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SUPPLEMENTARY INFORMATION 3 
 
Invariant Causal Regression Models and Causal Variable Importance 
 
 S3.1 Theory and methods 

This section contains theoretical concepts and a detailed description of the 
methods used in the subsequent analyses. In  S3.1.1, we formally define causal 
regression models. In  S3.1.2 we describe how such models can be used to define a 
variable importance measure, which comes with a causal interpretation. In  S3.1.3 we 
provide further details on the invariance analysis for inferring causal regression 
models from heterogeneous data. Throughout this section, let 𝑌 be a real-valued 
response variable (e.g. PC1, PC2, and PC3), and 𝑋 = (𝑋!,… ,𝑋!) a vector of 𝑑 
covariates (i.e. climate and vegetation structural variables). 

 S3.1.1 Causal regression models 
In general, a regression model for (𝑋,𝑌)  is a collection (ℙ!)!∈supp(!)  of 

distributions, which assigns, to every possible outcome 𝑥 of the vector of predictors 
𝑋, a distribution ℙ! over the response 𝑌. In classical regression analysis, one aims at 
inferring the (observational) conditional mean of 𝑌  given 𝑋 = 𝑥  and we write 
ℙ!obs := ℙ!|(!!!). Such a regression model can be used to answer questions like 
“Given that we passively observe 𝑋 = 𝑥!, what is our best guess for 𝑌?”. If we are 
interested in a causal relationship between 𝑋 and 𝑌 (rather than a statistical one), we 
often wish to answer questions about interventions, e.g., “What is the expectation of 𝑌 
if we actively set 𝑋 to some value 𝑥!?”. This requires the use of a different regression 
model, one that specifies the distribution of 𝑌 under active intervention on 𝑋. The 
concept of interventions can be made precise by assuming that (𝑋,𝑌) are generated 
by a structural causal model (SCM)1. Given such an SCM, we can then consider the 
regression model ℙ!int = ℙ!|!"(!:!!) which for every 𝑥 considers the distribution of 𝑌 
after setting 𝑋 to the value 𝑥. (The notation 𝑑𝑜(𝑋 := 𝑥) refers to the ‘do-operator’1 
and indicates that 𝑋 has been actively set to a value, i.e., we do 𝑋 = 𝑥 rather than just 
seeing or observing 𝑋 = 𝑥.) We will refer to such a regression model as a causal 
regression model and to the function 𝑓(𝑥) := 𝔼[𝑌 | 𝑑𝑜(𝑋 := 𝑥)]  as the causal 
regression function. Having access to a causal regression model comes with several 
advantages. For example, we can test whether a certain variable has a direct causal 
effect on the response by checking whether the variable is a statistically significant 
predictor. Further, a causal regression model can be used to construct a variable 
importance measure, which has a causal interpretation, see  S3.1.2.  

The causal regression model may be very different from the classical regression 
model. For example, 𝑋!  may correlate strongly with 𝑌  in the observational 
distribution, but intervening on 𝑋! may have no effect on 𝑌. In such a case, 𝑋! will be 
a strong predictor in the classical regression model, whereas the causal regression 
function may be constant in 𝑥!. If, however, the vector 𝑋 corresponds to the full set of 
causal parents of 𝑌 (as specified by the SCM), the two regression models coincide. 
That is, the conditional distribution of 𝑌 given all of its causal parents remains the 
same, even under arbitrary interventions on any of the predictor variables. This 
property can be exploited to verify whether 𝑋 indeed corresponds to the set of causal 
parents: one checks whether the conditional ℙ!|! remains invariant across different 
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patterns of heterogeneity. This is the basis of the invariance approach described in the 
Methods section. In  S3.1.3, we provide further details about this analysis. 

