of Thoracic Surgery 3.639 2019 Surgery Operative mortality 
Development only (including 

internal validation) 

C Campillo-Artero(68) PLoS One 2.776 2018 
Obstetrics & 

Gynaecology 
Emergency cesarean section 

Development only (including 

internal validation) 

WS Hong(69) PLoS One 2.776 2018 
Healthcare 

services 

patient's disposition (discharge, 

admission) 

Development only (including 

internal validation) 

O Beauchet(70) 
Journal of Nutrition Health and 

Aging 
2.660 2018 Geriatric Fall in acute care medical wards 

Development only (including 

internal validation) 

Z Ma(71) PLoS One 2.776 2018 
Cardiovascular 

medicine 
Warfarin dose 

Development only (including 

internal validation) 

SPK Veeranki(72) 
Studies in Health Technology 

and Informatics 
0.71b 2019 Neurology Delirium 

Development only (including 

internal validation) 

H Maharlou(73) 
Healthcare Informatics 

Research 
2.939 2018 

Healthcare 

services 

Length of stay in ICU after cardiac 

surgery 

Development only (including 

internal validation) 

A Talaei-Khoei(74) 
International Journal of Medical 

Informatics 
2.731 2018 Endocrinology 

Type 2 diabetes risk at 1, 3 and 8 

years 

Development only (including 

internal validation) 

D Bertsimas(75) Annals of Surgery 9.476 2018 Surgery 30-day mortality
Development with external 

validation (same model) 

C Liu(76) Abdominal Radiology 2.429 2019 Oncology 

Lymphadenectomy extension in 

gastric cancer before surgical 

resection 

Development only (including 

internal validation) 

G Luo(77) JMIR Medical Informatics 2.577 2019 
Healthcare 

services 

Appropriate hospital admission for 

patients with bronchiolitis 

Development with external 

validation (same model) 

M TakeuchI(78) 
Journal of Gastrointestinal 

Surgery 
2.686 2018 Oncology 

Post-operative overall survival and 

disease-free survival  

Development only (including 

internal validation) 

H Kiiski(79) Brain Topography 3.104 2018 Neurology 
Cognitive functioning and 

processing speed over 2-year 

Development only (including 

internal validation) 

Z Hasnain(80) PLoS ONE 2.740 2019 Oncology Post-cystectomy recurrence 
Development only (including 

internal validation) 

J Dean(81) 
Clinical and Translational 

Radiation Oncology 
1.439 2018 Oncology 

Severe acute dysphagia resulting 

from head and neck radiotherapy 

Development with external 

validation (same model) 

M Cheung(82) Surgery 3.476 2018 Surgery Mortality in burn patients 
Development only (including 

internal validation) 
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JL Gowin(83) NeuroImage: Clinical 4.350 2019 Psychiatry 
Relapse rate at 12 months after 

treatment 

Development with external 

validation (same model) 

JC Rojas(84) 
Annals of the American 

Thoracic Society 
4.026 2018 

Healthcare 

services 
Intensive care unit readmission 

Development with external 

validation (same model) 

J Balani(85) Obstetric Medicine 0.389b 2018 Endocrinology Gestational diabetes mellitus 
Development only (including 

internal validation) 

L Gao(86) Journal of Neurotrauma 4.056 2019 Critical care 
Mortality after severe traumatic 

brain injury at 6 months 

Development only (including 

internal validation) 

A Garcia-Arce(87) Journal for Healthcare Quality 1.092 2018 
Healthcare 

services 

Preventable readmission within 

30-days

Development only (including 

internal validation) 

CV Cosgriff(88) npj Digital Medicine(c) - 2019 Critical care Illness severity score 
Development only (including 

internal validation) 

J Lotsch(89) 
Breast Cancer Research and 

Treatment 
3.471 2018 Oncology 

Persistent pain after breast cancer 

surgery at 3 years 

Development only (including 

internal validation) 

II Spyroglou(90) BMC Research Notes 1.38b 2018 Immunology Asthma exacerbation 
Development only (including 

internal validation) 

A Facciorusso(91) Pancreatology 3.629 2019 Oncology 

Pain response to repeat 

echoendoscopic celiac plexus 

neurolysis 

Development only (including 

internal validation) 

DW Kim(92) Bone 4.360 2018 Dentistry 
Occurrence of BRONJ associated 

with dental extraction 

Development only (including 

internal validation) 

