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Supplementary Methods 
 
Patient cohorts, treatment and experimental design 
FFPE blocks were obtained from the resection of the primary tumour or local relapse 

of 16 patients (discovery cohort) and 13 patients (validation cohort) treated with 

immune checkpoint inhibitors in the setting of metastatic CRC until disease 

progression, unacceptable toxicity or completion of treatment (Supplementary Table 

1). In the discovery cohort, patients UH1-UH10 were treated with Pembrolizumab (200 

mg every three weeks) as part of the KEYNOTE 177 clinical trial (ClinicalTrials.gov, 

NCT02563002)1, while patients UH11-UH16 were treated with Nivolumab (240mg 

every two weeks). In the validation cohort, patients UH17-UH19 were part of the 

KEYNOTE 177 trial, UH26 received Pembrolizumab (2mg/kg every three weeks) and 

patients UH20-UH25 and UH29 were treated with Nivolumab (240 mg every two 

weeks). Patient UH27 received Ipilimumab (1mg/kg) in combination with Nivolumab 

(3mg/kg) every three weeks for four cycles followed by Nivolumab alone (240 mg every 

two weeks). Patient UH28 received Nivolumab (3mg/kg) for two cycles, then 

Ipilimumab (1mg/kg) in combination with Nivolumab every three weeks for three 

cycles. Patients treated with Nivolumab were enrolled in the UK wide Bristol Myers 

Squibb Individual Patient Supply Request Programme as per Article 5/1 of Article 

Directive 2001/83/EC. All patients were consented at the UCL Cancer Institute 

Pathology Biobank - REC reference 15/YH/0311.  

Response to therapy was assessed using the formal Response Evaluation 

Criteria in Solid Tumours (RECIST)2 version 1.1. Patients were considered to achieve 

durable benefit (DB) if the disease did not progress for at least 12 months after 

commencing immunotherapy; no durable benefit (nDB) if the disease progressed 

within 12 months. Twelve-month cut-off was considered clinically better than the 

progression-free survival from chemotherapy as first line treatment of metastatic stable 

(8.3 months3) or hypermutated (8.2 months1) CRC.  

Twenty-four sequential sections were cut from each FFPE tumour block of 

samples UH1-UH16 using a microtome. Sections were then used for CD3 staining 

(slides A, B, F, H and J); Imaging Mass Cytometry (IMC, slide C); multiplexed 

Immunofluorescence (mIF, slide D); Whole Exome Sequencing (WES, slides E1-5); 

RNA sequencing (RNA-seq, slides G1-5); T-Cell Receptor Beta sequencing (TCR-seq, 

Slides I1-5) and to detect PD1-PDL1 interaction in situ (slides K1-2). For samples 
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UH17-UH23 and UH25-UH27, 11 sequential sections were used for CD3 staining 

(slides A, E and G); Haematoxylin and Eosin (HE) staining (slide B); IMC (slide C); mIF 

(slide D) and RNAseq (slides F1-5). Since UH24, UH28 and UH29 were biopsies, 

RNAseq could not be performed and only four sequential sections were used for CD3 

and HE staining (slides A and B); IMC (slide C) and mIF (Slide D). Sections used for 

CD3 and HE staining, IMC, mIF and A-FRET were 4µm thick, while those used for 

DNA and RNA extraction were 10µm thick. Tumour content was assessed by a board-

certified surgical pathologist (M.R.J.).  

 
CD3 staining and quantification 

CD3 staining was performed upon slide dewaxing and heat-induced epitope 

retrieval (HIER) using Antigen Retrieval Reagent-Basic (R&D Systems). Tissues were 

blocked and incubated first with anti CD3 antibody (Dako, Supplementary Table 5) and 

subsequently with horseradish peroxidase conjugated anti rabbit antibody (Dako). 

They were then stained with 3,3' diaminobenzidine (DAB) substrate (Abcam) and 

haematoxylin. Slide A was reviewed by a certified pathologist (M.R-J) to identify two to 

four regions per slide with variable CD3+ infiltration (for a total of 90 regions, 

Supplementary Table 2) in proximity to the invasive margins of the tumour 

(Supplementary Figure 1B).  

Digital acquisition of CD3 stained slides was performed using Hamamatsu 

Nanozoomer (Hamamatsu Photonics) or Axioscan Z1 (Zeiss) at 20x resolution. The 

whole slide images were then loaded into QuPath4 v0.2.0-m4 to quantify CD3+ 

infiltration within each region. The “Estimate Stain Vector” function was run as pre-

processing step to increase the contrast between DAB and haematoxylin. The outlines 

of the regions delimited by the pathologist in slide A and projected in all other slides 

(Supplementary Figure 1C). The regions were then divided into 0.09 mm2 large tiles 

and CD3+ cells were quantified within each tile using the “positive cell detection” 

function. The median value of CD3+ cells per mm2 across all tiles was considered as 

representative of CD3+ infiltration for that region. For slides B and I, CD3+ cells were 

also quantified for the whole tumour region. 

