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1 Data

The data used in this study come from three different datasets: the Moving Picture (MP) dataset
[20], the BIO-ML dataset [35] and the dataset from the study by David et al, called DA dataset
in the following [3]. Raw data for MP and D were obtained from MGnify [36], under project IDS
MGYS00002184 and MGYS00001278, while for BIO-ML they were obtained from NCBI, under
project ID PRJNA544527.

The MP dataset contains time-series of stool samples from two individuals, M3 (male) and F4
(female). M3 is sampled for ∼ 1 year while F4 for ∼ 6 months, with approximately daily sampling
frequency. For the BIO-ML dataset, we considered the time-series of stool samples of 10 individuals
(those with long and dense time-series): ae, am, an, ao, ba, bc, bh, bj, cl, co. The length of the time
series varies from 6 months to 1.5 years, and the density varies (daily in the densest series). The DA
dataset contains time-series of stool samples from two individuals, A and B. The two individuals are
sampled over approximately 1 year with approximately daily sampling frequency.

Raw 16S sequences were processed with QIIME. The reads were initially processed with the
split libraries fastq.py script with default parameters, then OTUs were picked using the script
pick closed reference otus.py, relying on UCLUST, with the Greengenes database at 97% similarity
level as reference. We excluded samples with less than 104 reads (13 samples in A and 6 samples in
B), those with more than half sequences unassigned (one sample in A and one in B) and the samples
identified as mislabelled in the original studies.

For individuals A and B from the DA dataset we consider two separate time series before and
after the perturbation period (see Methods, section A): for individual A we consider the pre-travel
(days 0 to 70) and post-travel (days 123 to 364) periods, and for individual B the pre-Salmonella
(days 0 to 150) and post-Salmonella (days 160 to 252) periods. We note that, according to the
original study [3], individual A after the perturbation period goes back to the pre-travel state, while
individual B has a different composition post- Salmonella.

2 OTU selection

For the analyses reported in Fig. 2 and in Fig. S5C and S8, we used OTUs with average relative
abundance > 10−4. This choice is due to the fact that the estimation of Φi(T ) is extremely noisy
for rare OTU. Results are however similar for different thresholds (we tested 10−5, 10−3, 10−2).

For the analyses reported in Fig. 3 and 4, instead, we do not use this threshold as it would
bias the correlation of parameters across-individuals. In fact, if we restricted ourselves to OTUs
above a threshold abundance in both individuals we would bias towards OTUs that have a similar
abundance in the two individuals. However, also keeping all OTUs for which we can estimate the
parameters K and σ would bias the results. In fact, among the very rare OTUs we only observe
those with high σ (the others are either not observed or have too low counts to estimate σ and
K), see Fig. S1. Therefore, including OTUs that are too rare would yield a biased correlation of σ
across-individuals, as the rare OTUs that are observed in both individuals tend to have high values



Figure S1: Observed OTUs with low occupancy (fraction of samples where they are observed) are
biased towards high σ.

of this parameter. Based on the scatter plot of σ and occupancy in Fig. S1, we therefore keep for
the analysis all OTUs with occupancy > 0.2 (and for which it is possible to estimate σ and K).

3 Estimate of Φi from sampled counts

We want to obtain an estimate of the dissimilarity

Φi(t, T ) =

(
λi(t)− λi(t+ T )

λi(t) + λi(t+ T )

)2

(1)

from sampled counts xi(t) and xi(t + T ). The counts xi(t) are a binomial random variable with
success probability λi(t) and number of extractions N(t). When N(t)� 1 and λi(t)� 1, they can
be approximated by a Poisson random variable with rate λi(t)N(t).
If we define di(t, T ) = xi(t) − xi(t + T ) and si(t, T ) = xi(t) + xi(t + T ), we can prove (see below)
that the average of d2i over different realisations of the sampling constrained to a fixed si is

〈d2i |si〉 = si(si − 1)

(
λi(t)N(t)− λi(t+ T )N(t+ T )

λi(t)N(t) + λi(t+ T )N(t+ T )

)2

+ si. (2)

If the number of sampled sequences are the same at the two times (which can be obtained simply
downsampling the sample with larger N), we have

〈d2i |si〉 = si(si − 1)

(
λi(t)− λi(t+ T )

λi(t) + λi(t+ T )

)2

+ si, (3)

that is, for si > 1,

Φi(t, T ) =
〈d2i |si〉 − si
si(si − 1)