AV Karhade(93) Spine Journal 3.191 2019 Surgery 
In-hospital and 90-day post-

discharge mortality in SEA 

Development only (including 

internal validation) 

T van Steenkiste(94) 
Artificial Intelligence in 

Medicine 
4.383 2019 Critical care Positive blood culture at 72hr 

Development only (including 

internal validation) 

N Paliwal(95) Neurosurgical Focus 2.891 2018 Surgery 
Diverters treatment outcome 

(Occlusion vs. residual) 

Development only (including 

internal validation) 

Diagnosis

WP Chen(96) BioMed Research International 2.276 2018 Dentistry Periodontitis 
Development only (including 

internal validation) 

H Zhang(97) GigaScience 4.688 2018 Neurology Alzheimer’s disease 
Development with external 

validation (same model) 

A Koivu(98) 
Computers in Biology and 

Medicine 
2.286 2018 

Obstetrics & 

Gynecology 

First trimester prenatal down's 

syndrome 

Development with external 

validation (same model) 
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K Kajiwara(99) 
Journal of Vascular and 

Interventional Radiology 
2.828 2018 Oncology Insulinomas 

Development only (including 

internal validation) 

LC Chambers(100) Sexually Transmitted Diseases 2.270 2018 
Healthcare 

services 
Need for a standard visit 

Development only (including 

internal validation) 

H Won Choi(101) 
American Journal of 

Roentgenology 
3.161 2018 Medical imaging 

Early prediction of the severity of 

acute pancreatitis  

Development only (including 

internal validation) 

A Ogunleye(102) 

IEEE/ACM Transactions on 

Computational Biology and 

Bioinformatics 

3.015b 2019 Nephrology Chronic kidney disease 
Development only (including 

internal validation) 

CC Wu(103) 
Computer Methods and 

Programs in Biomedicine 
3.424 2018 Hepatology Early fatty liver disease 

Development only (including 

internal validation) 

D Shigemi(104) 
The Journal of Maternal-Fetal 

& Neonatal Medicine 
1.737 2019 

Obstetrics & 

Gynecology 
Macrosomia 

Development only (including 

internal validation) 

M Ansart(105) 
Statistical Methods in Medical 

Research 
2.291 2019 Neurology Brain amyloidosis 

Development with external 

validation (same model) 

S Zamboni(106) World Journal of Urology 3.217 2019 Oncology Adverse pathologic features 
Development only (including 

internal validation) 

R Tse(107) 
American Journal of Forensic 

Medicine and Pathology 
0.539 2018 

Forensic 

pathology 

Salt water drowning with 

immersion time of less than 1 hour 

(SWD1) 

Development only (including 

internal validation) 

S Perveen(108) Scientific Reports 4.011 2018 Hepatology 
Non-alcoholic fatty liver disease 

risk 

Development only (including 

internal validation) 

Z Pei(109) 
Interdisciplinary Sciences-

Computational life Sciences 
1.418 2018 Primary care Essential hypertension 

Development only (including 

internal validation) 

V Sacca(110) Brain Imaging and Behavior 3.418 2018 Neurology Early multiple sclerosis 
Development only (including 

internal validation) 

MJRJ Bouts(111) Human Brain Mapping 4.421 2019 Neurology Mild cognitive impairment 
Development with external 

validation (same model) 

H Yang(112) 
IEEE Journal of Biomedical and 

Health Informatics 
5.223 2019 Neurology Dementia 

Development only (including 

internal validation) 

S Liang(113) Schizophrenia Research 4.569 2018 Psychiatry 
Schizophrenia/depression/ 

Healthy/controls 

Development only (including 

internal validation) 

E Klang(114) Neuroradiology 2.238 2019 Medical imaging 
Use of non-contrast CT in ED 

department 

Development only (including 

internal validation) 

R Ferrer-Peña(115) 
Journal of Manipulative and 

Physiological Therapeutics 
1.230 2019 Physical medicine Needle length 

Development only (including 

internal validation) 
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JM Cameron(116) Analyst 3.978 2019 Oncology Brain tumor 
Development only (including 

internal validation) 

JK Paul(117) 
Computers in Biology and 

Medicine 
3.434 2019 Neurology Fibromyalgia 

Development only (including 

internal validation) 

B Dhondt(118) World Journal of Urology 3.217 2019 Oncology 
Pligometastic vs polymetastatic in 

prostatic cancer 

Development only (including 

internal validation) 