 
Imaging mass Cytometry (IMC) 

Three panels of 42 antibodies in total were assembled to represent the main 

immune and stromal populations of the gut TME (IMC panels I, II and III, 
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Supplementary Table 5). Twenty-five of these antibodies were already metal-tagged 

(Fluidigm), while 17 were purchased in a carrier-free form, tested via 

immunohistochemistry and tagged using the Maxpar X8 metal conjugation kit 

(Fluidigm). To identify the optimal dilution for each antibody, concentrations ranging 

from 1/50 to 1/5,000 were tested in FFPE appendix sections. After staining and 

ablation, images were visualised using MCD Viewer (Fluidigm) and the concentration 

giving the best signal to background ratio was selected (Supplementary Table 5).  

IMC was performed in 38 regions of the discovery cohort using IMC panel I, in 

22 regions of the validation cohort using IMC panel II, and in additional 17 regions of 

selected samples from both cohorts with IMC panel III (Supplementary Table 2). In the 

discovery cohort, the two regions (one with low and one with high CD3 infiltration) with 

the highest tumour content were selected except for UH4 UH6, UH9 and UH12. For 

UH6, UH9 and UH12, all four regions were analysed, for UH4, the two high and two 

low CD3 regions were analysed together, to be consistent with WES and RNA-seq 

analyses (see below). In the validation cohort, the two regions with the highest 

difference in CD3 infiltration were selected except for the three biopsies (UH24, UH28 

and UH29) and UH18, where only one region was analysed. Slides were incubated for 

one hour at 60°C, dewaxed, rehydrated and subjected to HIER using a pressure 

cooker and Antigen Retrieval Reagent-Basic (R&D Systems). Tissues were blocked in 

a solution containing 10% BSA (Sigma), 0,1% Tween (Sigma), 1:50 Kiovig (Shire 

Pharmaceuticals) Superblock Blocking Buffer (Thermo Fisher) for two hours at room 

temperature. The primary antibody mix was prepared in blocking solution at the 

selected concentration for each antibody and incubated overnight at 4°C. Slides were 

then washed twice in PBS and PBS-0.1% Tween and incubated with 2 isotopes (191Ir 

and 193Ir) of DNA intercalator Cell-ID™ Intercalator-Ir (Fluidigm) 1.25mM diluted in PBS 

for 30 minutes at room temperature. Slides were then washed once in PBS and once 

in MilliQ water and air-dried. Stained slides were loaded in the Hyperion Imaging 

System (Fluidigm) imaging module to obtain light-contrast high resolution images of 

approximately 4 mm2. For each region, a 1 mm2 area with high tumour content and 

representative of the median CD3+ content of the region was selected for laser ablation 

(Supplementary Figure 3A) at 1 µm/pixel resolution and 200Hz frequency. 

 

IMC pixel analysis 
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IMC data analysis was performed with SIMPLI5 as summarised in Figure 3A. 

For each of the 77 ablated regions, TIFF images from each antibody and two DNA 

intercalators were obtained from the raw IMC .mcd and .txt files using imctools6. Pixel 

intensities for each channel were normalised to the 99th percentile of the intensity 

distribution and the obtained values scaled between 0 and 1. Background pixels were 

removed using global thresholding with CellProfiler7 3.1.8. After visual inspection, 

channels for PD1, PDL1, GzB, CD45RA, TIM3, Vista, TCF7, CD134, CD206 and 

FOLR2 were further filtered using probability masks produced with Ilastick8 1.3.0. For 

this purpose, random forest classifiers were trained using closely related markers (CD3 

for PD1; Vimentin for PDL1; CD8 and CD15 for GZB; CD45 and CD45RO for CD45RA; 

CD68 for FOLR2 and CD206). The resulting background probability masks were 

converted into binary images with CellProfiler7 3.1.8 and applied to the original 

normalised images to remove the background. Custom R scripts were used to count 

the positive pixels in all processed images for each channel. The sum of all positive 

pixels for a channel constituted the positive area for that channel. Given B2M low 

expression, an ad-hoc threshold was applied on the normalized intensity and all pixels 

higher than 0.5 were considered as positive. For regions UH19_87, UH27_96, and 

UH27_97, the CD3 masking threshold was adjusted after manual inspection to 0.175, 

0.15 and 0.15 respectively.  

Tumour masks were generated with CellProfiler7 3.1.8 summing up the Pan-

keratin and E-cadherin channels for all regions except UH18_103 and UH22_112, 

where only E-cadherin was used. The resulting images were smoothened with a 

Gaussian filter and filling up all <30 pixel negative areas. The stroma masks were 

obtained using the Vimentin, SMA and DNA channels in the discovery cohort and 

Vimentin, CD68, CD11c, CD3, CD27 and CD45 channels in the validation cohort. All 

<20 pixel negative areas were filled up. The tissue mask for each region corresponded 

to the sum of tumour and stroma masks. Pixel analysis was performed by normalising 

the positive areas for each marker or combination of markers over the total tissue area 

or the area of the five main immune populations (T cells, B cells, macrophages, 

dendritic cells and neutrophils) for the discovery cohort and for T cell and macrophages 

only for the validation cohort (Supplementary Table 6). 