 S3.1.2 A causal variable importance 
Given a (possibly nonlinear) causal regression model, we can define a variable 

importance measure, which has an interpretation in terms of direct causal effects. 
Here, we consider the expected value of 𝑌 under joint interventions on all covariates 
at once, and then quantify how this expected value depends on the different 
coordinates. This approach may be seen as a sensitivity analysis of the causal 
regression function 𝑓(𝑥) = 𝔼[𝑌 | 𝑑𝑜(𝑋 := 𝑥)]. 

 S3.1.2.1 Population version 
In the case where 𝑓 is linear, i.e., 𝑓(𝑥) = 𝛽!𝑥! +⋯+ 𝛽!𝑥!, the sensitivity of 𝑓 to 

the coordinate 𝑥! is fully characterized by the linear coefficient 𝛽!. In the case where 
𝑓 is non-linear, and potentially non-additive, there is no unique sensitivity measure. 
Consider, for instance, the predictor 𝑋! . The question “How sensitive is 𝑌  to 
interventions on 𝑋!?” does not have a unique answer. For example, for some values 
𝑥, the effect of adding a small value 𝑑𝑥! to the first coordinate of 𝑥 may result in an 
increase in the expectation 𝔼[𝑌 | 𝑑𝑜(𝑋 := 𝑥)] , while for other values of 𝑥 , the 
expectation may decrease. Several variable importance measures have been proposed, 
(e.g., 2,3); see Wei et al.,4 for an extensive review of existing methods. 

Here, we define an importance measure that weighs the contribution of each 
individual 𝑥! by the marginal observational distribution of the covariates 𝑋. More 
formally, let for every 𝑗, 𝑋!! denote the vector of covariates, which contains all but 
the 𝑗th variable. Define, for every 𝑗, the function 𝑣!(𝑥!!) := Var(𝑓(𝑥!! ,𝑋!)). We 
then define the causal variable importance for 𝑋! as 𝑉! := 𝔼[𝑣!(𝑋!!)]/Var(𝑌). Here, 
𝑓  denotes the causal regression function (see above) and all expectations and 
variances are taken with regard to the observational distribution. 

 S3.1.2.2 Estimation 

Assume that we have a procedure for estimating 𝑓  from observational data 
(𝐗,𝐘) = (𝑋! ,𝑌!)!∈{!,…,!} . We can then estimate the above variable importance 
measures by approximating the involved expectations and variances by their 
empirical counterparts. More precisely, consider 𝑁 ∈ ℕ , and independent and 
identical distributed samples 𝑥!!∗! , 𝑖 = 1,… ,𝑁, from the empirical distribution of 𝑋!!, 
and 𝑥!∗!", 𝑖, 𝑘 = 1,… ,𝑁, from the empirical distribution of 𝑋!. We then compute: 

𝑉! :=
𝔼[𝑣!(𝑋!!)]
Var(𝑌)

=
1
𝑁 𝑣!!

!!! (𝑥!!∗! )

Var(𝑌)
, 

Where, for each 𝑖, 

𝑣!(𝑥!!∗! ) := Var(𝑓(𝑥!!∗! ,𝑋!)) =
1

𝑁 − 1 𝑓(𝑥!!∗! , 𝑥!∗!")! −
1
𝑁 𝑓

!

ℓ𝓁!!

(𝑥!!∗! , 𝑥!∗!ℓ𝓁)

!!

!!!

. 
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 S3.1.2.3 Group-wise variable importance 

In the above construction, the importance of variable 𝑋! has a causal interpretation 
when considering an intervention, which leaves the marginal distributions of all 
predictors unchanged, while breaking the dependence between 𝑋! and the remaining 
variables 𝑋!! . In some cases, other types of interventions, which leave the 
dependence structure between 𝑋! and some other covariates intact, may be of interest, 
too. For example, 𝑋! and 𝑋! may have such a close physical connection that any 
intervention that yields them independent seems irrelevant for any practical purpose. 
In such cases, we can use a slight modification of the above construction to obtain a 
group-wise importance measure. Let 𝐺! ∪⋯∪ 𝐺! = {1,… ,𝑝} be disjoint groups of 
variables. The group-wise causal variable importance for group 𝑘 is then defined as 
𝑉!! := 𝔼[𝑣!!(𝑋

!!!)]/Var(𝑌) , where 𝑣!!  is the function defined as 𝑣!!(𝑥!!!)
:= Var(𝑓(𝑥!!! ,𝑋

!!)). The estimation proceeds analogously to that described in  
S3.1.2.2. 

