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Supplementary Text  

Individual-based lattice model   

Summary  

We developed an individual-based lattice model that inferred parameters from the single- 

molecule experimental information from Slimfield microscopy to predict the collective behaviour  

(LLPS, FRAP) at the continuum level (31, 34). The key ingredients to this model are 1) a  

discretization of the elongated cell geometry on a 1×3 µm2 square lattice; 2) the diffusivities of- and  

interactions between proteins, and 3) the distinction between two classes of proteins, namely those  

that drive the formation of aggresomes by LLPS, and those that only weakly bind to the aggresomes  

and can serve as probes for aggresome formation (we interpreted the candidate aggresome  

biomarker proteins of EGFP labeled HslU, Kbl and AcnB as LLPS probes). In our modeling, we  

represented LLPS-driving proteins by a single mean-field-type protein ‘A’, and the probes by a  

protein `B’. As we show below, this distinction enabled us to describe LLPS by the number of A- 

proteins, NA, its interaction energy, εAA, its diffusivity, DA, but also the numerical choice of a lattice  

spacing, Δx, which affects the surface tension of the aggresome. For a diffusion length of Δx=4 nm,  

two aggresomes form in the experimentally relevant time scale of 1-2 hours with a diffusivity of  

DA =0.2 μm2/s. Regardless of the lattice spacing, the FRAP recovery curves require small  

diffusivities of the order DB=10–4 -10–3 μm2/s for the probes; our simulations are carried out at a  

computationally more feasible Δx=20 nm and DA =6·10–3 μm2/s (details given below).  As long as  

the number of B-proteins, NB, remains sufficiently low, the FRAP curves can be described  

independently by a binding energy εAB, the diffusivities inside, DB,in,  and outside the aggresome,  

DB,out, and the position and radius of the simulated laser that photobleaches the B-proteins. Below,  

we first detail the algorithm, then the choice of parameters to simulate LLPS, and finally the choice  

of parameters to simulate FRAP. Finally, we used our results to discuss the experimental variations  

in the FRAP curves measured for HslU, kbl and AcnB.  

  

Algorithm  

To model LLPS, the A-proteins were located at lattice sites and interacted through an attractive  

nearest-neighbour interaction energy εAA. In 2D, LLPS occurred when εAA was larger than the  

critical value of approximately 1.8 kBT, with kB the Boltzmann constant and T the absolute  

temperature (33) (the critical value of εAA depends on the type of lattice used, e.g., hexagonal, 2D,  

3D, etc.: εAA should be considered a qualitative tuning parameter rather than an energy that is  

directly related to the structure of a real protein). Just above the critical value, the domain purity is  

low and the interfaces are wide and phase separation is difficult to distinguish, especially in the  

confined cell geometry. For increasing values of εAA the domain purity increased and the interfaces  

became sharper (the interface width is directly determined by Δx, and, like εAA, is dependent on the  

type of lattice used). Using a combined choice of the value of εAA, Δx and the number of proteins  

A, NA, the experimental features of aggresome formation can be qualitatively reproduced. That is,  

in a range of Δx of 10-40 nm we found that a value  εAA = 2.2 kBT and an A-concentration of up to  

100%×NA / (1×3 µm2 / Δx2)=40% A-rich droplets in an A-poor environment were formed. In our  

simulations, we included NA=2,350 A proteins on a 50×150 lattice (the concentration is  

approximately 31.3%). For <2,000 A proteins, droplets mostly grew by ripening in contrast to the  

experiments where droplet fusion is observed.  

