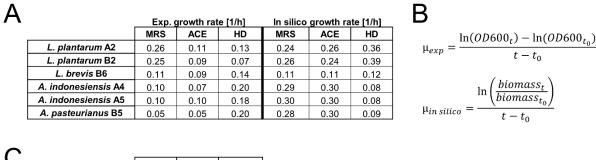
iScience, Volume 24


Supplemental information

Modeling *Drosophila* gut microbe interactions

reveals metabolic interconnectivity

Jürgen W. Schönborn, Fiona A. Stewart, Kerstin Maas Enriquez, Irfan Akhtar, Andrea Droste, Silvio Waschina, and Mathias Beller

Supplemental figures and legends

-					
		MRS	ACE	HD	
	L. plantarum A2	0.02	-0.15	-0.24	
	L. plantarum B2	-0.01	-0.15	-0.31	
	L. brevis B6	0.00	-0.01	0.02	
	A. indonesiensis A4	-0.19	-0.23	0.12	
	A. indonesiensis A5	-0.20	-0.20	0.10	
	A. pasteurianus B5	-0.23	-0.25	0.11	

In silico higher growth than experiment (delta \ge - 0.2) In silico elevated growth than experiment (delta > - 0.15 < - 0.2) In silico and experimental growth comparable (delta \sim 0) Experimental growth higher than *in silico* (delta \ge 0.1)

Figure S1. Growth estimate determination and comparison between wet-lab and *in silico* results, Related to Fig. 1 and Fig. 2. (A) The growth rate of the six isolated bacteria was estimated on the three different media (MRS, ACE and HD) by wet-lab experiments (left part of the table) and using the computed biomass production amounts to calculate *in silico* derived growth rates (right side of the table). The formulas used are provided in (B). (C) We subtracted from the experimentally determined growth rate the *in silico* derived one to get a similarity measure (difference is "delta"). The color-coded delta values obtained are provided in the table.

		MRS	ACE	HD
SUBSTRATE	CPD	Conc. [mM]	Conc. [mM]	Conc. [mM]
GLUCOSE	cpd00027	111.00000	55,50000000	
SUCROSE	cpd00076	-	-	50
GLUTAMINE	cpd00053	0.06842	0.10947657	12.47000000
GLUTAMATE	cpd00023	19.47937	13.36912934	12.4000000
PHENYLALANINE	cpd00025	4.64919	3.80168291	5.55000000
HISTIDINE	cpd000119	2.27507	1.44367105	4.46000000
LYSINE	cpd00039	7.98960	6.00588276	11.89000000
METHIONINE	cpd00060	1.82976	1.13270777	2.27000000
ARGININE	cpd00051	5.92423	6.18828932	8.17000000
THREONINE	cpd000161	4.58361	2.45970450	10.86000000
VALINE	cpd00156	8.02390	5.97524541	11.4100000
TRYPTOPHAN	cpd00065	0.74426	0.41619742	2.15000000
LEUCINE	cpd00000	9.41526	6.84607761	12.50000000
ISOLEUCINE	cpd00322	5.72539	4.23115042	8.84000000
ALANINE	cpd00035	17.15120	20.51857672	17.82000000
ASPARTIC ACID	cpd00033	10.70624	8.82043576	6.32000000
ASPARAGINE	cpd00041	0.68120	0.94610960	6.35000000
GLYCINE	cpd000132	26.22885	34.96736379	14.43000000
TYROSINE	cpd00069	1.58949	1.02654672	4.64000000
CYSTEINE	cpd00084	0.18727	0.06658344	2.18000000
SERINE	cpd00054	6.34694	3.35902560	7.23000000
PROLINE	cpd00034	14.51403	12.85503344	4.90000000
K+	cpd00205	34.33960	7.49150219	22.00000
CA2	cpd00203	0.05115	0.03717750	1.14000
ZN2	cpd000034	0.01000	0.01000000	0.08700
FE+2	cpd10515	0.004895	0.00501	0.04495
FE+3	cpd10515	0.004895	0.00501	0.04495
RIBOFLAVIN	cpd00220	0.01000	0.0100000	0.00186
PHOSPHATE	cpd00009 cpd00254	6.34404 1.90167	3.38629687 0.25735445	22.00000 2.08000
MAGNESIUM MN2+		0.33128	0.25735445	0.00505
BIOTINE	cpd00030			
	cpd00104	0.01000	0.0100000	0.00060
CU2 CL-	cpd00058	0.01000	0.0100000	0.01000
	cpd00099	3.28728	4.50289115	2.64830
PANTOTHENATE	cpd00644	0.01000	0.0100000	0.04949
THIAMIN	cpd00305	0.01000	0.01000000 0.57464085	0.00465
	cpd00048	1.77389	0.01000000	2.16687
FOLIC ACID	cpd00393			0.00113
URIDINE	cpd00249	0.01000	0.0100000	0.24600
INOSINE NICOTINIC ACID	cpd00246	0.01000	0.0100000	0.24200000
PYRIDOXINE	cpd00218	0.01000	0.01000000	0.01000000
	cpd30645			
NA+	cpd00971	4.68312	4.49582427	11.90500000
02	cpd00007	0.10000	0.1 100.0000000	0.1000000
WATER	cpd00001	100.00000		100.0000000
MOLYBDATE	cpd11574	0.01000	0.0100000	-
CO2+	cpd00149	0.01000	0.0100000	0.01
AMMONIUM	cpd00013	8.22335	-	-
CITRATE	cpd00137	8.22335	-	-
ACETATE	cpd00029	59.91674	52.4000000	-
ETHANOL	cpd00363	-	85.6000000	-
CHOLINE	cpd00098	-	-	0.35810
MYO-INOSITOL	cpd00121	-	-	0.02800