 S3.1.3 Invariance analysis 
As discussed in  S3.1.1, causal regression models have the property of being 

invariant with regard to arbitrary interventions, as long as these interventions do not 
occur directly on the response variable. One can exploit this property to check 
whether a set of predictors is indeed causal. This inference principle is briefly 
described in the Methods section. See the flowchart in Figure  S3.1 for an overview. 
Here, we provide further details in the context of our specific application. Let 
𝑌!,𝑌!,𝑌!  denote PC1, PC2 and PC3, respectively, and let 𝑋 = (𝑋!,… ,𝑋!) 
correspond to the vector of predictor variables. For each 𝑗 = 1,2,3, we can then 
analyze whether the variables in 𝑋 are indeed causal predictors of the response 
variable 𝑌! by testing whether the regression model that regresses 𝑌! onto 𝑋 remains 
invariant across different patterns of heterogeneity (‘environments’). One then checks 
this invariance assumption not only for the full regression model, but for all of the 
2! = 512 models that arise from regressing 𝑌! on different subsets of predictors in 𝑋. 
More formally, we test for each 𝑆 ⊆ {1,… ,9}  the hypothesis 𝐻!,!

!  asserting that 
𝑌!  | 𝑋! is invariant across all environments, where 𝑋! := (𝑋!)!∈! corresponds to the 
vector of predictors with index in 𝑆. (As argued in  S3.1.1, for a causal set 𝑆, 𝐻!,!

!  is 
true.) If the full regression model is the only invariant model, we can deduce that it 
must be causal. If we find that in addition to the full model, there are only few other 
invariant models, we cannot deduce that the full regression model is causal, but it is 
still a plausible causal model as there are only few alternative models (which explain 
less variance). 

Although the specific dependence of 𝑌!  on 𝑋  may differ from one response 
variable to the other, we expect the same set of variables to be causal. We therefore 
additionally consider, for each 𝑆 ⊆ {1,… ,9}, the hypothesis 𝐻!,! := 𝐻!,!! ∩ 𝐻!,!! ∩
𝐻!,!!  stating that all of the conditionals 𝑌!  | 𝑋!, 𝑗 = 1,2,3, are invariant. 

 S3.1.3.1 Environments 
To discuss the invariance of regression models, one needs to specify what type of 

variation the models should be invariant against, i.e., we need to specify an 
‘environment indicator’. Several choices are possible here. Intuitively, one benefits 
from stronger heterogeneity between the environments, as this may allow us to reject 
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more models and draw stronger causal conclusions. At the same time, however, the 
causal mechanism for the response variable must not differ between the 
environments. In this work, we constructed several different environment variables 
using geographical information (such as longitude, latitude, continent) and vegetation-
characteristics (such as whether an ecosystem is classified as forest or non-forest). 
Dividing the data set into forest and non-forest observations resulted in heterogeneity 
in the structural variables, whereas splitting the data set along the latitudinal axis had 
larger effects on the climatic variables. To induce heterogeneity in all predictor 
variables at once, we combined these two sources of variation by constructing an 
environment indicator 𝐸 in the following way. For every observations 𝑖 = 1,… ,𝑛, we 
assign 𝐸! := 0 if the observation 𝑖 comes from a forest ecosystem in North America, 
Europe or Asia, and we assign 𝐸! := 1 otherwise, that is, if observation 𝑖 comes from 
a non-forest or forest ecosystem from South America, Africa or Oceania, or a non-
forest ecosystem in North America, Europe or Asia. 