In addition to protein A, our simulations also included 200 B protein molecules that probe the  

LLPS.  This number was chosen to be sufficiently small to not affect the dynamics of A, but  

sufficiently large to collect enough statistics. This implies that within our model differences in copy  

number only affect the overall stoichiometry, but does not alter the physical trends; the number of  

B protein molecules in the simulation need not reflect the actual experimental copy number. In  

order to facilitate the diffusion of probe B into A-rich droplets, protein B may occupy the same site  

as protein A. In fact, diffusion of B into the aggresomes is promoted by an attractive interaction  



 

energy εAB. The binding energy primarily affects the rate by which B may escape the aggresome 

and the partition of B inside, cin, and outside, cout, the aggresome. At thermal equilibrium the 

chemical potentials inside, µin, and outside, µout, the aggresomes are equal and given by µin = ΔH + 

kBT ln cin  =  µout = ln cout, with  ΔH the binding enthalpy of protein B to the aggresome, so 

 
𝑐𝑖𝑛

𝑐𝑜𝑢𝑡
= 𝑒𝑥𝑝(𝛥𝐻 𝑘𝐵𝑇⁄ )        (1) 

Collecting all interaction terms, the total internal energy is given by 
   𝑈 = 𝑁𝐴𝐴𝜀𝐴𝐴 + 𝑁𝐴𝐵𝜀𝐴𝐵         (2) 

with NAA the number of nearest A-A neighbours and NAB the number of lattice sites shared by A 

and B. This interaction energy biased the diffusion dynamics, which was modelled by enabling 

proteins to hop to the nearest-neighbour lattice sites. Using a simple kinetic Monte Carlo algorithm 

(31, 59), at every time step, with a time increment discussed below, a random protein and hop 

direction was selected out of a list of Nproc potential processes (pseudo-random numbers are 

generated using the SIMD-oriented Fast Mersenne Twister (60)). If the hop was not forbidden (a 

site may not contain more than one A or B protein), the rate, r, of the process was calculated (see 

below). If the rate equals the maximum rate rmax (note that rmax corresponds to the bare hopping 

frequency, while interactions may only slow down the dynamics: r ≤ rmax), the rate is accepted. If 

it is smaller, the rate is accepted but with a probability r/rmax. Regardless if a process is accepted or 

rejected, time is updated as 
𝛥𝑡 =

− ln𝑢

𝑁𝑝𝑟𝑜𝑐𝑟𝑚𝑎𝑥
                             (3) 

with u a uniform random number, 0<u≤1.   
The rate of each process depends on which protein hops, as well as on the local environment of the 

protein. In general, the rate is given by 

 𝑟 = 𝜈 ⋅ 𝑚𝑖𝑛(1, 𝑒𝑥𝑝(−𝛥𝑈 𝑘𝐵⁄ 𝑇))  (4) 

according to the Metropolis algorithm. The prefactor ν is, in absence of interactions, related to a 

diffusivity D as ν=D/Δx2. In our simulations with  Δx=20 nm, we used DA=6·10–3µm2/s to match 

the experimental time scale of the order of an hour to form two aggresomes (for Δx=4 nm the more 

realistic value of DA=0.2 µm2/s may be used; this would increase the simulation time by a 

factor >3000). The FRAP recovery curves are virtually unaffected by the lattice spacing with fixed 

diffusivities of B  DB,in=2 10–4 µm2/s for when B hops between lattice sites that are co-occupied by 

A,  DB,out=10–3 µm2/s when B hops between lattice sites that both do not contain A, and D=(DB,in + 

DB,out )/2 if one of the sites contain A.  
 
Modelling of LLPS 

We quantified the progress of LLPS using a characteristic length scale, R (t), obtained from 

the structure factor (14). The structure factor, S (q), with q the wavenumber, was obtained by taking 

the Fourier transform of the configuration of the A proteins (visualised by the images in Fig. 3 and 

Fig. S6) and taking the angularly averaged square of the Fourier transform. The structure often had 

a low signal-to-noise ratio, and a numerically more robust value was obtained using the inverse 

Fourier transform, which is the correlation function, C(r) as a function of the distance r.  In line 

with our previous work (31) we used the first minimum of C(r) to define the characteristic length 

scale. The measures S(q) and C(r) were displayed in Fig. S6A and S6B, respectively, for the 

simulation shown in Fig 3A in the main text.  
To collect statistics, we ran every simulation for various random number seeds. While these 

may lead to qualitatively different late-stage (at the stage the droplet size approaches the size of the 

cell) structures, see Fig. S6C, for early times we expected the length scale to increase according to 



the usual relation R(t)–R0 ~ t1/3 characteristic for Ostwald ripening and Brownian coalescence (35). 