 

IMC single cell analysis 
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Single cell analysis was based on cell segmentation, assignment of cell identity 

and phenotype clustering (Figure 3A). 

Cell segmentation was performed with CellProfiler7 3.1.8 identifying nucleus 

and membrane of each cell in each region. First, the two DNA channels were multiplied 

and used for nucleus segmentation using local Otsu thresholding. Second, all channels 

for the membrane markers (CD3, CD20, CD27, CD16, CD11c, CD15, SMA, CD34, 

Vimentin and Pan-keratin for UH1-UH16 and CD45, Pan-keratin and E-cadherin for 

UH17-UH29) were used to obtain membrane images. Cell masks were then generated 

by radially expanding each nucleus up to 10 pixels on the membrane mask and only 

cells overlapping with the tissue mask were retained. Finally, the mean intensity of all 

markers was measured in each cell in each region.  

Cell identities were assigned according to the maximum overlap of the cell area 

with marker-specific thresholds identified by the histologist (J.S.) after image manual 

inspection. These thresholds were: ≥25% of CD3+ mask for T cells; ≥10% of CD11c+ 

CD68- mask for dendritic cells; >10% of the sum of CD68+ CD11c+ and CD68+ CD11c- 

masks for macrophages; ≥5% of IgA+, IgM+, CD20+, and CD27+ mask for B cells; and 

≥25% of CD15+ mask for neutrophils. Cells that did not overlap with any of these 

markers were defined as tumour cells if they overlapped ≥80% with the tumour mask 

or were left unassigned otherwise. Within CD3+ cells, PD1+ cells were identified as 

those showing ≥1% overlap with the PD1 mask. PDL1+ cells were identified as those 

overlapping ≥10% of the PDL1 mask. 

For the discovery cohort, single cell phenotype clustering was performed for T 

cells, B cells, macrophages, dendritic cells, neutrophils, PD1+ and PDL1+ cells 

separately using Seurat9 2.4 with custom R scripts for IMC data analysis. Independent 

clustering was used to compare the relative abundance of cell subpopulations between 

hypermutated and non-hypermutated CRCs or DB- and nDB-CRCs using 

Pembrolizumab and Nivolumab samples alone or combined. The total number of cells 

used in each clustering is shown in Supplementary Table 7. For each main population, 

the clustering was based on the mean expression of a set of markers typical of that 

population (Supplementary Table 5). The mean marker intensities across all cells were 

integrated using multiple canonical correlation analysis (CCA) and aligning the CCA 

subspaces to reduce the inter-sample variability. The resulting CCA vectors were then 

used as input for unsupervised clustering with ten values of resolution, ranging from 

0.1 to 1.0. The ten resulting sets of clusters were manually inspected and the one with 
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the highest number of biologically meaningful clusters was chosen. For the validation 

cohort, T cells, macrophages, PD1+ and PDL1+ cells were identified as described 

above. CD74+ macrophages and CD8+GzB+ CD8+Ki67+ T cells were identified using 

specific expression thresholds on the mean cell intensity (0.1 for CD74; 0.1 for CD8; 

0.05 for GzB; 0.15 for Ki67). CD8+ T cells positive for both the Ki67 and the GzB 

threshold were identified as CD8+GzB+ or CD8+Ki67+ T cells according the marker with 

the highest intensity. T cells in the validation cohort underwent single cell clustering, 

using all 17 T cell markers (Supplementary Table 5). The distribution of cells within 

each cluster over the total cells was compared between DB- and nDB-CRCs or 

hypermutated and non-hypermutated CRCs using two-sided Wilcoxon rank sum test, 

correcting for FDR. All comparisons are shown in Supplementary Table 8. 

For the 17 regions stained with IMC panel III, T cells, macrophages, dendritic 

cells and tumour cells were identified as described above (Supplementary Table 7). 

CD74+ macrophages were identified using a threshold of 0.35 on the mean cell 

intensity. Single-cell clustering of the identified CD74+ macrophages was performed 

using using Seurat9 2.4 with 16 macrophage markers (Supplementary Table 5). 

 

IMC neighbour and cluster density analysis 
The pixel coordinates of the centroid of each cell were extracted from the cell 

masks with CellProfiler7 3.1.8 and used to measure the Euclidean distances between 

each pair of cells in each region. High-density clusters of CD68+CD74+ within each 

region were identified using DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise10) as implemented in the fpc R package version 2.2.5. Starting 

form cell pixel coordinates, highly dense clusters were defined as portions of the 

ablated regions with ≥5 CD68+CD74+per 10,000μm2, corresponding to a minimum 

number of five points (MinPts) within a radius (eps) of 56.42μm. 