= 〈 d
2
i − si

si(si − 1)
|si〉, (4)

corresponding to Eq. (2) of the main text.
Let us now prove (2). Let d = x1 − x2, s = x1 + x2 where x1 and x2 are Poisson variables with

rates µ1 and µ2.
The constrained moments of d can be obtained from the derivatives of the constrained generating
function

Hd|s(v) =
∑
d

P (d|s)evd =
∑
d

P (d, s)

P (s)
evd =

1

P (s)

∑
d

P (d, s)evd. (5)



P (s) is simply the probability of the sum of two Poisson variables with rates µ1 and µ2, which
is itself a Poisson variable with rate µ1 + µ2.

The quantity
∑
d P (d, s)evd can be also computed explicitly using the moment generating func-

tion of d and s:

Hd,s(v, u) =
∑
d,s

P (d, s)evdeus =
∑
d,s

P (x1)P (x2)δ(x1 + x2, d)δ(x1 + x2, s)e
vdeus

=
∑
x1,x2

P (x1)P (x2)ev(x1−x2)eu(x1+x2) =
∑
x1

P (x1)ev+u
∑
x2

P (x1)eu−v

= Gµ1
(u+ v)Gµ2

(u− v),

(6)

where Gµ(h) is the Poisson moment generating function. This can be computed easily:

Gµ(h) =

∞∑
x=0

P (x)ehx =

∞∑
x=0

µx

x!
ehx−µ = e−µ

∞∑
x=0

(µeh)x

x!
= e−µeµe

h

= eµ(e
h−1) (7)

Substituting this result in the expression for Hd,s we get

Hd,s(v, u) = eµ1(e
u+v−1)eµ2(e

u−v−1) = ee
u(µ1e

v+µ2e
−v)−µ1−µ2 = e(µ1e

v+µ2e
−v)(eu−1)+µ1e

v+µ2e
−v−µ1−µ2

= Gµ1ev+µ2e−v (u)eµ1e
v+µ2e

−v−µ1−µ2 .

(8)

Writing Hd,s(u, v) in this form is useful because if we call F−1 the inverse operation to taking the
generating function, we have∑
d

P (d, s)evd = F−1u (
∑
d,s

P (d, s)evdeus) = F−1u (Hd,s(u, v)) = F−1u (Gµ1ev+µ2e−v (u)eµ1e
v+µ2e

−v−µ1−µ2)

= F−1u (Gµ1ev+µ2e−v (u))eµ1e
v+µ2e

−v−µ1−µ2 =
(µ1e

v + µ2e
−v)s

s!
e−µ1e

v−µ2e
−v

eµ1e
v+µ2e

−v−µ1−µ2

=
(µ1e

v + µ2e
−v)s

s!
e−µ1−µ2 .

(9)

Substituting this result in Eq. (5) we finally obtain the expression for the conditional generating
function

Hd|s(v) =
s!

(µ1 + µ2)s
eµ1+µ2

(µ1e
v + µ2e

−v)s

s!
e−µ1−µ2 =

(
µ1e

v + µ2e
−v

µ1 + µ2

)s
(10)

We can thus compute conditioned moments:

〈d〉s =
dH

dv
|v=0 = s

µ1 − µ2

µ1 + µ2

〈d2〉s =
d2H

dv2
|v=0 = s(s− 1)

(
µ1 − µ2

µ1 + µ2

)2

+ s ,

which corresponds to equation 2.



4 The time average of the averages over realisations is ap-
proximated by time average of single realisations

Let [·] denote the average over time, i.e. [X] := 1
T

∑
t xt, and 〈·〉 denote the average over realisations.

We want to show that [〈X〉] → [X] when T → ∞. To do that, we can show that the generating
function of the two variables are equal in that limit.
[X] is a stochastic variable with generating function H[X](h) =

∑
[X] P ([X]|{p1, ..., pT })eh[X]. In-

stead, [〈X〉] is deterministic, but we can think of it as a stochastic variable delta distributed around
its value, with generating function F (h) =

∑
x δ(x, [〈X〉])ehx = eh[〈X〉].