Indeed, in Fig S4D we averaged this quantity (with R0=0.03, 0.06 and 0.12 μm for Δx=10, 20, 40 

nm, respectively) over 10 simulations and plotted it against time. We find that 𝑅(𝑡) − 𝑅0 ∝
(𝐷𝐴 𝑡 𝛥⁄ 𝑥2)1 3⁄  up to a plateau where typically two aggresomes are formed. We have verified that 

the addition or removal of the B-proteins (up to 2.1 v%; well above the experimental concentration) 

did not significantly affect this growth curve; neither did the presence of an excluded volume region 

that may represent the nucleoid (Movie S3). The plateau is reached after approximately an hour 

when DA=6·10–3 μm2/s and Δx=20 nm. We extrapolate that the experimental value DA=0.2 μm2/s 

may be used when the lattice spacing is as small as Δx=4 nm. This value may slightly change when 

different values for εAA would be chosen. Furthermore, both the lattice spacing and εAA alter the 

width of the interface and may affect the respective contributions of Ostwald ripening and droplet 

fusion. Fortunately, the FRAP curves are unaffected by the lattice spacing. Therefore, we have 

chosen a computationally convenient lattice spacing of Δx=20 nm with a low A diffusivity of DA 

=6·10–3 μm2/s. For these values, the qualitative features of the aggresomes (Fig. S6C) and the time 

scale of aggresome formation (Fig. S6D) are in agreement with the experiments.  
 

Modeling of FRAP  
Motivated by our assumption that the dynamics of LLPS and fluorescent recovery could be 

decoupled, we set up idealized simulations where protein B can diffuse and interact with A-proteins 

whose spatial coordinates are kept constant to fix the aggresomes centres at 500 nm from the 

respective poles and their radius fixed at 400 nm (see Fig. S7A). While this size is somewhat larger 

than in the experiments and simulations with mobile A proteins, it does not affect the early stages 

of half-FRAP. We do expect that smaller aggresome sizes lead to a larger amplitude of whole-

FRAP recovery. In Fig. S5B we showed reasonable consistency of the simulated FRAP curves 

between a simulation with Δx=10 nm and Δx=20 nm. In these simulations, we set the outside 

diffusivity to DB,out=10–3  μm2/s, as this gave the correct order of magnitude in the recovery time, 

and manually tuned the inside diffusivity, DB,in, binding energy, εAB, and laser radius, R to match 

the experimental data. The fact that these values are much smaller than the mean values for the 

diffusivity measured (Fig 2B) suggests that the low-mobility tail of the distribution, possibly due 

to heterogeneity in the cytoplasm, determines the recovery on a macroscopic scale. We emphasize 

that a change in the choice of DB,out as well as the position of the laser in the half-FRAP simulations 

affects the final values. In these simulations we used a lattice spacing Δx=10 nm.  
In Fig S7B we investigated the influence of the laser radius on the FRAP transients. While the 

half-FRAP curve was barely affected by variations of 380-400 nm, we found there was a narrow 

window just below 400 nm where the best match between whole-FRAP simulation and experiment 

were obtained. This radius, which was slightly smaller than the radius of the simulated aggresome, 

left some proteins at the rim of the aggresome unbleached and enabled them to govern fast, but low 

intensity, recovery. The need of a slightly smaller focus radius than the aggresome radius seems 

general in our simulations, and was also observed when LLPS and FRAP are simultaneously 

simulated. We speculate in the experiments the broad range of diffusivities also enables a small 

fraction of proteins to swiftly diffuse towards the aggresome and lead to fast initial recovery, and 

the sensitivity of FRAP signal on the laser focus may be weaker.  
In Fig S5C we varied the binding energy, εAB, in the range 1.8-2.6 kBT. In this range, the 

amplitude of the whole-FRAP curve monotonically decreased with an increasing binding energy 

due to an increasing concentration of B proteins inside the aggresome (see Eq. 1). At a value of 

approximately 2.5 kBT the best agreement with the experimental whole-FRAP curve was found. -