 
Multiplexed Immunofluorescence (mIF) 

mIF was performed on slide D of 24 DB- and nDB samples (Supplementary 

Table 2). An automated Opal-based mIF staining protocol was developed using a 

Ventana Discovery Ultra automated staining platform (Roche) with eight markers 

specific for CD8+GzB+PD1+, CD8+Ki67+PD1+ and CD68+CD74+PDL1+ cells, DAPI and 

Opal fluorophores (Supplementary Table 5). Antibody dilution, incubation time and 

effect of denaturation steps as well as Opal dilution were assessed for each marker 
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following manufacturer’s instructions. The optimal antibody-Opal pairing was achieved 

considering the expected expression and cellular localisation of each marker and the 

fluorophore brightness to minimize fluorescence spillage. The final staining order was 

CD74, TCF7, PDL1, Ki67, PD1, GzB, CD68 and CD8. 

Slides were baked for 1 hr at 60°C, loaded onto the autostainer and subjected 

to a fully automated staining protocol involving deparaffinisation (EZ-Prep solution, 

Roche), HIER (DISC. CC1 solution, Roche) and seven sequential rounds of 1 hr 

incubation with the primary antibody, 12 minutes incubation with the HRP-conjugated 

secondary antibody (DISC. Omnimap anti-Ms HRP RUO or DISC. Omnimap anti-Rb 

HRP RUO, Roche) and 16 minute incubation with the Opal reactive fluorophore (Akoya 

Biosciences). For the last round of staining, tissues were incubated with Opal TSA-

DIG reagent (Akoya Biosciences) for 12 minutes and with Opal 780 reactive 

fluorophore for 1 hour (Akoya Biosciences). Before each round of staining, a 

denaturation step (100°C for 8 minutes) was introduced to remove the primary and 

secondary antibodies from the previous cycle without disrupting the fluorescent signal. 

Once the staining was completed, the slides were counterstained with 4’,6-diamidino-

2-phenylindole (DAPI, Akoya Biosciences) and coverslipped using ProLong Gold 

antifade mounting media (Thermo Fisher Scientific). Fluorescently labelled slides were 

scanned using a Vectra Polaris automated quantitative pathology imaging system 

(Akoya Biosciences). Spectral libraries were constructed with the inForm 2.4 image 

analysis software (Akoya Biosciences) following the manufacturer’s instructions. 

Whole-slide scans were obtained at 20x and 40x magnification using appropriate 

exposure times, and several fields of views were selected per slide and loaded into 

inForm (Akoya Biosciences) for spectral unmixing and autofluorescence isolation 

using the spectral libraries. 

 
DNA sequencing 

All regions were macro-dissected with a needle under a stereo microscope 

using slide A as a guide (Supplementary Figure 1G). Genomic DNA was extracted 

from 32 tumour regions and 16 matched normal tissue of slides E1-5 of samples UH1-

UH16 (Supplementary Table 2) and the two regions corresponding to those used for 

IMC were selected. For UH4, the two high and low CD3+ regions were merged to obtain 

enough DNA for library preparation. DNA was extracted using GeneRead DNA FFPE 

kit (Qiagen) and DNA libraries were prepared using 50-200ng of genomic DNA with 
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the KAPA HyperPrep kit (Roche). Protein-coding genes were captured using 

SureSelectXT Human All Exon V5 probes (Agilent) and sequenced on Illumina HiSeq 

4000 using 100bp paired end read protocol, according to manufacturer’s instructions. 

Approximately 100 million reads were generated per sample.  

Raw reads were aligned to GRCh38 reference human genome using BWA 

MEM11 v0.7.15 after pre-alignment quality control. Regions harbouring small insertions 

and deletions (indels) were re-aligned locally using GATK12 v3.6. The resulting BAM 

files were sorted, merged, marked for duplicates and subjected to post-alignment 

quality control using Picard v2.10.1. The final mean depth of coverage was >70x for 

tumour and >30x for normal samples, considering only targeted exons as defined in 

the SureSelectXT BED file (50.5Mbp in total).  

Somatic SNVs and indels were called using Strelka13 v2.9.0 on the targeted 

exome extended 100bp in both directions. Mutations were retained if they had an 

Empirical Variant Scoring (EVS) >7 for SNVs and >6 for indels in at least one region 

of the same patient. Mean sensitivity in variant calling was >91% in all patients expect 

UH16 (33%) as assessed using 241 somatic mutations from FM114 or the patient 

pathological reports for comparison. Nineteen mutations in FM1 or pathological reports 

but missed by Strelka were added to the pool of somatic alterations after manual 

check. 

For samples UH1-UH3, UH7-UH10 and UH12, copy number analysis was done 

using ASCAT15 v2.5.2. To process WES data, AlleleCount16 v4.0.0 was run on 

germline SNPs from 1000 Genomes Phase 317 after correction for GC bias. For each 

SNP, a custom script was used to calculate the LogR and B-Allele Frequency (BAF). 

SNPs with <6 reads were filtered out in all samples except UH1 and UH10 where 5 or 

7 reads were used. Because of degraded starting DNA of samples UH4-UH6, UH11 

and UH13-UH16, the DepthOfCoverage option of GATK12 v3.6 was used to calculate 

SNP LogR and copy numbers for genomic segments were obtained using 

Copynumber R package. The gene copy number was derived from that of the genomic 

segment covering at least 25% of the gene length. 