We tested other choices of environments to test whether the results are 
consistent. First, we split the dataset in forests vs. non-forests ecosystems (hereafter 
referred to as “Veg Type Environment” test). Second, we used a k-means clustering 
(with number of clusters set to 2) on the 9 model predictors to identify the 2 
environments (hereafter referred to as “Cluster Environment” test). Such a clustering 
based analysis is valid here because it can be assumed that the covariates are non-
descendants (in a causal sense) of the principal components (PC1, PC2, PC3). In other 
words that the covariates (i.e., climate and structural variables) are not causally 
affected by the response (i.e., PC1, PC2, PC3). 

 S3.1.3.2 Statistical tests for invariance 
To decide whether a given subset 𝑆 ⊆ {1,… ,9} of predictors yields an invariant 

regression model, we require a statistical test for the hypothesis 𝐻!,!, which expresses 
the invariance assumption: the conditional distribution of 𝑌 | 𝑋! is the same in each of 
the environments 𝐸 = 0 and 𝐸 = 1. By regarding the environment indicator 𝐸 as a 
random variable, this hypothesis is equivalent to stating that 𝑌 and 𝐸 are independent 
after conditioning on 𝑋! (we say that 𝑌 and 𝐸 are conditionally independent given 
𝑋!). Conditional independence among random variables is a well-studied property, 
and there exist a range of statistical tests, which all build on different assumptions. In 
this work, we considered several different tests from the R package CondIndTests 5. 
We implemented several simulation experiments to assess the statistical power of 
these tests for our specific data. (In the simulations, we used the original data for 𝑋 
and 𝐸 and only simulated new values for the response variable 𝑌.) Overall, we found 
that the InvariantResidualDistributionTest resulted in the largest amount of power. This 
test operates in the following way: first, a nonlinear regression model is fit to all of 
the data. Then, a standard two-sample test is used to determine whether the 
distribution of the residuals is the same in both environments. As a two-sample test, 
we use the default setting, which is a combination of Wilcoxon’s test for the equality 
of expectations and Levene’s test for the equality of variances. For the nonlinear 
regression, we consider 5 different model classes: a linear regression model, a random 
forest model2, and generalized additive models (GAMs)6 with 3, 5, and 10 degrees of 
freedom. In the random forest models we specify that, at each split, all nine predictor 
variables should be considered as possible candidates for performing a split. For every 
subset 𝑆 ⊆ {1,… ,9} and every model class, we further compute the out-of-sample 𝑅! 
based on 10-fold cross validation. The larger this value the more we trust the output 
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of the corresponding conditional independence test. In Figure  S3.3, we also include 
results of the invariance analysis where, for each set 𝑆, we choose the model class, 
which yields the smaller out-of-sample 𝑅!. 
 

	
  

Figure  S3.1 | Flowchart describing the different steps of the causal analysis applied in this study. The 
white boxes represent the different steps, while the grey boxes provide more details on the individual 
steps. 

 S3.2 Results 

 S3.2.1 Invariance analysis 
Figure S3.2 illustrates the between-environment heterogeneity in the data set. 

Especially the distributions of PC1 and PC2, along with most of the predictor 
distribution, differ notably between the two environments. The testing results are 
summarized in Figure S3.3. Different rows correspond to different statistical tests for 
the invariance hypothesis (see Section S3.1.3.2). The leftmost column shows 
Bonferroni-corrected 𝑝-values for the combined hypotheses 𝐻!,! . The full set of 
predictors (green line) is not rejected (it is to the right of the dashed red line) and its 
𝑝-value is larger than that of most other models. In particular, the 𝑝-value is 
considerably larger than the one of the empty set, that is, the regression model, which 
only contains an intercept (blue line). For the individual hypotheses 𝐻!,!