For the simulations where LLPS and FRAP were simultaneously modeled (i.e., with mobile A-

proteins, see Fig. 3 in the main text) a value 2.2 kBT gave a better match between the simulation 

and experiment. This suggests that the radius of the aggresomes and impurities (protein A present 

outside the aggresome, and vacant lattice sites inside the aggresome) affect the precise value of the 



binding energy. Indeed using the experimental inside and outside concentrations (see Table S4), 

Eqn. 2 suggests a binding enthalpy of approximately 1.4 kBT.  
In Fig. S7D we varied the diffusivity of protein B inside the aggresome in the range 

1-5×10-4 µm2/s while keeping the outside diffusivity constant at 10–3 µm2/s. In this case, the whole 

FRAP curve remains virtually unaffected, while the half FRAP recovery shift on the time axis 

proportional to the value of DB,in.  Using these simulations, we estimated the inside diffusivity to 

be approximately 2×10–4 µm2/s. Like the value of the outside diffusivity, this rather small value 

suggests that heterogeneity/distribution in mobility in the cytoplasm limits the macroscopic 

recovery dynamics. 
In summary, for a fixed bleaching position and radius, the simulated FRAP curves can be 

parameterized using the diffusivity of the probe protein inside and outside the aggresome, and the 

binding energy. In terms of these parameters we then interpreted the variations in the FRAP curves 

measured for the all three proteins HslU, Kbl and AcnB shown in Fig. S7E. Given that the half-

FRAP curves are predominantly determined by the inside diffusivity, and consequently have a ~t1/2 

time dependence, we shift the time axis such that the half-FRAP data collapses onto a master curve 

FRAP=At1/2. We remark that the whole-FRAP recovery is achieved by a combination of diffusion 

inside the aggresome, exchange of proteins with the cytoplasm at short ranges and exchange of 

proteins between the two aggresomes at a long range: the apparent t0.21 power law fitted to the 

whole-FRAP data is expected to be a purely heuristic effective fit to the model for all these 

processes combined. Figs. S5F-S5H show that after collapsing the half-FRAP data onto the master 

curve, the whole-FRAP data is now only affected by the outside diffusivity and by the binding 

energy. Indeed, if the outside diffusivity is low, then protein transport to the bleached area is small 

and the vertical offset of the whole FRAP curve decreases. If the binding energy is high, the protein 

concentration outside the aggresomes is low and the whole-FRAP signal also has a lower amplitude.  
By applying this method to the experimental data we have obtained Fig S6H. Collapsing the 

half-FRAP data onto the master curve yielded estimates for the inside diffusivities of Kbl and AcnB 

to be 0.8 and 0.4 times the inside diffusivity of HslU, respectively. Further, the whole FRAP 

intensity decreased from Kbl to HslU to AcnB. The differences in the protein diffusivities may 

originate from differences in size and (energetic or hydrophobic) interactions with its environment. 

Within our model, we interpret that this decreased recovery rate originates from a lower 

concentration and/or a lower diffusivity of the respective proteins outside the aggresomes. 

 
  



  

 

Fig. S1. Inducing HokB to stimulate aggresome formation. 

(A) Brightfield images showing disassemble of ATP-dependent aggresome (black arrow) when 

cells experience fresh LB media. (B) Colocalization degree of brightfield dark foci and fluorescent 

foci of HslU-EGFP, Kbl-EGFP and AcnB-EGFP after 24 hrs culture. (C) Cellular ATP 

concentration as a HokB induction time. (Insert: brightfield images of the cell before and after 

HokB induction, error bar indicates SD.) (D) Colocalization analysis of HslU-mCherry & Kbl-

EGFP fluorescent foci and HslU-mCherry & AcnB-EGFP fluorescent foci after 5 hrs HokB 

induction (only cells with fluorescent foci in both mCherry and EGFP channels were analyzed, 

N=20 for each group, error bar indicates SD).  (left) Pearson’s correlation coefficients of HslU-

mCherry fluorescent foci and Kbl-EGFP fluorescent foci of cells overexpressing HokB before and 

after rotating HslU-mCherry image by 90 degrees. (right) Pearson’s correlation coefficients of 

HslU-mCherry fluorescent foci and AcnB-EGFP fluorescent foci of cells overexpressing HokB 

before and after rotating HslU-mCherry image by 90 degrees.  
  