 

Prediction of damaged genes and immunogenic mutations 
ANNOVAR18 (release 16/04/2018) was used to annotate exonic or splicing 

SNVs and indels. All truncating mutations (stop-gains, stop-losses and frameshift 

indels) were considered as damaging. Non-truncating mutations (non-frameshift indels 
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and missense SNVs) were considered damaging if predicted by at least five function-

based methods or two conservation-based methods19. Mutations within two bps of a 

splicing junction were considered as damaging if predicted by at least one ensemble 

algorithm in dbNSFP. Gain of function mutations were predicted using 

OncodriveClust20 for the discovery patients together, with default parameters and with 

false discovery rate (FDR) <10%. 

A gene was considered amplified if its copy number was >1.4 times the sample 

ploidy or >2 if the ploidy was not available in both regions of the same patient, or if its 

CPM was >1.5 than in the other region of the same patient. A gene was considered as 

deleted if it had copy number = 0, CPM = 0 and had no mutations. A gene was 

considered deleted in heterozygosity if it had copy number = 1.  

Amplified genes, deleted genes, heterozygously deleted genes with a 

damaging mutation in the other allele and copy number neutral genes with at least one 

damaging mutation were considered as damaged genes. 

To predict putative immunogenic mutations from all somatic SNVs and indels, 

HLA typing of each patient was predicted from the normal BAM files using Polysolver21 

v4 (Supplementary Table 9). NeoPredPipe22 was then used to predict neoantigens in 

expressed genes (CPM >0), with a strong HLA binding (rank <0.5%) and cross-

referenced with known epitopes (UniProt reference proteome). SNVs or indels 

generating at least one neoantigen were considered as potentially immunogenic. The 

neoantigenic index was calculated for each region as: 

!"#$%&'("%')	'%+", = 	%./0"1	#2	'//.%#("%')	/.&$&'#%3%./0"1	#2	%#%3'4"%&	/.&$&'#%3  

 

PyClone23 v.0.13.1 was run to assess the clonality of predicted immunogenic 

mutations, defined as the proportion of tumour cells harbouring the mutation. PyClone 

was run independently for each region using tumour purity from the pathological 

assessment of slide A (Supplementary Table 2) and the gene copy number from 

ASCAT. 

 

RNA sequencing  
Total RNA was extracted from 58 macro-dissected regions of slides G1-5 in 

samples UH1-UH16 and 30 regions of slides F1-5 in samples UH17-UH23 and UH25-
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UH27 (Supplementary Table 2) using the High Pure FFPE RNA isolation kit (Roche). 

For UH4, the two high and low CD3+ regions were merged to obtain enough RNA for 

library preparation. RNA libraries were prepared starting from 5-50 ng of RNA using 

the QuantSeq 3’mRNA-seq Library Prep kit FWD for Illumina (Lexogen) and 

sequenced on Illumina HiSeq 4000 using 75 or 100 bp single end reads, according to 

manufacturer’s instructions. Approximately 5-40 million reads were generated per 

sample.  

Raw reads were processed using the Lexogen QuantSeq 3’ mRNA-seq pipeline 

with default parameters24. Reads were first trimmed to remove Illumina adapters and 

polyA tails using bbduk from BBMap25 v36.20. Trimmed reads were then aligned to 

GRCh38 reference human genome using STAR26 v2.5.2a. Between 50-98% of the 

initial reads were retained after alignment and quality check. Gene expression was 

quantified using HTSeq27 v0.6.1p1 and the GDC h38 GENCODE v22 GTF annotation 

file. To account for differences in sequencing depth across regions raw counts were 

normalised to the counts-per-million (CPM) gene expression unit calculated as: 

567!" =
85!"

∑ 85!##
× 10$ 

where 85!" is the raw read count of gene (=) in region ('). Since for samples UH1-UH16 

RNA-seq was performed in six batches, potential batch effect was corrected using 

removeBatchEffect function from the Limma package28 v3.36.5 on the log2-

transformed CPM matrix with default parameters. 

Differential gene expression between tumour groups was assessed using 

DESeq229 v1.20.0 from the raw read counts with default parameters with alpha set to 

5%. To account for the experimental and clinical variability across samples 

(Supplementary Table 1), uncorrelated batch and clinical co-variates were included in 

the analysis (discovery cohort: batch effect, prior lines of treatment and Lynch 

syndrome in the comparison of DB- and nDB-CRCs of the; batch effect in the 

comparison of hypermutated and non-hypermutated CRCs. Validation cohort: prior 

lines of treatment, Lynch syndrome, treatment type and TNM staging).  

A gene was considered as differentially expressed if DESEq2 Wald test FDR 

was <5% and had a fold change |>2|. Differentially expressed genes were used for 

pathway enrichment analysis in the three comparisons using MetaCore v20.3 build 

70200 (Clarivate Analytics). Pathway enrichment was assessed through over-
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representation analysis based on a hypergeometric test. A pathway was considered 

enriched if the FDR was <10%. 