H[X](h) =
∑
[X]

P ([X]|{p})eh[X] =
∑
[X]

∑
x1,...,xT

p(x1, ..., xT |{p})δ([X],

∑
xi
T

)eh[X]

=
∑

x1,...,xT

p(x1, ..., xT |{p})eh
∑

xi
T =

∑
x1,...,xT

T∏
i=1

P (xi|pi)eh
xi
T =

T∏
i=1

∑
x

P (x|pi)eh
x
T

=

T∏
i=1

Gx|pi

(
h

T

)
=

T∏
i=1

exp

(
log

(
Gx|pi

(
h

T

)))
= exp

(
T∑
i=1

log

(
Gx|pi

(
h

T

)))

' exp

(
N∑
i=1

h

T
〈X〉

)
= eh[〈X〉],

(11)

where to get the last row we used the fact that logGx
(
h
T

)
is the generating function of the cumulants

of x, therefore when T � 1 we can expand it as h
T 〈X〉+

1
2

(
h
T

)2
var(X)+. . . and we cut the expansion

after the first term.

5 Expected value of Φa,b
i under Gamma fluctuations

The expected value of the dissimilarity of OTU i across two individuals a and b can be obtained by
taking the expected value of

Φa,bi (t, T ) =

(
λai (t)− λbi (t+ T )

λai (t) + λbi (t+ T )

)2

, (12)

where the abundances λai and λbi are independent Gamma distributed random variables with different
parameters, (Ka, σa) and (Kb, σb). The expected value can be derived analytically with Wolfram



Mathematica, and yields

E(Φa,bi ) = f(K1,K2, σ1, σ2) = − 1

K2
2 (1− σ2)σ3

2

[
σ2
2

(
−K2

1 (σ1 − 2)− 2K1K2(σ1 − 2)(σ2 − 1)

+K2
2 (σ2 − 2)(σ2 − 1)

)
+

2

σ2
1

(
K2σ2
K1σ1

)2/σ1

Γ

(
2

(
1

σ1
+

1

σ1
− 1

))
×
(
σ1(σ2 − 2)[−2K1K2(σ1 − 2)(σ1 − σ2)(σ2 − 1) +K2

1 (σ1 − 2)(σ1σ2 − σ1 − σ2)

+ 2K2
2 (σ2 − 1)(σ1σ2 − σ1 − σ2)]2F1

(
2

σ1
,

2

σ1
+

2

σ2
− 1;

2

σ1
+

2

σ2
; 1− K2σ2

K1σ1

)
1

Γ(2/σ1 + 2/σ2)

− 2σ2(K2
1 (σ1 − 2)((σ1σ2 − σ1 − σ2) + 2K1K2(σ1 − 2)− 2 + (σ2 − 1)

+ 2K2
2 (σ1 + σ1(σ2 − 2)σ2

2 + σ2(−3 + (5− 2σ2)σ2)))

×2 F1

(
2

σ1
+ 1,

2

σ1
+

2

σ2
− 1;

2

σ1
+

2

σ2
; 1− K2σ2

K1σ1

)
1

Γ(2/σ1 + 2/σ2)

)]
,

(13)

where 2F1 is the ordinary Hypergeometric function.

6 Results are robust to variation of the threshold slope used
to identify increasing Φi(T )

For the results shown in Figures 2C and D and S5C, we identified OTUs with increasing Φi(T ) by
using a threshold slope different for each individual (see Methods). Results remain qualitatively
similar if we use a common threshold for all individuals, defined as the median of the individual
thresholds, see Fig. S2. The main differences are seen for individuals A before travel and B after
Salmonella, as they have an individual threshold that is much larger that the median threshold.

7 Results are robust to variation of the threshold value of
D+ and D− used to identify jumps of K

The threshold value of D+ and D− (Dthres = 40) used in the main text to identify jumps of the
carrying capacity K was chosen based on a good trade-off between false-positive and false-negative
identifications, as judged by eye-inspection. However, results are qualitatively similar if the threshold
is varied between 30 and 70, see Fig. S3.