! , 𝑗 = 1,2,3, 
the distribution of 𝑝-values differ significantly between the response variables. For 
𝑌!, barely any hypothesis is rejected, which may be due to the lack of heterogeneity 
(see Figure  S3.2). For 𝑌! and 𝑌!, the empty set is rejected as invariant, along with 
several other sets of variables. In most cases (16 out of 18), the full set of predictors is 
found to be invariant. We suggest that these results render the full regression models 
plausible candidates for causal models. 
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Figure  S3.2 | Marginal distribution of the principal components and of the predictor variables, 
grouped by environment. The data points are shown as circles. Violin plots correspond to rotated 
kernel density estimates. The distribution of PC1 and PC2 differs notably between the two 
environments, the distribution of PC3 only slightly. In our invariance analysis, we search for sets of 
predictors, which can explain all of the between-environment variation in the different PCs.  

 

 
Figure  S3.3 | Results of the invariance analysis described in  S3.1.3. In column 1, we test, for each 
𝑆 ⊆ {1,… ,9}, the combined hypothesis 𝐻!,! stating that the set 𝑆 is invariant for each of the three 
principal components. Columns 2–4  show results for the individual invariance hypothesis 𝐻!,!

! , 
𝑗 = 1,2,3 . Different rows correspond to different regression model classes used for the testing 
procedures. In all panels, the grey histogram displays the distribution of (corrected) 𝑝-values over 
different sets for the respective family of tests of the respective family of invariance hypotheses. That 
is, each histogram is based on 2! = 512 different 𝑝-values; one for each set 𝑆 ⊆ {1,… ,9}. The green 
line corresponds to the 𝑝-value of the full set of predictors 𝑆 = {1,… , 𝑝} and the blue line to the empty 
set 𝑆 = ∅. The red line indicates the test level 𝛼 = 0.05. p-values for the individual hypotheses 𝐻!,!

! , 
𝑗 = 1,2,3, were computed using the statistical test InvariantResidualDistributionTest() from the R 
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package CondIndTests. p-values for the combined hypotheses 𝐻!,! were obtained using Bonferroni 
correction, see Section S3.1.3.2 for details. Numbers indicate the average out-of-sample 𝑅! (across all 
512 models) obtained by using the corresponding regression model class. 

 

We performed an analysis to verify that the full model is selected as a causal 
candidate independently to the environments. To do so we applied the invariance 
analysis to the two alternative environments defined in the Supplementary 
Information 3.1.3.1: “Veg Type Environment” and “Cluster Environment”. The 
results of the invariance analysis are summarized in Figure 3.4. (left column for “Veg 
Type Environment” test, and right columns for “Cluster Environment” test). The 
histogram shows Bonferroni-corrected p-values for the combined hypotheses H0,S. 
The full set of predictors (green line) is not rejected (it is to the right of the dashed red 
line indicating the significance level set as threshold) and its p-value is larger than 
that of most other models. In particular, the p-value is considerably larger than the 
one of the empty set, that is, the regression model, which only contains an intercept 
(blue line). The results show that also with these two additional choices of 
environments (“Veg Type Environment” and “Cluster Environment”) the full 
regression models are plausible candidates for causal models.  
	
  

	
  
Figure S3.4 | Results of the invariance analysis described in S3.1.3 for the environment tests (“Veg 
Type Environment” and “Cluster Environment”). In column 1, we test, for each S⊆{1,…,9}predictor 
set, the combined hypothesis H0,S stating that the set S is invariant for each of the three principal 
components. Different rows correspond to different regression model classes used for the testing 
procedures. In all panels, the grey histogram displays the distribution of (corrected) p-values over 
different sets for the respective family of tests of the respective family of invariance hypotheses. That 
is, each histogram is based on 29=512 different p-values; one for each set	
  S⊆{1,…,9}. The green line 
corresponds to the p-value of the full set of predictors S={1,…,p} and the blue line to the empty 
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set  𝑺 = ∅. The red line indicates the test level α=0.05. p-values for the individual hypotheses 𝑯𝟎,𝑺
𝒋 , 

j=1,2,3, were computed using the statistical test InvariantResidualDistributionTest() from the R 
package CondIndTests. p-values for the combined hypotheses 𝑯𝟎,𝑺 were obtained using Bonferroni 
correction, see Section S4.1.3.2 for details. Numbers indicate the average out-of-sample R2 (across all 
512 models) obtained by using the corresponding regression model class. 