 
TCR sequencing  

TCR-seq was performed in 28 macro-dissected regions in slides I1-5 of the 

discovery cohort, after excluding UH1, UH4 and UH5 because DNA was not sufficient 

(Supplementary Table 2). For UH12 all four regions were sequenced while for UH16 

the two high and low CD3+ regions were merged. For all remaining samples, the two 

regions corresponding to those used for IMC and WES were used. 

DNA was extracted from macro-dissected regions (Supplementary Figure 1G) 

using GeneRead DNA FFPE kit (Qiagen) and submitted to Adaptive Biotechnologies 

(Seattle, USA) for non-lymphoid tissue (survey level) TCR-seq using a two-step, 

amplification bias-controlled multiplex PCR approach30. In the first step, V and J gene 

segments encoding the TCR beta CDR3 locus were amplified using reference gene 

primers to quantify total nucleated cells and measure the fraction of T cells in each 

sample. In the second step, proprietary barcodes and Illumina adapters were added. 

Finally, CDR3 and reference gene libraries were sequenced according to the 

manufacturer’s instructions. 

Raw reads were de-multiplexed and processed to remove adapter and primer 

sequences, identify and remove primer dimer, germline and other contaminant 

sequences. Resulting reads were clustered using both the relative frequency ratio 

between similar clones and a modified nearest-neighbour algorithm, to merge closely 

related sequences to correct for technical errors introduced through PCR and 

sequencing. The resulting reads were sufficient for annotating the V(N)D(N)J genes of 

each unique CDR3 and the translation of the encoded CDR3 amino acid sequence. V, 

D and J gene definitions were based on annotation in accordance with the IMGT 

database (www.imgt.org). The set of observed biological TCR Beta CDR3 sequences 

were normalised to correct for residual multiplex PCR amplification bias and quantified 

against a set of synthetic TCR Beta CDR3 sequence analogues30. Data was analysed 

using the immunoSEQ Analyzer toolset. 

 
Detection of PD1-PDL1 interaction in situ  
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A total of 58 regions in slides K1-2 of the discovery cohort (Supplementary Table 

2) were submitted to FASTBASE Solutions (Derio, Spain) to measure the interaction 

between PD1 and PDL1 in situ via amplified Förster Resonance Energy Transfer (A-

FRET)31. Slides K1 were incubated overnight at 4 ºC with anti PD1 primary antibody 

(Supplementary Table 5) for donor only analyses. Slides K2 were stained with both 

anti PD1 and anti PDL1 primary antibodies for donor and acceptor analyses. Slides K1 

were subsequently incubated with anti-mouse Fab-ATTO488 and slides K2 with both 

anti-mouse Fab-ATTO488 and anti-rabbit Fab-HRP. Alexa594 conjugated tyramide 

was added to slides K1 and K2 at 1/100 dilution in presence of 0,15% H2O2 and 

incubated at room temperature in the dark for 20 minutes. After washing in PBS and 

PBST twice, slides were mounted using Prolong Diamond Antifade Mount (Thermo 

Fisher), sealed and incubated at room temperature overnight before being transferred 

to a 4 ºC refrigerator for storage. FASTBASE Solutions SL frequency domain FLIM 

automated software programme was used to measure the excited-state lifetime of 

donor fluorophore (ATTO488) in both K1 and K2 slides. FRET efficiency E.was 

calculated as:  

? = [1 − (&CD/&C)	,100] 

where tDA is donor lifetime in Slide K1 and tD is donor lifetime in Slide K2. tDA and tD 

values were collected for 793 optical fields of view (FOVs, with a median of 12 FOVs 

per region) in total to cover the whole surface of the regions analysed. Data were then 

collected in .csv files and imported into a macro spreadsheet programmed to calculate 

the A-FRET efficiency in each FOV. The results were finally expressed as the median 

FOV values per region. 
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Supplementary Figure 1. Experimental workflow, region selection and CD3 

quantification 
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A. Experimental workflow for the analysis of the validation cohort. Eleven sequential 

sections from FFPE blocks of UH17-UH23 and UH25-UH27 were used for 

multiregional CD3 IHC (slides A, E and G), IMC with panel II (Table S5, slide C), mIF 

(slide D) and RNA-seq (slides F1-5). For the three biopsies (UH24, UH28, UH29) only 

IHC, IMC and mIF were performed. 

B. Selected regions on slide A. Starting from slide A, CD3 staining was used by a 

board-certified pathologist (M.J.S.) to select multiple regions per sample with variable 

CD3 infiltrates and at the invasive margins of the tumour. For UH12, UH13, UH15, 

UH16 two different blocks were used. For biopsies (UH24, UH28 and UH29) shown 

are the IMC-ablated regions. Scale bar = 2mm. 

C. Schematic of CD3 quantification. All slides immune-stained with anti-CD3 antibody 

were imported into QuPath4. Regions selected by the pathologist in slide A were 

projected into all other immune-stained slides and divided into 0.09 mm2 tiles. CD3+ 

cells were quantified within each tile and the CD3 content of a region was defined as 

the median number of CD3+ cells per mm2 across all tiles. 