MB Wilson(119) 
Otolaryngology-Head and 

Neck Surgery 
2.341 2019 Otolaryngology Peritonsillar abscess 

Development only (including 

internal validation) 

B Lu(120) Sensors 3.275 2019 Oncology Lung cancer 
Development only (including 

internal validation) 

Y Xu(121) BMC Cancer 3.150 2019 Oncology Breast cancer recurrence 
Development only (including 

internal validation) 

Y Wang(122) Academic Radiology 2.488 2019 Medical imaging 
Differentiation between T2 and 

T3/T4 stage in gastric cancer 

Development only (including 

internal validation) 

A Mortezagholi(123) 
Asian pacific journal of cancer 

prevention 
0.00 2019 Oncology Gastric cancer 

Development only (including 

internal validation) 

UJ Muehlematter(124) European Radiology 3.962 2018 Medical imaging Vertebral insufficiency fractures 
Development only (including 

internal validation) 

JP Jeon(125) 
Clinical Neurology and 

Neurosurgery 
1.672 2018 Surgery 

Persistent hemodynamic 

depression following CAS 

Development only (including 

internal validation) 

C-F Lu(126) Clinical Cancer Research 8.911 2018 Medical imaging 
Glioblastoma vs lower grade 

gliomas 

Development with external 

validation (same model) 

T Ballarini(127) NeuroImage: Clinical 21 4.350 2019 Neurology Individual treatment response 
Development only (including 

internal validation) 

B 

Thanathornwong(128) 
Health Informatics Research 2.939 2018 Dentistry 

Need of orthodontic treatment in 

permanent dentition  

Development only (including 

internal validation) 

CQ Ngo(129) 

Annual International 

Conference of the IEEE 

Engineering in Medicine and 

Biology Society 

1.01b 2018 Endocrinology Hypoglycemia episode 
Development only (including 

internal validation) 

SH Hyun(130) Clinical Nuclear Medicine 6.622 2019 Oncology 
adenocarcinoma vs squamous cell 

carcinoma 

Development only (including 

internal validation) 

MS Mellem(131) Biological Psychiatry: CNNI 5.335 2019 Psychiatry Transdiagnostic Symptom Severity 
Development only (including 

internal validation) 

F Zhang(132) Neuroscience 5.679 2019 Neurology Alzheimer's disease 
Development only (including 

internal validation) 
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D Leightley(133) Journal of Mental Health 2.604 2018 Psychiatry Post-traumatic stress disorder 
Development only (including 

internal validation) 

A Sandstrom(60) PLoS ONE 2.740 2019 
Obstetrics & 

Gynecology 

Preeclampsia with delivery <34 

weeks of gestation 

Development only (including 

internal validation) 

C Xiao(134) 

Annual International 

Conference of the IEEE 

Engineering in Medicine and 

Biology Society 

1.01b 2018 Neurology Parkinson's disease 
Development only (including 

internal validation) 

D Gökçay(135) 
IEEE Journal of Biomedical and 

Health Informatics 
5.223 2019 Rheumatology Fibromyalgia 

Development only (including 

internal validation) 

AH Butt(136) BioMedical Engineering OnLine 2.013 2018 Neurology Patients with Parkinson disease 
Development only (including 

internal validation) 

HS Hunter-Zinck(137) 
Journal of the American 

Medical Informatics Association 
4.112 2019 

Healthcare 

services 
Emergency department orders 

Development only (including 

internal validation) 

ML Zhang(138) 
American Journal of Clinical 

Pathology 
2.094 2019 Pathology 

PBFC with current/recent 

CBC/differential  

Development only (including 

internal validation) 

C Castillo-Olea(139) 

International Journal of 

Environmental Research and 

Public Health 

2.468 2019 Geriatric Sarcopenia 
Development only (including 

internal validation) 

C Sa-ngamuang(140) 
PLoS neglected tropical 

diseases 
4.487 2018 Infectious diseases Dengue 

Development only (including 

internal validation) 

K Meena(141) 
Artificial Intelligence in 

Medicine 
4.383 2019 Pediatrics Anemia status in children 

Development only (including 

internal validation) 

R Wei(142) 
Technology in Cancer Research 

& Treatment 
2.074 2019 Medical imaging 

Pre-operative serous cystic 

neoplasms  

Development with external 

validation (same model) 