8 Variance of the carrying capacity variability ζ

We hypothesized that the carrying capacity of an OTU i can be modelled as

Ki = K̄iζ, (14)

where K̄i is an OTU-specific carrying capacity and ζ is a lognormal random variable with mean 1 and
variance that is the same for all OTUs, independent from K̄i. To verify this assumption we computed
K̄i and var(ζ) for the OTUs that are present in all 10 individuals of BIO-ML. For each OTU, we
obtained K̄i as the average of the Ki estimated in each individual. Then, inverting Eq. (14) we
obtained 10 values of ζ for each OTU, of which we computed the variance. The obtained variances
are plotted in Fig. S4A against K̄i. Although the obtained variances display a pattern, with larger
variances corresponding to intermediate carrying capacities, such pattern can be explained simply
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Figure S2: Robustness of results when the threshold slope used to identify increasing Φi(T ) is the
median of the individual thresholds used in the main text. A) Average of Φ̃(T ) over OTUs with Φ̃
classified as flat (red curve) and increasing (black curve), for individual ‘bh’. Shaded areas represent
one standard deviation intervals; B) Percentage of OTU whose Φ̃(T ) is classified as flat in each
individual; C) Percentage of OTUs where we detect a jump in K and whose Φ̃ is increasing (orange
bars), where we detect a jump in K but Φ̃ is flat (yellow bars) and where Φ̃ is increasing but we
detect no jump in K (blue bars).
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Figure S3: Robustness of results to variation of the threshold used to identify peak of D+ and D−.
Panels A-D: Percentage of OTUs where we detect a jump in K and whose Φ̃ is increasing (orange
bars), where we detect a jump in K but Φ̃ is flat (yellow bars) and where Φ̃ is increasing but we
detect no jump in K (blue bars), for four different value of the threshold: 30, 50, 60, 70.



by an observation bias. In fact, OTUs with low K̄i are observed in all 10 individuals only if var(ζ) is
sufficiently low, otherwise the Ki in some individuals will fall under the observation threshold. On
the other hand, when K̄i is large the variance is bounded as Ki < 1. In fact, we can reproduce the
empirical pattern from carrying capacities extracted from Eq. (14) with constant var(ζ). We extract
10000 values of K̄i from a lognormal distribution, and for each of these we compute 10 values of Ki

using var(ζ)=5. We mimic observation by keeping only the OTUs such that Ki > 10−5 in all 10
individuals. On these, we perform the same analysis performed on the empirical data. The results,
in Fig. S4B, show a pattern similar to the one found in empirical data. Therefore, we conclude
that the values of Ki observed in the data are compatible with the model in Eq. (14) with var(ζ)
independent of K̄i.

10-5 10-4 10-3 10-2 10-1 100
0

2

4

6

8

10

va
r(
ζ)

10-5 10-4 10-3 10-2 10-1 100
0

2

4

6

8

10
A B

va
r(
ζ)

Figure S4: A) Variance of ζ plotted against K̄i for OTUs common to the 10 individuals of BIO-
ML. Each circle is an OTU. Red circles are the average in bins of logarithmic size; B) Relationship
between ζ and K̄ obtained from simulated data, according to Eq. (14).

9 Stochastic logistic model with switching carrying capacity

The model that we propose to describe the dynamics of the abundance of OTUs is a compound
stochastic process: a stochastic logistic model whose carrying capacity itself evolves as a Markov
process. The values that the carrying capacity assumes are distributed according to a lognormal,
and are independent from the previous value of the carrying capacity and from the current value
of the abundance. We can therefore see the compound process as a succession of stochastic logistic
models with different carrying capacities, each of whom admits a (different) stationary distribution.

Concerning the stability of the compound process, we can refer to the literature related to
“switched Markov processes”. Luo & Mao 2007 [24] show that a system of Lotka-Volterra equations
with switching parameters and environmental white noise has a set of desirable properties: the
population does not go to extinction with probability 1, it is stochastically ultimately bounded, and
the second moment is also bounded. Our model is a sub-case of the one they consider, where we have
a single logistic equation with environmental noise, and where only the carrying capacity switches,
while the growth rate and the noise intensity remain always constant.

The only, yet essential, difference between the setting of [24] and ours is the fact that, in our
case, the state space of the Markov process of the carrying capacity is infinite, while the literature
on switched Markov process considers a finite state space. However, the choice of a finite state space
does not affect the prediction of our model (and its ability to reproduce the statistical features of
the data) provided that the number of values of K is large enough. More precisely, differences of
K which are smaller than the typical variation of abundance due to environmental stochasticity



are negligible. One can for instance consider a finite set of values of K randomly sampled from a
Lognormal distribution, such that the difference between neighbouring values of K is small enough.