 

  

Fig. S2. HslU stoichiometry and circularity 

(A) Kernel density plots of stoichiometry of HslU-EGFP per focus from tracks found from 500 

frames until the end of imaging at different HokB induction stages. (B) Kernel density plots of 

stoichiometry of HslU-EGFP per focus from tracks found at the end of photobleach process (from 

1500 frames of the start of laser illumination until the end) at different HokB induction stages. All 

the peaks are around 1, which confirmed that the tracks for defining Dg are single molecules. (C) 

Circularity of single-molecule spots and surface-immobilized EGFP.  



  

Fig. S3. HslU mobility 

(A) Time versus MSD relations at the different HokB induction stages. The maximum observed 

mean average MSD values in the plots were used for defining diameters of aggresomes at the 

different HokB induction stages. (B) PALM imaging of live HslU-mMaple3 cells at late stage: 

average intensity projections under widefield 488 nm (green, left) and photoswitching 405 nm + 

561nm wavelength excitation (magenta, center); merge (right). (C) Displacements (relative to track 

center of mass, COM) overlaid for all tracked mMaple3 (n=583 tracks from N=23 aggresomes); 

three randomly selected tracks are highlighted. (D) Displacements (relative to COM) displayed as 

a probability density heatmap (kernel density width of 70 nm approximate localization precision in 

each PALM frame) indicating an upper bound for the confinement. (E) The mean-square pairwise 

displacements as a function of time interval along the tracks, τ, are shown for the individual tracks 

(gray); the mean MSD at each time interval (magenta line) and its 95% confidence interval (shaded 

area) are overlaid.  The mean MSD plateau value (solid black line) ± SD (dashed lines) is weighted 

for the number of tracks at each time interval greater than two frames. (F) Histogram of the diffusion 

coefficients of surface-immobilized EGFP (number of molecules N=34). (G) The value of single 

intensity (118 counts) is the characteristic intensity of surface-immobilized EGFP molecule 

obtained using an in vitro assay for purified EGFP under the same imaging conditions (29). 

 

 



  

Fig. S4. Aggresome fusion.  

(A) Fluorescence images of two aggresomes fusing. (B) 3D-SIM images of a typical cell at late  

stage of aggresome formation (cyan: HslU-EGFP, magenta: cell membrane stained by FM4-64).  

Left: orthogonal view images. Right: 3D view rendering images. (C) Left: 3D-STORM images of  

a representative cell at late stage. Different color represents different depth. Right: a zoom-in image  

of an aggresome. The number of molecules of the zoom-in area is 164. Inset: 3D-reconstruction of  

the aggresome. (D) Circularity of the aggresome at the different stages. Early: 0.96 ± 0.06, Mid:  

1.07 ± 0.01, Late: 1.03 ± 0.01. (E) Fluorescence images of cells before and after HEX treatment.  

(F) Disassembly ratio of aggresomes under 1,6-HEX treatment. PBS and 2,5-HEX were chosen as  

negative controls.   

  



  

Fig. S5. HslU turnover. 

(A) Mean half-FLIP trace (number of aggresomes N=29). The focused laser has a diameter of 

approximately 0.65 μm, so on average the cytoplasmic pool of bleached HslU-EGFP for a typical 

3 µm long cell is ~1/4 whereas the cytoplasmic pool of unbleached HslU-EGFP is ~3/4 of the total 

cell area. If there is turnover between cytoplasm and aggresome (as we observe from whole-FRAP 

experiments) then a larger unbleached EGFP pool increases the apparent net rate of recovery of 

intensity in half-FRAP compared to the apparent rate of loss of intensity in half-FLIP. (B) 

Fluorescence images of an example whole-FRAP experiment showing fluorescence recovery from 

the bleached aggresome over time, half-time recovery constant 32 ± 18 s. (C) Left: Mean 

fluorescence recovery curve from the bleached aggresome and mean fluorescence loss from a 

second aggresome in the cell for cells that only contained two detectable aggresomes. Right: Mean 

fluorescence recovery curve from the bleached aggresome and mean fluorescence loss from all the 

entire cell area apart for the bleached aggresome.  