S Papini(143) Journal of Anxiety Disorders 3.472 2018 Psychiatry 

Posttraumatic stress disorders 

screening status 3 months post 

hospitalization 

Development only (including 

internal validation) 

B-S Jang(144) Scientific Reports 4.011 2018 Medical imaging 
Pseudoprogression in patients 

with glioblastoma 

Development with external 

validation (same model) 

H Kim(145) JMIR MHealth and UHealth 4.313 2019 Psychiatry Depression 
Development only (including 

internal validation) 

B Goudey(146) Scientific Reports 3.998 2019 Neurology Abnormal CSF Aβ1-42 level 
Development only (including 

internal validation) 

W Tu(147) Journal of NeuroVirology 2.354 2019 Neurology 
HIV-associated neurocognitive 

disorder  

Development only (including 

internal validation) 
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M Bronsert(148) American Journal of Surgery 2.125 2019 Surgery Postoperative complications 
Development only (including 

internal validation) 

A Eill(149) Brain Connectivity 5.263 2019 Neurology Autism spectrum disorders 
Development only (including 

internal validation) 

F Cook(150) British Journal of Anaesthesia 6.880 2019 Surgery Intubation difficulty 
Development only (including 

internal validation) 

B Eggleston(151) Brain Injury 1.690 2019 
Healthcare 

services 

Service-connected disability (SCD) 

≥50 among a cohort of veterans 

with previous combat deployment 

Development only (including 

internal validation) 

YR Villarreal(152) Social Work in Public Health 0.607 2019 Primary care Hepatitis C Virus Incidence 
Development only (including 

internal validation) 

a Value is based on the Journal Citation Report from the year of publication of the article. 
b Value is based on the Scientific Journal Ranking from the year of publication of the article. 
c  Value is unavailable. 
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Gradient Boosting Machine (GBM) 

Keras-based convolutional neural network (K-CNN) 

K-Nearest Neighbour

LASSO 

Light gradient boosting machine (LGB) 

Linear regression 

Logistic Regression 

Logitboost 

Long short-term memory (LSTM) 

Multilayer perceptron (MLP) 

Multiple Kernel Learning (MultiK-MHKS) 

Nadir-weighted SVM (NwSVM) 

Naïve Bayes (NB) 

Neural Network (NN) 

Optimal Classification Tree (OCT) 

Random Forest (RF) 

Random Survival Forest (RSF) 

Regularized Greedy forests (RGF) 

Ridge Regression 

RUSBoost  

Support Vector Machine (SVM) 

Tree-augmented Naive Bayes 
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Supplemental file 4: Characteristics of included studies stratified by study type 

Table S2. PROBAST Signaling questions for model development and validation analyses in 94 included prognostic studies

Developed models (n=94) External validations (n=12) 

Yes, probably yes 

n (%; 95% CI) 

No, probably no 

n (%; 95% CI) 

No information 

n (%; 95% CI) 

Yes, probably yes 

n (%; 95% CI) 

No, probably no 

n (%; 95% CI) 

No information 

n (%; 95% CI) 

Participants 

1.1 Were appropriate data sources used, e.g. cohort, RCT or nested case-control study data? 70 (75, 65 to 82) 21 (22, 15 to 32) 3 (3, 1 to 9) 10 (83, 55 to 95) 2 (17, 5 to 45) 0 (0.0) 

1.2 Were all inclusions and exclusions of participants appropriate? 57 (61, 51 to 70) 12 (13, 8 to 21) 25 (27, 19 to 36) 5 (41, 19 to 68) 0 (0.0)  7 (58, 32 to 81) 

Predictors 

2.1 Were predictors defined and assessed in a similar way for all participants? 63 (67, 57 to 76) 14 (15, 9 to 24) 17 (18, 11 to 27) 3 (25, 9 to 53) 1 (8, 0 to 35) 8 (67, 39 to 86) 

2.2 Were predictor assessments made without knowledge of outcome data? 61 (65, 55 to 74) 2 (2, 1 to 7) 31 (33, 24.3 to 43) 7 (58, 32 to 81) 1 (8, 0 to 35) 4 (33, 14 to 61) 

2.3 Are all predictors available at the time the model is intended to be used? 74 (79, 69 to 86) 2 (2, 1 to 7) 18 (19, 13 to 28) 8 (67, 39 to 86) 0 (0.0) 4 (33, 14 to 61) 