We also verified numerically (fig. S5) that the distribution P (λ, t) of the compound process, for
t larger than the average time between switches of K, converges to the same distribution regardless
of the initial conditions.
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Supplementary figures and tables

ae 0.6439 cl 0.0000*
am 0.0341* co 0.2162
an 0.8546 M3 0.0001*
ao 0.0000* F4 0.0000*
ba 0.2872 A bef. travel 0.0000*
bc 0.0094* A aft. travel 0.0008*
bh 0.0009* B bef. Salm. 0.0001*
bj 0.7376 B aft. Salm. 0.9248

Table S1: P-values of hypergeometric test. Values with a * reject the null hypothesis that OTUs
with transitions in the parameter K are not over-represented among OTUs with increasing Φ(T ).
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Figure S6: A and B: Examples of abundance time-series from individual ’M3’ of the dataset Moving
Pictures displaying sudden jumps in relative abundance, respectively, around day 5 and around day
300 (compare with corresponding peaks in Fig. S9); C) Percentage of OTUs where we detect a jump
in K and whose Φ̃ is increasing (orange bars), where we detect a jump in K but Φ̃ is flat (yellow
bars) and where Φ̃ is increasing but we detect no jump in K (blue bars).
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Figure S7: Example of our method to identify jumps in the abundance time series. A time series is
plotted in black, and the corresponding D+ and D− are plotted in grey. Both have a peak (D > 40)
when the relative abundance has a sudden jump. The position of the peak (red dashed line) correctly
identifies the jumping time.
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Figure S8: Examples of cases where Φ(T ) is increasing even though no jump in K is detected (A
and B), or viceversa (C and D). A) No jump in relative abundance can be seen, Φ(T ) has a positive
slope due to noise; B) There is a jump in K but the peaks of D are lower than the threshold we set
(D = 40); C) Two jumps in K are detected, however Φ(T ) is flat; D) One jump in K is detected,
however the change in relative abundance is small and does not yield a significant slope in Φ(T ).
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Figure S9: Histograms of times at which we detect a jump in the carrying capacity K for all
individuals.
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Figure S10: Comparison of the observed dissimilarity Φ̄a,bi of OTU i between a pair of individuals a
and b with its theoretical expected value f(Ka,Kb, σa, σb) computed with the individual parameters
estimated for each individual. Each point represents an OTU. Pairs (M3, F4), (A bef., B bef),
(am,co), (bc,bj) are shown, other pairs are similar.
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Figure S11: Median (over OTUs) of the ratio between the theoretical expectation for the dis-

similarity of an OTU across two individuals, f(K1,K2, σ1, σ2), and its empirical value Φ̄a,bi , plot-

ted against Φ̄a,bi . The theoretical expected value captures typically all the observed dissimi-

larity Φ̄a,bi when individual-specific parameters are considered in the prediction (black circles,
K1 = Ka,K2 = Kb, σ1 = σa, σ2 = σb). The dissimilarity expected only from independent abundance
fluctuations (pink squares, K1 = K2 = K̄, σ1 = σ2 = σ̄) accounts typically for roughly 70% of the
total dissimilarity. The percentage however varies, being larger in individuals that are more similar.
The remaining ∼ 30% of the empirical dissimilarity is mostly explained by the differences in the
parameter K across the two individuals (orange diamonds, K1 = Ka,K2 = Kb, σ1 = σ2 = σ̄), while
the differences in the parameter σ has a smaller role (red triangles, K1 = K2 = K̄, σ1 = σa, σ2 = σb
). Each point corresponds to a pair of individuals from the same dataset.
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Figure S12: Comparison of model predictions with data, as in Fig. 4 of the main text, for two
different values of var(ζ): var(ζ) = 1 in panels A and B, var(ζ) = 10 in panels C and D.
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Figure S13: Percentage of OTU whose Φ̃(T ) is classified as flat in each individual for simulated
time-series (to compare with empirical results in Fig. 2D).
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Figure S14: Example of consistency of parameters K and σ between two halves of a time-series and
between two different individuals. A) and B): Scatter plots of, respectively, the carrying capacities
K (A) and the noise intensities σ (B) estimated for each OTU on the first and second half of the
time series of individual ’bh’ from the dataset BIO-ML. Each point represents an OTU. The 1:1 line
is shown as reference; C) and D): Scatter plots of, respectively, the carrying capacities K (C) and
the noise intensities σ (D) estimated for each OTU in individuals ’am’ and individual ’bh’ from the
dataset BIO-ML. Each point rep-resents an OTU. The 1:1 line is shown as reference.
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