  

Fig. S6. Quantification of LLPS 

(A) The structure factor, S(q), against the wavenumber, q, as calculated from the configuration of 

protein A in the morphology images in Fig. 3 in the main text. As time proceeds, a peak emerges 

that shifts to decreasing wavenumbers. (B) The correlation function, C(r) against length scale, r, as 

determined from the structure factor in panel A. The first minimum is used as the characteristic 

length scale of the morphology. (C) Variations in morphology after 109 time steps (approximately 

8,500 seconds of simulated real time) for 10 different random number seeds. Typically, after this 

time two or three droplets have formed. The scale bar represents 500 nm. (D) The characteristic 

length scale is plotted against time for simulations with and without proteins B present and for two 

lattice spacings. The influence of protein B on LLPS is negligible. The lattice spacing does affect 

the rate of LLPS due to its influence on the surface tension.  



  

  
Fig. S7 Exploring parameter space in simulations.   

The influence of the inside, DB,in, and outside diffusivity, DB,out, and the binding energy, εAB, on  

FRAP transients is investigated. (A) The diffusion of protein B is simulated while protein A is fixed  

in perfectly round aggresomes with a 400 nm radius. At t=0 B is randomly distributed; after being  

equilibrated for 1000 seconds protein B is bleached within a simulated focus. The scale bar  

represents 500 nm. (B) Variations of the radius of the laser focus predominantly affected whole  

FRAP transients, while the half-FRAP transients were insensitive to this variation. (C-D) For a  

fixed laser position, the binding energy (C) and inside diffusivity (D) are varied, which  

predominantly affected the whole and the half FRAP data, respectively. (E) The experimental  

differences in FRAP transients between the three proteins klb, HslU and AcnB; the closed and open  

circles represent half- and whole-FRAP measurement, respectively. (F-H) To interpret the  

experimental data of (E), the time scale of (C-D) is normalized by collapsing the half FRAP data  

onto the master curve FRAP=A·t1/2. The prefactor A provides values for the diffusivities of the  

proteins inside the aggresome. The remaining variations in the whole FRAP data are interpreted to  

originate from a combination of differences in the outside diffusivity and binding energy.   



  
Fig S8. Role of LLPS in bacterial fitness.  

(A) Brightfield images of different Gram-negative bacterial species in late stationary phase.  

Aggresome formation (black arrow) is widely observed. (B) Growth curve of different strains (wild  

type, MOPS, ∆sdhC and ∆nuoA). (C) Cell survival rate after 4 hrs β-lactam antibiotic treatment of  

different strains cultured in LB for 12 hrs. (D) Cell survival rate after 4 hrs fluoroquinolone  

antibiotic treatment of different strains cultured in LB for 12 hrs. (E) Cell survival rate after P1  

phage infection (MOI=100) of different strains cultured in LB for 12 hrs (error bar indicates SE).   



  

Table S1. Strains used in this study.  

Bacterial Strains Source Genotype Doubling time (min) 