Outcome 

3.1 Was the outcome determined appropriately? 73 (78, 68 to 85) 4 (4, 1 to 10) 17 (18, 11 to 27) 8 (67, 39 to 86) 0 (0.0) 4 (33, 13.8 to 61) 

3.2 Was a prespecified or standard outcome definition used? 76 (81, 72 to 88) 3 (3, 1 to 9) 15 (16, 10 to 25) 10 (83, 55 to 95) 0 (0.0) 2 (17, 4.7 to 45) 

3.3 Were predictors excluded from the outcome definition? 63 (67, 57 to 76) 6 (6, 3 to 13) 25 (27, 19 to 36) 8 (67, 39 to 86) 0 (0.0) 4 (33, 13.8 to 61) 

3.4 Was the outcome defined and determined in a similar way for all participants? 78 (83, 74 to 89) 6 (6, 3 to 13) 10 (11, 6 to 19) 7 (58, 32 to 81) 1 (8, 1 to 35) 4 (33, 13.8 to 61) 

3.5 Was the outcome determined without knowledge of predictor information? 43 (46, 36 to 56) 7 (7.4, 3.7 to 15) 44 (47, 37 to 57) 3 (25, 9 to 53) 1 (8, 1 to 35) 8 (67, 39.1 to 86) 

3.6 Was the time interval between predictor assessment and outcome determination? 67 (71, 61 to 79) 2 (2, 1 to 7) 25 (27, 19 to 36) 7 (58, 32 to 81) 1 (8, 1 to 35) 4 (33, 14 to 61) 

Analysis 

4.1 Were there a reasonable number of participants with the outcome? 36 (38, 29 to 48) 45 (48, 38 to 58) 13 (14, 8 to 22) 5 (42, 19 to 68)  4 (33, 14 to 61) 3 (25, 9 to 53) 

4.2 Were continuous and categorical predictors handled appropriately? 22 (23, 16 to 33) 20 (21, 14 to 31) 52 (55, 45 to 65) 0 (0.0) 1 (8, 1 to 35) 11 (92, 65 to 100) 

4.3 Were all enrolled participants included in the analysis? 48 (51, 41 to 61) 21 (22, 15 to 32) 25 (27, 19 to 36) 6 (50, 25 to 75) 2 (17, 5 to 45) 4 (33, 14 to 61) 

4.4 Were participants with missing data handled appropriately? 14 (15, 9 to 24) 47 (50, 40 to 60) 33 (35, 26 to 45) 2 (17, 5 to 45) 6 (50, 25 to 75) 4 (33, 14 to 61) 

4.5 Was selection of predictors based on univariable analysis avoided? 63 (67, 57 to 76) 18 (19, 13 to 28) 13 (14, 8 to 22) NA 

4.6 
Were complexities in the data (e.g., censoring, competing risks, sampling of control 

participants) accounted for appropriately? 
42 (45, 35 to 55) 19 (20, 13 to 29) 33 (35, 26 to 45) 5 (42, 19 to 68) 2 (17, 5 to 45) 5 (42, 19 to 68) 

4.7 Were relevant model performance measures evaluated appropriately? 14 (15, 9 to 24) 23 (25, 17 to 34) 57 (61, 51 to 70) 3 (25, 9 to 53) 2 (17, 5 to 45) 7 (58, 32 to 81) 

4.8 Were model overfitting and optimism in model performance accounted for? 50 (53, 43 to 63) 32 (34, 25 to 44) 12 (13, 8 to 21) NA 
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Table S2. PROBAST Signaling questions for model development and validation analyses in 94 included prognostic studies

Developed models (n=94) External validations (n=12) 

Yes or probably yes 

n (%; 95% CI) 

No or probably no 

n (%; 95% CI) 

No information 

n (%; 95% CI) 

Yes or probably yes 

n (%; 95% CI) 

No or probably no 

n (%; 95% CI) 

No information 

n (%; 95% CI) 

Participants 

1.1 Were appropriate data sources used, e.g. cohort, RCT or nested case-control study data? 70 (75, 65 to 82) 21 (22, 15 to 32) 3 (3, 1 to 9) 10 (83, 55 to 95) 2 (17, 5 to 45) 0 (0.0) 

1.2 Were all inclusions and exclusions of participants appropriate? 57 (61, 51 to 70) 12 (13, 8 to 21) 25 (27, 19 to 36) 5 (41, 19 to 68) 0 (0.0)  7 (58, 32 to 81) 