D. Quantification of CD3+ cells/mm2 from IHC staining in slides E and G in 30 regions 

of patients from the validation cohort using Qupath4. Values were normalised within 

each patient. Grey boxes indicate missing values. 

E. Correlation between the T cell signature normalised enrichment scores (NES) 

from32 and TMB in 56 hypermutated CRCs from TCGA. Pearson correlation coefficient 

and associated p-value are shown. ssGSEA, single sample gene set enrichment 

analysis. 

F. Comparison of clonality of immunogenic mutations between four DB and two nDB-

CRCs with purity >30% from33. For two samples (Subjects 33 and 36) the reference 

counts were randomly sampled from the rest of samples and the variant counts were 

subsequently calculated. Given the lack of copy number data, PyClone23 was ran with 

minor_cn=0, major_cn=2, prior=total_copy_number. Due to lack of expression data, 

immunogenic mutations were considered as expressed if contained in 11,056 genes 

expressed in >30% of TCGA CRCs. 

G. Macro-dissection for DNA and RNA extraction. Regions selected in slide A were 

used as a reference for the macro-dissection of all slides used for DNA and RNA 

extraction. Each slide was aligned to slide A using a stereo microscope and regions 

were manually dissected with a needle. The collected tissue was subsequently used 

for DNA or RNA extraction
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Supplementary Figure 2. Genetic and TME features in DB and nDB-CRCs 

 

A. Predicted damaging alterations (truncating and missense damaging alterations, 

double hits, gene amplifications leading to increased expression, gene homozygous 

deletions) and immunogenic mutations of representative genes from a manually 

curated list of 647 genes including common CRC drivers34; genes whose alterations 

are immunogenic35, 36; genes that modify the TME37-41, modulate the response to 

immune checkpoint inhibitors38-40, 42-45, or encode members of WNT41, 46 and IFN-

gamma pathways (MetaCore Clarivate Analytics), components of the antigen 

presentation machinery via the major histocompatibility complex (MHC) class I47, 48 or 

class II (MetaCore, Clarivate Analytics), and immune checkpoints49, 50.  
B. Clonality of B2M truncating mutation (T91fs) in all sequenced regions from two DB 

and one nDB-CRCs. Clonality was measured using Pyclone23 after correction for purity 

and copy number alterations (Methods). 

C. Comparison of tumour and stroma B2M+ areas between DB- and nDB-CRCs in all 

analysed samples. Distributions were compared using two-sided Wilcoxon rank sum 

test and the number of patients in each group is reported in brackets. 
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TME, tumour microenvironment; ICB, Immune Checkpoint Blockade; IFN, Interferon; 

MHC, Major Histocompatibility Complex; IC, Immune Checkpoints. 
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Supplementary Figure 3. Proportion of tumour and stroma from IMC across samples  

 

A. IMC experimental workflow. Representative 1mm2 areas in slide B were projected 

into slide C using the macroscopic tissue structure as a reference. Slide D stained with 

the IMC antibody panel was loaded in the Hyperion Imaging System (Fluidigm) for 

regional ablation. 
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B. Proportions of tumour areas and cells in ablated regions of the discovery cohort. 

Areas not covered by stroma or tumour are depicted in grey.  

Comparison of the proportion of tumour (C) and stroma cells (D) over total cells 

between DB and nDB-CRCs or hypermutated and non-hypermutated CRCs in the 

discovery cohort. 

E. Proportions of tumour areas and cells in ablated regions of the validation cohort. 

Areas not covered by stroma or tumour are depicted in grey.  

F. Comparison of the proportion of tumour and stroma cells over total cells between 

DB and nDB-CRCs in the validation cohort. 

All distributions were compared using two-sided Wilcoxon rank sum test and the 

number of patients in each group is reported in brackets. 

G. IMC-derived images of tumour-associated markers (E-cadherin and Pan-Keratin), 

Ki67 and DNA staining in two representative hypermutated and non-hypermutated 

CRCs. Scale bar = 100µm. 
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Supplementary Figure 4. Protein expression heatmaps from single cell clustering 
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Subpopulations (clusters) of T cells, dendritic cells, macrophages, B cells, neutrophils, 

PD1+ cells, and PDL1+ cells were identified based on the expression of phenotypic 

markers using Seurat9 in the discovery cohort. For each subpopulation, the mean value 

of 30 markers of IMC Panel I (Table S5) across the cells in that cluster is reported. For 

each cluster, the number of cells is reported in brackets. Single cell clustering was 

performed separately for DB vs nDB-CRCs (A) and hypermutated vs non-

hypermutated CRCs (B). 
C. T cell subpopulations in the validation cohort. In this case, T cells were clustered 

using 17 markers and the mean value of 27 markers of IMC Panel II (Table S5) across 

the cells in that cluster is reported. 