MG1655 
Yale Genetic Stock 

Center(CGSC#:6300) 
Wild-type 23.5±0.7 

HslU-EGFP LAB strain 
MG1655 ΔaraD-B 

hslU::EGFP 
23.4±0.8 

HslU-mMaple3 LAB strain 
MG1655 ΔaraD-B 

hslU::mMaple3 
25.2±1.1 

Kbl-EGFP LAB strain 
MG1655 ΔaraD-B 

kbl::EGFP 
24.0±1.6 

AcnB-EGFP LAB strain 
MG1655 ΔaraD-B 

acnB::EGFP 
23.6±0.8 

Kbl-EGFP & HslU-

mCherry 
LAB strain 

MG1655 ΔaraD-B 

kbl::EGFP hslU::mCherry 
25.9±1.3 

AcnB-EGFP & HslU-

mCherry 
LAB strain 

MG1655 ΔaraD-B 

acnB::EGFP hslU::mCherry 
25.7±1.2 

ΔnuoA LAB strain MG1655 ΔnuoA 22.7±1.5 

ΔsdhC LAB strain MG1655 ΔsdhC 23.4±0.5 

ΔnuoA & HslU-EGFP LAB strain 
MG1655 ΔaraD-B ΔnuoA 

hslU::EGFP 
23.5±1.2 

ΔsdhC & HslU-EGFP LAB strain 
MG1655 ΔaraD-B ΔsdhC 

hslU::EGFP 
24.1±0.8 

   



  

Table S2. Plasmids used in this study.  

Name Gene Resistance 

pBAD-hokB araBAD-hokB Chloramphenicol 

pSIM6 (50) Ampicillin 

pCP20 (61) Ampicillin 

  
   



  

Table S3. Primers used in this study.  

Name Sequence (5’-3’) 

araB-D 

knockout F 

GTTTCTCCATACCCGTTTTTTTGGATGGAGTGAAACGATGATTCCGGGGATCCGTCGAC

C 

araB-D 

knockout 

R 

GCTGTGGTTTTATACAGTCATTACTGCCCGTAATATGCCTTTGTAGGCTGGAGCTGCTTC

G 

hslU+EGF

P 

homology 

F 

TGCGTTGGTGGCAGATGAAGATCTGAGCCGTTTTATCCTAGGTGGATCCGGCGGTTCTG

TGAG 

hslU+EGF

P 

homology 

R 

TTCAGCCCCATCAAACAATGATGAAAATGATTGAACGCGAGCTACCGCCACTGCCACC

GCTC 

hslU+EGF

P P1 
GGCGACGGCCCCGTGCTGCT 

hslU+EGF

P P2 
GAACGCGATTACTTGTACAGCTCGTCCA 

hslU+EGF

P P3 
ACAAGTAATCGCGTTCAATCATTTTCAT 

hslU+EGF

P P4 
CAGCAAAGGCGAGGGGGAGG 

acnB+EGF

P 

homology 

F 

CACCGAGAAAGCCGATGGGGTGATTTTCCAGACTGCGGTTGGTGGATCCGGCGGTTCTG

TGAG 

acnB 

+EGFP 

homology 

R 

GGGCATTGTGTCGTTTATGCGCAGCGCGTGCGCTGACTTTGCTACCGCCACTGCCACCG

CTC 

acnB+EGF

P P1 
GGCGACGGCCCCGTGCTGCT 

acnB+EGF

P P2 
CTGACTTTTTACTTGTACAGCTCGTCCA 

acnB+EGF

P P3 
ACAAGTAAAAAGTCAGCGCACGCGCTGC 

acnB+EGF

P P4 
CCGGCAATGCACCGAAAT 

kbl+EGFP 

homology 

F 

AGCATTTACGCGTATTGGTAAACAACTGGGCGTTATCGCCGGTGGATCCGGCGGTTCTG

TGAG 

kbl +EGFP 

homology 

R 

CTTCCGCTTTCAGTTTGGATAACGCTTTCATCTCACATCCGCTACCGCCACTGCCACCGC

TC 

kbl+EGFP 

P1 
GGCGACGGCCCCGTGCTGCT 

kbl+EGFP 

P2 
TCACATCCTTACTTGTACAGCTCGTCCA 

kbl+EGFP 

P3 
ACAAGTAAGGATGTGAGATGAAAGCGTT 

kbl+EGFP 

P4 
CGACCACTCATCCCAGTT 

Cat(HslU)-

F 

CACCATCGAAGAATTAAGCTACAAAGCGTAAGGATCTCCCTCTAGAGCGACGCCAGAC

GG 

Cat(HslU)-

R 

TTCAGCCCCATCAAACAATGATGAAAATGATTGAACGCGATTACGCCCCGCCCTGCCAC

T 



 