 S3.2.2 Reports of the full regression models 
The invariance analysis in S3.2.1 suggests that, for each of the different response 

variables, the full regression model is a plausible candidate for a causal regression 
model. We now report these models, both for the random forests and for the GAMs. 
The performance in cross-validation of the models are reported in Table  S3.1.  

In the GAMs, we use spline expansions with 3 degrees of freedom for all predictor 
variables. A summary of the GAM and Random Forest fits can be seen in Table  S3.1. 
Assuming that the full regression models are indeed causal, the results in Table  S3.2 
can be used to formally test for the existence of direct causal effects, see  S3.1.1. With 
GAM and for PC1, we find that N%, LAImax, Tair, SWin and VPD are significant 
causal predictors. The random forest fit shows that AGB, N%, and LAImax, i.e. the 
vegetation structural variables, appear to have the strongest direct causal effect on 
PC1. For PC2, Hc and Tair have direct causal effects, whereas for PC3, the only 
significant causal effect is found for N% and VPD. When testing for a group-wise 
causal effect of all structural or all climatic variables, we find that both groups have 
direct causal effects on PC1 and PC2, and that structure has a direct causal effect on 
PC3.  

	
  

 GAM GAM OOS Random Forest Random Forest OOS 

PC1 0.78 0.66 0.92 0.55 

PC2 0.39 -0.07 0.88 0.30 

PC3 0.32 -0.03 0.84 0.10 

Table S3.1 | out-of-sample determination coefficient (R2) values for GAM and random forest methods. 

 

The response curves for all estimated regression models are shown in Figure S3.5. 
We see that the results differ depending on which regression model class is used. To 
decide which model class to base our causal conclusions upon, we compare them in 
terms of out-of-sample 𝑅! (see caption of Figure S3.5). For PC1, both GAM and 
random forest are appropriate model classes, whereas for PC2 and PC3, the random 
forest yields a better fit. Therefore in the main text we report only the results of the 
random forests. 

Assuming that the estimated regression models are indeed causal, the response 
curves in Figure  S3.5 have the following interpretation. Consider a fixed variable 𝑋!. 
The response curve for this variable corresponds to the expectation of 𝑌 under the 
intervention, which assigns different values to 𝑋! while fixing all other variables at 
their respective sample medians. For example, the top panel (GAM) tells us that if we 
were to fix all variables at their sample median, while manually increasing LAImax (or 
N%), we expect an increase in PC1. 
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Predictors Individual predictors Group-wise predictors 

PC1 PC2 PC3 PC1 PC2 PC3 

N% <0.001 0.193 <0.001 <0.001 <0.001 <0.005 

LAImax <0.001 0.204 0.727 

AGB 0.113 0.616 0.449 

Hc 0.529 <0.05 0.452 

CSWI 0.198 0.142 0.757 <0.001 <0.005 0.136 

P 0.096 0.158 0.799 

Tair <0.001 <0.05 0.484 

SWin <0.01 0.128 0.488 

VPD <0.001 0.489 <0.05 
Table S3.2 | Test results for the significance of individual predictors based on the full regression 
models (fitted with GAM). Note, however, that GAM has a negative out-of-sample R2 for PC2 and 
PC3. As argued in S3.1.1, these tests may be viewed as tests for the existence of causal effects. The p-
values (p < 0.1) in bold represent the direct causal effects according to the GAM models. The Wald’s 
test implemented in the mgcv R package was used. The causal effects as identified from the random 
forest are reported instead in the text. 
 

Since some of the response curves seem to be nonlinear, we believe that Figure 
S3.5 provides a more nuanced report of the causal influences of the predictors on the 
different response variables, than summarizing each influence by a single number. 
However, in order to rank the causal relevance of different predictors, we compute a 
numerical variable importance measure, too. 