Figure S2. Parametrization of the media contents used in this study, Related to **Table 1, STAR Methods, and Supplemental File 2.** The "CPD" ID refers to the compound descriptor used in the modeling simulations.

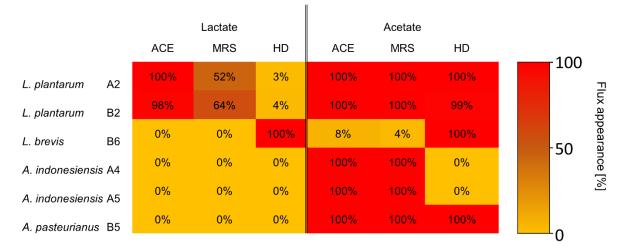


Figure S3. Robustness analysis of the signature metabolite production of *Lactobacilli* and *Acetobacter* bacteria on the three different media, Related to Fig. 3. Simulations were run 100 times and the production of lactate and acetate, respectively, was recorded. As a threshold, metabolite production had to surpass a flux rate of 0.1 nmol / h to count as "flux present". The plots show the color-coded results with red color representing a high fraction of simulation runs with metabolite production

and orange shades represent a low fraction of metabolite producing simulation runs.

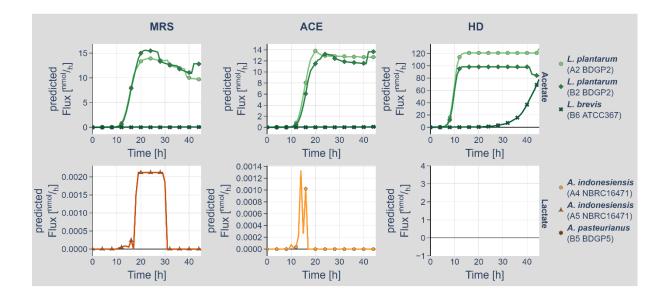


Figure S4. Test for heterolactic behavior of *Acetobacter* and *Lactobacillus* **models, Related to Fig. 3.** While all *Lactobacilli* were able to produce also acetate (upper row), the *Acetobacter* models failed to produce lactate exceeding our 0.1 nmol / h flux threshold.