HslU-F ATGTCTGAAATGACCCCACGC 

HslU-R GAGCCACCTAGGATAAAACGGCTCAGATCTTCATCTGC 

Linker-

mCherry-F 
TTATCCTAGGTGGCTCTGGTGGCGGTTC 

mCherry-R TTACTTGTACAGCTCGTCCATGCCG 

Homo-

HslU-F 

CACCATCGAAGAATTAAGCTACAAAGCGTAAGGATCTCCCATGTCTGAAATGACCCCA

CG 

Homo-

mCherry-R 

TTCAGCCCCATCAAACAATGATGAAAATGATTGAACGCGATTACTTGTACAGCTCGTCC

ATGCCG 

sdhC 

knockout F 

CCCAGGGAATAATAAGAACAGCATGTGGGCGTTATTCATGTCTAGAGCGACGCCAGAC

GG 

sdhC 

knockout 

R 

CCTAATGCGGAGGCGTTGCTTACCATACGAGGACTCCTGCTGTAGGCTGGAGCTGCTTC

G 

nuoA 

knockout F 

GAGCAGTGAATCTGGCGCTACTTTTGATGAGTAAGCAATGATTCCGGGGATCCGTCGAC

C 

nuoA 

knockout 

R 

CCATCTTAATGCCTCGCGGTTAGCGTTGACGATTAGCGATTGTAGGCTGGAGCTGCTTC

G 

   



  

Table S4. Information of aggresomes.   

Number of HslU-EGFP molecules per cell at different incubation stages, with estimates of aggresome volume based  

on measurements of aggresome diameter from MSD analysis and assuming a spherical shape. Errors indicated are  

standard deviation, number of cells measured in range 31-209. Aggregation enthalpy (∆H) of HslU in the early, mid  

and late stages. The aggregation enthalpies are calculated using Eq. (1), where the outside concentration is estimated  

as cout=(Ncell-Nagg)/(Vcell-Vagg).  

  

 Early Mid Late 

Number of aggresome per cell 2.0 2.4 2.3 

Number of protein per cell 276 ± 253 510 ± 345 681 ± 437 

Number of protein per aggresome 35 ± 20 50 ± 32 63 ± 35 

Mean cytoplasmic viscosity (cP) 6.2 8.3 16.6 

cin/cout 4.27 ± 0.42 5.11 ± 1.26 3.78 ± 0.11 

ΔH/kBT 1.45 ± 0.10 1.53 ± 0.25 1.33 ± 0.03 

Volume of aggresome (μm3) 0.050 ± 0.008 0.055 ± 0.008 0.046 ± 0.009 

    

*  

  

Table S5. Molecular mobility of HslU-EGFP, Kbl-EGFP and AcnB-EGFP inside  

aggresomes.  

  

 
Dg-Da (μm²/s), 

± SE 
Number of cells Number of aggresomes 

HslU 0.10 ± 0.03 370 858 

Kbl 0.14 ±0.08 435 798 

AcnB 0.23 ± 0.01 737 1194 

  

   



 

Movie S1  

Half-FRAP imaging. By focusing a laser laterally offset approximately 0.5 µm from the center of an aggresome it was  

possible to photobleach approximately one half while leaving the other half intact, which we denote as “half-FRAP”.  

We then measured the aggresome fluorescence intensity at 10 secs intervals for up to several hundred seconds after the  

focused laser bleach. (White dot: Bleached half-aggresome.)  

  

Movie S2  

Half-FRAP simulation. The size of the cell is 1×3 μm and the volume fraction of LLPS-driving protein A is 31%  

(gray) and LLPS-probing protein B (unbleached: cyan; bleached: red) is 2.7% In the simulations, the aggresomes  

emerge and coarsen for 158 minutes, after which protein B is bleached (colored red) within a simulated laser focus  

region.  

  

Movie S3  

Simulation with excluded volume. Aggresome formation simulation with a circular excluded volume region with a  

radius of 400 nm in the center of the cell. The size of the cell is 1×3 μm and the volume fraction of LLPS-driving  

protein A is 31% (gray) and LLPS-probing protein B (cyan) is 2.7%. The time scales of coarsening are similar to  

simulations without an excluded volume region.  
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