Predictors 

2.1 Were predictors defined and assessed in a similar way for all participants? 63 (67, 57 to 76) 14 (15, 9 to 24) 17 (18, 12 to 27) 3 (25, 9 to 53) 1 (8, 1 to 35) 8 (67, 39 to 86) 

2.2 Were predictor assessments made without knowledge of outcome data? 61 (65, 55 to 74) 2 (2, 1 to 7) 31 (33, 24 to 43) 7 (58, 32 to 81) 1 (8, 1 to 35) 4 (33, 14 to 61) 

2.3 Are all predictors available at the time the model is intended to be used? 74 (79, 69 to 86) 2 (2, 1 to 7) 18 (19, 13 to 28) 8 (67, 39 to 86) 0 (0.0) 4 (33, 14 to 61) 

Outcome 

3.1 Was the outcome determined appropriately? 73 (78, 68 to 85) 4 (4, 2 to 10) 17 (18, 12 to 27) 8 (67, 39.to 86) 0 (0.0) 4 (33, 14 to 61) 

3.2 Was a prespecified or standard outcome definition used? 76 (81, 72 to 88) 3 (3, 2 to 9) 15 (16, 10 to 25) 10 (83, 55 to 95) 0 (0.0) 2 (17, 5 to 45) 

3.3 Were predictors excluded from the outcome definition? 63 (67, 57 to 76) 6 (6, 3 to 13) 25 (27, 19 to 36) 8 (67, 39 to 86) 0 (0.0) 4 (33, 14 to 61) 

3.4 Was the outcome defined and determined in a similar way for all participants? 78 (83, 74 to 89) 6 (6, 3 to 13) 10 (11, 6 to 19) 7 (58, 32 to 80.7) 1 (8, 1 to 35) 4 (33, 14 to 61) 

3.5 Was the outcome determined without knowledge of predictor information? 43 (46, 36 to 56) 7 (7, 4 to 15) 44 (47, 37 to 57) 3 (25, 9 to 53.2) 1 (8, 1 to 35) 8 (67, 39 to 86) 

3.6 Was the time interval between predictor assessment and outcome determination? 67 (71, 61 to 79) 2 (2, 1 to 7) 25 (27, 19 to 36) 7 (58, 32 to 80.7) 1 (8, 1 to 35) 4 (33, 14 to 61) 

Analysis 

4.1 Were there a reasonable number of participants with the outcome? 36 (38, 29 to 48) 45 (48, 38 to 58) 13 (14, 8 to 22) 5 (42, 19 to 68.0)  4 (33, 14 to 61) 3 (25, 8.9 to 53) 

4.2 Were continuous and categorical predictors handled appropriately? 22 (23, 16 to 33) 20 (21, 14 to 31) 52 (55, 45 to 65) 0 (0.0) 1 (8, 1 to 35) 11 (92, 65 to 100) 

4.3 Were all enrolled participants included in the analysis? 48 (51, 41 to 61) 21 (22, 15 to 32) 25 (27, 19 to 36) 6 (50, 25 to 75) 2 (17, 5 to 45) 4 (33, 14 to 601) 

4.4 Were participants with missing data handled appropriately? 14 (15, 9 to 24) 47 (50, 40 to 60) 33 (35, 26  to 45) 2 (17, 5 to 45) 6 (50, 25 to 75) 4 (33, 14 to 61) 

4.5 Was selection of predictors based on univariable analysis avoided? 63 (67, 57 to 78) 18 (19, 13 to 28) 13 (14, 8 to 22) NA 

4.6 
Were complexities in the data (e.g., censoring, competing risks, sampling of control 

participants) accounted for appropriately? 
42 (45, 35 to 55) 19 (20, 13 to 29) 33 (35, 26 to 45) 5 (42, 19 to 68) 2 (17, 5 to 45) 5 (42, 19 to 68) 

4.7 Were relevant model performance measures evaluated appropriately? 14 (15, 9 to 24) 23 (25, 17 to 34) 57 (61, 51 to 70) 3 (25, 9 to 53) 2 (17, 5 to 45) 7 (58, 32 to 81) 

4.8 Were model overfitting and optimism in model performance accounted for? 50 (53, 43 to 63) 32 (34, 25 to 44) 12 (13, 8 to 21) NA 