S3.2.3 Variable importance 
We now compute variable importance based on the approach described in S3.1.2. 

The individual variable importance measures are shown in Figure S3.6. These results 
may be seen as a summary of the response curves shown in Figure S3.5. As described 
before we focus on the results of random forests because they are the ones showing 
the best performance when considering all the PCs. 

The random forest fit suggests that AGB, N%, and LAImax, i.e. the vegetation 
structural variables, have the strongest direct causal effect on PC1, since these 
variables have highly non-constant response curves (Figure S3.5). This observation is 
also reflected in the causal variable importance (Figure S3.6 bottom left). For PC2, Hc 
followed by Tair and N%, have the strongest direct causal effect. For PC3, the N%, 
VPD, and CSWI, have the strongest direct causal effect. The results between GAM and 
random forest diverge for PC1, being the climatic variables more important when 
GAMs are used. For PC2 and PC3 the results are more coherent. 
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Figure  S3.5 | Marginalized response curves for the fitted regression models for each PC and each 
model class. Black lines correspond to the models fitted on all of the 𝑛 = 94 observations for which all 
the predictors are available, and colored lines correspond to the models fitted on 100 pseudo data sets, 
which have each been generated by sampling 80% of observations without replacement. For each PC, 
the model class, which yields inferior predictive performance, is shown in pale colors. The out-of-
sample 𝑅! values are (from top to bottom) 0.65,0.59,0.10,0.32,0.18, 𝑎𝑛𝑑  0.23.  

 
The conclusions about the relative causal importance of group-wise structural and 

climatic variables are shown in Figure S3.7. When using the GAM fit, the relative 
importance of structure and climate seems balanced when using group-wise variable 
importance, while the climatic variables rank as the most important for PC1 in terms 
of individual direct causal effects. One reason for this result may be that when 
considering individual variable importance, we disregard the correlation structure 
among the covariates. Each of the climatic variables has a strong intervention effect 
on PC1 when simultaneously controlling the value of all other variables. If, however, 
one leaves the dependence structure among all climatic variables intact (as discussed 
in S3.1.2.3), some of the intervention effects may cancel out. For example, SWin and 
VPD correlate positively, while their effect on PC1 differs (Figure S3.5, top right). 
When assigning values to these variables according to their observational distribution, 
some of their individual contributions to PC1 may cancel out and therefore do not 
contribute to the group-wise variable importance. For PC2, group-wise causal 
variable importance suggests that structural and climatic variables have direct effects 
of similar strength (Figure S3.7). For PC3, instead, structural variables outweigh the 
importance of climate variables. 
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Figure  S3.6 | Results of the individual variable importance measure described in  S3.1.2. The small 
points correspond to the variable importances computed on 50 resampled data sets, each consisting of a 
random 80%-subsample of the full data set. The big points represent mean of the variable importance 
computed on resampled dataset. The black points represent the variable importance computed on the 
full data set.  Numbers indicate the out-of-sample 𝑅! for the underlying fitted regression models (these 
are the same values that are reported in the caption of Figure S3.5). The error bar corresponds to the 
standard deviation of the variable importances on the full dataset. In green colors the structural 
variables, in blue colors the climate variables.  

 

 

Figure  S3.7 | Results of the group-wise variable importance measure described in  S3.1.2. The small 
points correspond to the variable importance computed on 50 resampled data sets, each consisting of a 
random 80%-subsample of the full data set. The big points represent mean of the variable importance 
computed on resampled dataset. The black points represent the variable importance computed on the 
full data set. Numbers indicate the out-of-sample R2 for the underlying fitted regression models (these 
are the same values that are reported in the caption of Figure S3.5). The error bar corresponds to the 
standard deviation of the variable importance on the full dataset. In green colors the structural 
variables, in blue colors the climate variables.  
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