For each cell population the colour scale was normalized separately for each marker 

across all analysed clusters. 
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Supplementary Figure 5. CD74+ macrophage identification and phenotyping 

 
A. CD74+ macrophages in the discovery cohort identified by applying 0.1 threshold on 

CD74 expression. The mean intensities of IMC markers in CD74+ and CD74- 

macrophages are reported. Colour gradient was normalised across all markers and 

cells. 

B. Overlap between CD74+ macrophages identified with 0.1 CD74 expression and 

cluster 3 in the discovery cohort. 

C. Comparison of CD74+ macrophages between DB- and nDB-CRCs in the discovery 

cohort. CD74+ macrophages were identified by applying a threshold of 0.1 CD74 

expression to all macrophages. 

D. Overlap between CD74+ macrophages expressing M1 and M2-associated markers. 

Used thresholds after histological inspection of IMC images were: 0.2 for CD40; 0.1 

for CD16; 0.15 for CD163 and 0.1 for CD206. 

All distributions were compared using two-sided Wilcoxon rank sum test and the 

number of patients in each group is reported in brackets  
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Supplementary Figure 6. Comparison of PD1 and PDL1 gene and protein expression 

 
Comparison of normalised PD1+ and PDL1+ areas between DB and nDB-CRCs from 

the discovery (A) and validation (B) cohorts.  
C. Comparison of normalised PD1+ and PDL1+ positive areas in all samples analysed. 
Comparison of PD1 and PDL1 Counts Per Million (CPMs) expression levels in the 

discovery (D) and validation (E) cohorts. For the discovery samples batch correction 

was applied (Methods). 

F. PD1 and PDL1 gene expression in all regions from all samples analysed. CPMs 

were obtained from RNAseq raw counts and corrected for batch effects. 
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G. Comparison of PD1 and PDL1 gene expression in colon adenocarcinoma (COAD), 

lung adenocarcinoma (LUAD), and skin cutaneous melanoma (SKCM) from TCGA. 

Transcripts Per Million (TPM) were computed from raw read counts. 

H. Percentage of regions with median A-FRET intensity higher than zero in DB and 

nDB-CRCs and hypermutated and non-hypermutated CRCs. Proportions were 

compared using Fisher’s exact test. 

All distributions were compared using two-sided Wilcoxon rank sum test and the 

number of patients in each group is reported in brackets.  
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Supplementary Figure 7. Proliferating and cytotoxic CD8 T cell identification 
 

 
 

A. CD8+GzB+ and CD8+Ki67+ cells in the discovery cohort identified by applying a 

threshold of 0.05 GzB and 0.15 Ki67 expression to CD8 T cells, respectively. The mean 

intensities of IMC markers in CD8+GzB+ or CD8+Ki67+ and CD8+GzB- or CD8+Ki67- T 

cells are reported. Colour scale was normalised across all markers and cells. 

Overlap between CD8+GzB+ cells and cluster 1 (B) or CD8+Ki67+ cells and cluster 2 

(C) cells in the discovery cohort. Positive cells were identified using and expression 

threshold as described in (A). 
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Supplementary Figure 8. High-density CD74+ macrophage clusters 
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High-density cluster maps of CD68+CD74+ cells in 52 IMC regions from hypermutated 

CRCs of the discovery (A) and validation (B) cohorts. Clusters were identified from cell 

pixel coordinates as portions of the ablated region with ≥5 CD68+/CD74+ cells per 

10,000!m2 (Methods). CD8+/GzB+ and CD8+/Ki67+ cells were subsequently mapped. 

The number of CD68+/CD74+ cells and the number of high-density clusters are 

reported in brackets for each region. 
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Supplementary Figure 9. Examples of interactions between CD74+ macrophages 

and cytotoxic or proliferating CD8 T cells by IMC 
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High-density cluster maps of CD68+/CD74+ cells in representative IMC regions from 

the discovery (A-D) and validation (E,F) cohorts. Clusters identified computationally 

(left panels) as described in Supplementary Figure 8 and in Methods. Red and green 

squares indicate areas of interest that were identified independently via histological 

inspection (middle panels). In these area CD68+/CD74+/PDL1+ cells interact with 

CD8+/Ki67+/PD1+ cells (green) and CD8+/GzB+/PD1+ cells (red). These areas are 

further detailed (right panels) to show the cellular interactions between 

CD68+/CD74+/PDL1+ cells and CD8+/Ki67+/PD1+ cells (green circles) and 

CD8+/GzB+/PD1+ cells (red circles). Images were compiled overlaying single-marker 

images obtained applying a median filter. For each region, number of cells are reported 

in brackets. Scale bar = 50µm.  
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Supplementary Figure 10. Examples of interactions between CD74+ macrophages 

and cytotoxic or proliferating CD8 T cells by mIF 

 
High resolution (40x) images of cellular interactions between CD68+CD74+PDL1+ cells 

and CD8+PD1+GzB+ and CD8+PD1+Ki67+GzB+ cells within high-density clusters of 

CD68+CD74+ cells in representative DB- and nDB-CRCs from the discovery (A,B) and 

validation (C,D) cohorts. Scale bar = 10 µm. 
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