			Single growth			
Name	Reac. ID		Growth promoting for Aceto (Single metabolite add)			
		A4	A5	B5		
Acetaldehyde	EX_cpd00071_e0	++	++	++	No growth rescu	e [Biomass < 700 pg]
ACTN (Acetoin)	EX_cpd00361_e0	++	++	++	Ű	
BDOH	EX_cpd01947_e0	++	++	++	Growth rescue	[Biomass > 700 pg]
D-Alanine	EX_cpd00117_e0	++	++	1/		
D-Fructose	EX_cpd00082_e0	++	++	++		
D-Ribose	EX_cpd00105_e0	++	++	++		
Fumarate	EX_cpd00106_e0	++	++	++		
H2O2	EX_cpd00025_e0	++	++	++		
Sorbitol	EX_cpd00588_e0	++	++	++		
Trehalose	EX_cpd00794_e0	++	++	++		
(R)-1.2Propanediol	EX_cpd01861_e0	//	//	//		
Acetate	EX_cpd00029_e0	11	//	1/		
AMP	EX_cpd00018_e0	11	11	11		
Arginine	EX cpd00051 e0	//	//	//		
CMP	EX_cpd00046_e0	11	//	1/		
CoA	EX_cpd00010_e0	11	//	11		
Cytosine	EX_cpd00307_e0	//	//	//		
Ethanol	EX_cpd00363_e0	11	//	//		
Fe2+	EX_cpd10515_e0	11	//	11		
GABA	EX_cpd00281_e0	11	//	//		
GLCN Galactose	EX_cpd00222_e0	11	//	//		
GMP	EX_cpd00126_e0	11	11	//		
H2O	EX_cpd00001_e0	11	//	//		
H2S	EX_cpd00239_e0	//	//	//		
HEME	EX_cpd00028_e0	11	//	11		
Histidine	EX_cpd00119_e0	//	//	//		
Lactate	EX_cpd00159_e0	//	//	11		
Lysine	EX_cpd00039_e0	//	//	//		
Ornithine	EX_cpd00064_e0	11	11	//		
Pantothenate	EX_cpd00644_e0	11	//	//		
Phenylalanine	EX_cpd00066_e0	11	//	//		
Phosphate	EX_cpd00009_e0	11	//	11		
Proline	EX cpd00129 e0	//	//	//		
Propionate	EX cpd00141 e0	11	//	//		
Serine	EX_cpd00054_e0	//	//	11		
Succinate	EX_cpd00036_e0	11	//	//		
Tyrosine	EX_cpd00069_e0	11	//	11		
UMP	EX_cpd00091_e0	11	11	11		
Uracil	EX_cpd00092_e0	11	11	11		
Valine	EX cpd00156 e0	11	11	//		
XAN	EX cpd00309 e0	11	11	11		

Single growth

Figure S5. Rescue of the Acetobacter sp. growth deficit in the HD by adding singular metabolites, Related to Fig. 5 and Fig. 6. All metabolites which showed an exchange behavior in the combined growth simulations (cf. Figure 5A and supplemental file 2) were added individually to the HD simulations. The simulations were evaluated for a rescue of the growth deficit which is represented by red color in the table. The majority of added metabolites did not alter the biomass production of the model (represented by black color).

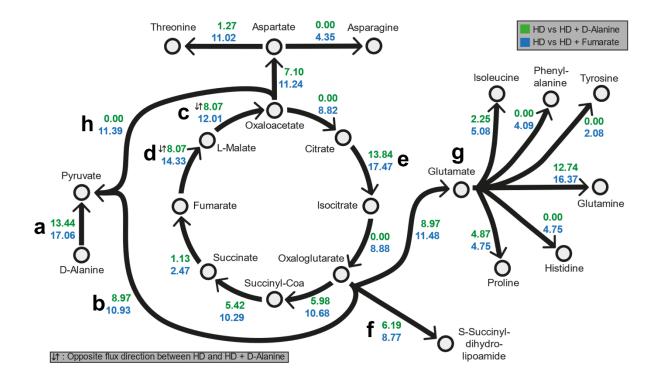


Figure S6. Focused metabolic network with flux differences of *A. pasteurianus* (B5) growth modeled on HD or HD with D-Alanine or HD with fumarate, respectively, Related to Fig. 6. Flux changes were calculated by subtracting the flux present on the HD from the value present in the HD with additive. The result was log normalized. Highlighted reactions are (if multiple reactions are provided, the individual flux values were combined to produce one summarizing value): a) L-Alanine racemase and L-alanine:glyoxylate aminotransferase, b) L-Alanine:2-oxoglutarate aminotransferase, c) Malate-dehydrogenase, d) Fumarase, e) Aconitase, f) 2oxoglutarate dehydrogenase g) glutamate to isoleucine: L-Isoleucine:2-oxoglutarate aminotransferase; glutamate to phenylalanine: L-Phenylalanine:2-oxoglutarate aminotransferase; glutamate to tyrosine: L-tyrosine:2-oxoglutarate aminotransferase; glutamate to glutamine: L-Glutamate:ammonia ligase (ADP-forming) and Lglutamine:D-fructose-6-phosphate isomerase (deaminating); glutamate to histidine: L-Histidinol-phosphate phosphohydrolase and L-Histidinol:NAD+ oxidoreductase; glutamate to proline: ATP:L-glutamate 5-phosphotransferase and L-glutamate-5semialdehyde:NADP+ 5-oxidoreductase (phosphorylating) and L-glutamate 5semialdehyde dehydratase and L-Proline:NADP+ 5-oxidoreductase, h) oxaloacetate carboxy-lyase (pyruvate-forming).